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Abstract 

This paper is set to reconcile the existent conflicting empirical evidence on the effect of 

oil prices on stock prices. We estimate various nonlinear models where the response changes 

according to a first-order Markov switching process. More importantly, we model the transition 

probabilities between the high- and low-response regimes to depend on state variables to allow 

us to explain the forces behind the asymmetry in the response. The results show statistically 

significant asymmetries that can be explained by economic recessions and to a lower extent 

depend on the magnitude of the oil price shift and on whether the shift is positive or negative. In 

the high response regime, the effect is positive and lasts longer. We also find evidence of 

asymmetries in the response of stock prices to crude oil supply shocks, global aggregate demand 

shocks, and oil-specific demand shocks. 
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1. Introduction 

Fluctuations in crude oil prices have attracted the attention from policy makers and 

researchers alike, primarily due to effects of crude oil prices on stock market and the economy. 

Crude oil prices are often regarded as an essential factor for understanding variation in stock 

prices (see, e.g., Kilian and Park, 2009); however, the empirical evidence is mixed (see, e.g., 

Kling, 1985, and Jones and Kaul, 1996, who find a negative association, while Chen et al., 1986, 

and Huang et al., 1996, who find no link). This paper sets to reconcile prior conflicting empirical 

evidence by using nonlinear models in which the response of stock prices to oil prices is allowed 

to change over time. More importantly, our flexible empirical strategy allows explaining the 

forces behind the asymmetry in the response. 

The empirical approach endogenously identifies the time variation in the response of 

stock prices to oil prices. The response switches between low and high-response regimes 

following a first-order Markov switching model. In the basic setup the model has fixed transition 

probabilities, but later on we model the transition probabilities to be a function of various state 

variables to explain the forces behind the asymmetric response. We study whether the magnitude 

of the oil price change, the sign of the oil price change, and being in a recession period play a 

role in explaining the observed asymmetries. The advantage of our approach is that it allows 

different manifestations of asymmetries to be modeled jointly, while it does not necessitate the 

time variation in the estimates to be matched to a single source of asymmetry, which is useful 

when different sources that explain the asymmetric response are correlated. Our structural 

representation of the trend and transitory components of stock prices allow of oil prices to impact 

stock price only in the short run. Studying transitory or short-run dynamics allows us to 

investigate the possibility that the market crashes are results of unusually large transitory shocks 
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that are short-lived (see, e.g., Kim and Kim, 1996) and caused by the noise traders’ 

misperceptions (see, e.g., De Long et al., 1990).  

We find robust empirical support for time variation in the response. The effect of oil 

prices on stock prices switches between high and low response periods. The state-dependent 

impulse response functions show that during the high response regimes the effect is positive and 

lasts over a year, while economically significant evidence is lacking during the low response 

regime. When turning to explaining the asymmetry, our study finds empirical evidence that 

economic recessions increase the probability of being in a high-response regime. Moreover, the 

magnitude and the sign of oil price shifts also help explain the time variation, but to a lower 

extent. When plotting the filtered probabilities, we observe that higher probabilities of being in 

the high-response regime follow closely the NBER-dated recessions. This observation shows that 

the identification of the model comes across the historical episodes of recessions and not just 

from a small subset of the data. 

The importance of fluctuations in oil prices and its effect on the economy is well known. 

The seminal work by Hamilton (1983) finds that oil price shocks are responsible for recessions 

in the United States. Using evidence from emerging markets, Fang and You (2014) argue that oil 

prices might affect economy through the real balance channel, income transfer channel and 

allocative channel. For the effect of oil prices on stocks, the existing empirical evidence is still 

inconclusive. On the one hand, various works found a negative effect. For example, Jones and 

Kaul (1996) study international stock markets to show a negative effect in the post-war period, 

while Sadorsky (1999) finds the same negative effect using a VAR. Additional studies that show 

a negative stock-oil relationship include Park and Ratti (2008) in international stock markets, 

Nandha and Faff (2008) with globally diversified industry portfolios, and Kilian and Park (2009) 
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with VAR models and U.S. stock market data. On the other hand, work that found a positive 

effect includes Sadorsky (2001) who studies the Canadian stock market, and Gogineni (2007) 

that uses U.S. data and looks at aggregate demand shocks. Moreover, Sukchareon et al. (2014) 

find that international stock markets returns do not respond to oil market shocks. Likewise, 

Henriques and Sadorsky (2008) show similar evidence from U.S. alternative energy companies’ 

indexes.  

There are several theoretical explanations that support our nonlinear model specifications 

and the empirical results. Theoretically, higher oil prices lead to higher production costs, 

increases inflationary pressure, and lowers real consumption, all of which slows economic 

growth in the short run primarily through its impact on aggregate demand, or consumer spending 

and, hence, an adverse effect on corporate profits. In the late aftermath of 2007-2009 recession 

stock prices showed tendency to move, especially decline, along with oil prices. This was 

unanticipated given the usual presumption that a decline in oil prices is favorable news for the 

consumer as it boosts domestic income, which means more spending power and thus, leads to 

overall economic boom.1  

The asymmetric effect of oil prices on financial markets has been attracting significant 

attention from researchers. Reboredo (2010) uses a Markov-switching, while Aloui and Jammazi 

(2009) use a two regime Markov-switching EGARCH. More recently, Sim and Zhou (2015) 

employ a quantile-on-quantile approach, and Zhu et al. (2017) considers asymmetries while 

separating the sources of oil price shocks. Kumar (2019) includes exchange rates and uses 

nonlinear Granger causality and nonlinear ARDL tests. Kocaarslan and Soytas (2019) further 

reports that ignoring the presence of nonlinear relations leads to misleading findings.2 Our 

 
1 http://www.eia.gov/todayinenergy/detail.php?id=20752 
2 See also Filis et al. (2011), Chang and Yu (2013), and Zhang and Li (2016). 
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approach is different as we aim at explaining the factors behind the asymmetric response and we 

separate the sources of oil price shocks. 

Other studies that looked at the stock-oil relationship using linear models include 

Sadorsky (1999) using a VAR model, and Basher and Sadorsky (2006) who focus on emerging 

economies. Cong et al. (2008) use data from China, and Nandha and Faff (2008) looks at various 

industries. More recently, Bams et al. (2017) uses variance risk premia extracted from options 

and futures contracts. 

The remainder of the paper is organized as follows. Section 2 presents the data, while 

section 3 discusses the empirical approach. In section 4 we present the estimation results, 

followed by theoretical discussion on findings in section 5. Finally, section 6 concludes. 

 

2. Data 

To be able to examine any potential asymmetric responses of real stock prices to real oil 

prices we use monthly data between January 1974 and October 2016. We measure the real stock 

price with the monthly real price of S&P 500 index.3 This data series is obtained from 

Datastream. For the crude oil price, we use the U.S. Crude Oil Composite Acquisition cost by 

Refiners, obtained from the Energy Information Administration.4 The U.S.’s Consumer Price 

Index (CPI) deflates all nominal price series. We obtained the CPI from the Federal Reserve 

Bank of St. Louis on the monthly basis with 1982 (1982 = 100) as the base year. Following 

Kilian and Park (2009), we consider three different oil related shocks: oil supply shocks, 

 
3 S&P 500 is a benchmark index of 500 large capitalization value companies that are publicly traded in the United 
States.   
4 U.S. Crude Oil Composite Acquisition cost by Refiner is the weighted average of domestic and imported crude oil 

costs. It is reported in the U.S. Dollar per Barrel. This is the cost of crude oil, including transportation and other fees 

paid by the refiner. The refiner acquisition cost does not include the cost of crude oil purchased for the Strategic 

Petroleum Reserve (SPR). Source: Energy Information Administration 

(http://www.eia.gov/dnav/pet/pet_pri_rac2_dcu_nus_m.htm). 
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aggregate demand shocks, and oil-specific demand shocks. These shocks are constructed using 

data on crude oil production, a real economic activity index, and crude oil price. We retrieved 

global crude oil production from Datastream and real economic activity index from the Lutz 

Kilian website.5  

[Table 1, about here] 

 Table 1 reports the descriptive statistics. The mean of the real stock price is $425.83, 

while the real oil price average around $22.55. REC is a dummy variable equal to one during an 

NBER-dated recession, otherwise zero. The mean of REC is 0.13 suggesting that NBER-dated 

recession periods are usually short-lived relative to our sample size. SIGN takes value of one if 

the shift in oil prices at time t is positive, zero otherwise. We have two measures to capture the 

size of the shifts. First, SIZE equals to one if the shift in oil prices is greater than one standard 

deviation, zero otherwise, and SIZE2 which is equal to one if the shift in oil prices is greater than 

0.58 standard deviations, zero otherwise. We select 0.58 to make sure the average of SIZE2 is 

equal to 0.5 The SIGN average around 0.54 signifies that slightly more than half of the shifts in 

real oil prices are positive. On the other hand, the mean of SIZE at 0.11 indicates that few of the 

shifts in real oil prices fall outside one standard deviation. By construction, half of the values of 

SIZE2 will be one, and half will be zero. In addition, supply, aggregate demand, and oil-specific 

demand shocks are obtained from the structural VAR. Mean of aggregate demand shock is 

negative and highly volatile compared to supply shocks and oil-specific demand shocks.  

 

[Figure 1, about here] 

 
5 http://www-personal.umich.edu/~lkilian/paperlinks.html 
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Figure 1 presents the real stock index and the real crude oil index along with the NBER 

recessions illustrated by shaded areas.6 The NBER-defined recessions in our sample are January 

1980 to July 1980, July 1981 to November 1982, July 1990 to March 1991, March 2001 to 

November 2001, and December 2007 to June 2009. From figure 1 we notice that most of the 

times the financial market appears to react negatively to bearish economic conditions. In 

addition, we observe falling stock prices prior to almost every recession start date. Economists 

have argued that many recessions are caused by rising oil prices: 1980-1981, 1990-1991, and 

2007-2009 (see, e.g., Hamilton, 2009; Barsky and Kilian, 2004; Sharma and Escobari, 2018). In 

all these recessions, the oil price eventually fell as demand for energy collapsed. Overall, it is 

noticeable that oil prices rose for most of the period between early 1990s until the financial crisis 

in late 2007. This is partly due to the strong oil demand in emerging markets. However, China’s 

recent efforts to focus on strengthening its domestic demand, while also transitioning from 

manufacturing to a service-oriented economy has weakened oil prices from demand side. Figure 

1 shows how oil prices have rapidly plunged since 2014. Advancements in horizontal drilling 

and hydraulic fracturing (also known as fracking) are the United States’ supply side 

technological innovations that have challenged traditional oil suppliers (e.g., OPEC). Our 

empirical specifications will not only be able to model asymmetric behavior in the effect of oil 

prices to stocks, but will also be able to separate between different oil related supply and demand 

shocks as motivated in Kilian and Park (2009). 

Figure 1 is consistent with a changing pair-wise correlation between the stock market and 

oil prices, which supports our nonlinear specifications. During non-NBER-defined recessions, 

 
6 The NBER defines a recession as a significant decline in economic activity spread across the economy, lasting 

more than a few months, normally noticeable in real GDP, real income, employment, industrial production, and 

wholesale-retail sales. 
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there appears to be a positive correlation, which seems to be stronger during recessions. This 

association between stock and oil only seems to weaken during some periods. For example, weak 

association was observed in 2008 at the beginning of the recession and starting in mid-2014. 

 

 

3. Empirical strategy 

To model the dynamics of the real stock price and to empirically investigate the 

asymmetric effect of oil prices on stock prices, we first decompose the dynamics of the real stock 

price into the following two additively separable components:  

                  𝑠𝑡𝑜𝑐𝑘𝑡 = 𝑠𝑡𝑜𝑐𝑘𝑡
𝑃 + 𝑠𝑡𝑜𝑐𝑘𝑡

𝑇,                         (1) 

where 𝑠𝑡𝑜𝑐𝑘𝑡 is the logarithm of the real stock price (hereafter “stock price”). In addition, the 

first term on the right-hand side is the permanent (stochastic trend) component of stock 

price 𝑠𝑡𝑜𝑐𝑘𝑡
𝑃, while the second term is the transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡

𝑇. Our specification of 

the permanent component is modeled as a random walk:   

                  𝑠𝑡𝑜𝑐𝑘𝑡
𝑃 = 𝜇𝑡 + 𝑠𝑡𝑜𝑐𝑘𝑡−1

𝑃 + 𝑣𝑡,                                       (2)  

 This equation (2) controls for permanent shocks to stock prices and for a potential trend. 

In this random walk formulation, the autoregressive term is restricted to have a coefficient equal 

to one, making shocks 𝑣𝑡 have a permanent effect on stock prices. The forecasting function will 

have a time-varying drift term captured by 𝜇𝑡 , 

                  𝜇𝑡 = 𝜇𝑡−1 +𝜔𝑡 ,      (3) 
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which evolves as a driftless random walk.7 The innovations 𝑣𝑡 and 𝜔𝑡 are assumed to be 

normally and independent and identically distributed (i.i.d.) random variables.  

 The analysis of the response of the logarithm of the real stock price to the logarithm of 

the real oil price, 𝑜𝑖𝑙𝑡 (hereafter “oil price”) is modeled with the following autoregressive 

process:8 

     𝜙(𝐿) ∙ 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 = 𝛾0(𝐿) ∙ 𝑜𝑖𝑙𝑡 + 𝛾1(𝐿) ∙ 𝑜𝑖𝑙𝑡 ∙ 𝑆𝑡 + 𝜀𝑡,      (4) 

     𝜙(𝐿) = ∑ 𝜙𝑘 ∙ 𝐿
𝑘𝐾

𝑘=0 ;    𝜙 = 1 ;    𝛾𝑖(𝐿) = ∑ 𝛾𝑗,𝑖 ∙ 𝐿
𝑗𝐽

𝑗=0  ,     (5) 

where all roots of  𝜙(𝐿) lie outside the unit circle.9 As with previous innovations, we assume 𝜀𝑡 

is an i.i.d. random variable that follows a normal distribution. The indicator variable 𝑆𝑡  in 

equation (4) captures the regime changes in the responses of stock prices to oil prices. This 

construction follows Lo and Piger (2005) and Escobari (2013) and we will provide various 

specifications to be consistent with the empirical model of stock market response to oil price 

shocks in Kilian and Park (2009). In these specifications oil price can be treated as 

predetermined factor. Further, following Gerlach and Smets (1999), our approach expands the 

standard unobserved components model with an oil price variable, (𝑜𝑖𝑙𝑡). This formulation 

captures how fluctuations in the price of oil affects the transitory component of stock prices in 

different regimes while separately modeling the dynamics of the permanent component of stock 

prices. Previous literatures have proposed several methods of decomposing a time series into 

permanent and transitory components. Campbell and Mankiw (1987) employing an ARMA 

model, estimated the effect of a shock on long-run forecast to show comparative importance of 

 
7 This characterization of the drift aims to model low frequency shocks to the stochastic trend, which can include 

structural breaks in the growth rate of the trend.  
8 Clark (1987) and Watson (1986) discuss the decomposition of the unobserved component into stochastic trend and 

transitory component. 
9 Note that if we disregard 𝑜𝑖𝑙𝑡  in equation (4), the specification of equations (1) to (5) is basically the unobserved 

components decomposition of stock price into  𝑠𝑡𝑜𝑐𝑘𝑡
𝑃  and 𝑠𝑡𝑜𝑐𝑘𝑡

𝑇 .  
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the two components. Others have examined the relative significance of two components within 

the framework of the state-space model with Markov regime-switching (see, e.g., Kim and Kim, 

1996; Kim and Nelson, 1999).  

In addition to our base model presented in equations (1) to (5) that focuses on the effect 

of real oil prices on real stock prices, we adopt Kilian and Park’s (2009, henceforth KP) 

framework to study how different types of oil related shocks (i.e., oil supply shocks, global 

aggregate demand shocks, and oil-specific demand shocks) can have an asymmetric effect on 

real stock prices. Using a VAR model, Kang et al. (2015) show that the contribution of oil 

related shocks to stock return gradually rose during global financial crisis, where both the 

coefficients and the variance-covariance matrix provide evidence of time variation. With this 

motivation, we construct a structural VAR as in KP to capture oil related supply shocks, oil-

specific demand shocks, and global aggregate demand shocks. The simplest form of this 

approach involves having 𝐵0𝑦𝑡 = 𝛼 + ∑ 𝐵𝑖𝑦𝑡−𝑖 + 𝜖𝑡
𝑘
𝑖=1  as the structural representation of our 

VAR, where 𝑦𝑡 is a vector of response time series variables with n elements at time t, while 𝛼 is 

a vector of constants. Furthermore, multiplying the model by 𝐵0
−1, we obtain that 𝐴𝑖 = 𝐵0

−1𝐵𝑖 

are 𝑛 × 𝑛 matrices for each lag i for a total of k autoregressive matrices. Moreover, 𝐼 = 𝐵0
−1𝐵0 is 

just the identity matrix, whereas 𝜖𝑡 is a vector of serially uncorrelated innovations that have a 

covariance matrix Σ. The recursively identified structural VAR model has the following reduced 

form innovations:  

 

𝑒𝑡 ≡

(

 
 
 

𝑒1𝑡
∆𝑔𝑙𝑜𝑏𝑎𝑙 𝑜𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑒2𝑡
𝑔𝑙𝑜𝑏𝑎𝑙 𝑟𝑒𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦       

𝑒3𝑡
𝑟𝑒𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑜𝑖𝑙           

   
 )

 
 
= [
b11 0 0
b21 b22 0
b31 b32 b33

] ( 

𝜖1𝑡
∆𝑜𝑖𝑙 𝑠𝑢𝑝𝑝𝑙𝑦 𝑠ℎ𝑜𝑐𝑘

                  

𝜖2𝑡
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑜𝑐𝑘

     

𝜖3𝑡
𝑜𝑖𝑙−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑜𝑐𝑘

   

)  (6) 
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 We then allow each of the reduced form shocks 𝑒𝑡 obtained from equation (6) to 

influence the real stock price in regime switching models as presented in equations (1) to (5). 

Furthermore, to obtain the shocks 𝑒𝑡, we follow Kilian (2009) identifying restrictions in equation 

(6) which imply that (i) oil supply shocks are innovations from the oil supply; (ii) given the 

slowness in global real economic activity increases in real price of oil, determined by oil market 

specific shocks, will not impact global real economic activity in the short-run; and (iii) 

innovations to the real price of oil are shocks specific to the oil market, which cannot be 

explained by oil supply shocks or aggregate demand shocks.10  

In order to model the time variation in the response, our nonlinear specification allows 

the response to change between regimes. The indicator variable 𝑆𝑡 in equation (4) captures the 

regime. Whether, 𝑆𝑡 is zero or one will be filtered from the data, and it is unobserved by the 

researcher. We follow Hamilton (1989) and model the transition between regimes to be captured 

by a first-order Markov process. In the time invariant or fixed transition probability (FTP) 

specification, 𝑆𝑡 takes the values of 0 and 1 as modeled by: 

𝑃(𝑆𝑡 = 0 | 𝑆𝑡−1 = 0) =
exp(𝑐0)

1 + exp(𝑐0)  
 

𝑃(𝑆𝑡 = 1 | 𝑆𝑡−1 = 0) = 1 − 𝑃(𝑆𝑡 = 0 | 𝑆𝑡−1 = 0), 

𝑃(𝑆𝑡 = 1 | 𝑆𝑡−1 = 1) =
exp(𝑐1)

1 + exp(𝑐1)
 

𝑃(𝑆𝑡 = 0 | 𝑆𝑡−1 = 1) = 1 − 𝑃(𝑆𝑡 = 1 | 𝑆𝑡−1 = 1).     (7) 

This FTP of equations (7) essentially mean that the probability of switching regime (or 

staying in the same regime) is same throughout the period of study. A more flexible approach 

 
10 The nature and origin of the identifying assumptions regarding recursively identified structural model is explained 

in detail in KP.  
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would be to model the transition probabilities between regimes to be a function of some 

observables. To this extent, we adopt the specification in Filardo (1994) to have time-varying 

transition probabilities (TVTP) where the regime-switching process changes over time. Our 

TVTP model has the following logistic form:  

𝑃(𝑆𝑡 = 0 | 𝑆𝑡−1 = 0) =
exp(𝑐0 + 𝓏𝑡

′ · 𝑎0)

1 + exp(𝑐0 + 𝓏𝑡
′ · 𝑎0)

 , 

𝑃(𝑆𝑡 = 1 | 𝑆𝑡−1 = 1) =
exp(𝑐1 + 𝓏𝑡

′ · 𝑎1)

1 + exp(𝑐1 + 𝓏𝑡
′ · 𝑎1)

 . 

 

 

          

(8) 

The state variables that govern the regime switch are included in the 𝑞 × 1 vector 𝓏𝑡, where 𝓏𝑡 =

(𝓏1𝑡 , 𝓏2𝑡 , … , 𝓏𝑞𝑡)′ , whereas 𝑎0 and 𝑎1are the 𝑞 × 1 vectors of coefficients (𝑎01, 𝑎02, … , 𝑎0𝑞)′ 

and (𝑎11, 𝑎12, … , 𝑎1𝑞)′ associated with 𝓏𝑡 at each state.  The vector 𝓏𝑡 will include three sources 

of asymmetries to capture the regime changes; asymmetry to capture the direction of oil price 

shift, asymmetry to capture the size of the oil price shift, and asymmetry to capture economic 

recessions. Various specifications of the 𝓏𝑡 will allow us to analyze each asymmetric 

independently as well as to combine different sources of asymmetry in the response. This 

information is included in 𝓏𝑡 in the form of different sets of the dummy variables REC, SIGN, 

SIZE, and SIZE2. Because these dummy variables in 𝓏𝑡 are expected to capture dynamics of the 

asymmetry, we include J lags of each variable. 

 

4. Results 

To estimate the model presented in equations (1) to (5), (7) and (8) we use the logarithm 

of the monthly real S&P 500 index price, 𝑠𝑡𝑜𝑐𝑘𝑡. For the price of oil our first set of results use 

the logarithm of the real oil price. To obtain the maximum likelihood estimates, first we find the 
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state-space representation of the Markov-switching model by implementing the filtering and 

smoothing procedure described in Kim (1994). Due to the non-stationary nature of the transition 

equation, we use the Kalman filter portion of Kim’s filter. We, therefore, initiated the filter 

where we place high variance on initial guesses. We compute the maximum likelihood only after 

twelve months of data to dissipate the effects of initial parameter guesses. This means that 

although our sample begins in January 1974, the estimation results will cover from January 1975 

through October 2016. In addition to using real oil prices, further specification will follow KP to 

disentangle the real oil prices into oil-related global supply shocks, aggregate demand shocks, 

and oil-specific demand shocks. This allows to further study if there is an asymmetric response 

from any of these shocks to stock prices.  

 

4.1.Testing for asymmetries in the response 

The first step in the estimation is to examine if the regime-switching model is a 

significant improvement relative to the model that assumes a constant response. The 

improvement should be in terms of the model fit. To decide on the values of the lags K and J in 

equation (5), we estimate the FTP model with a maximum lag order of twelve for both K and J 

and start reducing the number of lags until a likelihood ratio finds a significant value of 

either 𝜙𝑘  or γ𝑗,𝑖. This resulted in a lag order of K = 2 and J = 1, which we employ in all of the 

specifications. 

To test for the significance of regime-switching model, we follow Hansen (1992), which 

basically tests the significance of the fixed transition probability model (or regime-switching 

model) versus the null hypothesis that the response coefficients are constant; that is, 𝛾𝑗,0 = 𝛾𝑗,1 

for all j. The importance in using Hansen (1992) to the fact that in this type of Markov-switching 
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models, some parameters of interest are not identified under the null. Not being able to meet this 

regularity condition implies that the standard LR test has an unknown distribution for the null 

hypothesis. Hansen (1992) is useful as it provides an upper bound of the p-value; hence, we read 

it as a conservative test of the null.11 When applied to our base model, the Hansen test yields a p-

value of 0.01. We interpret significant upper bound p-value as a significant empirical evidence 

supporting the model time-varying coefficients. Similarly, we find strong evidence in favor of 

alternative hypothesis of regime-switching response coefficients, while using KP’s oil-market 

related shocks. For the oil-related supply shock and the aggregate demand shock, we obtain a p-

value of 0.01. For the oil-specific demand shock, the p-value is 0.05.   

 

4.2.Modeling the sources of the asymmetric response 

After finding evidence of asymmetry in the response, we turn to estimate the FTP model 

as well as various specifications of the TVTP for our baseline model. Table 2 reports the 

Schwarz Information Criteria (SIC), the Akaike Information Criteria (AIC), and the log 

likelihood of different specification of the 𝓏𝑡 vector in the first three columns. The last column 

presents the p-values associated with the Likelihood Ratio tests of each of the TVTP models 

versus the FTP model. Within the time-varying transition probabilities specification, 

𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 1) is modeled not to depend on time as the estimation results from all the 

models that we consider suggest that 𝑆𝑡 = 1 holds only for short periods of time. This means that 

𝓏𝑡 has a small contribution explaining the variation within 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 1). Thus, the 

modeling focuses on the how the transition probability 𝑃(𝑆𝑡 = 0|𝑆𝑡−1 = 0) changes over time. 

[Table 2, about here] 

 
11 Lo and Piger (2005) provide details on Hansen in a similar setting.   
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The first specification corresponds to the fixed transition probability model where 

equations (8) can just be written as equations (7). Table 2 describes the FTP model where 𝓏𝑡 is 

empty, as well as models in which SIGNt, SIZEt, and RECt are included, one at the time, in 𝓏𝑡. 

First, we model the specification where 𝓏𝑡 contains the variables characterizing the direction of 

change; that is, 𝓏𝑡 = (SIGNt−1, SIGNt)′. The p-value presented in the last column shows evidence 

that at the 0.004 level, the direction of the shift in real oil prices is helpful for explaining regime 

shifts. The specification that follows considers the case where 𝓏𝑡 contains the dummy variables 

capturing the magnitude of the change in real oil prices, i.e., 𝓏𝑡 = (SIZEt−1, SIZEt)′. The LR test 

statistic for the null hypothesis of the fixed transition probabilities model has a p-value of 0.068.  

We interpret this as empirical evidence that this measure of the size of the shift helps 

explain the different responses of stock prices to shifts in the price of oil. However, when 𝓏𝑡 =

(SIZE2t−1, SIZE2t)′, we have that the associated LR test p-value is 0.1960. This is evidence that 

the SIZE2 model does not represent an improvement in terms of fit over the FTP model. Hence, 

we have mixed evidence on the role of size when explaining the asymmetric effect. When 

comparing the p-values, we see that this evidence is weaker than when SIGNt explains the 

asymmetric response. Finally, the last specification reported in Table 2 models 𝓏𝑡 to contains the 

dummy variables that capture the NBER recession dates, i.e., 𝓏𝑡 = (RECt−1, RECt)′. The log 

likelihood statistics and the likelihood ratio test reported for NBER recession (REC) periods 

signifies that REC specification is our preferred model when compared to the FTP or the other 

TVTP specifications reported in Table 2. In subsequent section, we focus on the results for this 

preferred specification.  
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4.3. Model estimates and interpretation 

The model selection described earlier suggests that the response of stock prices to oil 

prices varies amid regimes. Moreover, the regime changes can be modeled by different 

asymmetries. In this section we move to present the estimates for various specification of the 𝓏𝑡 

vector in equations (8). The maximum likelihood estimates reported in Table 3 have the FTP 

model in the first column, while the TVTP specifications appear in columns 2 through 4. We do 

not further explore the role of SIZE2 as it does not represent an improvement in terms of fit over 

the FTP model. Across all specification, the parameters of the trend component of the 𝑠𝑡𝑜𝑐𝑘𝑡
𝑃 

suggest that growth of real stock prices is well recognized as being mainly constant, with 

sporadic shifts that can capture episodes of stock market crashes. Precisely, σω is statistically 

significant, i.e., the trend component is categorized by low frequency innovations, which have a 

permanent effect on the growth rate of the trend. Nevertheless, σ𝑣 is not statistically significant, 

which means that once low frequency innovations are modeled, there are no further permanent 

innovations to real stock prices.  

[Table 3, about here] 

Figure 2 presents the transitory component of the real stock price (𝑠𝑡𝑜𝑐𝑘𝑡
𝑇) for the REC 

model of column 4, along with the highlighted areas that characterize NBER dated recession 

periods (i.e., RECt = 1). This figure illustrates the sharp decline in stock prices during NBER-

dated recessions. In addition, there is empirical evidence of a negatively skewed 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇, as 

negative deviations are larger than the positive deviations from the permanent component.  

 [Figure 2, about here] 

In order to visually inspect 𝑠𝑡𝑜𝑐𝑘𝑡+𝑗
𝑇  as modeled by equation (4) and the results captured 

by the regime-switching response coefficients, 𝛾0,0, 𝛾1,0, 𝛾0,1, and 𝛾1,1, Figure 3 provides the 
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impulse response functions (IRFs) that depend on the state for the REC specification (column 4, 

Table 3), with the cumulative responses reported on the right-hand side. The indicator variable 𝑆𝑡 

divides the oil price innovations that have large effects from innovations that have relatively 

smaller effects. The real oil price shift at 𝑡 − 1 is set to be equal to its historical standard 

deviation of 0.1108. The impulse response functions only depend on the values of 𝑆𝑡 and 𝑆𝑡+1, 

because J = 1 in equation (5). Thus, we compute IRFs under four possible realizations of the 

indicator variables: 𝑆𝑡 = 𝑆𝑡+1 = 0; 𝑆𝑡 = 1 and 𝑆𝑡+1 = 0; 𝑆𝑡 = 0 and 𝑆𝑡+1 = 1; and 𝑆𝑡 = 𝑆𝑡+1 =

1. In addition, while computing the impulse responses, we assume that 𝑠𝑡𝑜𝑐𝑘𝑡+1
𝑇 = 𝑠𝑡𝑜𝑐𝑘𝑡+2

𝑇 =

0, εt+j = 0, ∀𝑗 and 𝑜𝑖𝑙𝑡−𝑗 = 0, 𝑗 ≠ 0. The state-dependent IRFs show that there is a positive 

effect for the high-response regime, with the response being larger and lasting longer when 𝑆𝑡 =

1 and 𝑆𝑡+1 = 1. A one standard deviation rise in oil prices increases stock prices by about 0.31% 

at three-month periods during high response regime (i.e., 𝑆𝑡 = 𝑆𝑡+1 = 1). When 𝑆𝑡 = 0, 𝑆𝑡+1 = 1 

or 𝑆𝑡 = 1, 𝑆𝑡+1 = 0 the maximum response of real stock price is still positive, but it is about half 

the size. Finally, during the low-response regime (when 𝑆𝑡 = 0 and 𝑆𝑡+1 = 0) the effect on stock 

prices is negligible. The cumulative responses reported on the right-hand side show a similar 

story. The maximum accumulated effect on stock prices after a one standard deviation shift in oil 

prices reaches a maximum of about 2.8% increase after about a year and a half. 

[Figure 3, about here] 

In addition, results in Figure 3 are an illustration of a case under the assumption of a 

constant response of real stock prices to real oil prices obscure interesting features of the data. 

For example, Figure 3 shows that the estimated response of stock prices to a positive real oil 

price shift is close to null in the low response regime, i.e., 𝑆𝑡 = 𝑆𝑡+1 = 0.  Furthermore, when 

looking at the responses with regime transitions (i.e., 𝑆𝑡 = 1, 𝑆𝑡+1 = 0; and 𝑆𝑡 = 0, 𝑆𝑡+1 = 1) 
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and for the high response regime (𝑆𝑡 = 𝑆𝑡+1 = 1), the effect is positive. This indicates that the 

response of the real stock price to the real oil prices is different in terms of sign and magnitude 

when we allow for nonlinear effects. Thus, when having a more flexible approach we expose the 

concealed component of regime varying relationship between the real stock price and the real oil 

price.  

When replacing equations (7) with equations (8) in the estimation of the model, we can 

obtain the estimated coefficients 𝑐0̂, 𝑐1̂, 𝑎̂01, and 𝑎̂02 to allow us asses how transition 

probabilities vary over time. From the estimates in column 4 of Table 3, we have 𝑐0̂ = 2.3081, 

which results in 𝑃(𝑆𝑡 = 0|𝑆𝑡−1 = 0) = exp(𝑐0̂) / (1 + exp(𝑐0̂)) = 0.91. This suggests that if the 

economy has not been in a recession in the recent past (𝑅𝐸𝐶𝑡−1 = 𝑅𝐸𝐶𝑡 = 0) and we were in a 

low response regime last period (𝑆𝑡−1 = 0), we will remain in the current period in the low 

response regime (𝑆𝑡 = 0) with a relatively high probability. The probability of switching to a 

high response regime is just 0.09.  

Alternatively, when the economy is currently in a recession and was in a recession in the 

previous period (𝑅𝐸𝐶𝑡−1 = 𝑅𝐸𝐶𝑡 = 1), from the same column in Table 2, we observe that 𝑎̂01 is 

relatively large, negative, and statistically significant, while 𝑎̂02 is small and statistically 

insignificant. Using these values in the corresponding equation (8) we have that 𝑃(𝑆𝑡 =

0|𝑆𝑡−1 = 0) decreases to exp(𝑐0̂ + 𝑎̂01) / (1 + exp(𝑐0̂ + 𝑎̂01))  =  0.01. This means that the 

probability of switching from a low to a high response regime increases to 

𝑃(𝑆𝑡 = 0|𝑆𝑡−1 = 0) = 0.99 during recessions. Combining these results with the regime 

dependent IRFs results discussed earlier, we can say that during recessions oil prices will be 

more likely to have large positive effects on stock prices than outside recessions. The parameters 

defining 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 1) indicate that the 𝑆𝑡 = 1 regime holds only for short bursts.  
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[Figure 4, about here] 

Figure 4 visually summarizes the previous discussion by showing the filtered probability 

that 𝑆𝑡 = 1, which we denote by 𝑃(𝑆𝑡 = 1|𝑡), for the REC specification of the vector 𝓏𝑡. The 

filtered probabilities are obtained using the TVTP specification presented in equations (1) to (5) 

and (8). The shaded areas in Figure 4 correspond to the NBER-dated recession periods. This 

figure illustrates how the model identifies two separate regimes, when 𝑃(𝑆𝑡 = 1|𝑡) is almost 

zero, and during brief and infrequent periods when it is almost one. These brief periods coincide 

for most part with the shaded areas. This is further evidence that REC helps in explaining the 

time variation in the transition probabilities. It is interesting to observe that there is at least one 

period in which 𝑃(𝑆𝑡 = 1|𝑡) jumps up around every NBER recession after 1990. Moreover, 

there is a consistent pattern where REC and 𝑆𝑡 = 1 corresponds throughout the sample period, 

which is evidence that the model identification comes from the variation observed in various 

recession episodes. 

 

4.4. Combined asymmetries 

We now conduct additional model specifications to further study the factors that affect 

the asymmetric response. We first study the SIGNt and SIZEt, one at the time, along with RECt. 

The model selection statistics for these two additional specifications are reported in Table 4. The 

likelihood ratio statistics in the fourth column tests the null of the FTP model, while the last 

column tests the null of the REC in the model (i.e., our preferred model from Table 2). The 𝓏𝑡 

vector in the first specification is given by 𝓏𝑡 = (RECt−1, RECt, SIGNt−1, SIGNt)
′, with a 

corresponding p-value of 0.1186 on the LR test over the 𝓏𝑡 = (RECt−1, RECt)′ model and a near 

zero p-value on the LR test over the FTP model. We interpret this as evidence that a model with 
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REC and SIGN is a considerable improvement over the model with constant transition 

probabilities, but it is not significantly better than a model with simply REC. 

[Table 4, about here] 

The lower part of Table 4 presents two specifications that assess the degree to which 

SIGN and SIZE play a role in explaining the asymmetric response while being in an NBER-

defined recession. This specification allows us to study whether SIGN and SIZE, while 

unconditionally significant, can be significant conditionally on the economy being in an NBER-

defined recession. This involves estimating two alternative models for the vector 𝓏𝑡, i.e., 𝓏𝑡 =

(RECt, RECt−1, SIZEt × RECt, SIZEt−1 × RECt−1)′ and 𝓏𝑡 = (RECt, RECt−1, SIGNt ×

RECt, SIGNt−1 × RECt−1)′. Based on the LR tests both specifications are preferred to the FTP 

model. Moreover, the LR test of the null of having only REC is rejected at the 5% significance 

level in favor of the SIGN specification (p-value of 0.039), but we fail the reject the null for the 

SIZE specification (p-value of 0.607). Furthermore, the AIC and SIC show consistent results as 

both also prefer the specification where SIGN within recessions explain the asymmetric 

response. Overall we observe that conditional on being in a recession period, the direction of 

shift in oil prices further helps to explain the asymmetric response.  

[Figure 5, about here] 

Figure 5 plots the regime-dependent impulse response functions for our preferred 

specification of Table 4, i.e., with 𝓏𝑡 = (RECt, RECt−1, SIGNt × RECt, SIGNt−1 × RECt−1)′. The 

solid black lines illustrate the IRFs during the high-response regime (cumulative response on the 

right-hand side). There is a positive effect of oil prices on stock prices. The marginal effect is at 

its maximum three months out with a 0.41% effect on stock prices given a one standard 

deviation increase in oil prices. On the right-hand side panel, we observe that the cumulative 

Electronic copy available at: https://ssrn.com/abstract=3708115



 

21 

 

effect during the high-response regime increase in oil prices by about 3.6% beyond the 18-month 

mark (for a one-standard deviation change in oil prices). This is consistent with the left-hand side 

IRF where the effect completely dies out after about two years. When either 𝑆𝑡 = 1 and 𝑆𝑡+1 =

0, or 𝑆𝑡 = 0 and 𝑆𝑡+1 = 1, the effects are smaller and have a shorter duration. In the latter case 

the maximum marginal effect for a one-standard deviation change in oil prices is achieved at the 

3-month mark (with 0.32%) and the cumulative effect reaches a maximum of about 3.7% after 

about 18 months. On the other hand, if the low-response regime prevails (i.e., 𝑆𝑡 = 0 and 𝑆𝑡+1 =

0), the dashed black line shows how the marginal and the cumulative effect are economically 

insignificant. Overall these set of results are consistent with the previous findings when the 

asymmetric response was purely explained by recession periods. In both of these specifications, 

as presented in Figures 3 and 5, there is significant evidence of asymmetry in response of stock 

prices to oil prices. In a high-response regime (𝑆𝑡 = 𝑆𝑡+1 = 1), the effects are positive, while in 

the low-response regime (𝑆𝑡 = 0 and 𝑆𝑡+1 = 0), the effects are negligible. 

 [Figure 6, about here] 

Figure 6 reports the filtered probabilities 𝑃(𝑆𝑡 = 1|𝑡) to examine the time at which the 

model experiences a regime change. The periods in which 𝑃(𝑆𝑡 = 1|𝑡) spikes up are observed to 

be highly correlated with dates defined as an NBER recession, shown as the shaded areas in the 

figure. Note that 𝑃(𝑆𝑡 = 1|𝑡) spikes in every recession and gets to be close to one in two of the 

recessions (July 1990 to March 1991, and December 2007 to June 2009). This filtered 

probability provides further evidence in support to our model specification and highlights the 

importance of recession periods in explaining the asymmetric response.  
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4.5 Alternative measures of oil-specific shocks and robustness test 

Following the work of KP, we now turn to study whether the underlying cause behind the 

oil price change plays a role on the effect of oil prices changes on stock prices. Combining our 

model from equations (1) to (5) and (8) with structural VAR of equation (6), we extend KP to 

further study whether oil supply shocks, an aggregate demand shocks, and oil-specific demand 

shocks have a nonlinear effect on stock prices. The VAR structure in equation (6) that serves to 

identify the three different oil-related shocks also helps us to define changes in the oil market as 

exogenous factors to the U.S. stock market (see, e.g., Kilian, 2009, and KP).  

[Table 5, about here] 

The three panels presented in Table 5 show the results for each of the shocks filtered 

from equation (6).12 In each of the panels we present results for the FTP specification as well 

modeling 𝓏𝑡 to depend on sign, size, and recessions. We observe that for oil supply shocks, 

aggregate demand shocks, and oil-specific demand shocks (reported in Panels A, B, and C, 

respectively), SIGN and SIZE do not represent a significant improvement over the FTP model. 

However, given the associated likelihood ratio p-values of 0.0002, 0.0035, and 0.0227, we 

observe that for all three alternative measures of oil-specific shocks, being in a recession (REC) 

helps explain the asymmetry in the response. Only in high response regimes oil supply shocks 

have a small negative effect, aggregate demand shocks have a positive effect, while oil-specific 

demand shocks have a negligible negative economic effect. There are no statistically significant 

effects during low-response regimes. While these is consistent with Kilian and Park (2009), it is 

 
12 The Hansen test finds strong evidence in favor of the models with regime-switching response coefficients for all 

three shocks in KP. 
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difficult to directly compare the results as for most of our sample, when we are out of a 

recession, there is no response.13 

Comparison across the different LR tests tells us that REC is the preferred model for each 

of the alternative measures of oil-specific shocks. Overall, the findings in Table 5 provide 

additional evidence that recessions play an important role on the nonlinear effect of oil prices on 

stocks, this time considering various causes for the underlying oil price changes. Moreover, these 

findings also extend the work of Zhu et al. (2017), to further explain that the transition between 

high- and low-response regimes can be explained by recession periods.  

The findings presented in this paper can help us answer policy questions in light of oil 

related shocks having larger effects during recessions. This information might be used by 

regulators if they are aiming to stabilize stock prices by trying to affect oil supply particularly 

before (or during) recessions. There is a plausible behavioral explanation behind recessions 

driving the asymmetric response of stock to oil related shocks. It is an observed phenomenon that 

during periods of recession, consumer behavior changes as a result of changes in expectations 

and disposable income. As the economy enters a recession, investors update their beliefs about 

future stock returns, which in our case can explain how stock market participants react 

differently as they observe oil price changes. In addition, Massey and Wu (2005) argue that the 

ability of consumers to correctly identify the onset of a new regime can mean the difference 

between overreaction and underreaction. Investors’ beliefs about the state of the economy 

influences their reaction to oil price changes. It is likely that consumers overreact to any 

information during the onset of recession periods. Likewise, during recovery periods consumers 

are likely to underreact or respond slowly to the recovery due to incumbent fear of losing an 

 
13 We show in the appendix how the responses differ by industry. 
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investment. Sharma (2017) show recession plays major role while explaining shifting 

relationship between oil and ADR stocks, while Sharma and Rodriguez (2019) document a 

diminishing hedging role of oil for stock market as a result of growing financialization after 

2007-2009 crisis. Yeh et al. (2012) show that changes in international oil prices have a 

significant impact on industrial production. It is reasonable to expect consumers to respond 

(overreact or underreact) to changing oil prices as commodity price directly impacts industrial 

production, disposable income, spending power and, hence, has an immediate effect on corporate 

profits. Alternatively, Basak and Pavlova (2016) find that the presence of institutional investors 

in the marketplace causes high correlations between futures returns of commodities and stock 

returns. Datta et al. (2018) shows equity and oil are positively correlated from 2008 to 2017, 

because of a historically low short-term nominal interest rate. Similarly, Silvennoinen and Thorp 

(2013) show significantly positive stock-oil correlations after 2008 in contrast to earlier years. 

This is consistent with stock market responses to oil price shocks being higher during recession 

periods.  

One constraint in the estimation of our nonlinear model is that we rule out feedback from 

stock prices to oil shocks. However, there is evidence that oil prices have responded to the same 

economic forces that drive stock prices. This is not causality evidence, but evidence of 

endogeneity. Hence, we need to assess if ruling out this feedback is reasonable in our setting. 

One candidate could be to test for linear Granger causality, but this test is too restrictive as it 

does not account for nonlinearities. Baek and Brock (1992) present a nonparametric statistical 

nonlinear Granger causality test that uses correlation integral between the series. In Baek and 

Brock’s test, the time series are assumed to be mutually and individually independent and 

identically distributed. Hiemstra and Jones (1994) relax this assumption and develop a modified 
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test statistic for nonlinear causality where each series is allowed to display short-term temporal 

dependence. 

[Table 6, about here] 

We employ the Hiemstra and Jones (1994) nonlinear Granger nonparametric statistic to 

test the null hypothesis that stock prices do not nonlinear Granger cause oil shocks. The results 

reported in Panel A of Table 6 show strong evidence that we fail to reject the null for the oil 

specific demand shocks, aggregate demand shocks, and oil supply shocks at various lags. These 

results support our nonlinear specifications that include the structural VAR. 

Panel B of Table 6 serves as a sensitivity analysis to the functional forms imposed by our 

nonlinear response methods. The reported statistics assess if there exists a nonlinear Granger 

causality from the different types of oil shocks to stocks. The relatively low p-values across all 

three shocks and at various lags are largely consistent with causality going from oil shocks to 

stock prices, consistent with causality modeled in our nonlinear approach. 

 

Conclusion 

This paper estimates various flexible nonlinear specifications that allow us to reconcile 

existing conflicting empirical evidence on the relationship between oil prices and stock prices. 

The empirical approach employs a first-order Markov process where the transition between 

regimes is endogenously determined from the data. More importantly, it allows us to include 

state variables in the transition probabilities to explain the sources of the asymmetric response. 

The reassessment of the effect of oil prices on stock prices is additionally important given the 

recent volatility in oil prices and the changes on the structure of the supply side of the oil 

industry (i.e., increase in fracking). Building on the seminal work of Kilian and Park (2009), our 
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empirical strategy additionally allows us to assess potential asymmetries in the response of stock 

prices to different sources of oil shocks. 

The results provide strong support for the existence of an asymmetric response. In our 

baseline model the high response regime shows a positive and significant effect in the response 

of stocks to oil prices. The positive effect is greater and lasts longer when the high response 

regime is prevalent. Moreover, in the low response regime our estimates and the state-dependent 

impulse responses find no significant effect. Filtered probabilities provide further support to our 

models as they show a clear match between recessions and the spikes in the probabilities of 

switching to a high response regime.  

To explain the asymmetry in the response, we used various specifications that included 

state variables in the transition probabilities. We tested whether the regime shift can be explained 

by the sign of the oil price change, the size of the oil price change, and whether the economy is 

in a recession. In addition, we explored if the regime shift can be explained by various 

combinations of the sources of asymmetries. The empirical findings show statistically significant 

support that regime changes are explained by recessions and the sign of the oil price change. In 

particularly, shifts in oil prices during recessions have a greater impact. The filtered probabilities 

provide support that this outcome is consistent throughout various recessions’ episodes. Overall, 

there is only mild evidence that the size of the shift in oil prices affect the asymmetry in the 

response. Our approach and result complement the findings in Mo et al. (2019), Mishra et al. 

(2019) and Balcilar et al. (2019). Mo et al. report that the effects of oil prices on economic 

growth may vary during different investment horizon, whereas, Balcilar et al. indicate that stock 

markets become sensitive to oil price fluctuations during periods of economic downturns. Mishra 

et al. report positive effects of oil price fluctuations on Islamic stocks in short run, but oil prices 
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exert a negative influence in the long run. This is consistent with our positive stock market 

response to oil related shocks during economic downturns, which is relatively short lived.  

Furthermore, following Kilian and Park (2009) to separate different types of shocks, we 

find asymmetries in the response of stock prices to crude oil supply shocks, global aggregate 

demand shocks, and oil-specific demand shocks. In all these cases recession periods explain the 

asymmetry in the response. These results are consistent with market participants changing their 

expectations during recessions, where consumers are more susceptible and are likely to respond 

to even small price shifts. Taking into consideration the rise in price of a high demand energy 

commodity, such as crude oil, the response can be swift during recessions. Such reaction can 

immediately effect consumer spending, overall aggregate demand, and the stock market. 

Therefore, during contractionary periods it is crucial for policy makers to take essential steps to 

stabilize crude oil prices by, e.g., subsidizing domestic producers, reducing tariffs on energy 

imports, and/or subsidizing industry sectors that are directly related to oil related shocks. These 

policy actions may assist in minimizing effects of crude oil related shocks on stock markets.  
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Table 1. Descriptive Statistics 

      

 Observation 
                  

Mean Std. Dev              Min                   Max 

Variable (1)                    (2)                 (3)              (4)                    (5) 

Real stock price 514 425.8304 240.7443 111.4974 903.3837 

Real oil price 514 22.5517 11.1986 5.9672 58.9135 

REC  514 0.1275 0.3339 0 1 

SIGN 514 0.5398 0.4989 0 1 

SIZE 514 0.1096 0.3127 0 1 

SIZE2 514 0.5000 0.5005 0 1 

Supply shock 514 0.0034 1.5104 -9.0219 5.6594 

Aggregate demand shock 514 -0.0294 7.1718 -35.1057 34.4863 

Oil demand shock 514 0.0048 1.2983 -7.0437 4.7031 
Notes: The monthly stock price series is obtained from Datastream, while the crude oil price is obtained from Energy 

Information Administration (EIA). Supply, aggregate demand, and oil demand shocks are obtained from the 

structural VAR from equation (6). REC (NBER recession) is equal to one if the economy is in an NBER-dated 

recession, otherwise zero. SIGN takes the value of one if the shift in oil prices at time t is positive, one otherwise. 

Similarly, SIZE equals to one if the shift in oil prices is greater than one standard deviation, zero otherwise 

and SIZE2 is equal to one if the shift is grater that 0.58 standard deviations, zero otherwise The Consumer 

Price Index (CPI) is obtained from the Federal Reserve Bank of St. Louis. Nominal price series are deflated using 

the CPI with 1982 (1982 = 100) as the base year as provided by Federal Reserve Bank of St. Louis. The sample 

spans from January 1974 to October 2016.  
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Table 2. Model Selection for TVTP Specifications  
 

Elements of 𝓏𝑡  
SIC 
(1) 

AIC 
(2) 

Log Likelihood 
(3) 

LR Test (FTP) d 
(4) 

FTP     

None -2.7362 -2.8305 703.0520  

TVTP     

SIGN -2.7335 -2.8449 708.5803 0.0040a 

SIZE -2.7218 -2.8333 705.7356 0.0683c 

SIZE2 -2.7184 -2.8203 704.6819 0.1960 

REC -2.7353 -2.8468 709.0381 0.0025a 
Notes: SIC, Schwarz information criterion; AIC, Akaike information criterion; LR, Likelihood ratio; FTP, Fixed 

transition probabilities; TVTP, Time-varying transition probabilities; LR test, p-values for a test of the null of the 
FTP. This table contains model selection statistics for the estimated model in equations (1) to (5) and (8); under 

various specifications for the vector of explanatory variables, (𝓏𝑡). The oil price, 𝑜𝑖𝑙𝑡  , is measured as a shift in 

real oil price. The adjusted sample spans from January 1975 to October 2016. a, b, and c represent significance at 

1%, 5% & 10% level. d p-value for a test of the null of the FTP model. 
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Table 3. Parameter Estimates 
 
 FTP  TVTP 

Elements of 𝓏𝑡: None  SIGN SIZE REC 
Parameter (1)  (2) (3) (4) 

      
𝜎𝑣 0.0000  0.0000 0.0002 0.0001 
 (0.0003)  (0.0005) (0.0025) (0.0039) 
𝜎𝜀 0.0544  0.0536 0.0554 0.0536 
 (0.002)  (0.0019) (0.0018) (0.0018) 
𝜎𝜔 0.0017  0.0019 0.0020 0.0019 
 (0.0006)  (0.0006) (0.0007) (0.0006) 
𝜑1  1.4697  1.4045 1.4057 1.4061 
 (0.0403)  (0.0394) (0.04) (0.0396) 
𝜑2  -0.54  -0.4823 -0.4851 -0.4804 
 (0.0296)  (0.0393) (0.0389) (0.0424) 
𝛾0,0 -0.4869  -0.0943 -0.0560 -0.0954 
 (0.2292)  (0.0722) (0.0602) (0.0678) 
𝛾1,0 -0.1038  0.0812 0.1438 0.0783 
 (0.2293)  (0.0913) (0.0572) (0.0594) 
𝛾0,1 0.7619  1.0201 1.3250 1.0038 
 (0.2057)  (0.2389) (0.2647) (0.2229) 
𝛾1,1 0.4173  1.0605 0.0703 1.1186 
 (0.2603)  (0.3968) (0.2084) (0.3336) 
𝑐0 0.342  3.5841 10.2186 2.3081 
 (0.3157)  (0.7813) (10.7623) (0.9876) 
𝑐1 1.3138  0.8548 0.9000 -0.7113 
 (1.0838)  (0.757) (1.0555) (0.0913) 
𝑎01   -1.0696 -3.5715 -7.5634 
   (1.7155) (9.6469) (1.0356) 
𝑎02   0.3000 -4.0524 0.9196 
   (1.4877) (8.4317) (3.8328) 
      

Log likelihood 703.0520  708.5803 705.7356 709.0381 
Notes: This table contains model selection statistics for the estimated model in equations (1) to (5) and 

(8); under various specifications for the vector of explanatory variables, ( 𝓏𝑡). The oil price, 𝑜𝑖𝑙𝑡  , is 

measured as a shift in real oil price. The adjusted sample spans from January 1975 to October 2016. FTP, 
Fixed transition probabilities; TVTP, Time-varying transition probabilities. The numbers in parentheses 

are standard errors. 
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Table 4. Model Selection for the Combined Asymmetries                                                                                                          

 

 SIC AIC  Log Likelihood LR Test (FTP)d  LR Test (REC)e 

Elements of 𝓏𝑡: (1) (2) (3) (4) (5)  

TVTP      

REC, SIGN -2.7228 -2.8514 711.1697 0.0003a 0.1186 

REC, SIZE -2.7129 -2.8415 709.7510 0.0012a 0.4902 

      

REC, REC × SIGN -2.7384 -2.8770 712.2886 0.0001a 0.0387b 

REC, REC × SIZE -2.7120 -2.8406 709.5372 0.0015a 0.6071 
Notes: SIC, Schwarz information criterion; AIC, Akaike information criterion; LR, Likelihood ratio; FTP, Fixed 
transition probabilities; TVTP, Time-varying transition probabilities; LR test, p-values for a test of the null of the 

FTP. This table contains model selection statistics for the estimated model in equations (1) to (5) and (8); under 

various specifications for the vector of explanatory variables, ( 𝓏𝑡). The oil price, 𝑜𝑖𝑙𝑡  , is measured as a shift in real 

oil price. The adjusted sample spans from January 1975 to October 2016. a, b, and c represent significant at 1%, 5% 

& 10% level. d p-value for a test of the null of the FTP model. e p-value for a test of the null of the REC model. 
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Table 5. Model Selection for the TVTP Specifications (Oil Specific Shocks) 
 

Elements of 𝓏𝑡  
SIC 
(1) 

AIC 
(2) 

Log Likelihood 
(3) 

LR Test (FTP)d 
(4) 

Panel A. Supply shock     

   None -2.2758 -2.3697 593.9425  

   SIGN  -2.5130 -2.3622 594.1118 0.8443 

   SIZE -2.5130 -2.3622 594.1061 0.8491 

   REC -2.2858 -2.3967 602.5875 0.0002a 

Panel B. Aggregate demand shock     

   None -2.9096 -3.0035 749.8596  

   SIGN  -2.8853 -2.9962 750.0759 0.8055 

   SIZE -2.8853 -2.9962 750.0761 0.8053 

   REC -2.8825 -3.0105 755.5215 0.0035a 

Panel C. Oil-specific demand shock     

   None -2.6559 -2.7498 687.4519  

   SIGN  -2.6376 -2.7485 689.1371 0.1854 

   SIZE -2.6314 -2.7423 687.6122 0.8519 

   REC -2.6421 -2.7530 691.2374 0.0227b 
Notes: SIC, Schwarz information criterion; AIC, Akaike information criterion; LR, Likelihood ratio; FTP, 

Fixed transition probabilities; TVTP, Time-varying transition probabilities; LR test, dp-values for a test of the 

null of the FTP. The estimated model is based on equations (1) to (5) and (8); under different characterizations 

of the elements in 𝓏𝑡 . 
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Table 6. Nonlinear Granger Causality Tests, Hiemstra and Jones (1994) 
 
Panel A. 𝐻𝑜: Changes in stock prices do not 

cause oil supply shock 
𝐻𝑜: Changes in stock prices do not 

cause aggregate demand shock 
𝐻𝑜: Changes in stock price do not 
cause oil-specific demand shock 

Lags CS TVAL CS TVAL CS TVAL 
 (1) (2) (3) (4) (5) (6) 

2 1.0000 -0.0144 0.9995 0.2189 1.0000 0.0082 
4 1.0000 -0.0047 1.0000 0.1124 1.0000 0.0051 
6 1.0000 -0.0013 0.9236 0.4657 1.0000 0.0036 
8 1.0000 -0.0006 0.9986 0.0327 1.0000 0.0015 

 
Panel B. 𝐻𝑜: Oil supply shocks do not cause 

stock price changes 
𝐻𝑜: Aggregate demand shocks do not 

cause stock price changes 
𝐻𝑜: Oil-specific demand shocks do 

not cause stock price changes 
Lags CS TVAL CS TVAL CS TVAL 

 (1) (2) (3) (4) (5) (6) 
2 0.0000 14.3247** 0.0000 -5.0687** 0.9801 -0.5235 
4 0.0000 5.4976** 0.0244 -1.5227 0.0000 -4.6904** 
6 0.0000 5.1259** 0.0358 -1.6645 0.0000 -3.0177** 
8 0.0837 -1.2799 0.0588 -1.8251 0.0000 -3.2051** 
       

Note: **Significance at 1 percent level and *significance at 5 percent level. Sample spans from January 1975 to October 2016. Lags is the 
number of lags on the residual series used in the test. CS and TVAL denote the differences between the two conditional probabilities and the 
standardized test statistic, respectively. Please see Hiemstra and Jones (1994) equations (8) and (10) for details. The test statistics is 
asymptotically distributed N(0,1), under the null hypothesis of nonlinear Granger non-causality.  

Electronic copy available at: https://ssrn.com/abstract=3708115



 

38 

 

 

 

Figure 1. Real S&P 500 and Oil Price with NBER recession timeline.  

 

Notes: The shaded regions are NBER recession timeline and given time series are real S&P 500 and real Crude 

oil index. The sample spans from January 1974 to October 2016. 
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Figure 2. Estimated transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇.  
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Notes: This figure presents the filtered transitory component 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 , from the specification in equations (1) to (5) and (8), when 𝓏𝑡 = (𝑅𝐸𝐶𝑡−1, 𝑅𝐸𝐶𝑡)′ and 

the oil price variable, 𝑜𝑖𝑙𝑡 , is measured as a shift in real oil price. The shaded areas show the NBER-dated recessions (RECt = 1). The adjusted sample spans 

from January 1975 to October 2016. 
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Figure 3. Impulse response functions of 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 to oil prices. 

  

Notes: The left-hand side shows the IRF of the transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 , to a positive shock to the shift in real oil price at time 𝑡 − 1. The right-hand 

side presents the cumulative IRF of the transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 , to a positive shock to the shift in real oil price at time 𝑡 − 1. Both IRFs are regime 

dependent and are constructed for the specification 𝓏𝑡 = (RECt−1, RECt)
′. The size of the shock is equal to one standard deviation of historical real oil 

prices.  
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Figure 4: Filtered probability, 𝑃(𝑆𝑡 = 1|𝑡) 
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Notes: This figure presents the filtered probability that 𝑆𝑡 = 1, 𝑃(𝑆𝑡 = 1|𝑡), from the specification in equations (1) to (5) 

and (8), when 𝓏𝑡 = (RECt−1, RECt)
′ and the oil specific shock variable, 𝑟𝑜𝑝𝑡, is measured as a shift in real oil price. The 

adjusted sample spans from January 1975 to October 2016 and the shaded areas represent NBER recession periods.  
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Figure 5. Impulse response function of 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 to oil prices. 

  

Notes: The left-hand side shows the IRF of the transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 , to a positive shock to the shift in real oil price at time 𝑡 − 1.  The right-hand side 

presents the cumulative IRF of the transitory component, 𝑠𝑡𝑜𝑐𝑘𝑡
𝑇 , to a positive shock to the shift in real oil price at time 𝑡 − 1. Both IRFs are regime dependent 

and are constructed for the specification 𝓏𝑡 = (RECt, RECt−1, SIGNt × RECt, SIGNt−1 × RECt−1)′. The size of the shock is equal to one standard deviation of 

historical real oil prices. 
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Figure 6: Filtered probability, 𝑃(𝑆𝑡 = 1|𝑡). 

0.0

0.2

0.4

0.6

0.8

1.0

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

Jan.1980-Jul.1980

Jul.1981-Nov.1982 Jul.1990-Mar.1991 Mar.2001-Nov.2001 Dec.2007-Jun.2009

 

Notes: This figure presents the filtered probabilities that 𝑆𝑡 = 1,𝑃(𝑆𝑡 = 1|𝑡), from the specification in equations (1) to 

(5) and (8), when 𝓏𝑡 = (RECt, RECt−1, SIGNt × RECt, SIGNt−1 × RECt−1)′ and the oil specific shock variable, 𝑜𝑖𝑙𝑡 , is 

measured as a shift in real oil price. The adjusted sample spans from January 1975 to October 2016 and the shaded areas 

represent NBER recession periods. 
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Appendix 

Shocks to in the crude oil market are likely to differ by industry. For example, energy consumption 

sectors (e.g., automobile, retail) are likely to be negatively impacted by oil-market specific demand 

shocks, while energy supply sectors are likely to be positively impacted. In this appendix we assess 

potential differences. 

We first retrieve industry specific portfolios from Kenneth French website along with SIC codes. 

These portfolios are constructed using NYSE, AMEX, and NASDAQ stocks at the end of June of the 

corresponding year and based on four-digit SIC codes. From Table A1 we see that manufacturing, 

energy, chemicals, business equipment, and utilities are positively correlated with oil price. 

We then estimate various structural VAR models to assess for a potential different effect from the oil 

related shocks. Overall, we find that the responses for the positively correlated portfolios are similar to 

the responses of the S&P 500. For the portfolios that are negatively correlated, to a large extent, we 

observe that the responses to the different types of shocks are mostly negative.  

 

Table A1: Industry details and SIC codes   

Industry SIC Codes Correlation 

with Oil 

Price 

Crude oil related shocks 

Supply Aggregate 

demand 

Oil-

specific 

demand 

  (1) (2) (3) (4) 

Consumer Nondurables (nodur) 

-- Food, Tobacco, Textiles, 

Apparel, Leather, Toys  

0100-0999; 2000-2399; 2700-

2749; 2770-2799; 3100-3199; 

3940-3989 

N N N N 

Consumer Durables (durbl) -- 

Cars, TVs, Furniture, Household 

Appliances 

2500-2519; 2590-2599; 3630-

3659; 3710-3711; 3714-3714;        
3716-3716; 3750-3751; 3792-

3792; 3900-3939; 3990-3999 

N N N N 

Manufacturing (manuf) -- 

Machinery, Trucks, Planes, Off 

Furn, Paper, Com Printing 

 

2520-2589; 2600-2699; 2750-

2769; 3000-3099; 3200-3569; 

3580-3629; 3700-3709; 3712-

3713; 3715-3715; 3717-3749; 

3752-3791; 3793-3799; 3830-

3839; 3860-3899 

P N P P 

Oil, Gas, and Coal Extraction and 

Products (enrgy) 

1200-1399; 2900-2999 P N P P 
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Chemicals and Allied Products 

(chems) 

2800-2829; 2840-2899 P N P P 

Business Equipment (buseq) -- 

Computers, Software, and 

Electronic Equipment 

3570-3579; 3660-3692; 3694-

3699; 3810-3829; 7370-7379 

P N P P 

Telephone and Television 

Transmission (telcm) 

4800-4899 N N N P 

Utilities (utils) 4900-4949 P P P P 

Wholesale, Retail, and Some 

Services - Laundries, Repair 

Shops (shops) 

5000-5999; 7200-7299; 7600-

7699 

N N N N 

Healthcare, Medical Equipment, 

and Drugs (hlth) 

2830-2839; 3693-3693; 3840-

3859; 8000-8099 

N N P N 

Money Finance (money) 6000-6999 N N P N 

Other (other) -- Mines, Constr, BldMt, Trans, Hotels, Bus Serv, 

Entertainment 

N N P P 

Notes: Monthly industry specific portfolio data from January 1975 to October 2016 were retrieved from Kenneth R. 

French website. Portfolios are constructed using NYSE, AMEX, and NASDAQ stocks at the end of June based on its 

four-digit SIC code at that time. N (P) denotes negative (positive) correlations, in column 1, or impulse responses, in 

columns 2 to 4.  
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