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Abstract: In this paper, a natural probabilistic model for motif discovery has been used
to experimentally test the quality of motif discovery programs. In this model, there are k
background sequences, and each character in a background sequence is a random character
from an alphabet, Σ. A motif G = g1g2 . . . gm is a string of m characters. In each
background sequence is implanted a probabilistically-generated approximate copy of G.
For a probabilistically-generated approximate copy b1b2 . . . bm of G, every character, bi,
is probabilistically generated, such that the probability for bi 6= gi is at most α. We
develop two new randomized algorithms and one new deterministic algorithm. They make
advancements in the following aspects: (1) The algorithms are much faster than those before.
Our algorithms can even run in sublinear time. (2) They can handle any motif pattern. (3)
The restriction for the alphabet size is a lower bound of four. This gives them potential
applications in practical problems, since gene sequences have an alphabet size of four. (4)
All algorithms have rigorous proofs about their performances. The methods developed in
this paper have been used in the software implementation. We observed some encouraging
results that show improved performance for motif detection compared with other software.

Keywords: motif discovery; sublinear time; randomized algorithm; deterministic algorithm

1. Introduction

Motif discovery is an important problem in computational biology and computer science. For
instance, it has applications in coding theory [1,2], locating binding sites and conserved regions in



Algorithms 2013, 6 637

unaligned sequences [3–6], genetic drug target identification [7], designing genetic probes [7] and
universal PCR primer design [7–10].

This paper focuses on the application of motif discovery to find conserved regions in a set of given
DNA, RNA or protein sequences. Such conserved regions may represent common biological functions
or structures. Many performance measures have been proposed for motif discovery. Let C be a subset of
0–1 sequences of length n. The covering radius of C is the smallest integer, r, such that each vector in
{0, 1}n is at a distance at most r from a string in C. The decision problem associated with the covering
radius for a set of binary sequences is NP-complete [1]. The similar closest string and substring problems
were proven to be NP-hard [1,7]. Some approximation algorithms have been proposed. Li et al. [11]
gave an approximation scheme for the closest string and substring problems. The related consensus
patterns problem is that given n sequences s1, · · · , sn, find a region of length L in each si and a string,
s, of length L, so that the total Hamming distance from s to these regions is minimized. Approximation
algorithms for the consensus patterns problem were reported in [12]. Furthermore, a number of heuristics
and programs have been developed [13–17].

In many applications, motifs are faint and may not be apparent when two sequences alone are
compared, but may become clearer when more sequences are compared together [18]. For this reason,
it has been conjectured that comparing more sequences together can help with identifying faint motifs.
This paper is a theoretical approach with a rigorous probabilistic analysis.

We study a natural probabilistic model for motif discovery. In this model, there are k background
sequences, and each character in the background sequence is a random character from an alphabet, Σ.
A motif G = g1g2 . . . gm is a string of m characters. In each background sequence is implanted a
probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy
b1b2 . . . bm of G, every character, bi, is probabilistically generated, such that the probability for bi 6= gi,
which is called a mutation, is at most α. This model was first proposed in [13] and has been widely
used in experimentally testing motif discovery programs [14–17]. We note that a mutation in our model
converts a character, gi, in the motif into a different character, bi, without probability restriction. This
means that a character, gi, in the motif may not become any character bi in Σ−{gi}with equal probability.

We develop three algorithms for which, under the probabilistic model, one can find the implanted
motif with high probability via a tradeoff between computational time and the probability of mutation.
Each algorithm has a preprocessing phase and the voting phase. We use a pair of functions,
(t1(n, k), t2(n, k)), to describe the computational complexity of the motif detection algorithm, where
n is the largest length of the input sequence and k is the number of sequences. Function t1(n, k) is the
time complexity for the part for preprocessing, and t2(n, k) is the time complexity for recovering one
character for the motif after preprocessing. The total time is O(t1(n, k) + t2(n, k)|G|).

(1) There exists a randomized algorithm, such that there are positive constants, c0 and c1, such that,
if the alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at
least c0 log n and each character in the motif region has a probability of at most 1

(logn)2+µ of mutation for

some fixed µ > 0, then the motif can be recovered with a probability of at least 3
4

in (O( n√
h
(log n)

7
2 +

h2 log2 n), O(log n)) time, where n is the longest length of any input sequences and h = min(|G|, n 2
5 ).

The algorithm’s total time is sublinear if the motif length, |G|, is in the range [(log n)7+µ, n
(logn)1+µ ]. This

is the first sublinear time algorithm with rigorous analysis in this model.
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(2) There exists a randomized algorithm, such that there are positive constants, c0, c1 and α, such that
if the alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at least
c0 log n and each character in the motif region has a probability of at most α of mutation, then the motif
can be recovered with a probability of at least 3

4
in (O( n

2

|G|(log n)O(1)), O(log n)) time.
(3) There exists a deterministic algorithm, such that there are positive constants, c0, c1 and α, such

that if the alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at
least c0 log n and each character in the motif region has a probability of at most α of mutation, then the
motif can be recovered with a probability of at least 3

4
in (O(n2(log n)O(1)), O(log n)) time.

The research in this model has been reported in [19–21]. In [19], Fu et al.. developed an algorithm
that needs the alphabet size to be a constant that is much larger than four. In [20], our algorithm cannot
handle all possible motif patterns. In [21], Liu et al. designed an algorithm that runs in O(n3) time and
lacks rigorous analysis about its performance. The motif recovery in this natural and simple model has
not been fully understood and seems to be a complicated problem.

This paper presents two new randomized algorithms and one new deterministic algorithm. They
make advancements in the following aspects: (1) The algorithms are much faster than those before. Our
algorithms can even run in sublinear time. (2) They can handle any motif pattern. (3) The restriction for
the alphabet size is as small as four, giving them potential applications in practical problems, since
gene sequences have an alphabet size of four. (4) All algorithms have rigorous proofs about their
performances.

The algorithm for motif detection is named Recover-Motif(.). The entire Recover-Motif(.) is
described in Section 4.2. We analyze Algorithm Recover-Motif (.) in Section 6.

2. Notations and the Model of Sequence Generation

For a set, A, ||A|| denotes the number of elements in A. Σ is an alphabet with ||Σ|| = t ≥ 2.
For an integer, n ≥ 0, Σn is the set of sequences of a length of n with characters from Σ. For a
sequence S = a1a2 · · · an, S[i] denotes the character, ai, and S[i, j] denotes the substring, ai · · · aj , for
1 ≤ i ≤ j ≤ n. |S| denotes the length of the sequence, S. We use ∅ to represent the empty sequence,
which has a length of zero.

Let G = g1g2 · · · gm be a fixed sequence of m characters. G is the motif to be discovered by our
algorithm. A Θ(n,G, α)-sequence has the form S = a1 · · · an1b1 · · · bman1+1 · · · an2 , where n2 +m ≤ n,
each ai has a probability of 1

t
to be equal to π for each π ∈ Σ and bi has a probability of at most α

and not equal to gi for 1 ≤ i ≤ m, where m = |G|. ℵ(S) denotes the motif region b1 · · · bm of S. A
mutation converts a character, gi, in the motif into an arbitrary, different character, bi, without probability
restriction. This allows a character, gi, in the motif to change into any character, bi, in Σ − {gi} with
even a different probability. The motif region of S may start at an arbitrary position in S. Furthermore,
a mutation may convert a character, gi, in the motif into an arbitrary, different character, bi, only subject
to the restriction that gi will mutate with a probability of at most α.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length, let the relative Hamming
distance diff(S1, S2) = |{i|ai 6=bi(i=1,··· ,m)}|

m
.

Definition 1. For two intervals, [i1, j1] and [i2, j2], define shift([i1, j1], [i2, j2]) = min(|i1−i2|, |j1−j2|).
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3. Brief Introduction to the Algorithm

Every detection algorithm in this paper has two phases. The first phase is preprocessing, so that
the motif regions from multiple sequences can be aligned in the same column region. The second
phase is to recover the motif via voting. We use a pair of functions, (t1(n, k), t2(n, k)), to describe
the computational complexity of the motif detection algorithm. Function t1(n, k) is the time complexity
for the preprocessing phase, and t2(n, k) is the time complexity for outputting one character for the motif
in the voting phase.

The motif, G, is a pattern unknown to algorithm Recover-Motif, and algorithm Recover-Motif will
attempt to recover G from a series of Θ(n,G, α)-sequences generated by the probabilistic model.

3.1. Algorithm

The algorithm first detects a position that is close to the left motif boundary in a sequence. It finds
such a position via sampling and collision between two sequences. After the rough left boundary of a
sequence is found, it is used to find the rough boundaries of the rest of the sequences. Similarly, we find
those right boundaries of the motif among the input sequences. The exact left boundary of each motif
region will be detected in the next phase via voting. Each character of the motif is recovered by voting
among all the characters at the same positions in the motif regions of input sequences. For a sequence, S,
a sample point is a random position, i, in S. For two sequences, S and S ′, with two sample points, i and
j, respectively, a rough motif boundary is detected by the similarity of S[i, i+ l] and S ′[i, i+ l] for some
reasonably large parameter, l.

Descriptions of the Algorithm
Input: Z = Z1 ∪ Z2, where Z1 = {S ′1, · · · , S ′2k1

} and Z2 = {S ′′1 , · · · , S ′′k2
} are two sets of input

sequences.
Output: planted motif in each sequence and consensus string. Start:
Randomly select sample points from each sequence, both in Z1 and Z2.
For each pair of sequences selected from Z1 and Z2,

find the rough left and rough right boundaries via the matching at sample points.
Improve the rough boundaries.

If the motif boundaries of each sequence in Z2 are not empty,
use the Voting algorithm to get the planted motifs.

End of Algorithm.

3.2. An Example

We provide the following example for the brief idea of our algorithm. Let the following input strings
be defined as below. We assume that the original motif is TTTTTAACGATTAGCS. The motif part
is displayed with bold font, and the mutated characters in the motif region have been marked by ∗ in
their feet.
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3.2.1. . Input Sequences

This contains two groups Z1 = {S ′1, S ′2} and Z2 = {S ′′1 , S ′′2 , S ′′3 , S ′′4 , S ′′5}.

Z1 :

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

S ′2 = AATCCTTAC∗TTTTAACGATTAGCSGTC.

The above two strings are used to detect the initial motif region and use them to deal with the motif
in the second group below.

Z2 :

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.

S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

3.2.2. . Select Sample Points

Some sample points of two sequences in Z1 are selected randomly and marked with the little dots on
the top.

S ′1 = GTȦCCȦTGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊCTTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.

3.2.3. . Collision Detection

In this step, the left and right rough boundaries of two sequences will be marked. The following
shows the left collision, which happens nearby the left motif boundary and are marked by two overline
TATT and TTTT subsequences.

S ′1 = GTȦCCȦTGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊC∗TTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.

The following shows the right collision, which happens nearby the right motif boundary and is marked
by two overline TTAG subsequences.

S ′1 = GTȦCCȦ∗TGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊC∗TTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.

3.2.4. . Improving the Boundaries

In the early phase of the algorithm, we first detect a small piece of the motif in S ′1 by comparing
S ′1 and S ′2. Assume that “TA∗TT” and “TTAG” are found in the left and right motif regions of
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S ′1, respectively. The rough motif length will be calculated via the difference of the location of the
first character, ‘T’, of the first subsequence and the location of the last character, ‘G’, of the second
subsequence. The position marked by “A” is the rough left boundary of the motif, and the position
marked by “T” is the rough right boundary of the motif in S ′1 below.

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

S ′2 = AATCCTTAC∗TTTTAACGATTAGCSGTC.

3.2.5. . Select Sample Points for the Sequences in Z2

Some sample points near the motif boundaries of S ′1 are selected.
S ′1 = GTACCATGĠATṪA∗ṪTAACGATTȦGĊSTȦGAGGACCTA.
Sample points are selected in each sequence in Z2.

S ′′1 = AṪTCĠATCCȦGTṪTṪTAACGG∗TTAGĊSCȦAT ṪACTTȦG.

S ′′2 = GĊATTĠCATTṪTTTAACGATTAC∗ĊSGTȦCTTȦGCTȦGAṪC.

S ′′3 = ṪCAĠGGCAṪCGAĠACTTTṪTAG∗CGATTAGĊSCTAĠAATCȦGACĊT.

S ′′4 = GTȦCCTĠGCATṪGAACGTṪTTTAACGATTȦGCA∗TGCȦGATĠGACCTṪTA.

S ′′5 = AAṪGGAṪCAGATṪTTTAACGATTC∗GĊSCTAĠATTĊAG.

3.2.6. . Collision Detection Between S ′1 with the Sequences in Z2

The rough motif boundaries of the sequences in Z2 are detected via the collisions with the
subsequences near the motif area of S ′1.
S ′1 = GTACCATGĠATṪA∗ṪTAACGATTȦGĊSTȦGAGGACCTA.
The rough motif boundaries are marked by the lines over the matched subsequences.

S ′′1 = AṪTCĠATCCȦGTṪTṪTAACGG∗TTAGĊSCȦAT ṪACTTȦG.

S ′′2 = GĊATTĠCATTṪTTTAACGATTAC∗ĊSGTȦCTTȦGCTȦGAṪC.

S ′′3 = ṪCAĠGGCAṪCGAĠACTTTṪTAG∗CGATTAGĊSCTAĠAATCȦGACĊT.

S ′′4 = GTȦCCTĠGCATṪGAACGTṪTTTAACGATTȦGCA∗TGCȦGATĠGACCTṪTA.

S ′′5 = AAṪGGAṪCAGATṪTTTAACGATTC∗GĊSCTAĠATTĊAG.

3.2.7. . Improving the Motif Boundaries for the Sequences in Z2

After the collision with the sequences in Z2, we obtain the rough location of the motifs of the
sequences in Z2. Their rough motif boundaries for the sequences in Z2 are improved to be closer to
exact boundaries.
S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.
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The improved motif boundaries of the sequences in Z2 are marked below. This phase does not cost
much time, as only the positions near the rough motif boundaries are tested.

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.

S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

3.2.8. . Motif Boundaries for the Sequences in Z2

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.
Use the pair (GL, GR) with GL = TTAT and GR = AGCS to find the motif boundaries in the

sequences of Z2. The rough boundaries of the second group are marked below with underlines. In this
phase, the exact motif boundaries for most sequences of Z2 can be found.

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.

S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

3.2.9. . Extracting the Motif Regions

The motif regions of the second group will be extracted. The original motif is recovered via voting at
each column.

G′′1 = TTTTTAACGG∗TTAGCS

G′′2 = TTTTTAACGATTAC∗CS

G′′3 = TTTTTAG∗CGATTAGCS

G′′4 = TTTTTAACGATTAGCA∗

G′′5 = TTTTTAACGATTC∗GCS

3.2.10. . Recovering Motif via Voting

The original motif, TTTTTAACGATTAGCS, is recovered via voting at all columns. For example,
the last S in the motif is recovered via voting among the characters, S, S, S, A, S, in the last column.

3.3. Our Results

We give an algorithm for the case with at most a 1
(logn)2+µ mutation rate. The performance of the

algorithm is stated in Theorem 2. Theorem 2 implies Corollary 3 by selecting k = c1 log n with some
constant c1 that is large enough.
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Theorem 2. Assume that µ is a fixed number in (0, 1) and the alphabet size, t, is at least four. There
exists a randomized algorithm and a constant c0, such that if the length of the motif,G, is at least c0 log n,
then, given k independent Θ(n,G, 1

(logn)2+µ )-sequences, the algorithm outputs G′, such that:
(1) with a probability of at most e−Ω(k), |G′| 6= |G|;
(2) for each 1 ≤ i ≤ |G|, with a probability of at most e−Ω(k), G′[i] 6= G[i]; and
(3) with a probability of at most k

n3 , the algorithm does not stop in (O(k( n√
h
(log n)

5
2 +

h2 log n)), O(k)) time, where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

Corollary 3. There exists a randomized algorithm and positive constants, c0, c1 and µ, such that if the
alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at least
c0 log n and each character in the motif region has a probability of at most 1

(logn)2+µ of mutation, then

the motif can be recovered with a probability of at least 3
4

in (O( n√
h
(log n)

7
2 +h2 log2 n), O(log n)) time,

where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

We give a randomized algorithm for the case with a Ω(1) mutation rate. The performance of the
algorithm is stated in Theorem 4. Theorem 4 implies Corollary 5 by selecting k = c1 log n with some
constant c1 that is large enough.

Theorem 4. Assume that the alphabet size, t, is at least four. There exists a randomized algorithm
and a constant c0, such that if the length of the motif G is at least c0 log n, then, given k independent
Θ(n,G, µ))-sequences, the algorithm outputs G′, such that:

(1) with a probability of at most e−Ω(k), |G′| 6= |G|;
(2) for each 1 ≤ i ≤ |G|, with a probability of at most e−Ω(k), G′[i] 6= G[i]; and
(3) with a probability of at most k

n3 , the algorithm does not stop in (O(k( n
2

|G|(log n)O(1) +h2)), O(k)),

where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

Corollary 5. There exists a randomized algorithm and positive constants, c0, c1 and α, such that if the
alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at least
c0 log n and each character in the motif region has a probability of at most α of mutation, then the motif
can be recovered with a probability of at least 3

4
in (O( n

2

|G|(log n)O(1)), O(log n)) time.

We give a deterministic algorithm for the case with a Ω(1) mutation rate. The performance of the
algorithm is stated in Theorem 6. Theorem 6 implies Corollary 7 by selecting k = c1 log n with some
constant c1 that is large enough.

Theorem 6. Assume that the alphabet size, t, is at least four. There exists a deterministic algorithm
and a constant, c0, such that if the length of the motif G is at least c0 log n, then, given k independent
Θ(n,G, µ))-sequences, the algorithm runs in (O(n2(log n)O(1) +h2k), O(k)) and outputs G′, such that:

(1) with a probability of at most e−Ω(k), |G′| 6= |G|;
(2) for each 1 ≤ i ≤ |G|, with a probability of at most e−Ω(k), G′[i] 6= G[i]; and
(3) with a probability of at most k

n3 , the algorithm does not stop in (O(k(n2(log n)O(1) + h2)), O(k))

time, where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).
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Corollary 7. There exists a deterministic algorithm and positive constants, c0, c1 and α, such that if the
alphabet size is at least four, the number of sequences is at least c1 log n, the motif length is at least
c0 log n and each character in the motif region has a probability of at most α of mutation, then the motif
can be recovered with a probability of at least 3

4
in (O(n2(log n)O(1)), O(log n)) time.

4. Algorithm Recover-Motif

In this section, we give a unified approach to describe three algorithms. The performance of the
algorithms is stated in Theorems 2, 4 and 6. The description of Algorithm Recover-Motif is given in
Section 4.2. The analysis of the algorithm is given at Section 6.

4.1. Some Parameters

Definition 8.

i. Parameter x is selected to be 10. This parameter controls the failure probability of our algorithms
to be at most 1

2x
.

ii. The size of the alphabet is t ≥ 4.

iii. Select a constant ρ0 ∈ (0, 1) to have inequality (1):

ρ0 <
t− 1

2t
(1)

iv. The constant ε ∈ (0, 1) is selected to satisfy:

ε < min((
t− 1

t
− (2ρ0 + 2ε)),

1

5
(1− 2

t− 1
− 4

2x
),

1

3
) (2)

The existence of ε follows from inequality (1). The constant ε is used to control the mutation in
the motif area. It is a part of parameter β defined in item (xiv) of this definition.

v. Let c = e−
ε2

3 . The constant, c, is used to simplify probabilistic bounds, which are derived from the
applications of Chernoff bounds (see Corollary 18).

vi. Define r(y) = ( 1
t−1

+ cy

1−c).

vii. Define u1 to be a large constant that, for all v ≥ 0:

2(v + u1)cv+u1

(1− c)2
≤ 1

5 · 2x
(3)

viii. Select constant ρ1 ∈ (0, 1), such that:

2

t− 1
+

4

2x
+ 5ε+ ρ1 < 1 (4)

The existence of ρ1 follows from ε < 1
5
(1− 2

t−1
− 4

2x
), which is implied by inequality (2).
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ix. Select constant ρ2 ∈ (0, 1) and constant positive integer v that are large enough, such that:

6(v + u1)cv

1− c
+ ρ2 < ρ1, and (5)

(
1

2x
+ (v + u1)

cv

1− c
+

cv

1− c
+

1

5 · 2x
) ≤ 1/2 (6)

x. Define ς0 = 1
2x

, and: ϕ(v) = (v + u1) cv

1−c + cv

1−c)

xi. Select constant α0, such that:

4(v − 1)α0 + α0 < ρ2, and (7)

α0 < ρ0 (8)

Adding inequalities (4), (5) and (7), we have inequality (9):

(
2

t− 1
+

4

2x
+ 5ε) +

6(v + u1)cv

1− c
+ (4(v − 1)α0 + α0) < 1 (9)

By arranging the terms in inequality (9) and the definitions of r(v) and ϕ(v), we have
inequality (10):

2((2(v − 1)α0 +
cv

1− c
) + r(v) + 2(ς0 + ϕ(v)) + 2ε) + (α0 + ε) < 1 (10)

xii. The maximal mutation rate, α, for the second algorithm (Theorem 4) and the third algorithm
(Theorem 6) are selected as α0. Since the mutation rate of our sublinear time algorithm is bounded
by 1

(logn)2+µ , the maximal mutation rate α for the first algorithm (Theorem 2) is less than α0 when
n is large enough. We always assume that all mutation rates α in our three algorithms are in the
range (0, α0].

xiii. Define q(y) = 2(v − 1)α + 2cy

1−c . By inequality (10), the definition of q(y) and the fact that
α ∈ (0, α0), we have:

2(q(v) + r(v) + 2(ς0 + ϕ(v)) + 2ε) + (α0 + ε) < 1 (11)

Inequality (11) implies q(v) ≤ 1
2
. By inequality (6), we have that:

(
1

2x
+ (v + u1)

cv

1− c
+

cv

1− c
+

1

5 · 2x
) + q(v) ≤ 3/4 (12)

xiv. Let β = 2α + 2ε. The parameter, β, controls the similarity of ℵ(S) and the original motif, G (see
Lemma 27).

xv. Define R = r(v).

xvi. We define the following Q0.

Q0 = q(v) (13)

The parameter, Q0, used in Lemma 27 gives an upper bound of the probability that a Θ(n,G, α)-
sequence, S, whose ℵ(S) will not be similar enough to the original motif, G, according to the
conditions in Lemma 27.
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xvii. Select constant d0, such that:

n3cd0 logn <
1

5 · 2x
for all large n (14)

xviii. Select constant d1, such that (v + u1)cd1 logn < 1
5·2x .

xix. Select number u2, such that:

(d1 log n)(v + u1)
cv+u2

1− c
≤ 1

5 · 2x
. and (15)

(v + u1)
cv+u2

1− c
<

1

5 · 2x
(16)

Since only n is variable, we can make u2 = O(log log n).

xx. For a fixed c0 ∈ (0, 1), define δc0 =
ln 1
c0

2
.

4.2. Description of Algorithm Recover-Motif

The algorithms are described in this section. The description combines three algorithms together. The
simplest deterministic algorithm is also given in Section 5. Before presenting the algorithm, we define
some notions.

Definition 9.

• Two sequences, X1 and X2, are weakly left matched if: (1) both |X1| and |X2| are at least d0 log n;
and (2) diff(X1[1, i], X2[1, i]) ≤ β for all integers i, v ≤ i ≤ d0 log n, where v is defined in item
(ix) in Definition 8.

• Two sequences, X1 and X2, are left matched if: (1) d0 log n ≤ |X1|, |X2|; (2) X1[i] = X2[i] for
i = 1, · · · , v − 1; and (3) diff(X1[1, i], X2[1, i]) ≤ β for all integers i, v ≤ i ≤ d0 log n.

• Two sequences, X1 and X2, are weakly right matched if XR
1 and XR

2 are weakly left matched,
where XR = an · · · a1 is the inverse sequence of X = a1 · · · an.

• Two sequences, X1 and X2, are right matched if XR
1 and XR

2 are left matched, where XR =

an · · · a1 is the inverse sequence of X = a1 · · · an.

• Two sequences, X1 and X2, are matched if X1 and X2 are both left and right matched.

Variable L will be controlled in the range L ∈ [(log n)3+ε1 , n
2
5
−ε2 ] in our algorithm with a high

probability. We define the following functions that depend on L.

Definition 10. Define M(L) =
√

3 logn+x√
1−γ

√
L log n. Define M1(L) =

δc0M(L)

logn
(see (xx) of Definition 8

for δc0), where c0 = 1
4
.

We would like to minimize the function (n
L
M + L2) log n. This selection can make the total time

complexity sublinear.

Definition 11. For a Θ(n,G, α) sequence, S, define LB(S) to be the left boundary, l, of the motif region
ℵ(S) in S and RB(S) to be the right boundary, r, of the motif region ℵ(S) in S, such that ℵ(S) = S[l, r].
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4.2.1. . Boundary-Phase of Algorithm Recover-Motif

The first phase of Algorithm Recover-Motif finds the rough motif boundaries of all input sequences.
It first detects the rough motif boundaries of one sequence via comparing two input sequences. Then,
the rough boundaries of the first sequence are used to find the rough motif boundaries of other input
sequences.

Three algorithms share most of the functions. We have a unified approach to describe them. A special
variable, “algorithm-type”, selects one of the three algorithms, respectively.

Definition 12. Let algorithm-type represent one of the three algorithm types,
“RANDOMIZED-SUBLINEAR”, “RANDOMIZED-SUBQUADRATIC” and “DETERMINISTIC-
SUPERQUADRATIC”.

Definition 13. Assume that A1 is a set of positions in a Θ(n,G, α) sequence, S1, and A2 is a set of
positions in a Θ(n,G, α) sequence, S2. If there are positions a1 ∈ A1 and a2 ∈ A2, such that for some
position, j, with 1 ≤ j ≤ |G|, a1 is the position of ℵ(S1)[j] in S1 and a2 is the position of ℵ(S2)[j] in
S2, then A1 and A2 have a collision at (a1, a2).

In the following function, Collision-Detection, the parameter, ω ≤ β, is defined below in the three
algorithms.

ωalgorithm-type =


0 if algorithm-type=RANDOMIZED-SUBLINEAR;
β if algorithm-type=RANDOMIZED-SUBQUADRATIC;
β if algorithm-type=DETERMINISTIC-SUPERQUADRATIC.

(17)

Function Collision-Detection(S1, U1, S2, U2) is used to detect a point, a1 ∈ U1, in the motif area in
S1 and another a′1 ∈ U1 point in the motif area of S1. The two points, a1 and a′1, are close to the left and
right motif boundaries of S1, respectively. A similar pair of points, e1 and e′1, in U2 is also derived for
S2. See the examples in Section 3.2.3. .

Collision-Detection(S1, U1, S2, U2)

Input: a pair of Θ(n,G, α)-sequences, S1 and S2; Ui is a set of locations in Si for i = 1, 2.
Output: the left and right rough boundaries of two sequences.

Let D1 be all subsequences S1[a, a+ d0 log n− 1] of S1 of a length of d0 log n with a ∈ U1.
Let D2 be all subsequences S2[b, b+ d0 log n− 1] of S2 of a length of d0 log n with b ∈ U2.
Find two subsequences, X1 = S1[a1, a1 + d0 log n− 1] ∈ D1 and
X2 = S2[b1, b1 + d0 log n− 1] ∈ D2, such that a1 is the least and diff(X1, X2) ≤ ωalgorithm−type.
Find two subsequences, X ′1 = S1[a′1, a

′
1 + d0 log n− 1] ∈ D1 and

X ′2 = S2[b′1, b
′
1 + d0 log n− 1] ∈ D2, such that a′1 is the largest and

diff(X ′1, X
′
2) ≤ ωalgorithm−type.

Find two subsequences, Y1 = S1[f1, f1 + d0 log n− 1] ∈ D1 and
Y2 = S2[e1, e1 + d0 log n− 1] ∈ D2, such that e1 is the least and
diff(Y1, Y2) ≤ ωalgorithm−type.
Find two subsequences, Y ′1 = S1[f ′1, f

′
1 + d0 log n− 1] ∈ D1 and
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Y ′2 = S2[e′1, e
′
1 + d0 log n− 1] ∈ D2, such that e′1 is the largest and

diff(Y ′1 , Y
′

2) ≤ ωalgorithm−type.
Return (a1, a

′
1, e1, e

′
1).

End of Collision-Detection.

Definition 14. Let [a, b] be an interval with two integers boundaries, a and b, and l be a
positive integer parameter. Define an l-partition of [a, b] to be l-P ([a, b]), which contains the
intervals [a1, b1], [a2, b2], · · · , [ar, br], such that a1 = a, br = b, ai+1 = bi + 1, bi = ai + l − 1 for
i = 1, 2, · · · , r − 1 and ar ≤ br ≤ ai + l − 1.

For example, the three-partition of the interval [1, 10] is 3-P ([1, 10]) = {[1, 3], [4, 6], [7, 9], [10, 10]}.
Function Point-Selection(S, L, I) will be defined differently in three different algorithms, where I is an
interval of positions in sequence S and L is a positive integer parameter. For randomized algorithms,
some random points are selected in L-P (I). For a deterministic algorithm, all points in I are selected.
See the examples in Section 3.2.2. .

Point-Selection(S, L, I)

Input: a pair of Θ(n,G, α)-sequences, S, a size parameter, L, of partition and a set of intervals, I , of
positions in S.

Output: a set, U , of positions from S, respectively.
Steps:
Let U = ∅.
If algorithm-type=RANDOMIZED-SUBLINEAR or RANDOMIZED-SUBQUADRATICand

if (L ≥ (logn)3+τ

100
):

for each interval, I ′, in I , obtain its L-partition in L-P (I ′) and for each interval, J , in
L-P (I ′),

sample M(L) (see Definition 10) random positions in J and put them into U .
Else,

put every position of I into U1.
If algorithm-type=DETERMINISTIC-SUPERQUADRATIC,

put every position of I into U .
Return U .
End of Point-Selection.

The function, Improve-Boundaries(S1, al, ar, S2, fl, fr, L), is used to improve the existing rough
left and right boundaries, al and ar, of S1, respectively, and to improve the existing rough left and
right boundaries, fl and fr, of S2, respectively. We assume al ∈ [LB(S1) − L,LB(S1) + L], ar ∈
[RB(S1)−L,LB(S1) +L], fl ∈ [LB(S2)−L,LB(S2) +L] and fr ∈ [RB(S2)−L,RB(S2) +L]. After
calling this function, more accurate approximate boundaries will be derived. From the probabilistic
analysis, we have a good chance to get the exact motif boundaries for both S1 and S2. See the examples
in Section 3.2.7. .

Improve-Boundaries(S1, al, ar, S2, fl, fr, L)
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Input: a Θ(n,G, α)-sequence, S1, with rough left and right boundaries, al and ar, a
Θ(n,G, α)-sequences, S2 with rough left and right boundaries, fl and fr, and an approximate
distance, L, to the nearest motif boundary from those rough boundaries (the parameter, L, usually
has the properties of LB(S1) ∈ [al − L, al], RB(S1) ∈ [ar, ar + L], LB(S2) ∈ [fl − L, fl] and
RB(S2) ∈ [fr, fr + L]).

Output: improved rough left and right boundaries for both S1 and S2.
Steps:

Find two subsequences, X1 = S1[a1, a1 + d0 log n− 1] and X2 = S2[b2, b2 + d0 log n− 1],
with a1 ∈ [al − L, al + L] and b2 ∈ [fl − L, fl + L], such that diff(X1, X2) ≤ β and a1 is
the least.
Find two subsequences, X ′1 = S1[a′1, a

′
1 + d0 log n− 1] and X ′2 = S2[b′2, b

′
2 + d0 log n− 1],

with a′1 ∈ [ar − L, ar + L] and b2 ∈ [fr − L, fr + L], such that diff(X ′1, X
′
2) ≤ β and a′1 is

the largest.
Find two subsequences, Y1 = S1[e1, e1 + d0 log n− 1] and Y2 = S2[f2, f2 + d0 log n− 1],
with e1 ∈ [al − L, al + L] and f2 ∈ [fl − L, fl + L], such that diff(Y1, Y2) ≤ β and f2 is
the least.
Find two subsequences, Y ′1 = S1[e′1, e

′
1 + d0 log n− 1] and Y ′2 = S2[f ′2, f

′
2 + d0 log n− 1],

with e′1 ∈ [ar − L, ar + L] and f ′2 ∈ [fr − L, fr + L], such that diff(Y ′1 , Y
′

2) ≤ β and f ′2 is
the largest.
Return (a1, a

′
1, f2, f

′
2).

End of Improve-Boundaries.

The function, Initial-Boundaries(S1, S2), detects the motif boundaries for two sequences, S1 and
S2. It first detects rough motif boundaries that are controlled by parameter L. The rough boundaries
will be improved to exact motif boundaries via calling Improve-Boundaries(.). See the examples in
Sections 3.2.2. –3.2.8. .

Initial-Boundaries(S1, S2)

Input: a pair of Θ(n,G, α)-sequences, S1 and S2.
Output: rough left boundary roughLeftS1

of S1, right boundary roughRightS1
of S1, rough left

boundary roughLeftS2
of S2 and right boundary roughRightS2

of S2.
Steps:

Let U1 = U2 = ∅.
Let L = n2/5.
Repeat.

Let U1 =Point-Selection(S1, L, [1, |S1|]).
Let U2 =Point-Selection(S2, L, [1, |S2|]).
Let (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, U2).
If (LS1 6= ∅ and RS1 6= ∅),
then go to H.
Else, L = L/2,

until (L < 1
2

(logn)3+τ

100
).
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H: Return Improve-Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2 , 2L).
End of Initial-Boundaries.

If LS and RS are the left and right motif boundaries of a sequence, S, then the motif length is
RS − LS + 1. When we have the exact motif boundaries, L′Si and R′Si , for most sequences, Si, with
high probability, their motif length can be derived via the median in ∪i{R′Si − L

′
Si

+ 1}. Therefore, we
have the function, Motif-Length-And-Boundaries(Z1), to compute the length of the motif region.

Motif-Length-And-Boundaries(Z1)
Input: Z1 = {S ′1, · · · , S ′2k1

} is a set of independent Θ(n,G, α) sequences.
Steps:
For i = 1 to k1,

let (roughLeftS′2i−1
, roughRightS′2i)=Initial-Boundaries(S ′2i−1, S

′
2i).

Let L1 be the median of ∪k1
i=1{(roughRightS′2i−1

− roughLeftS′2i−1
+ 1)}.

Return L1.
End of Motif-Length-And-Boundaries.

4.2.2. . Extract-Phase of Algorithm Recover-Motif

After a set of motif candidates, W , is produced from Boundary-Phase of algorithm Recover-Motif,
we use this set to match with another set of input sequences to recover the hidden motif by voting.

Match(Gl, Gr, S
′′
i )

Input: a motif left part, Gl (which can be derived from the rough left boundary of an input sequence,
S), a motif right part, Gr, and a sequence, S ′′i , from the group, Z2, with known rough left and right
boundaries.

Output: either a rough motif region of S ′′i or an empty sequence, which means the failure in extracting
the motif region, ℵ(S ′′i ), of S ′′i .

Steps:
Find a position, a, in S ′′i with roughLeftS′′i ≤ a ≤ roughLeftS′′i + (v + u2),
such that Gl and S ′′i [a, a+ |Gl| − 1] are left matched (see Definition 9).
Find a position, b, in S ′′i with roughRightS′′i − (v + u2) ≤ b ≤ roughRightS′′i ,
such that Gr and S ′′i [b− |Gr|+ 1, b] are right matched (see Definition 9).
If both a and b are found,
then output S ′′i [a, b].
Else, output ∅ (empty string).

End of Match.

If the left, Gl, and right, Gr, motif parts are known, we extract all the motif regions for all sequences
in the set, Z2, by the function, Extract(Gl, Gr, Z2).

Extract(Gl, Gr, Z2)
Input Z2 = {S ′′1 , S ′′2 , · · · , S ′′k2

} and left and right motif parts, Gl and Gr (see function
Match(Gl, Gr, Si)).
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Steps:
For each S ′′i with i = 1, 2, · · · , k2,

let G′′i = Match(Gl, Gr, S
′′
i ).

Return (G′′1, G
′′
2, · · · , G′′k2

).
End of Extract.

The following is Extract-Phase of algorithm Recover-Motif. It extracts the motif regions of another
set, Z2, of input sequences. The function is based on the condition that exact motif boundaries can be
derived for most sequences. See the examples in Section 3.2.9. .

Extract-Phase(S ′, Z2):
Input S ′ is an input sequence with known roughLeftS′ and roughRightS′ for its rough left and right

boundaries, respectively, and Z2 = {S ′′1 , · · · , S ′′k2
} is a set of input sequences.

Steps:
For each subsequenceGl = S ′[a, a+d0 log n−1] with a ∈ [roughLeftS′ , roughLeftS′+(v+u1)]

and Gr = S ′[b− d0 log n+ 1, b], with b ∈ [roughRightS′ − (v + u1), roughRightS′ ],
let (G′′1, G

′′
2, · · · , G′′k2

) be the output from Extract(Gl, Gr, Z2).
If the number of empty sequences in G′′1, · · · , G′′k2

is at most (Q0 + (R + 2ε))k2,
then return (G′′1, G

′′
2, · · · , G′′k2

).
Return ∅ (empty set).

End of Extract-Phase .

4.2.3. . Voting-Phase

The function, Vote(G′′1, G
′′
2, · · · , G′′k2

), is to generate another sequence, G′, by voting, where G′[i] is
the most frequent character among G′′1[i], G′′2[i], · · · , G′′k2

[i]. See the examples in Section 3.2.10. .

Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

)

Input: Θ(n,G, α) sequences, G′′1, G
′′
2, · · · , G′′k2

, of the same length, m.
Output: a sequence, G′, which is derived by voting on every position of the input sequences.
Steps:

For each j = 1, · · · ,m,
let aj be the most frequent character among G′′1[j], · · · , G′′k2

[j].
Return G′ = a1 · · · am.

End of Vote.

4.2.4. . Entire Algorithm Recover-Motif

The entire algorithm is described below. The input has two sets of sequences, Z1 and Z2. It detects
the motif boundaries for the sequences in Z1 via pairwise comparisons and, also, the motif length. The
motif regions of the sequences in Z2 are detected in the next phase and will be extracted. The original
motif is recovered via voting for each column of characters among the extracted motif regions.
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We maintain the sizes of Z1 and Z2 to be roughly equal, which implies:

|Z1| = Θ(|Z2|) (18)

Algorithm Recover-Motif (Z)
Input: Z = Z1 ∪ Z2, where Z1 = {S ′1, · · · , S ′2k1

} and Z2 = {S ′′1 , · · · , S ′′k2
} are two sets of input

sequences.
Steps:
Preprocessing part:
For each S ∈ Z1 ∪ Z2, let roughLeftS = roughRightS = 0 (the two boundaries are unknown).
lmotif =MotifLengthAndBoundaries(Z1).
Let L = lmotif/4.
For i = 1 to k1,

let US′2i−1
=Point-Selection(S ′2i−1, L, [roughLeftS′2i−1

− 2L, roughLeftS′2i−1
+ 2L])∪

Point-Selection(S ′2i−1, L, [roughRightS′2i−1
− 2L, roughRightS′2i−1

+ 2L]).
For j = 1 to k2,

let US′′j =Point-Selection(S ′′j , L, [1, |S ′′j |]).
For i = 1 to k1,

for each S ′′j ∈ Z2,
Let (LS′2i−1

, RS′2i−1
, LS′′j , RS′′j

) =Collision-Detection(S ′2i−1, US′2i−1
, S ′′j , US′′j ).

Let (LS′2i−1
, RS′2i−1

, roughLeftS′′j , roughRightS′′j )=
Improve-Boundaries(S ′2i−1, LS′2i−1

, RS′2i−1
, S ′′j , LS′′j , RS′′j

, 2L).
Let (G′′1, G

′′
2, · · · , G′′k2

) be the output from Extract-Phase(S ′2i−1, Z2).
If (G′′1, G

′′
2, · · · , G′′k2

) is not empty,
then go to the Voting part.

Voting part:
Return Voting-Phase(G′′1, G

′′
2, · · · , G′′k2

).
End of Algorithm Recover-Motif .

5. Deterministic Algorithm

In this section, we give a deterministic algorithm, which is a simplified version of the unified
algorithm described before in Section 4.2. It is simpler than the randomized versions. The first phase of
Algorithm Recover-Motif (.) finds the rough motif boundaries of all input sequences. It first detects the
rough motif boundaries of one sequence via comparing two input sequences. Then, the rough boundaries
of the first sequence are used to find the rough motif boundaries of other input sequences. We still let:

ωDETERMINISTIC-SUPERQUADRATIC = β. (19)

Collision-Detection(S1, S2)

Input: a pair of Θ(n,G, α)-sequences, S1 and S2; Ui is a set of locations in Si for i = 1, 2.
Output: the left and right rough boundaries of two sequences.
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LetD1 be all subsequences, S1[a, a+d0 log n−1], of S1 of a length of d0 log nwith a ∈ [1, |S1|].
Let D2 be all subsequences, S2[b, b+d0 log n−1], of S2 of a length of d0 log n with b ∈ [1, |S2|].
Find two subsequences, X1 = S1[a1, a1 + d0 log n− 1] ∈ D1 and
X2 = S2[b1, b1 + d0 log n − 1] ∈ D2, such that a1 is the least and diff(X1, X2) ≤

ωDETERMINISTIC−SUPERQUADRATIC.
Find two subsequences, X ′1 = S1[a′1, a

′
1 + d0 log n− 1] ∈ D1 and

X ′2 = S2[b′1, b
′
1 + d0 log n− 1] ∈ D2, such that a′1 is the largest and

diff(X ′1, X
′
2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.

Find two subsequences, Y1 = S1[f1, f1 + d0 log n− 1] ∈ D1 and
Y2 = S2[e1, e1 + d0 log n− 1] ∈ D2, such that e1 is the least and
diff(Y1, Y2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.
Find two subsequences, Y ′1 = S1[f ′1, f

′
1 + d0 log n− 1] ∈ D1 and

Y ′2 = S2[e′1, e
′
1 + d0 log n− 1] ∈ D2, such that e′1 is the largest and

diff(Y ′1 , Y
′

2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.
Return (a1, a

′
1, e1, e

′
1).

End of Collision-Detection.

Function Point-Selection(S1, S2, L) is not used in the deterministic algorithm.

Improve-Boundaries(S1, al, ar, S2, fl, fr, L) is the same as that in the randomized algorithms.

Initial-Boundaries(S1, S2)

Input: a pair of Θ(n,G, α)-sequences, S1 and S2.
Output: rough left boundary roughLeftS1

of S1, right boundary roughRightS1
of S1, rough left

boundary roughLeftS2
of S2 and right boundary roughRightS2

of S2.
Steps:

Let U1 = U2 = ∅.
Let L = n2/5.
Repeat.

Let (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, S2).
If (LS1 6= ∅ and RS1 6= ∅),
then go to H.
Else, L = L/2,

until (L < 1
2

(logn)3+τ

100
).

H: Return Improve-Boundaries(S1, LSl , RS1 , S2, LS2 , RS2 , 2L).
End of Initial-Boundaries.

Motif-Length-And-Boundaries(Z1) is the same as that before.
Match(Gl, Gr, Si) is the same as that for the randomized algorithm.
Extract(Gl, Gr, Z2) is the same as that for the randomized algorithm.
The following is Extract-Phase of algorithm Recover-Motif. It extracts the motif regions of another

set, Z2, of input sequences.
Extract-Phase(S ′, Z2) is the same as that for the randomized algorithm.
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Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

) is the same as that for the randomized algorithm.
The entire deterministic algorithm is described below. We maintain the sizes of Z1 and Z2 to be

roughly equal.
Algorithm Recover-Motif (Z)
Input: Z = Z1 ∪ Z2, where Z1 = {S ′1, · · · , S ′2k1

} and Z2 = {S ′′1 , · · · , S ′′k2
} are two sets of input

sequences.
Steps:
Preprocessing part:
For each S ∈ Z1 ∪ Z2, let roughLeftS = roughRightS = 0 (the two boundaries are unknown).
lmotif =MotifLengthAndBoundaries(Z1).
Let L = lmotif/4.
For i = 1 to k1,

for each S ′′j ∈ Z2,
let (LS′2i−1

, RS′2i−1
, LS′′j , RS′′j

) =Collision-Detection(S ′2i−1, S
′′
j ).

Let (LS′2i−1
, RS′2i−1

, roughLeftS′′j , roughRightS′′j )=
Improve-Boundaries(S ′2i−1, LS′2i−1

, RS′2i−1
, S ′′j , LS′′j , RS′′j

, 2L).
Let (G′′1, G

′′
2, · · · , G′′k2

) be the output from Extract-Phase(S ′2i−1, Z2).
If (G′′1, G

′′
2, · · · , G′′k2

) is not empty,
then go to the Voting part.

Voting part:
Return Voting-Phase(G′′1, G

′′
2, · · · , G′′k2

).
End of Algorithm Recover-Motif .

6. Analysis of the Algorithm

The correctness of the algorithm will be proven via a series of lemmas in Sections 6.2 and 6.3.
Section 6.2 is for Boundary-Phase and Section 6.3 is for Extract-Phase. Furthermore, Section 6.3 gives
some lemmas for the two randomized algorithms, and Section 6.4 gives the proof for the deterministic
algorithm.

6.1. Review of Some Classical Results in Probability

Some well-known results in classical probability theory are listed. The readers can skip this section
if they understand them well. The inclusion of these results make the paper self-contained.

• For a list of events, A1, · · · , Am, Pr[A1 ∪ A2 ∪ · · · ∪ Am] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[Am].

• For two independent events, A and B, Pr[A ∩B] = Pr[A]Pr[B].

• For a random variable, Y , Pr[Y ≥ t] ≤ E[Y ]
t

for all positive real numbers, t. This is called
Markov inequality.

The analysis of our algorithm employs the Chernoff bound [22] and Corollary 18 below, which can
be derived from it (see [11]).
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Theorem 15 ([22]). Let X1, · · · , Xn be n independent random 0–1 variables, where Xi takes one with
a probability of pi. Let X =

∑n
i=1Xi, and µ = E[X]. Then, for any δ > 0:

i. Pr(X < (1− δ)µ) < e−
1
2
µδ2

and

ii. Pr(X > (1 + δ)µ) <
[

eδ

(1+δ)(1+δ)

]µ
.

We follow the proof of Theorem 15 to make the following version of the Chernoff bound, so that it
can be used in our algorithm analysis.

Theorem 16. Let X1, · · · , Xn be n independent random 0–1 variables, where Xi takes one with a
probability of at most p. Let X =

∑n
i=1Xi. Then, for any δ > 0, Pr(X > (1 + δ)pn) <

[
eδ

(1+δ)(1+δ)

]pn
.

Define g(δ) = eδ

(1+δ)(1+δ) . We note that g(δ) is always strictly less than one for all δ > 0 and g(δ)

is fixed if δ is a constant. This can be verified by checking that the function f(x) = ln ex

(1+x)(1+x) =

x − (1 + x) ln(1 + x) is decreasing and f(0) = 0. This is because f ′(x) = − ln(1 + x), which is less
than zero for all x > 0.

Theorem 17. Let X1, · · · , Xn be n independent random 0–1 variables, where Xi takes one with a
probability of at most p. Let X =

∑n
i=1Xi. Then, for any δ > 0, Pr(X < (1− δ)pn) < e−

1
2

pn
δ2

.

Corollary 18 ([11]). Let X1, · · · , Xn be n independent random 0–1 variables, and X =
∑n

i=1Xi.
i) If Xi takes one with a probability of at most p, then for any 1

3
> ε > 0, Pr(X > pn+ εn) < e−

1
3
nε2 .

ii) If Xi takes one with a probability of at least p, then for any ε > 0, Pr(X < pn− εn) < e−
1
2
nε2 .

6.2. Analysis of Boundary-Phase of Algorithm Recover-Motif

Lemma 19 shows that with only a small probability, a sequence can match a random sequence. It will
be used to prove that when two substrings in two different Θ(n,G, α)-sequences are similar, they are
unlikely not to coincide with the motif regions in the two Θ(n,G, α)-sequences, respectively.

Lemma 19. Assume that X1 and X2 are two independent sequences of the same length and that every
character of X2 is a random character from Σ. Then:

i. if 1 ≤ |X1| = |X2| < v, then the probability that X1 and X2 are matched is ≤ 1
t|X1| (t = ||Σ||);

and

ii. the probability for diff(X1, X2) ≤ β is at most e−
ε2|X1|

3 .

Proof: The two statements are proven as follows.
Statement i: For every character, X2[j], with 1 ≤ j < v, the probability is 1

t
that X2[j] = X1[j].

Statement ii: For every character, X2[j], with 1 ≤ j ≤ |X2|, the probability is 1
t

for X2[j] to equal
X1[j]. If diff(X1, X2) ≤ β, the two sequences, X1 and X2, are identical in at least (1−β)|X1| positions,
but the expected number of positions where the two sequences are identical is 1

t
|X1|. The probability for

diff(X1, X2) ≤ β is at most e−
(1−β− 1

t )2

3
|X1| ≤ e−

ε2

3
|X1| by Corollary 18, Definition and 9, items (xiv) and

xii, equation (8) and inequality (2) in Definition 8.

Lemma 20 shows that with a small probability, an input Θ(n,G, α) sequence contains a motif region
that has many mutations.
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Lemma 20.

i. With a probability of at most ct, a Θ(n,G, α) sequence, S, changes more than β
2
t characters in its

motif region, ℵ(S)[i, i + t − 1], with 1 ≤ i ≤ i + t − 1 ≤ |G|, where c is defined in item (v) in
Definition 8.

ii. With a probability of at most cy

1−c , a Θ(n,G, α) sequence, S, changes more than β
2
t characters

in its left motif region, ℵ(S)[1, t], for some t with y ≤ t ≤ |G|, where c is defined in item (v) in
Definition 8.

Proof: Statement i: Every character in the ℵ(S) region has a probability of at most α to mutate. We
know that |ℵ(S)| = |G| ≥ d. By Corollary 18, with a probability of at most e−

ε2

3
t, ℵ(S)[i, i+ t− 1] has

more than (α + ε)t mutations.
Statement ii: We know that |ℵ(S)| = |G| ≥ d. By Corollary 18, with a probability of at most e−

ε2

3
t, a

sequence, S, in Z1 has more than (α + ε)t mutations (recall the setting for β in Definition 9) among the
first left t characters. The total probability is at most

∑∞
t=y e

− ε
2

3
t = cy

1−c .

Lemma 21 shows that Improve-Boundaries() has a good chance to improve the accuracy of rough
motif boundaries. Note that LB(S) and RB(S) are the left and right motif boundaries of S, respectively
(see Definition 11).

Lemma 21. Assume that Θ(n,G, α) sequence Si has LSi ∈ [LB(Si) − L,LB(Si) + L] and RSi ∈
[RB(Si) − L,RB(Si) + L] for i = 1, 2. Then, for (roughLeftS1

, roughRightS1
, roughLeftS2

,

roughRightS2
)=Improve-Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2 , L), we have the following two facts:

i. with a probability of at most 2cv

1−c + 2(v+u)cv+u

(1−c)2 + 1
5·2xn ; roughLeftSi is not in [LB(Si) − (v +

u),LB(Si)] for i = 1, 2.

ii. with a probability of at most 2cv

1−c + 2(v+u)cv+u

(1−c)2 + 1
5·2xn , roughRightSi is not in [RB(Si),RB(Si) +

(v + u)] for i = 1, 2.

iii. Improve-Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2 , L) runs in O(L2 log n) time.

Proof: We need a bound for the following inequality:

∞∑
i=j

iai <
jaj

(1− a)2
(20)

Let f(x) =
∑∞

i=j e
θix. Compute the derivative f ′(x) = θ

∑∞
i=j ie

θix. We also have the closed form for
the function f(x) = eθjx

1−eθx , which implies:

f ′(x) =
θjeθjx(1− eθx)− eθjx(−θeθx)

(1− eθx)2
(21)

=
θjeθjx − θ(j − 1)eθ(j+1)x

(1− eθx)2
(22)

Let θ = ln a and x = 1. We have
∑∞

i=j ia
i = jaj−(j−1)aj+1

(1−a)2 < jaj

(1−a)2 .
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Statement i. By Lemma 20, with a probability of at most 2cv

1−c , one of the left motif first y character
region of Si will change β

2y
characters. Therefore, with a probability of at most P1 = 2cv

1−c , roughLeftSi >

LB(Si).
For a pair of positions, p, in S1, and q, in S2, without loss of generality, assume that p has a larger

distance to the left boundary LB(S1) of S1 than q to the left boundary LB(S2) of S2. Let v + y be the
distance from p to the left boundary LB(S1) of S1.

By Lemma 19, the probability is at most cv+y that there will be a match. There are at most (v + y)

cases for q. With a probability of at most P2 = 2
∑∞

y=u(v + y)cv+y < 2(v+u)cv+u

(1−c)2 , by inequality (20),
roughLeftS1

< LB(S1)− (v + u).
For the cases that one position is in a random region and has a distance more than d0 log n from the

left boundary, the probability is at most P3 = n2cd0 logn < 1
5·2xn by inequality (14).

Therefore, we have a total probability of at most P1 + P2 + P3 that roughLeftS1
is not in

[LB(S1)− (v + u),LB(S1)].
Statement ii. One can also provide a symmetric analogous proof for this statement.
Statement iii. The computation time easily follows from the implementation of Improve-Boundaries

(S1, LS1 , RS1 , S2, LS2 , RS2).

Lemma 22. Assume that for each L with 0 < L ≤ |G|
2

, with a probability of at most ς(n), LSi 6∈ [LBSi−
L,

LBSi + L] for i = 1, 2, where (LS1 , RS1 , LS2 , RS2) = Collision-Detection(S1, U1, S2, U2),
U1 = Point-Selection(S1, L) and U2 = Point-Selection(S2, L). Then, with a probability of at
most ς(n) + 2(v+u1)cv+u1

(1−c)2 + cv

1−c + 1
5·2xn , Initial-Boundary(S1, S2) returns (LS1 , RS1 , LS2 , RS2) with

LSi 6∈ [LB(Si)− (v + u1),LB(Si)] or RSi 6∈ [RB(Si),RB(Si) + (v + u1))] for i = 1, 2.

Proof: It follows from Lemma 21:

Lemma 23. Assume that with a probability of p < 0.5, each S ′2i−1 has its rough boundaries,
roughLeftS′2i−1

6∈ [LB(S ′2i−1)− u,LB(S ′2i−1)] or roughRightS′2i−1
6∈ [RB(S ′2i−1),RB(S ′2i−1) + u]; then,

with a probability of at most e−(0.5−p−ε)2k1/3, lmotif is not in [|G| − 2u, |G|+ 2u], where lmotif is selected
as the median of ∪k1

i=1{(roughRightS′2i−1
− roughLeftS′2i−1

)}.

Proof: If both roughLeftS′2i−1
∈ [LB(S ′2i−1) − u,LB(S ′2i−1)] and roughRightS′2i−1

∈
[RB(S ′2i−1),RB(S ′2i−1) + u], then (roughRightS′2i−1

− roughLeftS′2i−1
) is in [|G| − 2u, |G|+ 2u].

If the median of ∪k1
i=1{(roughRightS′2i−1

− roughLeftS′2i−1
)} is not in [|G| − 2u, |G|+ 2u], then there

are at least bk1c numbers, i, to have roughLeftS′2i−1
6∈ [LB(S ′2i−1)−u,LB(S ′2i−1)] or roughRightS′2i−1

6∈
[RB(S ′2i−1),RB(S ′2i−1) + u].

On the other hand, the probability is at most p, roughLeftS′2i−1
6∈ [LB(S ′2i−1) − u,LB(S ′2i−1)] or

roughRightS′2i−1
6∈ [RB(S ′2i−1),RB(S ′2i−1) + u]. Therefore, this lemma follows from Corollary 18.

For a Θ(n,G, α)-sequence S, we often obtain its left rough boundary with roughLeftS ≤ LB(S).
Sometimes, its exact left boundary may be missed in the algorithm.

Definition 24.
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• A Θ(n,G, α)-sequence, S, misses its left boundary if roughLeftS > LB(S).

• A Θ(n,G, α)-sequence, S, misses its right boundary if roughRightS < RB(S).

Definition 25.

i. A Θ(n,G, α)-sequence, S, contains a left half stable motif region, ℵ(S), if diff(G′[1, h], G[1, h]) ≤
β
2

for all h = v, v + 1, · · · ,m, where G′ = ℵ(S), and m = |G|, as defined in Definition 8 and
Section 2, respectively.

ii. A Θ(n,G, α)-sequence, S, contains a right half stable motif region, ℵ(S), if diff(G′[m − h,m],

G[m− h,m]) ≤ β
2

for h = v − 1, v + 1, · · · ,m− 1, where G′ = ℵ(S) and m = |G|.

iii. A Θ(n,G, α)-sequence, S, contains a stable motif region, ℵ(S), satisfying the following condi-
tions: (1)G′[i] = G[i] for i = 1, · · · , v−1; (2)G′[m−i+1] = G[m−i+1] for i = 1, · · · , v−1; and
(3) the S motif region is both left and right half stable, where G′ = ℵ(S) and m = |G|.

Lemma 26. Assume that:

• lmotif ∈ [|G| − 2(v + u1), |G|+ 2(v + u1)];

• S contains both a left half and a right half stable motif region and roughLeftS ∈ [LB(S) − (v +

u1),LB(S)] and roughRightS ∈ [RB(S),RB(S) + (v + u1)] (see Definition 8 for u1 and v); and

• for each L with (v + u1) < L ≤ |G|
2

, if S1 has roughLeftS1
∈ [LBS1 − L,LBS1 + L]

and roughRightS1
∈ [RBS1 − L,RBS1 + L], then with a probability of at most ς(n),

LS′′i 6∈ [LBS′′i
− 2L,LBS′′i

+ 2L] for i = 1, 2, where (LS1 , RS1 , LS′′i , RS′′i
) = Collision-Detection

(S1, U1, S
′′
i , U2), U1 = Point-Selection(S1, L, [roughLeftS1

− 2L, roughLeftS1
+ 2L])∪

Point-Selection(S1, L, [roughRightS1
− 2L, roughRightS1

+ 2L]) and U2 = Point-Selection
(S ′′i , L, [1, |S ′′i |]).

• The rough boundaries for all sequences, S ′′i ∈ Z2, are computed via (LS, RS, LS′′i , RS′′i
) =

Collision-Detection(S, US, S
′′
i , US′′i ) and (LS, RS, roughLeftS′′i , roughRightS′′i ) =

Improve-Boundaries(S, LS, RS, S
′′
i , LS′′i , RS′′i

, 2L).

Then, with a probability of at most e−
ε2k2

3 , there are more than (2(ς(n) + (v + u1) c
v+u

1−c + cv

1−c) + ε)k2

sequences S ′′i in {S ′′1 , · · · , S ′′k2
} with roughLeft(S ′′i ) 6∈ [LB(S ′′i )−(v+u),LB(S ′′i )] or roughRight(S ′′i ) 6∈

[RB(S ′′i ),RB(S ′′i ) + (v + u)].

Proof: According to the condition of this lemma, with a probability of at most P1 = ς(n), LS′′i 6∈
[LBS′′i

−2L,LBS′′i
+2L], where (LS, RS, LS′′i , RS′′i

) = Collision-Detection(S, U1, S
′′
i , U2) and (U1, U2) =

Point-Selection(S, S ′′i , L).
For a fixed pattern from S, by Lemma 19, with a probability of at most

∑∞
y=v+u c

y = cv+u

1−c , it has a
distance of more than v + u to the true left boundary. As we need to deal with v + u1 possible patterns
from S, with a probability of at most P2,l = (v + u1) · cv+u

1−c , roughLeftS′′i < LB(S ′′i )− (v + u).
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Similarly, with a probability of at most P2,r = (v + u1) c
v+u

1−c , roughRightS′′i > RB(S ′′i ) + (v + u).
Let P2 = P2,l + P2,r.

With a probability of at most P3,l = cv

1−c , S ′′i does not contain a left
half stable motif region by Lemma 20. Similarly, with a probability of at
most P3,r = cv

1−c , S ′′i does not contain a right half stable motif region.
Let P3 = P3,l + P3,r.

Although, S is involved in searching the left boundary with all other sequences. The non-missing
condition is to let each sequence not change too many characters in the motif region. Therefore, this is
an independent event for each sequence. It is safe to use the Chernoff bound to deal with it.

With a probability of at most P = e−
ε2k2

3 , there are more than (P1 + P2 + P3 + ε)k2 sequences,
S ′′i , in {S ′′1 , · · · , S ′′k2

} with roughLeft(S ′′i ) 6∈ [LB(S ′′i ) − (v + u),LB(S ′′i )] or roughRight(S ′′i ) 6∈
[RB(S ′′i ),RB(S ′′i ) + (v + u)].

6.3. Analysis of Extract-Phase and Voting-Phase of Algorithm Recover-Motif

Lemma 27 shows that with a high probability, the left and last parts of the motif region in a
Θ(n,G, α)-sequence do not change much.

Lemma 27. With a probability of at most Q0 defined in Equation (13), a Θ(n,G, α)-sequence, S, does
not contain a stable motif region.

Proof: The probability is V1 = 2(v − 1)α not to satisfy conditions (1) and (2) of item (iii) in
Definition 25. Consider condition (3) of item (iii) in Definition 25. Since every character of ℵ(S)[1,m]

(notice that m = |G|) has a probability of at most α to mutate, by Corollary 18, the probability is at
most e−

1
3
ε2r that diff(G[1, h], G′[1, h]) > β

2
= α + ε. Let V3 =

∑∞
r=v e

− 1
3
ε2r = cv

1−c , where c = e−
1
3
ε2 , as

defined in Definition 8. Therefore, the probability is at most V3 that diff(G[1, h], G′[1, h]) > β
2

= α + ε

for some h ∈ {v, v + 1, · · · ,m}. Similarly, we define V4 =
∑∞

r=v e
− 1

3
ε2r ≤ cv

1−c for the probability on
the right-hand side. The probability is at most V4 that diff(G[m − h,m], G′[m − h,m]) > β

2
= α + ε

for some h ∈ {v, v+ 1, · · · ,m}. The probability that S does not contain a stable motif region is at most
V1 + V3 + V4 = Q0.

Definition 28. Assume that Z1 = {S ′1, · · · , S ′2k1
} contains S ′2i−1, which contains a stable motif region.

We fix such a S ′2i−1.

• Define GL = ℵ(S ′2i−1)[1, d0 log n− 1] to be the left part of the motif region, ℵ(S ′2i−1).

• Define GR = ℵ(S ′2i−1)[|G| − (d0 log n) + 1, |G|] to be the right part of the motif region, ℵ(S ′2i−1).

Lemma 29 shows that with a high probability, Extract-Phase of algorithm Recover-Motif extracts the
correct motif regions from the sequences in Z1. It uses G′′ to match ℵ(S) in another sequences, S. The
parameter, R, gives a small probability that the matched region between G′′ and S is not in ℵ(S).

Lemma 29.
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i. Assume thatGl andGr are fixed sequences of length d0 log n. Let S be a Θ(n,G, α)-sequence with
M = Match(Gl, Gr, S), and let w0 be the number of characters of M that are not in the region of
ℵ(S). Then, the probability is at most R that w0 ≥ 1, where R is defined in (xv) of Definition 8.

ii. The probability is at most Q0 that given a Θ(n,G, α)-sequence S, Match(GL, GR, S) = ∅.

Proof: Assume that w0 ≥ 1. Let w be the number of characters outside of ℵ(S) on the left of M ,
and let w′ be the number of characters outside of ℵ(S) on the right of M . Clearly, w0 = w + w′. Since
w0 ≥ 1, either w ≥ 1 or w′ ≥ 1. See Figure 1. Without loss of generality, we assume w ≥ 1.

Figure 1. G′′ and M .

G′′

ℵ(S)� -
w′wM

Statement i: There are two cases.
Case (a): 1 ≤ w < v. By Lemma 19, the probability for this case is at most 1

t
for a fixed w. The total

probability for this case for 1 ≤ w < v is at most
∑v−1

i=1
1
ti
≤
∑∞

i=1
1
ti

= 1
t−1

.

Case (b): v ≤ w. By Lemma 19, the probability is at most e−
ε2

3
w for a fixed w. The total probability

for v ≤ w is at most
∑∞

w=v e
− ε

2

3
w = cv

1−c .
The probability analysis is similar when w′ ≥ 1. Therefore, the probability for this case is at most

R = ( 1
t−1

+ cv

1−c) for w0 ≥ 1.
Statement ii: By Lemma 27, with a probability of at most Q0, S does not contain a stable motif

region. Therefore, we have a probability of at most Q0 that given a random Θ(n,G, α)-sequence, S,
Match(GL, GR, S) = ∅.

Lemma 30 shows that we can use Gl and Gr to extract most of the motif regions for the sequences in
Z2 if G′ = GL (recall that GL is defined right after Lemma 27).

Lemma 30. Assume that Gl and Gr are two sequences of a length of d0 log n, and Gi =

Match(Gl, Gr, S
′′
i ) for S ′′i ∈ Z2 = {S ′′1 , · · · , S ′′k2

} and i = 1, · · · , k2 (recall that each sequence, Gi,
is either an empty sequence or a sequence of the length of |Gl|).

i. If Gl = GL, Gr = GR and there are no more than yk2 (y ∈ [0, 1]) sequences, S ′′i , with
roughLeftS′′i 6∈ [LB(S ′′i )− (v + u2),LB(S ′′i )] or roughRightS′′i 6∈ [RB(S ′′i ),RB(S ′′i ) + (v + u2)],

then the probability is at most e−
ε2k2

3 that there are more than (Q0 + y + ε)k2 sequences, Gi, with
Gi = ∅.

ii. For arbitrary Gl and Gr, with a probability of at most e−
ε2k2

3 , |{i|Gi 6= ∅ and Gi 6= ℵ(S ′′i ),

i = 1, · · · , k2}| > (R + ε)k2, where R is defined in Definition 8.
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Proof: Recall that sequence G1L is selected right after Lemma 27.
Statement i: By Lemma 29, for every S ′′i ∈ Z2, the probability is at most Q0 that S ′′i does not contain

a stable motif region, ℵ(S ′′i ). By Corollary 18, we have a probability of at most e−
ε2k2

3 that there are
more than (Q0 + y + ε)k2 sequences, Gi, with Gi = ∅.

Statement ii: By Lemma 29, the probability is at most R that Gi 6= ℵ(S ′′i ). By Corollary 18,

with a probability of at most e−
ε2k2

3 , |{i|Gi 6= ℵ(S ′′i ), i = 1, · · · , k2}| > (R + ε)k2.

Definition 31.

• Given two sequences, Gr and Gr, define:

M(Gr, Gr) = {G′′i : G′′i =Match(Gl, Gr, roughLeftS′′i , roughRightS′′i , S
′′
i ) i = 1, · · · , k2}.

• For a Θ(n,G, α) sequence, S, define GS,L to be the ℵ(S)[1, d0 log n], which is the leftmost
subsequence of a length of d0 log n in the motif region of S.

• For a Θ(n,G, α) sequence, S, define GS,R to be the ℵ(S)[m − d0 log n + 1,m], which is the
rightmost subsequence of a length of d0 log n in the motif region of S, where m = |G| = |ℵ(S)|;

the condition iv of Lemma 32.

Lemma 32. Assume that we have the following conditions:

i. For each L with 0 < L ≤ |G|
2

, with a probability of at most ς1(n), LSi 6∈
[LBSi − 2L,LBSi + 2L] or RSi 6∈ [RBSi − 2L,RBSi + 2L] for i = 1, 2, where
(LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, U2), U1 =Point-Selection(S1, L, [1, |S1|])
and U2 =Point-Selection(S2, L, [1, |S2|]).

ii. For each L with 0 < L ≤ |G|
2

, if S1 has roughLeftS1
∈ [LBS1−L,LBS1 +L] and roughRightS1

∈
[RBS1 − L,RBS1 + L], then with a probability of at most ς2(n), LS′′i 6∈ [LBS′′i

− 2L,LBS′′i
+ 2L]

for i = 1 or i = 2, where (LS1 , RS1 , LS′′i , RS′′i
) = Collision-Detection(S1, U1, S

′′
i , U2),

U1 = Point-Selection(S1, L, [roughLeftS1
− 2L, roughLeftS1

+ 2L])∪ Point-Selection
(S1, L, [roughRightS1

− 2L, roughRightS1
+ 2L]) and U2 = Point-Selection (S ′′i , L, [1, |S ′′i |]).

iii. The inequality (P0+Q0) < c0 holds for some constant c0 < 1, whereQ0 is defined in Equation (13)
and P0 = ς1(n) + 2(v+u1)cv+u1

(1−c)2 + cv

1−c + 1
5·2xn .

iv. The inequality 1 − 2(Q0 + V0 + (R + 2ε)) − (α + ε) > 0 holds, where V0 = (2(ς2(n) +

(v + u1) c
v+u2

1−c + cv

1−c) + ε).

Then, the algorithm generates a set of at most k2 subsequences for voting and votes for a sequence,
G′, such that:

(1) with a probability of at most e−Ω(k1) + e−Ω(k2), |G′| 6= |G|; and
(2) for each 1 ≤ i ≤ |G|, with a probability of at most e−Ω(k1) + e−Ω(k2), G′[i] 6= G[i].
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Before proving Lemma 32, we note that both ς1(n) and ς2(n) are at most 1
2xn3 for

all of the three algorithms. They will be proven by Lemma 47 and Lemma 46 for
the case algorithm-type=RANDOMIZED-SUBLINEAR, Lemma 41 and Lemma 40 for
the case algorithm-type=RANDOMIZED-SUBQUADRATIC, and Lemma 35 for the
case algorithm-type=DETERMINISTIC-SUPERQUADRATIC.
Proof:

By Lemmas 22, with a probability of at most P0 = ς1(n)+ 2(v+u1)cv+u1

(1−c)2 + cv

1−c+ 1
5·2xn , roughLeftS′2i−1

6∈
[LB(S ′2i−1)− (v + u1),LB(S ′2i−1)] or roughRightS′2i−1

6∈ [RB(S ′2i−1),RB(S ′2i−1) + (v + u1)].

By Lemma 23, with a probability of at most Pa = e−(0.5−P0−ε)2k1/3 = e−Ω(k1), the approximate motif
length, lmotif , is not in the range [|G| − 2(v + u1), |G|+ 2(v + u1)]. Assume lmotif ∈ [|G| − 2(v + u1),

|G|+ 2(v + u1)] in the rest of the proof of this lemma.
By Lemma 27, with a probability of at mostQ0, a Θ(n,G, α) sequence does not contain a stable motif

region. Therefore, with a probability of at most P1 = (P0 +Q0)k1 , the following statement is false:
(i) One of S ′2i−1 for i = 1, · · · , k1 has roughLeftS′2i−1

∈ [LB(S ′2i−1) − (v + u1),LB(S ′2i−1)],
roughRightS′2i−1

∈ [RB(S ′2i−1),RB(S ′2i−1) + (v + u1)] and has a stable motif region.

By Lemma 26, with a probability of at most P2 = e−
ε2k2

3 , there are more than (2(ς2(n) + (v +

u1) c
v+u2

1−c + cv

1−c)+ε)k2 sequences S ′′i with roughLeftS′′i 6∈ [LB(S ′′i )−(v+u2),LB(S ′′i )] or roughRightS′′i 6∈
[RB(S ′′i ),LB(S ′′i ) + (v + u2)]. In other words, with a probability of at most P2, the following statement
is false:

(ii) There are no more than V0k2 sequences S ′′i with roughLeftS′′i 6∈ [LB(S ′′i )− (v + u2),LB(S ′′i )] or
roughRightS′′i 6∈ [RB(S ′′i ),RB(S ′′i ) + (v + u2)], where V0 = (2(ς2(n) + (v + u1) c

v+u2

1−c + cv

1−c) + ε).
Assume that Statement (ii) is true. By Lemma 30, with a probability of at most P3 = ck2 , the following

statement is false:
(iii) M(GL, GR) contains at most (Q0 + V0 + ε)k2 empty sequences.
We start from the rough left boundary, roughLeft1, of S1 to match the other left boundaries of S ′′i for

i = 1, · · · , k2. There are in total at most 2(v + u1) candidates to consider.
By Lemma 30, if M(Gl, Gr), which consists of k2 matched regions, has at most (Q0 + V0 + ε)k2

empty sequences, then it has more than (R + ε)k2 from non-motif regions with a probability of at most

P4 = 2(v + u1)e−
ε2k2

3 . After the pattern is fixed, those events in the matching are considered to be
independent of each other. This is why we can apply the Chernoff bound to deal with them. Therefore,
the probability is at most P4; the following statement is false:

(iv) IfM(Gl, Gr) contains at most (Q0 +V0 +ε)k2 empty sequences, thenM(Gl, Gr) contains at most
(Q0+V0+ε+(R+ε))k2 = (Q0+V0+(R+2ε))k2 elements not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}.

Therefore, with a probability of at most Pa + P1 + P2 + P3 + P4 = e−Ω(k1) + e−Ω(k2), the sequences
are not ready for voting in the next phase, which means the following two conditions are satisfied:

(a) There exists Gl and Gr generated by the algorithm, such that M(Gl, Gr) contains at most
(Q0 + V0 + (R + 2ε))k2 elements not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}.

(b) For every Gl and Gr that M(Gl, Gr) contains at most (Q0 +V0 + ε)k2 empty sequences generated
by the algorithm, M(Gl, Gr) contains at most (Q0 + V0 + ε + (R + ε))k2 = (Q0 + V0 + (R + 2ε))k2

elements not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}.
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Statement (1): For a M(Gl, Gr) with at most (Q0 +V0 +(R+2ε))k2 elements not from motif regions
{ℵ(S ′′i ) : 1 ≤ i ≤ k2}, we still have k2 − (Q0 + V0 + (R + 2ε))k2 elements in M(Gl, Gr) from motif
regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}. By the condition (iv) in this lemma, we have k2−(Q0+V0+(R+2ε))k2 >

(Q0 + V0 + (R + 2ε))k2. Therefore, |G′| is selected to be the length of G in the Voting-Phase().
Statement (2): For a M(Gl, Gr) = {G′′1, · · · , G′′k2

} with at most (Q0 +V0 + (R+ 2ε))k2 elements not
from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}, we still have k2−(Q0+V0+(R+2ε))k2 elements inM(Gl, Gr)

from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}. By Corollary 18, with a probability of at most e−
ε2k2

3 , there
are more than (α + ε)k2 characters that are mutated in the same position among all k2 motif regions for
the sequences in Z2. We have that k2− (Q0 +V0 +(R+2ε))k2− (α+ ε)k2 > (Q0 +V0 +(R+2ε))k2 by
the condition (iv) in this lemma. We let G′[j] be the most frequent character among G′′1[j], · · · , G′′k2

[j] in
Voting-Phase. Therefore, with a probability of at most e−Ω(k1) + e−Ω(k2), G′[j] 6= G[j].

We will use multiple variable functions to characterize the computational time for three algorithms.
In order to unify the complexity analysis of three algorithms, we introduce the following notation.

Definition 33. A function, T (x, y) : N × N → N , is nondecreasing if it is nondecreasing on both
variables. If for arbitrary positive constants, c1 and c2, T (c1x, c2y) ≤ cT (x, y) for some positive constant,
c, then T (x, y) is slow.

Lemma 34. Assume that t(x, y), s(n, L) and g(n, l) are non-decreasing slow functions.
Assume that Collision-Detection(S1, U1, S2, U2) returns the result in t(n, ||U1|| + ||U2||) time and the
Point-Selection(S1, S2, L)) selects s(n, L) positions in g(n, L) time. Assume that with a probability of at
most ϕ(n), the function Initial-Boundaries() does not stop when L ≤ |G|/4, and ||US′2i−1

|| + ||US′′j || in
the algorithm Recover-Motif is no more than f(n, |G|).

Then, with a probability of at most k1ϕ(n), the entire algorithm Recover-Motif does not stop in the
time complexity (O(k1(

∑i0
i=1(t(n, s(n, n

2in2/5 )) + g(n, n
2i0n2/5 ))) + k1h

2 log n + k1k2t(n, f(n, |G|)) +

h2 log n) + k1k2(log n)(log log n)), O(k2)), where i0 is the largest j, such that n
2jn2/5 ≤ min(n2/5, |G|)

and
h = min(n2/5, |G|).

Proof: The function Initial-Boundaries()is executed k1 times. According to the condition that with a
probability of at most ϕ(n), the function Initial-Boundaries(.) does not stop when L ≤ |G|/4, we have
the fact that with a probability of at most k1ϕ(n), one of those executions of Initial-Boundaries(.) does
not stop when L ≤ |G|/4.

In the rest of the proof, we assume that all executions of Initial-Boundaries(.) stops when L ≤ |G|/4.
When L = O(h), we detect rough left and right motif boundaries and run Improve-Boundaries(),

which takes O(h2 log n) time by Lemma 21. It takes O(
∑i0

i=1(t(n, s(n, n
2in2/5 )) + g(n, n

2in2/5 ) +

h2 log n) time to run Initial-Boundaries(S ′2i−1, S
′
2i) one time for one pair (S ′2i−1, S

′
2i) in Z1. It takes

O(k1(
∑i0

i=1(t(n, s(n, n
2in2/5 )) + g(n, n

2in2/5 ) + k1h
2 log n) time to run Initial-Boundaries(S ′2i−1, S

′
2i) one

time for all pairs (S ′2i−1, S
′
2i) in Z1.

It takes k2(t(n, f(n, |G|)) + h2 log n) time to find the rough boundaries for all sequences in Z2 with a
fixed sequence, S, fromZ1 by executing for the loop “For each S ′′j ∈ Z2” in the algorithm Recover-Motif.
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It takes k1k2(t(n, f(n, |G|)) + h2 log n) time to find the rough boundaries for all sequences in Z2 via all
sequences, S ′2i−1, from Z1 through the loop “For each S ′′j ∈ Z2” in the algorithm Recover-Motif.

Recall that parameters v and u1 are constants, and u2 is O(log log n). Calling Match(Gl, Gr, S
′′
i )

takes O((v + u2) log n) time for each S ′′i ∈ Z2. The total times for calling Match(Gl, Gr, S
′′
i ) is

O(k1k2(v + u1)(v + u2) log n) = O(k1k2(log n)(log log n)).
The voting part takesO(k2) time for executing voting for recovering one character in the motif.

6.4. Deterministic Algorithm for an Ω(1) Mutation Rate

In this section, we give a deterministic algorithm for the case with an Ω(1) mutation rate. The
performance of the algorithm is stated in Theorem 6.

Lemma 35. Let algorithm-type=DETERMINISTIC-SUPERQUADRATIC. Assume that d0 log n ≤
L ≤ |G|/2 and c0 log n ≤ |G|. Let I1 be a set of intervals of the positions of S1 that satisfies
[LB(S1) − L,LB(S1) + L] ∪ [RB(S1) − L,RB(S1) + L] ⊆ ∪I′∈I1I ′. Let I2 be a set of intervals of
the positions of S2 that satisfies [LB(S2) − L,LB(S2) + L] ∪ [RB(S2) − L,RB(S2) + L] ⊆ ∪I′∈I2I ′.
Let U1 = Point-Selection(S1, L, I1), U2 = Point-Selection(S2, L, I2) and (LS1 , RS1 , LS2 , RS2) =

Collision-Detection(S1, U1, S2, , U2). Then:

i. with a probability of at most 1
2xn3 , the left rough boundary, LS1 , has at most d0 log n distance from

LB(S1) and the left rough boundary LS2 has at most d0 log n distance from LB(S2).

ii. with a probability of at most 1
2xn3 , the right rough boundary, RS1 , has at most d0 log n distance

from RB(S1) and the right boundary of RS2 has at most d0 log n distance from RB(S2).

Proof: For two sequences, S1 and S2, let ℵ(Sa) be the subsequence, Sa[ia, ja], for a = 1, 2. By
Corollary 18, with a probability of at most Pl = 2cd0 logn ≤ 2

5·2xn3 (see inequality (8) in Definition 14),
there are more than (α + ε)d0 log n mutations in Sa[ia, ia + d0 log n− 1] for a = 1, 2.

With a probability of at most Pl, the left boundary position is missed during the matching. We have
similar Pr = Pl to miss the right boundary.

Assume that p1 and p2 are two positions of S1 and S2, respectively. If one of two positions is outside
the motif region and has more than d0 log n distance to the motif boundary, with a probability of at most
c−d0 logn ≤ 1

5·2xn3 (see inequality (8) in Definition 14), for them to match requires diff(Y1, Y2) ≤ β by
Lemma 19, where Ya is a subsequence Sa[pa, pa + d0 log n− 1] for a = 1, 2.

Lemma 36. For the case algorithm-type=DETERMINISTIC-SUPERQUADRATIC, we have:

i. Collision-Detection(S1, U1, S2, U2) takes t(n, ||U1||+ ||U2||) = O((||U1||+ ||U2||)2 log n) time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time.

iii. ||US′2i−1
||+ ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(|G|+ n).

iv. With a probability of at most k
2xn3 , the algorithm Recover-Motif does not run in computational

complexity (O(k(n2(log n)O(1) + h2 log n)), O(k)).
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Proof: Statement i. The parameter, ωDETERMINISTIC−SUPERQUADRATIC, is set to be β in Collision-
Detection. It follows from the time complexity of the brute force method.

Statement ii. It follows from the implementation of Point-Selection().
Statement iii. It follows from the choice of Point-Selection(.) for the sublinear time algorithm at

Recover-Motif(.).
Statement iv. It follows from Lemma 34 and Statements i, ii and iii.

We give the proof for Theorem 6.
Proof: [Theorem 6] The computational time part of this theorem follows from Lemma 36.

By Lemma 35, we let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound, ς1(n), in the condition (i) of

Lemma 32.
By Lemma 35, we can let ς2(n) = 1

2xn3 ≤ ς0 for the probability bound, ς2(n), in the condition (ii) of
Lemma 32.

By inequality (12), the condition (iii) of Lemma 32 is satisfied.
By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.
The failure probability part of this theorem follows from Lemma 21 and Lemma 32 by using the fact

that k1, k2 and k are of the same order (see equation (18)).

6.5. Randomized Algorithms for Motif Detection

In this section, we present two randomized algorithms for motif detection. The first one is a sublinear
time algorithm that can handle 1

(logn)2+µ mutation, and the second one is a super-linear time algorithm
that can handle Ω(1) mutation. They also share some common functions.

Lemma 37. Let c1 be a constant in (0, 1). Assume m and n are two non-negative integers with m ≤ n.
Then, for every integer, m1, with 0 ≤ m1 ≤

δc1m

lnn
,
(
n
m1

)
cm1 ≤ e(m ln c1)/2, where constant δc1 = − ln c1

2
as

defined in Definition 8.

Proof: We have the inequalities: (
n

m1

)
cm1 ≤ nm1cm1 (23)

= em1 lnncm1 (24)

≤ e
δc1m

lnn
lnncm1 (25)

= eδc1mem ln c1 (26)

= e(m ln c1)/2 (27)

Lemma 38. Let S = U ∪ V be a set of n elements with U ∩ V = ∅. Assume that x1, · · · , xm are
m random elements in S. Then, with a probability of at most

(||U ||
m1

)
( ||V ||+m1

n
)m, the list, x1, · · · , xm,

contains at most m1 different elements from U (in other words, ||{ x1, · · · , xm} ∩ U || ≤ m1).
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Proof: For a subset, S ′ ⊆ S, with ||S ′|| = m0 for some integer, m0 ≥ 0, the probability is at most
(m0

n
)m that all elements, x1, · · · , xm, are in S ′. For every subset, X ⊆ S, with ||X|| ≤ m1, there exists

another subset, S ′ ⊆ S, such that ||S ′|| = m1 and X ⊆ S ′. We have that Pr[||{ x1, · · · , xm} ∩ U || ≤
m1] ≤ Pr[{x1, · · · , xm} ∩ U ⊆ U ′ for some U ′ ⊆ U with ||U ′|| = m1]. There are

(||U ||
m1

)
subsets of U

with a size of m1. We have the probability of at most
(||U ||
m1

)
( ||V ||+m1

n
)m that x1, · · · , xm contains at most

m1 different elements in U .

Lemma 39. Let β be a constant in (0, 1) and c1 = 1 − β
2
. Let m1 ≤

δc1m

lnβn
and m ≤ n1−ε for some

fixed ε > 0. Let S1 and S2 be two sets of n elements with ||S1 ∩ S2|| ≥ βn and C be a set of the
size ||C|| ≤ γm1 for some constant γ ∈ (0, 1). Then, for all large n, with a probability of at most
2e−

(1−γ)m1m
n , we have (A − C) ∩ (B − C) = ∅, where A = {x1, · · · , xm} and B = {y1, · · · , ym} are

two sets, which may have multiplicities, of m random elements from S1 and S2, respectively.

Proof: In the entire proof of this lemma, we always assume that n is sufficiently large. We are going
to give an upper bound about the probability that B does not contain any element in A − −C. For
each element, yi ∈ B, with a probability of at most 1 − ||A||−||C||

n
, yi is not in A − −C. Therefore, the

probability is at most (1− ||A||−||C||
n

)m that B does not contain any element in A−−C.
By Lemma 38, the probability is at most

(
βn
m1

)
( (1−β)n+m1

n
)m that ||A ∩ (S1 ∩ S2)|| ≤ m1. We have

the inequalities:

Pr[(A− C) ∩ (B − C) = ∅] (28)

= Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| ≥ m1] · Pr[||A ∩ (S1 ∩ S2)|| ≥ m1] + (29)

Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| < m1] · Pr[|A ∩ (S1 ∩ S2)| < m1] (30)

≤ Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| ≥ m1] + Pr[||A ∩ (S1 ∩ S2)|| < m1] (31)

≤ (1− ||A|| − ||C||
n

)m +

(
βn

m1

)
(
(1− β)n+m1

n
)m (32)

≤ (1− ||(A ∩ S1 ∩ S2)|| − ||C||
n

)m +

(
βn

m1

)
(
(1− β)n+m1

n
)m (33)

≤ (1− (1− γ)m1

n
)m +

(
βn

m1

)
(
(1− β)n+m1

n
)m (34)

≤ e−
(1−γ)m1m

n +

(
βn

m1

)
(
(1− β)n+m1

n
)m (35)

≤ e−
(1−γ)m1m

n +

(
βn

m1

)
(1− β

2
)m (36)

≤ e−
(1−γ)m1m

n + e(m ln c1)/2 (37)

≤ 2e−
(1−γ)m1m

n (38)

The inequality, (1− (1−γ)m1

n
)m ≤ e−

(1−γ)m1m
n , which is used from Equation (34) to Equation (35), follows

from the fact that 1− x ≤ e−x. The transition from (35) to (36) follows from the fact that m1

n
≤ β

2
, since

m1 = o(n), according to the conditions of the lemma.
It is easy to see that 2(1−γ)m1m

−m ln c1
= 2(1−γ)m1

− ln c1
≤ n for all large n. Thus, (1−γ)m1m

n
≥ (m ln c1)/2 (note

that ln c1 < 0 as c1 ∈ (0, 1)). Thus, by Lemma 37,
(
βn
m1

)
(1− β

2
)m ≤ em ln c1/2 ≤ e−

(1−γ)m1m
n . This is why
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we have the transition from Equation (37) to Equation (38). Therefore, Pr[(A− C) ∩ (B − C) = ∅] ≤
2e−

(1−γ)m1m
n .

6.5.1. . Randomized Algorithm for an Ω(1) Mutation Rate

In this section, we give an algorithm for the case with an Ω(1) mutation rate. The performance of the
algorithm is stated in Theorem 4.

Lemma 40. Let algorithm-type=RANDOMIZED-SUBQUADRATIC. Assume that d0 log n ≤ L ≤
|G|/2 and c0 log n ≤ |G| < (logn)3+τ

100
. Let I1 be a set of intervals of the positions of S1 that satisfy

[LB(S1) − L,LB(S1) + L] ∪ [RB(S1) − L,RB(S1) + L] ⊆ ∪I′∈I1I ′. Let I2 be a set of intervals of
the positions of S2 that satisfy [LB(S2) − L,LB(S2) + L] ∪ [RB(S2) − L,RB(S2) + L] ⊆ ∪I′∈I2I ′.
Let U1 = Point-Selection(S1, L, I1), U2 = Point-Selection(S2, L, I2) and (LS1 , RS1 , LS2 , RS2) =

Collision-Detection(S1, U1, S2, , U2). Then:

i. with a probability of at most 1
2xn3 , the left rough boundary, LS1 , has at most d0 log n distance from

LB(S1) and the left rough boundary, LS2 , has at most d0 log n distance from LB(S2);

ii. with a probability of at most 1
2xn3 , the right rough boundary, RS1 , has at most d0 log n distance

from RB(S1) and the right boundary of RS2 has at most d0 log n distance from RB(S2).

Proof: The proof is the same as Lemma 35 for the algorithm with algorithm-type=DETERMINISTIC-
SUPERQUADRATIC. For two sequences, S1 and S2, let ℵ(Sa) be the subsequence Sa[ia, ja] for a = 1, 2.
By Corollary 18, with a probability of at most Pl = 2cd0 logn ≤ 2

5·2xn3 (see inequality (8) in Definition 14),
there are more than (α + ε)d0 log n mutations in Sa[ia, ia + d0 log n− 1] for a = 1, 2.

With a probability of at most Pl, the left boundary position is missed during the matching. We have
similar Pr = Pl to miss the right boundary.

Assume that p1 and p2 are two positions of S1 and S2, respectively. If one of the two positions is
outside the motif region and has more than d0 log n distance to the motif boundary, with a probability of at
most c−d0 logn ≤ 1

5·2xn3 (see inequality (8) in Definition 14), for them to match requires diff(Y1, Y2) ≤ β

by Lemma 19, where Ya is a subsequence Sa[pa, pa + d0 log n− 1] for a = 1, 2.

Lemma 41. Let algorithm-type=RANDOMIZED-SUBQUADRATIC. Assume that d0 log n ≤ L ≤
|G|/2 and |G| ≥ (logn)3+τ

100
. Let I1 be a set of intervals of the positions of S1 that satisfy [LB(S1) −

L,LB(S1) + L] ∪ [RB(S1) − L,RB(S1) + L] ⊆ ∪I′∈I1I ′. Let I2 be a set of intervals of the
positions of S2 that satisfy [LB(S2) − L,LB(S2) + L] ∪ [RB(S2) − L,RB(S2) + L] ⊆ ∪I′∈I2I ′.
Let U1 = Point-Selection(S1, L, I1), U2 = Point-Selection(S2, L, I2]) and (LS1 , RS1 , LS2 , RS2) =

Collision-Detection(S1, U1, S2, U2). Then:

i. with a probability of at most 1
2xn3 , the left rough boundary, LS1 , has at most a 2L distance from

LB(S1) and the left rough boundary LS2 has at most a 2L distance from LB(S2);

ii. with a probability of at most 1
2xn3 , the right rough boundary, RS1 , has at most a 2L distance from

RB(S1) and the right boundary of RS2 has at most a 2L distance from RB(S2).
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Proof: We prove the following two statements which imply the lemma.

i. With a probability of at most 1
2xn3 , there are no intervals, Ai from S1 and Bj from S2, such that:

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) the left boundary of S1 has at most a 2L

distance from Ai; (3) the left boundary of S2 has at most a 2L distance from Bj; and (4) there is a
collision between the sampled positions in Ai and Bj .

ii. With a probability pf at most 1
2xn3 , there are no intervals, Ai from S1 and Bj from S2, such that:

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) the right boundary of S1 has at most a 2L

distance from Ai; (3) the right boundary of S2 has at most a 2L distance from Bj; and (4) there is
a collision between the sampled positions in Ai and Bj .

We only prove statement i. The proof for statement ii is similar.
Select Ai from S1 and Bj from S2 to be the first pair of intervals with ||Ai(S1,ℵ(S1)) ∩

Bj(S2,ℵ(S2))|| ≥ L
2

. It is easy to see that such a pair exists, and both have a distance from the left
boundary with a distance of at most 2L. This is because when a leftmost interval of a length pf L is fully
inside the motif region of the first sequence, we can always find the second interval from the second
sequence with an intersection of a length of at least L

2
.

Replace m by M(L), m1 by M1(L) (see Definition 10) and n by L to apply Lemma 39. We do not
consider any damaged position in this algorithm; therefore, let C be empty.

With a probability of at most o( 1
2xn3 ), there is a point in (Ai(S1,ℵ(S1))−C)∩ (Bj(S2,ℵ(S2))−C).

The subsequences of a length of d0 log n starting at the point from S1 and S2 fail to have the difference
bounded by β with a probability of at most o( 1

2xn3 ) by Lemma 20. With a probability of at most o( 1
2xn3 ),

we do not have that the rough boundaries are detected with a distance of at most 2L to exact motif
boundaries.

Lemma 42. For the case algorithm-type=RANDOMIZED-SUBQUADRATIC, we have:

i. Collision-Detection(S1, U1, S2, U2) takes t(n, ||U1||+ ||U2||) = O((||U1||+ ||U2||)2 log n) time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O((n
L

)M(L)) positions in g(n, L) = O(s(n, L))

time if L ≥ (logn)3+τ

100
.

iii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time if
L < (logn)3+τ

100
.

iv. ||US′2i−1
|| + ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(M(|G|) +

n
|G|M(|G|)).

v. With a probability of at most k
2xn3 , the algorithm Recover-Motif does not stop in

(O(k( n
2

|G|(log n)O(1) + h2 log n)), O(k)) time.

Proof: Statement i. The parameter, ωRANDOMIZED−SUBLINEAR, is set to be β in Collision-Detection.
It follows from the time complexity of the brute force method.

Statements ii and iii. They follow from the implementation of Point-Selection().
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Statement iv. It follows from the choice of Point-Selection(.) for the sublinear time algorithm at
Recover-Motif(.).

Statement iv. It follows from Lemma 40, Lemma 34 and Statements i, ii and iii.

We give the proof for Theorem 6.
Proof: [Theorem 4] The computational time part of this theorem follows from Lemma 42.

By Lemma 40, we can let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound, ς1(n), in the condition (i) of

Lemma 32.
By Lemma 41, we can let ς2(n) = 1

2xn3 ≤ ς0 for the probability bound, ς2(n), in the condition (ii) of
Lemma 32.

By inequality (12), the condition (iii) of Lemma 32 is satisfied.
By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.
The failure probability part of this theorem follows from Lemma 21 and Lemma 32 by using the fact

that k1, k2 and k are of the same order (see Equation (18)).

6.5.2. . Sublinear Time Algorithm for a 1
(logn)2+µ Mutation Rate

In this section, we give an algorithm for the case with at most α = 1
(logn)2+µ mutation rate. The

performance of the algorithm is stated in Theorem 2.

Definition 43. A position, p, in the motif region, ℵ(S), of an input sequence, S, is damaged if there
exists at least one mutation in S[p, p+ d0 log n− 1], where d0 is defined in item (xvii) in Definition 8.

Lemma 44. Assume that αL = (log n)1+Ω(1). With a probability of at most e−(logn)1+Ω(1)
, there are

more than M1(L)

(logn)Ω(1) positions that are from the M(L) (see Definition 10 for M(.) and M1(.)) sampled
positions that are damaged in an interval of a length pf L.

Proof: By Theorem 16, with a probability of at most P1 = 2−αL (let δ = 2), there are more than 3αL

mutations in an interval of a length of L. Therefore, with a probability of at most 2−αL = e−(logn)1+Ω(1) ,
there are more than 3αL log n positions that are damaged. Therefore, each random position in an interval
of a length of L has at most a probability of 3αL logn

L
= 3α log n to be damaged.

Since α = ( 1
(logn)2+Ω(1) ) and M(L) positions are sampled, by Theorem 16, with a probability of at

most P2 = 2−(3α logn)M(L) = e−(logn)1+Ω(1) (let δ = 2), the number of damaged positions sampled in an
interval of a length of L is more than ((1 + δ)3α log n)M = (9α log n)M(L) = M1(L)

(logn)Ω(1) . Thus, with

a total probability of at most P1 + P2 = e−(logn)1+Ω(1) , there are more than M1(L)

(logn)Ω(1) damaged positions

that are from the M(L) sampled positions in an interval of a length of L.

Definition 45. Let A be a set of positions in an input sequence, S, with ℵ(S) = S[i, j]. Let
A(S,ℵ(S)) = {x − i + 1|x ∈ A ∩ [i, j]}. In other words, A(S,ℵ(S)) contains all the positions of
A in ℵ(S).
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Lemma 46. Let algorithm-type=RANDOMIZED-SUBLINEAR. Assume that |G| < (logn)3+τ

100
and L is

an integer with d0 log n ≤ L ≤ |G|/2. Let I1 be a set of intervals of the positions of S1 that satisfy
[LB(S1) − L,LB(S1) + L] ∪ [RB(S1) − L,RB(S1) + L] ⊆ ∪I′∈I1I ′. Let I2 be a set of intervals of
the positions of S2 that satisfy [LB(S2) − L,LB(S2) + L] ∪ [RB(S2) − L,RB(S2) + L] ⊆ ∪I′∈I2I ′.
Let U1 = Point-Selection(S1, L, I1), U2 = Point-Selection(S2, L, I2]) and (LS1 , RS1 , LS2 , RS2) =

Collision-Detection(S1, U1, S2, U2). Then:

i. with a probability of at most 1
2xn3 , the left rough boundary, LS1 , has at most a |G|/4 distance from

LB(S1) and the left rough boundary, LS2 , has at most a |G|/4 distance from LB(S2).

ii. with a probability of at most 1
2xn3 , the right rough boundary, RS1 , has at most a |G|/4 distance

from RB(S1) and the right boundary of RS2 has at most a |G|/4 distance from RB(S2).

Proof: For two sequences, S1 and S2, it is easy to see that there is a common position in both motif
regions of the two sequences, such that there is no mutation in the next d0 log n characters with a high
probability. This is because that mutation probability is small.

By Theorem 16, with a probability of at most Pl = 2−α|G|/4 (let δ = 2), there are more than 3α |G|
4

mutated characters in the interval ℵ(Si)[1,
|G|
4

] for i = 1, 2. Since the mutation probability is α =

( 1
(logn)2+Ω(1) ), with a probability of at most 2−α|G|/4 = e−(logn)1+Ω(1) , there are more than 3α · |G|

4
d0 log n

positions to be damaged in ℵ(Si)[1,
|G|
4

].
Similarly, we have a probability of at most Pr = e−(logn)1+Ω(1) that there are more than ((3αd0 log n) ·

|G|
4

) = |G|
(logn)Ω(1) damaged positions in ℵ(Si)[

3|G|
4
− 1, |G|].

Now, we assume that left side has more than ((3αd0 log n) · |G|
4

) = |G|
(logn)Ω(1) damaged positions and

the right side, more than ((3αd0 log n) · |G|
4

) = |G|
(logn)Ω(1) damaged positions in ℵ(Si)[

3|G|
4
− 1, |G|]. Since

each position in each interval of a length of L is selected in Point-Selection(S1, S2, L), it is easy to verify
the conclusions of this lemma.

Lemma 47. Let algorithm-type=RANDOMIZED-SUBLINEAR. Assume that |G| ≥ (logn)3+τ

100
and

d0 log n ≤ L ≤ |G|/2. Let I1 be a set of intervals of the positions of S1 that satisfy [LB(S1)−L,LB(S1)+

L]∪ [RB(S1)−L,RB(S1) +L] ⊆ ∪I′∈I1I ′. Let I2 be a set of intervals of the positions of S2 that satisfy
[LB(S2)−L,LB(S2) +L]∪ [RB(S2)−L,RB(S2) +L] ⊆ ∪I′∈I2I ′. Let U1 =Point-Selection(S1, L, I1),
U2 =Point-Selection(S2, L, I2]) and (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, U2). Then:

i. with a probability of at most 1
2xn3 , the left rough boundary, LS1 , has at most a 2L distance from

LB(S1) and the left rough boundary, LS2 , has at most a 2L distance from LB(S2).

ii. With a probability of at most 1
2xn3 , the right rough boundary, RS1 , has at most a 2L distance from

RB(S1) and the right boundary of RS2 has at most a 2L distance from RB(S2).

Proof: We prove the following two statements, which imply the lemma.

i. With a probability of at most 1
2xn3 , there are no intervals, Ai from S1 and Bj from S2, such that:

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) the left boundary of S1 has at most a 2L

distance from Ai; (3) the left boundary of S2 has at most a 2L distance from Bj; and (4) there is a
collision between the sampled positions in Ai and Bj .
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ii. with a probability of at most 1
2xn3 , there are no intervals, Ai from S1 and Bj from S2, such that:

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) the right boundary of S1 has at most a 2L

distance from Ai; (3) the right boundary of S2 has at most a 2L distance from Bj; and (4) there is
a collision between the sampled positions in Ai and Bj .

We only prove statement i. The proof for statement ii is similar to that for statement i. Assume that L
satisfies the condition of this lemma. Select Ai from S1 and Bj from S2 to be the first pair of intervals
of a size of L with ||Ai(S1,ℵ(S1)) ∩Bj(S2,ℵ(S2))|| ≥ L

2
. This is because when a leftmost interval of a

length of L is fully inside the motif region of the first sequence, we can always find the second interval
from the second sequence with an intersection of a length of at least L

2
.

Replace m by M(L), m1 by M1(L) (see Definition 10) and n by L to apply Lemma 39. We also let C
be the set of damaged positions in ℵ(S1) and ℵ(S2) caused by the mutated positions. With a probability
of at most o( 1

2xn3 ), C has a size of o(M1(L)) by Lemma 44. With a probability of at most o( 1
2xn3 ), there

is point in (Ai(S1,ℵ(S1)) − C) ∩ (Bj(S2,ℵ(S2)) − C). The existence of such a point makes LS1 and
LS2 have a distance of at most 2L to LB(S1) and LB(S2), respectively.

Lemma 48. For the case algorithm-type=RANDOMIZED-SUBLINEAR, we have:

i. Collision-Detection(S1, U1, S2, U2) takes t(n, ||U1||+ ||U2||) = O((||U1||+ ||U2||) log n) time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O((n
L

)M(L)) positions in g(n, L) = O(s(n, L))

time if L ≥ (logn)3+τ

100
.

iii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time if
L < (logn)3+τ

100
.

iv. ||US′2i−1
|| + ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(M(|G|) +

n
|G|M(|G|)).

v. With a probability of at most k
2xn3 , the algorithm Recover-Motif does not stop in

(O(k( n√
h
(log n)

5
2 + h2 log n)), O(k)) time.

Proof: Statement i. The parameter, ωRANDOMIZED−SUBLINEAR, is set to be zero in Collision-Detection.
It follows from the time complexity of bucket sorting, which is described in standard algorithm
textbooks.

Statements ii and iii. They follow from the implementation of Point-Selection().
Statement iv. It follows from the choice of Point-Selection(.) for the sublinear time algorithm at

Recover-Motif(.).
Statement v. It follows from Lemma 46, Lemma 47 and Lemma 34 and Statements i, ii iii and iv.

We give the proof for Theorem 2.
Proof: [Theorem 2] The computational time part of this theorem follows from Lemma 48.

By Lemma 46, we can let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound, ς1(n), in the condition (i) of

Lemma 32.
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By Lemma 47, we can let ς2(n) = 1
2xn3 ≤ ς0 for the probability bound, ς1(n), in the condition (ii) of

Lemma 32.
By inequality (12), the condition (iii) of Lemma 32 is satisfied.
By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.
The failure probability part of this theorem follows from Lemma 21 and Lemma 32 by using the fact

that k1, k2 and k are of the same order (see Equation (18)).

6.6. Experiments on Simulated Datasets

Aiming at solving the motif discovery problem, we implemented our algorithm in Java. Our tests were
all done on a laptop with an Intel Dual Core 1.5 G CPU and 3.0 G Memory. In the first experiment, we
tested our algorithm on several simulated datasets, which are all generated from our probability model
with a small mutation rate. Each input set contains 20 or 15 sequences, which are of a length of 600 or
500 base pairs. Additionally, each bp of all the simulated gene sequences was generated independently
with the same occurrence probability. A motif with a fixed length was randomly planted into each input
sequence. The minimum Hamming distances between the results and consensus are recorded.

6.7. Experiments

There are many other tools for detecting and analyzing the motifs, like the EMmethod [23],
MEME [24], Gibbs [25], Compo [26], MochiView [27], PhyME [28], HeliCis [29] and WebMotif [30],
among others. Each of them has their advantages and disadvantages.

Table 1 shows the results on simulated datasets. From the table, we could find that the results of
our algorithm for finding the motif on simulated datasets are satisfied. Our algorithm could find all the
motifs from each sequence and get the consensus with an accuracy rate of 100%. If the dataset has a
high mutation rate, we could increase the number of repetitions, so that the result on the datasets will be
more accurate. We also recorded the total time cost for each test, which mainly depends on the number
of test repetitions. In the experimental tables, the parameter, N , represents the number of sequences,
parameter M represents the length of motifs, parameter M is the maximum length of sequences and
R is the number of iterations. GCR1 is a famous DNA binding protein, whose ability to bind DNA
is dependent on the CTTCC sequence motif [31]. Several other popular data sets are also used in the
experiments of our motif detection and its comparisons to the other methods.

Table 1. Results on simulated data.

N M L R Accuracy Rate Time cost(s)
Set 1 20 600 15 60 100 98
Set 2 15 600 15 10 100 18
Set 3 20 600 12 15 100 22
Set 4 20 500 15 40 100 79
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In the second experiment, we tested our algorithm on a real sequence set, which was obtained from
SCPD. SCPD contains a large number of gene data and transcription factors of yeast. Sequences in the
same set are all regulated by a common motif. We chose 1,000 bp as the length of the input sequences.
In order to show the advantages of our algorithm, we also compared the result of our algorithm with
the results of several other existing motif finding methods on the same dataset, such as Gibbs, MEME,
Info-Gibbs and Consensus. Table 2 shows the details of the data set we used in the experiment.

Table 2. Number of Sequences and Motif Length.

Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF
N 6 9 6 15 5
L 10 10 10 15 10

Table 3 shows the results of the five algorithms on biological data sets. Table 4 and Figure 2 give the
average mismatch numbers of each algorithm. We choose four well-known motif-detecting softwares to
make the comparisons. From Table 3 and 4, we see that the average mismatch numbers of our algorithm
on data sets GCN4 and GCR1 are significantly lower than other four well-known methods. On the data
sets Bas1,Rap1Ebf1 and HSE-HTSF, our algorithms also shows satisfied performance compared to other
methods.

In addition, our algorithm also shows its high speed in computations compared to other four motif
finding methods. Because the starting pattern of algorithms are represented by a string, so our algorithm
can avoid some extra time consuming computations unlike Gibbs sampling and EM methods, such
as computations of likelihoods. According to this feature, we use the consensus string of the voting
operation obtained from the last iteration as a new starting pattern in program, and continue doing voting
operations repeatedly until there is no further improvement. Experimental results show that if we set
the number of iterations to be a large integer, the programs could give more accurate results within a
reasonable time.

Table 3. Total number of mismatch positions.

Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF
Our Algorithm 10 8 4 45 5

Gibbs 8 51 5 202 7
MEME 8 15 10 32 3

InfoGibbs 9 21 5 46 9
Consensus 8 9 5 42 7
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Table 4. Average mismatch numbers per sequence.

Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF
Our Algorithm 1.67 0.89 0.67 3 1

Gibbs 1.33 5.6 0.83 13.46 1.4
MEME 1.33 1.67 1.67 2.13 0.6

InfoGibbs 1.5 2.33 0.83 3.06 1.8
Consensus 1.33 1 0.83 2.8 1.4

Figure 2. Average mismatch numbers per sequence.

6.8. Conclusions

We develop algorithms under the probabilistic model. One of them finds the implanted motif with a
high probability if the alphabet size is at least four, the motif length is in [(log n)7+µ, n

(logn)1+µ ] and each
character in the motif region has a probability of at most 1

(logn)2+µ of mutation. The motif region can be
detected, and each motif character can be recovered in sublinear time. A sub-quadratic randomized
algorithm is developed to recover the motif with an Ω(1) mutation rate. A quadratic deterministic
algorithm is developed to recover the motif with an Ω(1) mutation rate. It is an interesting problem
if there is an algorithm to handle the case for an alphabet of a size of three. A more interesting problem
is to extend the algorithm to handle larger mutation probability.

6.9. Future Works

Compared with other motif finding methods, our algorithm shows its great advantages. However,
there are still some improvements that could be done on this algorithm. For example, though a sequence
set has the consensus, the motif in each sequence may have high mutation rates; in addition, the length of
each motif could also be different. Therefore, these two factors increase the difficulty for finding motifs,
and currently, there is still no effective algorithm that could solve these problems. In the future, we plan
to improve the efficiency of our algorithm by combining other motif finding methods, such as MEME; a
combination may be made to make our algorithm have better performance in finding motifs from highly
mutated sequences.
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