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Getting on and moving up the property ladder: Real hedging

in the U.S. housing market before and after the crisis∗

Damian S. Damianov† Diego Escobari‡

February 11, 2019

Abstract

Real hedging is the practice of getting onto the property ladder in order to trade

up to a larger home in the future. We define the value of the real hedge of home own-

ership as the difference between the risk premiums of renting and owning and explore

how this value depends on local housing price dynamics and household characteristics.

Controlling for the potential endogeneity of housing bubble bursts across different U.S

metropolitan areas, we find a significantly higher correlation in the appreciation rates

across the Standard & Poor’s Case-Shiller tiered house price indices in the period after

the housing crisis. We conclude that real hedging has become more attractive in the

period after the crisis, particularly in markets exhibiting momentum and high volatility

in returns.
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1 Introduction

Buying a home is among the most significant and expensive transactions in the lifetime of

a family. When viewed as a purely investment asset, home ownership appears quite risky.

The highly leveraged position that a household typically takes in the form of mortgage debt

amplifies the effect of house price volatility on its balance sheet. Housing, however, also

constitutes a major expense for households that are renting. Englund et al. (2002) report

that in Western Europe and North America the average household spends 25 to 35 percent

of its income on housing services, a share that is even larger for young families.1 When

viewed as durable consumption goods, homes guarantee a continuous stream of housing

services to prospective buyers in exchange for a known up-front price. Sinai and Souleles

(2005) argue that all households are born “short” on housing services since they have

to live somewhere, and homes can be viewed as long-lived assets that provide stochastic

dividends equal to future rents. Home ownership, thus, serves as a hedge against rent risk

because an increase or decrease in rents would be offset by the commensurate appreciation

or depreciation of home values.

Home ownership also enables households to move up the property ladder over their

life cycle. A young family owning a condominium now could be in a better position to

transition to ownership of a single family home compared to a family that is currently

renting. In a market with rising home values, the equity accumulated in the condominium

allows the young couple to finance the down payment on a single family home. Following

Han (2008), in this paper we will refer to the strategy of getting on and moving up the

property ladder as “real hedging.” When the correlation between appreciation rates of

“starter” and “trade-up” homes increases, the economic value of the real hedge increases

as well. The real hedge serves the same purpose as a financial hedge where a company

buys an asset today that is positively correlated with a commodity required in the future

in order to reduce the risk associated with the commodity’s future price volatility.

In this paper we examine the economic value of real hedging in U.S. local real estate

markets in the periods before and after the housing crisis. We present a theoretical frame-

1According to an estimate by Zillow, Inc. the U.S. share of income spent on rent for the fourth quarter

of 2006 stands at 29.2% while the historical share for the time period 1985-2000 stands at 25.8%.
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work in which the value of real hedging for a household depends on the variance of its

lifetime housing costs as it buys a starter home and subsequently moves up the property

ladder. The model allows us to explore how the value of the real hedge depends on key

characteristics of housing market dynamics including volatility, momentum, and correla-

tion between the appreciation rates of housing market segments in the same metropolitan

area.2

As a proxy for the property ladder in U.S. metropolitan residential housing markets,

we use the Standard & Poor’s Case-Shiller seasonally adjusted tiered price indices. These

monthly price indices are tracking the three segments of local housing markets – low, middle,

and high – and are available since the early 1990s for seventeen major metropolitan areas.

As the data coverage includes sufficiently long time periods prior to and after the subprime

crisis and the Great Recession, it allows us to examine how the dynamic interaction between

each pair of price tiers in these markets changes after the crisis.

To get a sense of how the effectiveness of the real hedge depends on key parameters, we

develop a theoretical framework that captures three widely documented features of hous-

ing price dynamics. First, the appreciation rates of homes are driven by momentum. That

is, the returns of each price tier are serially correlated. Starting with Case and Shiller’s

(1989, 1990) seminal articles on the predictability of house prices, a number of studies have

reported positive and significant autocorrelation coefficients in various dynamic specifica-

tions of real estate returns (see e.g. Abraham and Hendershott, 1993, 1996; Capozza and

Seguin, 1996; Capozza et al., 2004).3 Following this literature, we assume that housing

returns are governed by an autoregressive process which can vary by price tier. Further,

we allow for different price tiers to have different return volatility. This feature is pertinent

to the boom and bust cycle of the past decade: for the majority of metropolitan areas, low

2While some families relocate to another residential market, in our empirical analysis we focus on moves

within the same local residential market as such moves are most common. Based on data from the Panel

Study of Income Dynamics, Han (2008) reports that 62% of first time buyers traded up by buying a more

expensive house in real terms, and from those 71.3% moved within the same metropolitan area. An analysis

of moves across different metropolitan areas and correlation estimates across geographically different markets

are presented in Sinai and Souleles (2013).
3Building on these results, more recent studies examined potential gains of momentum investment strate-

gies in real estate assets (Beracha and Skiba, 2011; Guren, 2018).

3



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

tier homes appreciated the most in the run up and depreciated the most during the bust of

the market (Damianov and Escobari, 2016).4 Finally, we allow for the returns across tiers

in the same metropolitan area to be correlated.5 For a home buyer exhibiting constant

relative risk aversion over non-housing consumption, the insurance risk premium associ-

ated with the real hedging strategy – which we refer to as the “value of the real hedge”

– is proportional to the difference in the variances associated with home ownership and

renting. The model allows us to analyze how changes in these parameters affects the value

of real hedges. As expected, an increase in the correlation between price tiers increases

the value of the real hedge. Further, we demonstrate that an increase in the correlation

between the tiers improves the value of the real hedge more in markets exhibiting a higher

momentum of returns and in high home value markets. Finally, we show that an increase

in the correlation coefficient increases the value of the real hedge more in markets with a

smaller difference between the tiered price indices.

We use this theoretical framework to derive the value of real hedging for major U.S.

metropolitan areas. In particular, we estimate the time-varying conditional correlations

across price tiers, their volatilities, as well the level of persistence in their returns by using

the multivariate DCC-GARCH empirical specification proposed by Engle (2002). In line

with previous studies, we find that the time series of the tiered indices exhibit persistence.

That is, high past appreciation rates are likely to lead to further appreciation, and house

price declines are likely to be followed by further declines. These autoregressive processes

are best described by models of up to five lags, as selected by the Akaike information

criterion.6 The DCC specification allows us to obtain dynamic trajectories of the pair-

wise correlations in returns between the tiers and study their behavior over periods of

particular interest. We estimate the effect of the bubble bursts in different metropolitan

4Previous boom and bust cycles were characterized by greater volatility of high-priced homes. Poterba

(1991), for example, analyzes Atlanta, Chicago, Dallas, and Oakland, and reports that, over the time period

1970-1982, houses in the top quartile appreciated faster than the ones in the bottom quartile.
5Using data from the National Association of Realtors Existing Home Sale Series, Han (2010) reports a

correlation between the prices of condominiums and single family homes in excess of 0.9.
6Markets with a high level of momentum are typically expensive markets such as San Diego, San Fran-

cisco, Los Angeles and New York. Markets exhibiting moderate momentum levels include Phoenix, Miami

and Washington DC, while markets with a positive yet lower momentum in returns include Denver and

Portland. Cleveland is the only market that does not exhibit autocorrelation in returns.
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areas by analyzing the correlation coefficients using a dynamic panel system Generalized

Method of Moments (GMM) estimator. The pooled, the fixed effect, and the dynamic

panel estimates show a statistically and economically significant increase in the correlation

between the price tiers after the bubble burst which suggests a substantial improvement in

the economic value of real hedging in the post-crisis period.

2 Related literature

This paper relates to the growing theoretical and empirical literature on the hedging value

of home ownership. The role of home ownership as insurance against fluctuations in future

housing cost has been explored in several prior theoretical papers (see e.g. Han, 2008,

Ortalo-Magné and Rady, 2002, Sinai and Souleles, 2005, and Ortalo-Magné and Pratt,

2016). The present framework is most closely related to the model by Sinai and Souleles

(2005) in that it considers the current tenure decision of a household which intends to

relocate in the future. Sinai and Souleles (2005) assume that rents – interpreted as dividends

to home ownership – exhibit persistence: they follow an AR(1) process and house prices

adjust in such a way as to leave households indifferent between renting and owning. One

consequence of these assumptions is that equilibrium house prices, corresponding to the

sum of risk-adjusted discounted expected future rents, can be expressed as linear functions

of contemporaneous rents and, hence, also follow an AR(1) process. We, in contrast, in

line with the literature on market momentum, assume that the house price appreciation

rates, rather than the house prices, follow an autoregressive process, whereby we allow for

a general AR(q) process. This more general formulation of return dynamics allows us to

explore how momentum shapes the volatility of housing market returns of different housing

market segments. In addition, it allows us to examine how our results relate to the extant

literature on momentum in housing returns.

The early literature on momentum views the positive autocorrelation in housing returns

as evidence that the market for single-family homes is not informationally efficient. Using

data for Atlanta, Chicago, Dallas and San Francisco over the 1970-1986 time period, Case

and Shiller (1989,1990) find that price changes in one year are likely to continue in the same

direction for one additional year. In the current study, we use monthly data on seventeen
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metropolitan areas including Atlanta, Chicago and San Francisco. For these three cities

we find that the market momentum implied by the autocorrelation in monthly returns

amplifies return volatility by a factor between one than two.

The magnitude and the causes for momentum in housing market returns have received

much attention in the literature. Using quarterly data from Hong Kong, Fu and Ng (2001)

finds that momentum is due to slow response of house prices to new information. More

recently, using data from San Francisco, Los Angeles, and San Diego over the 2008-2013

time period, Guren (2018) shows that momentum can be explained by the strategic behavior

of sellers who find it optimal to set asking prices close to the existing average market

price. Chauvet et al. (2016) estimate autoregressive models using monthly returns over

the same time period, yet include a larger number of metropolitan areas. They find that

the autoregressive coefficients for the first two lags are positive while for the third lag is

negative. We report here similar results which are robust both to the geographical area and

the house price tier considered. The recent literature on market momentum has also taken

on a variety of other approaches. Following the study by Jegadeesh and Titman (1993) on

momentum in stock market returns, Beracha and Skiba (2011) construct long-short zero

cost investment portfolios based on lagged residential real estate returns. They find that the

strategy of buying winners and selling losers indeed generates positive returns. Piazzesi

and Schneider (2009) use data from the Michigan Survey of Consumers to explore how

households’ beliefs about future house price appreciation are formed during the housing

market boom of the early 2000s.

The present paper also relates to the literature exploring whether households can insure

themselves through home ownership. Han (2010) differentiates between financial risk effect

on demand associated with price volatility and hedging effect on demand associated with

correlation between current and desired future houses. She finds evidence for self-insurance

behavior: timing and size of home purchases are related to the strength of households’

hedging incentives, whereby hedging incentives are associated with the geographical mo-

bility of the household and its tendency to trade up. Amior and Halket (2014) report that

home ownership rates and loan-to-value ratios at the city level are negatively correlated

with house price volatility, while Sinai and Souleles (2005) show that price-to-rent ratios

and the probability of home ownership are positively related to the volatility of rents. In a
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more recent related empirical work, Sinai and Souleles (2013) find that, when households

move across different metropolitan areas, they tend to move between highly correlated

markets. This leads them to conclude that the “moving-hedge” value of owning would

be higher than the one predicted by the average level of correlation between metropolitan

areas.

In this paper, in contrast, we consider the value of real hedging for households that

have the intention to move to a different tier in the same metropolitan area – a scenario

corresponding to the behavior of the majority of first time buyers (Han, 2008). Using a

dynamic specification, we find a significant increase in the correlation across tiers, which

implies a higher economic value of real hedging for the period after the mortgage crisis.

3 Homeownership as a real hedge

We consider a local housing market in which the appreciation rates of different house

price tiers are governed by a general AR(q) process where q denotes the number of lags

in the model. Our theoretical framework allows for persistence in the appreciation rates,

contemporaneous correlation across tiers, and different volatility of the monthly returns of

different housing market segments. In the following sections we estimate the parameters of

this model and use them to calculate the value of the real hedging strategy. That is, we place

a household with specific preferences in a given local housing market and derive the hedging

value of home ownership as a function of model estimates and household preferences.

House price dynamics. For ease of exposition, let us denote the price of the (low)

tier i in month t by P it and the price of the (middle) tier j in month t by P jt . Denoting

their logarithms by pit ≡ log(P it ) and pjt ≡ log(P jt ), we express the monthly house price

appreciation rates as rit = pit − pit−1 and rjt = pjt − pjt−1. Housing returns are assumed to

follow a general AR(q) process given by

rit = µi +

q∑

h=1

ϕihrt−h + εit, (1)

rjt = µj +

q∑

h=1

ϕjhrt−h + εjt , (2)
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where εit ∼ N(0, σ2
i ), ε

j
t ∼ N(0, σ2

j ) and corr(εit, ε
j
t ) = ρ. Hereby µi and µj are constant

terms and ϕih and ϕjh are the autoregressive terms in the above equations. The volatilities of

the appreciation rates of the two price tiers are denoted by σi and σj , respectively and their

contemporaneous correlation by ρ. In the following section, we estimate these parameters

for the local markets covered by the Standard & Poor’s Case-Shiller tiered house price

indices.

Real hedging volatility. A household plans to reside in a local housing market and

occupy a low tier home for a number of T years upon which to transition to a middle tier

home in the same area for another T years. We will refer to such a household as a household

with a time horizon T and will compare homeownership (real hedging) with renting in this

setting.

The household has a present value of lifetime earnings W and can invest in hypothetical

instruments pegged to the value of housing in each tier. If the current prices of the low tier

and the middle tier homes are Pi and Pj , the portfolio weights for investment in the low

tier and middle tier are ωi = Pi
W and ωj =

Pj
W , respectively. As the real hedging strategy

involves selling the low tier home and buying the middle tier home in year T, the return

volatility associated with this strategy corresponds to the volatility of a portfolio consisting

of a long position in the low tier home and a short position in the middle tier home. Hence

the variance of the cumulative return for the first T periods of the real hedging strategy is

given by

σ2
OWN (ωi, ωj , T ) = ω2

i · (σ2
i,T ) + ω2

j · (σ2
j,T )− 2 · (ωi · ωj) · ρ · (σi,T )(σj,T ). (3)

Hereby σ2
τ,T = var(

∑12T
t=1 r

τ
t ) where τ = i, j denote the variances of the cumulative returns

of investing in the low tier and the middle tier homes for the first T years. Further, as the

middle tier home is bought in year T and held up to year 2T , the volatility of final wealth

in year 2T is determined by the long position in the middle tier home. Thus the variance

of the cumulative return of the real hedging portfolio at the end of year 2T is given by

σ2
OWN (ωj , 2T ) = ω2

j · (σ2
j,2T ), (4)

where σ2
j,2T = var(

∑24T
t=1 r

j
t ).

We next explore how the variance of the cumulative return for a given period of T

8
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years depends on the autoregressive estimates of the empirical model. For notational con-

venience, in the following exposition we will suppress the price tier index τ when denoting

the cumulative return of particular price tier, i.e. we will use σ2
T instead of σ2

τ,T . Similarly,

we use ϕh instead of ϕτh and σ2 instead of σ2
τ . The variance of the cumulative return for T

years is given by

σ2
T =

12T∑

s=1

12T∑

m=1

cov(rs, rm) =

12T∑

s=1

12T∑

m=1

σs · σm · %|m−s|. (5)

Hereby σs and σm are the volatilities of the returns in months s and m, respectively and

%|m−s| is the autocorrelation between these returns. The autocorrelations satisfy the Yule-

Walker system of equations

%l = ϕ1 · %l−1 + ϕ2 · %l−2 + · · ·+ ϕq · %l−q, (6)

where l denotes the autoregressive lag. Using the property %l = %−l we obtain the first q

autocorrelation terms by solving the system of equations




1 %1 %2 . . . %q−1

%1 1 %1 . . . %q−2

...
...

...
. . .

...

%q−1 %q−2 %q−3 . . . 1







ϕ1

ϕ2

...

ϕq




=




%1

%2

...

%q



.

The terms %l for l > q are derived iteratively by equation (6) once we solved for %1, %2, . . . , %q.

The variance σ2
t for t = 1, 2, . . . , 12T is given by

σ2
t = var(ϕ1rt−1 + ·+ ϕqrt−q + εt).

It can be derived iteratively using the relationship

σ2
t =

[
ϕ1 . . . ϕq

]




σt−1σt−1 %1 · σt−1σt−2 . . . %q−1 · σt−1σt−q

%1 · σt−2σt−1 σt−2σt−2 . . . %q−2 · σt−2σt−q+1

...
...

. . .
...

%q−1 · σt−qσt−1 %q−1 · σt−q+1σt−2 . . . σt−qσt−q







ϕ1

...

ϕq


+σ2.

We note that σ2
t = 0 for t < 0 as the past realizations of returns are observed and that
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σ2
1 = V ar(εt) = σ2.7 For a general stationary AR(q) process, the Yule-Walker conditions

yield the following relationship between the error term variance and the variance of the

process:

σ2
AR(q) = M(ϕ1, . . . , ϕq) · σ2,

where

M(ϕ1, . . . , ϕq) =
1

ϕ1%1 + ϕ2%2 + · · ·+ ϕq%q
.

We refer to M(ϕ1, . . . , ϕq) as “market momentum” and calculate it for the metropolitan

areas in our empirical analysis.8 With this definition of momentum, the variance of the

cumulative return over T periods presented in equation (5) can be approximated by

σ2
T ≈M(ϕ1, . . . , ϕq) · σ2 · [12T + 2 ·

12T−1∑

t=1

(12T − t)%t]. (7)

We use this cumulative return variance in our analysis of the value of real hedging.

Value of real hedge. A complete analysis of the attractiveness of home ownership would

take into account an array of relevant issues which are assumed away in the current model.

These include transaction costs, tax implications, depreciation rates, leverage and down

payment requirements, labor income, inflation, interest rate risk, etc. We abstract from

these features here for the sake of tractability as our main focus is on the potential hedging

benefits of home ownership. Yet, these factors are important; they operate alongside the

7For an AR(1) process the solution to the model is given in a closed form. The Yule-Walker conditions

yield for the autocorrelation %l = ϕl1. The variance of the return in period t is given by

σ2
t = σ2

t∑

s=1

ϕ
2(s−1)
1 = σ2 (1 − ϕ2t

1 )

1 − ϕ2
1

,

and the variance of the cumulative return up to period T is given by

σ2
T =

12T∑

s=1

12T∑

m=1

σs · σm · ϕ|m−s|1 .

As can easily be established, for any time horizon T , this variance is increasing in the autoregressive

coefficient ϕ1 when this coefficient is positive. Hence, the persistence of the time series amplifies the volatility

of the cumulative return because a high return in the current period implies a higher cumulative expected

return. This intuition carries over to general AR(q) processes only as long as the autoregressive coefficients

and the autocorrelations in the model are positive. This is the case for some but not all metropolitan

markets.
8The momentum of an AR(1) process is D(ϕ1) = 1

1−ϕ2
1
.

10
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hedging incentives analyzed here, and have been the focus of prior studies.9 As we consider

home ownership as a form of insurance against fluctuations in housing costs for the house-

hold, we define the value of the real hedge as the difference in the risk premiums implied

by the two tenure modes.

We view the household choice of buying versus renting as a standard portfolio choice of

a risk averse investor. If the household decides to rent for its entire life span of 2T years,

it will be exposed to rent uncertainty in each period in which its lease contract is up for

renewal. As the majority of rental contracts are for lease terms of one year or less,10 we

assume that lease contracts are renewed on an annual basis.11 Home ownership eliminates

the risk associated with uncertainty in rents but exposes the household to house price risk.

This exposure occurs at moment T when the household sells the low tier home and buys

the middle tier home and at the end of the final period 2T. Given that these transactions

occur in the relatively distant future, it is possible that the risk of owning, measured in

present value terms, is lower than the risk of renting. Thus, risk premiums depend on

the housing market parameters and the characteristics of the household. Let us consider a

household exhibiting constant relative risk aversion which discounts future risk premiums

exponentially. The characteristics of this household are summarized by

Zh = (θ, δ,W, T )

where θ is the risk aversion coefficient, δ is the annual discount factor, W is the lifetime

wealth of the household, and T is the time horizon (measured in years). The housing

market characteristics are captured by

Zm = (σ2
i,T , σ

2
j,T , ρ, d

2
i , d

2
j ).

9The effects of transaction cost on the timing and size of home ownership have been analyzed by Han

(2008) and Flavin and Nakagawa (2008). The implications for portfolio choice have been studied by Engle

(2002), Flavin and Yamashita (2002), and Hu (2005). The effects of down payment constraints have been

discussed in Stein (1995) and Lustig and Nieuwerburgh (2005). Uncertainty in labor income has been

considered by Ortalo-Magné and Rady (2002) and Davidoff (2006). More recently, Campbell and Cocco

(2015) study mortgage decision by incorporating a number of these factors, including inflation, house price

uncertainty, and interest rate risk.
10Using data from the Annual Housing Survey, Genesove (2003) reports that only 3% of residential leases

are for terms longer than a year.
11The framework can be easily adapted to consider alternative lease terms, e.g. 6 months.

11
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Hereby σ2
i,T and σ2

j,T are the cumulative return variances of the low tier and middle tier

home, respectively over a time horizon of T . The parameter ρ represents the contempora-

neous correlation between the monthly appreciation rates of the price tiers, and d2
i and d2

j

are the volatilities of the annual rents of the two price tiers. The risk premium of home

ownership is given by

ΘOWN (Zm, Zh) :=
θ

2
·
[
δT
(
σ2
OWN (ωi, ωj , T )

)
+ δ2T

(
σ2
OWN (ωj , 2T )

)]
. (8)

The first term is associated with the variance of selling the low tier home and buying the

middle tier home in period T while the second term is associated with the variance of the

middle tier home in the final period 2T . The risk for a renter stems from the volatility of

annual rent as a proportion of annual earnings Wa and is given by

ΘRENT (Zm, Zh) :=
θ

2
·
[ T∑

n=1

δn · d
2
i

W 2
a

+

2T∑

n=T+1

δn ·
d2
j

W 2
a

]
. (9)

With these preliminaries, the value of the real hedge is defined as

V
(
Zm, Zh

)
:= ΘRENT (Zm, Zh)−ΘOWN (Zm, Zh). (10)

The real hedge has a positive value when home ownership is less risky than renting. In the

next sections we estimate the housing market parameters for the periods before and after

the burst of the bubble and discuss how the value of real hedging has changed after the

housing market crisis.

4 Data and preliminary evidence

4.1 Data

In this study we use the Standard & Poor’s CoreLogic Case-Shiller (CS) seasonally adjusted

tiered-price indices as a measure of the dynamics of different house price segments in local

residential real estate markets. The CS tiered indices are constructed using a repeat sales

methodology which is based on the forming of pairs of recorded prices from arms-length

transactions of the same property. The repeat sales methodology is designed to track

changes in home values due to market trends only. It controls for physical alterations

in individual houses and neighborhoods, corrects for biases due to statistical outliers, to
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the variation in frequency of sales, to delays in the flow of transaction data, as well as to

potential sampling and measurement errors. The CS price tiers capture changes in home

values of three market segments in each MSA – low, middle, and high. To construct the

tiered indices, the CS method selects price breakpoints between low-tier and middle-tier

houses and between middle-tier and upper-tier houses. The breakpoints are established

in such a way that the same number of sales occurs in each price tier and are smoothed

through time to eliminate seasonal and other transient variation.12

The CS tiered indices were established in January 1987 for ten metropolitan markets;

seven additional residential areas were included over the time period between January 1989

and January 1993. Our sample consists of all the seventeen Metropolitan Statistical Areas

(MSA) for which the price tiers are available (i.e., Atlanta, Boston, Chicago, Cleveland,

Denver, Las Vegas, Los Angeles, Miami, Minneapolis, New York, Phoenix, Portland, San

Diego, San Francisco, Seattle, Tampa, and Washington DC).

[Table 1, about here]

Each series in our sample begins when it was first established and ends in June 2016. Only

one residential area, Cleveland, ends earlier as it was discontinued in November 2008. In

Table 1 we present the mean and the standard deviation of the appreciation rates for the

low-tier (rit), middle-tier (rjt ) and the high-tier (rkt ) indices of all MSAs in the sample. The

upper panel in the table shows the statistics for the period before the bubble burst, while

the lower panel shows the period after the bubble burst. The month of the bubble burst is

defined as the month at which the low tier index reached its maximum value.

[Figure 1, about here]

To illustrate the dynamics of the price tiers during the period of study, we present in

Figure 1 the low-, middle-, and high-tier indices for two of the metropolitan areas: Miami

12The construction of the CS tiered indices and the repeat sales methodology are described in S&P

Dow Jones Indices: S&P CoreLogic Case-Shiller Home Price Indices Methodology, April 2017, available

from http://us.spindices.com/documents/methodologies/methodology-sp-cs-home-price-indices.pdf. A dis-

cussion of the advantages and potential concerns of using the CS indices in research as well as a comparison

of the CS index to other indices (e.g., the Home Price Index published by the Federal Housing Finance

Agency) is presented in Miao et al. (2011).
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and Los Angeles. The vertical lines mark the burst of the bubbles. All indices are adjusted

to have January 1987 as their base month. Two apparent observations can easily be made

from examining these figures. First, all tiers increased during the housing bubble years

and then started to decrease almost simultaneously once the housing bubble burst. And

second, the low tier increased the most during the bubble period, and decreased the most

after the bubble burst. The price dynamics presented in Figure 1 is quite typical across

metropolitan areas and is consistent with the lower average appreciation rates for high tier

homes reported in Panel A of Table 1.

4.2 Preliminary evidence

Table 2 offers a first impression the significance of real hedging for households and of the

way hedging incentives have changed after the recent housing crisis. The table reports the

unconditional correlations between the appreciation rates of the high tier and the S&P 500

(columns 1 and 2) as well as the unconditional correlations between the appreciation rates

of the high tier and the low tier (columns 7 and 8). We observe that the unconditional

correlations between the price tiers are positive and substantially larger in magnitude than

the correlations between each price tier and the S&P 500. This is an indication that stock

market participation is not as effective as real hedging for households who intend to move

up the property ladder in the same metropolitan area.

Further, the reported z-statistics in column 7 are associated with the null hypothesis

that the correlations are the same before and after the burst, while the alternative is that

the correlation is smaller before the bubble burst. The associated p-values show that at the

10% significance level for eight of the seventeen metropolitan areas the correlation between

the high and low tiers is stronger after the bubble burst. A similar conclusion can be

drawn when considering the correlation between the high tier and the S&P 500. With the

exception of Portland and Seattle, the correlations are statistically larger after the burst.

While the reported statistics do not take into account the dynamics of the correlations

over time, they provide some evidence that correlations have increased after the crisis. As

we demonstrate in the following sections, the increase in the correlations is statistically

significant in the studied empirical models that take into account conditional correlation

dynamics.
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5 The dynamic correlation-coefficient model

5.1 Formulation of price tiers

To account for the dynamics of the appreciation rates of the different price tiers we employ

the multivariate GARCH methods developed in Engle (2002). We denote by P τmt the

index in metropolitan area m in period t for tier τ = (i, j, k) where i, j, and k signify

the low, middle, and high tier, respectively. With the notation introduced previously, we

calculate the returns and express them in percentage terms as follows: rτmt = [log(P τmt) −
log(P τm,t−1)] · 100. To simplify notation we further drop the subscript m and present the

empirical approach for a given metropolitan area.

As noted by Chiang et al. (2007), there are three advantages of using Engle’s (2002)

model. First, the estimation is robust to heteroscedasticity as the DCC-GARCH model

estimates the correlation coefficients of the standardized residuals. Second, the empirical

model allows for the inclusion of additional regressors in the mean equation. In our case

we use the U.S. S&P 500 stock returns as a common factor that potentially affects all price

tiers. Third, it is well known that the estimation of the dynamic correlations is particularly

difficult because of the large number of coefficients in the variance-covariance matrix, for

example, in the methods described in Engle and Kroner (1995). The approach suggested

by Engle (2002) allows the inclusion of multiple returns without the need to estimate too

many coefficients. The estimation output includes time-varying correlation coefficients that

affords the analysis of regime shifts.

We model the vector of appreciation rates rt = (rit, r
j
t , r

k
t )′ in the mean equation as an

AR(q) process. In particular, we use the specification:

rt = µ+

q∑

h=1

ϕhrt−h + γrS&P500
t−1 + εt, (11)

where µ = (µi, µj , µk), ϕh = (ϕih, ϕ
j
h, ϕ

k
h), γ = (γi, γj , γk), εt = (εit, ε

j
t , ε

k
t ), and εt|Ωt−1 ∼

N(0, Ht).
13 Note that Equation (11) is simply the vector version of Equations (1) and (2)

with an additional third equation for the high tier and the lagged S&P 500 stock return.

We add the autoregressive term in order to capture momentum effects. The control rS&P500
t−1

serves as a factor that can potentially affect all returns and as an alternative investment

13With Ωt−1 being the information set available at the end of period t− 1.
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opportunity. A key objective of the analysis is to model the dynamics of the variance-

covariance matrix Ht. We use the following specification for this conditional variance:

Ht = DtRtDt, (12)

where both Dt and Rt are time-varying. Rt is the (3 × 3) correlation matrix of interest,

while Dt is a (3×3) diagonal matrix. The three diagonal elements in Dt, denoted by
√
hτt ,

τ = (i, j, k) represent the standard deviations from separately fitted univariate GARCH

models.

We use a two-stage approach to estimate the variance-covariance matrix Ht. In the

first stage, estimates of
√
hτt are obtained by fitting univariate volatility models for each

price tier. In the second stage, the residuals from the first stage are transformed using

uτt = ετt /
√
hτt , upon which the parameters of the dynamic conditional correlation model

are estimated. We use Engle’s (2002) model specification for the evolution of the conditional

correlations given by:

Qt = (1− α− β)Q̄+ αut−1u
′
t−1 + βQt−1, (13)

where α and β are nonnegative parameters to be estimated under the restriction (α+β) < 1.

The 3× 3 unconditional variance-covariance matrix of ut is given by Q̄ = E[utu
′
t], while Qt

is the 3 × 3 time-varying conditional variance-covariance matrix of ut. To obtain ones in

the main diagonal of the correlation matrix Rt, we rescale Qt as follows:

Rt = diag
( 1√

νit
,

1√
νjt

,
1√
νkt

)
Qtdiag

( 1√
νit
,

1√
νjt

,
1√
νkt

)
, (14)

where ντt are the main diagonal elements of Qt. If Qt is positive definite, the absolute

value of the off-diagonal elements of Rt will all be less than one. As an illustration of how

the off-diagonal elements of Rt are obtained, let us drop the high tier k and consider the

bivariate model with only the low tier i and the middle tier j. The pairwise correlations

represented by the off-diagonal elements of Rt will have the form:

ρi-jt =
(1− α− β)ν̄i-j + αuit−1u

j
t−1 + βνi-jt−1√

(1− α− β)ν̄i + α(uit−1)2 + βνit−1

√
(1− α− β)ν̄j + α(ujt−1)2 + βνjt−1

, (15)

where ν̄i-j and νi-jt are the single off-diagonal elements of Q̄ and Qt respectively.
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The log-likelihood function to be maximized is given by:

lt(µ, ϕ, γ, ϑ) = −
T∑

t−1

(
3 · log(2π)+log|Dt|2 +ε′tD

−2
t εt

)
−

T∑

t=1

(
log|Rt|+u′tR−1

t ut−u′tut
)

(16)

with (µ,ϕ,γ) denoting the coefficients to be estimated in Dt, and ϑ the coefficients to be

estimated in Rt. The first term on the right-hand side is the sum of the individual GARCH

likelihoods. The second term represents the function to be maximized in order to obtain

the correlation coefficients. According to the two-step procedure of Engle (2002), in the

first estimation step estimates of (µ,ϕ,γ) corresponding to Dt are obtained by maximizing

the first term on the right-hand side of Equation (16). Given these estimates, in the second

step, the second term is maximized to obtain the estimates of ϑ.

5.2 Dynamic correlation and momentum estimates

Table 3 reports the estimation results for three of the metropolitan areas in the sample:

San Diego, Denver, and Atlanta. We chose these three areas because they have different

number of lags according to the Akaike information criterion.14 Looking at the estimates

of the mean equations we observe that the regression constants (µ) are all positive and

highly significant. As expected, these estimates are close to the respective means of the

dependent variable rτt reported in Table 1. We observe that for Denver the point estimates

of the regression constants are larger for the low tier than for the high tier – a finding

consistent with the well known observation that during the housing bubble the low tier

appreciated more than the high tier. Looking at the estimates of the mean equation we

further observe that the coefficient γ capturing the effect of the S&P 500 index on the price

tiers is not statistically significant. That is, the U.S. stock market does not significantly

affect the price dynamics in local housing markets.

[Table 3, about here]

When examining the variance equations in Panels B, we observe that the lagged shock-

squared terms (b) are statistically significant across all metropolitan areas, indicating that

volatilities are indeed time-varying. The highly significant coefficients on the lagged con-

ditional volatility (a) lends further support to our GARCH specification. The measure of

14The number of lags for all metropolitan areas are reported in Table 4.
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volatility persistence a+ b registers values close to one across all metropolitan areas, which

is an indication of high levels of persistence in the conditional variances. To obtain the

estimates of α and β in the multivariate DCC equations reported in Panels C, we used

the second step proposed in Engle (2002). The highly statistically significant α and β

coefficients across all metropolitan areas are strong evidence of substantial time-varying

co-movement across price tiers. The Wald test with the null hypothesis that α = β = 0

provides strong evidence against the null.

While in Table 3, due to space considerations, we present the DCC-GARCH model

results for only three of the metropolitan areas, in Table 4 we report the sum of the

autoregresive coefficients and the conditional correlations between tiers for all the seventeen

metropolitan areas in our sample. With the exception of Cleveland where the data ends

in 2008, the sum of the autoregressive terms in the mean equations (i.e.,
∑q

h=i ϕh) are all

positive and highly significant. The point estimates are relatively smaller for Chicago and

Minneapolis, Portland and Tampa, and are larger for New York and for the metropolitan

areas in California. We interpret a positive
∑q

h=i ϕh as evidence for momentum effects and

partial adjustments in housing markets.

[Table 4, about here]

Given that within each metropolitan area we have three tiers, our estimation approach

allows us to obtain estimates of three pair-wise time-varying correlations, ρi-jt , ρi-kt , and

ρj-kt . To illustrate the dynamics of these pair-wise correlations, we present in Figure 2 the

time series graphs for Cleveland and Washington DC. The vertical lines indicate the dates

at which P imt reaches its peak. The averages for these correlations are reported in columns 5

through 7 of Table 4.

[Figure 2, about here]

Consistent with the correlations presented in Table 2, the result in Table 4 and Figure 2

show that the dynamic correlations are all positive.15

15The only average correlations that are not significantly different from zero are the ones for Cleveland.
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6 Dynamic correlations and the bubble burst

6.1 Panel estimation of the effect of the bubble burst

In this section we examine whether the housing crisis has affected the value of real hedging

by testing for changes in the conditional correlation coefficients. The graphs presented in

Figure 2 suggest that the dynamic correlations are higher after the bubble burst. To test

this formally we pool the dynamic correlations across all our seventeen metropolitan areas

to obtain a panel of correlations. As before, we use m to denote the metropolitan market

and estimate a dynamic panel specification of the following form:

ρi-jmt = λρi-jm,t−1 + κZmt + ηm + νi-jmt. (17)

While this equation is expressed in terms of the low (i) and the middle (j) tiers, we are

also interested in estimating analogous specifications for ρi-kmt and ρj-kmt as well as for the

correlations between each tier and the S&P 500. To capture the effect of the housing bubble

burst, we also include as a regressor the dummy variable Zmt. It changes not only over t,

but also over m as housing bubbles burst at different times for different metropolitan areas.

For a given metropolitan area m, the corresponding column in Zmt is equal to one after

the maximum of P imt is reached and is equal to zero for the dates prior to the maximum.

ηm captures the metropolitan area time-invariant specific effect while νi-jmt is the remaining

stochastic term.

In this equation λ and κ are coefficients to be estimated. Even though the lagged de-

pendent variable is not of direct interest, its inclusion allows us obtain consistent estimates

of the effect of the bubble burst on the dynamic correlations because a simple correlation

between Zmt and ρi-jmt might just be reflecting a common force behind the dynamic adjust-

ment process. Assuming that νi-jmt is serially uncorrelated, we model the bubble burst Zmt

as potentially endogenous in the sense that it may be correlated with earlier shocks,

E(Zmsν
i-j
mt) = 0, s < t

E(Zmsν
i-j
mt) 6= 0, s ≥ t

}
, ∀m. (18)

Endogenous Zmt however does not prevent agents from adopting a forward-looking perspec-

tive on the dynamics of either ρi-jmt or Zmt. The estimation methods we use are consistent
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with rational expectations and only assume that the surprise element of the dynamic cor-

relations (νi-jmt) cannot be predicted.

To obtain consistent estimates of the coefficients λ and κ we use the methods described

in Arellano and Bond (1991) and Blundell and Bond (1998). We first take first differences

in Equation (17) to eliminate the metropolitan area time-invariant specific effect ηm thus

obtaining

∆ρi-jmt = λ∆ρi-jm,t−1 + κ∆Zmt + ∆νi-jmt. (19)

We then construct the moments E(∆νi-jmtW) to estimate λ and κ in Equation (19) via

Generalized Method of Moments (GMM). Under the assumption that the error term νi-jmt

is serially uncorrelated, which we formally test, the lagged values of ρi-jm,t−1 and Zmt are

valid instruments in the matrix W. In addition, we use the moments from the equation

in levels E[(ηm + νi-jmt)M] where the instruments M are lags of ∆ρi-jm,t−1 and ∆Zmt. These

additional moment conditions are needed because, when the series are persistent over time,

the instruments W for the equation in differences might be weak instruments (Blundell

and Bond, 1998).

6.2 Dynamic panel results

Tables 5 and 6 present pooled OLS and metropolitan area Fixed Effects estimates of the

static version of Equation (17). The estimates of the constant presented in column 7 of

Table 5 imply than on average the pair-wise correlation between tiers before the bubble

burst is about 0.304. After the bubble burst the point estimate is 0.354, with the difference

of 0.049 being statistically significant at the 1% level. When considering particular pair-

wise correlations, in all three cases the correlations are higher after the burst. We interpret

this as strong evidence that real hedging has become more attractive after the financial

crisis.

[Table 5, about here]

[Table 6, about here]

The point estimates in Table 6 indicate that the correlations between the tiers and the

S&P 500 have increased as well. Column 8 shows that the correlations are 0.032 higher
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after the bubble burst. This is a relatively large increase given that the estimate of the

constant in column 7 puts the correlation before the burst at about 0.032. When comparing

the estimates of the constants between Tables 5 and 6, we observe that before the burst

the magnitude of the correlations between different tiers is about ten times larger than

the correlations between the S&P 500 and the tiers. This implies that investing in real

estate is a much more effective way to hedge against fluctuations in future home prices

than investing in the stock market.

[Table 7, about here]

[Table 8, about here]

The dynamic panel estimates in Tables 7 and 8 are consistent with the static panel

results. The main difference is that once we take into account the dynamics and the

potential endogeneity of the bubble burst, the magnitude of the difference in the correlations

before and after the burst is less than half of the magnitude obtained with the static

panels. The difference in magnitude is evidence that the bubble burst can be considered

endogenous. Across all columns in Tables 7 and 8 both specification tests validate our

choice of estimator. The relatively large p-values associated with the serial correlation test

support the assumption of no first order serial correlation. In addition, the relatively large

p-values in the Hansen test validate our instruments.

7 Estimates of the real hedge value of homeownership

In this section we derive estimates of the real hedge value of homeownership for a typical

household depending on its time horizon, time and risk preferences, and the characteristics

of the local housing market. For the volatility of the low and the middle tier homes and

their correlation we use the estimates for the period after the housing burst reported in

Table 9. To estimate the volatility of the renting option specified in equation (9) we use

the annualized sample variance of Zillow’s quarterly rental index.16

[Table 9, about here]

16We obtained these data from http://www.zillow.com/research/data.
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In our parameterization of household preferences we set the coefficient of risk aversion

to θ = 2, yet our results are amenable to other degrees of risk aversion as the value of the

real hedge is proportional to the risk aversion parameter. This flexibility is important as

attitudes toward risk are sensitive to demographic characteristics and exhibit variation over

time. Furthermore, estimates of risk aversion vary substantially across studies depending

on data and method used (surveys, experiments, household portfolio choice observations,

or stock market prices).17

There is less variation in the literature estimating households’ discount factors. Fol-

lowing the macroeconomic and household finance literature (see, e.g. Barberis et al., 2001;

Sinai and Souleles, 2005 or Campbell and Cocco, 2015) we set δ = 0.96. This value is

also consistent with estimates from recent studies using naturally occurring field data, e.g.

credit card borrowing data (Laibson et al., 2015). This baseline parameterization is also

adaptable to alternative assumptions on the discounting function.18

For illustration purposes, let us consider a household with annual income equal to

the median annual household income for 2017 which, according to the U.S. Census was

$61,372.19 Assuming an effective federal income tax rate of 13.5%, we obtain a median

after-tax annual income of Wa = $53, 087 which we use to calculate the volatility of the

share of disposable income spent on rent. For the calculation of the risk premium associated

with home ownership given by equation (8) we assume a working life of 40 years, i.e.

W = 40 ·Wa. For these parameter values, we present the value of the real hedge of home

17Ait-Sahalia and Lo (2000) (see Table V therein) and Bliss and Panigirtzoglou (2000) (see Table VII

therein) report estimates of various studies on risk aversion most of which are in the range between 0 and

13, while Guo and Whitelaw (2006) who use stock market data obtain coefficients in the range between 2.5

and 5.6 depending on model specification.
18The experimental literature, both in psychology and economics, finds that consumers act impulsively in

the sense that they are more sensitive to delays in rewards in the short run than in the long run (Angeletos

et al., 2001). This dynamic inconsistency phenomenon is best captured by discount functions for which the

discount factor declines over time. We performed calculations using the discounting function suggested by

Loewenstein and Prelec (1992). The results are qualitatively similar to our baseline model of exponential

discounting. The hyperbolic discounting has the effect of increasing the risk premium of the early rent

payments as well as the risk premium of wealth in year 2T associated with the ownership of the middle tier

home, and these effects partially offset each other.
19See U.S Census release report number CB18-144 dated September 12, 2018 and available at

https://www.census.gov/newsroom/press-releases/2018/income-poverty.html.
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ownership in San Diego, Denver and Atlanta as a function of the time horizon (see Figure 3).

The value of the real hedge depends on the volatility of house appreciation rates relative

to the volatility of the percentage change in rent. As can be observed, the real hedge has a

positive value in Atlanta and Denver and a negative value in San Diego where house prices

relative to rents are more volatile.

Our empirical results suggest that the correlations between tiers is higher in the period

after the burst of the housing market bubble. Indeed, the estimates of the conditional

correlations reported in Table 9 are higher in the period after the bubble burst across all

price tier pairs. The tiered price indices lose value in the immediate aftermath of the bubble

burst and recover while moving more closely to each other in the post-crisis period. It can

easily be observed that in our theoretical framework an increase in the correlation between

the house price tiers increases the value of the real hedge. It reduces the risk premium of

home ownership by lowering the variance of the transition between the low and the middle

tier home. Indeed, from equations (8), (9) and (10) we obtain

∂V (·)
∂ρ

= −∂ΘOWN (·)
∂ρ

= 2ωiωj(σi,T ) · (σj,T ) > 0. (20)

The expression for the partial derivative also illustrates that an increase in the correlation

of the appreciation rates between the price tiers increases the value of the real hedge more

in high home value markets as well as high volatility markets, i.e. when ωτ and στ,T for

τ = i, j are high.

Note that using the Case-Shiller price indices removes the idiosyncratic element of

individual house returns. Yet, it is likely that the correlation of the idiosyncratic elements

between tiers is lower than our correlation estimates. Hence, this might bias our correlation

estimates and the value of the real hedge upwards. The Case-Shiller tiered price indices

are designed to reflect the average change in market prices. Given the low frequency at

which houses are transacted, data on the idiosyncratic element of individual house returns

is not available.20

A further notable implication of our model is that an increase in the correlation coef-

ficient increases the value of the real hedge more in markets with a smaller difference in

20Rangel and Engle (2012) are able to capture the idiosyncratic element of individual stock returns by

employing time series data on all stocks that comprise the Dow Jones Industrial Average (DJIA).
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prices between the two tiers. Indeed, let us denote by ω =
Pi+Pj

2
W =

ωi+ωj
2 the ratio of the

average tiered price index to the household’s lifetime wealth. We choose the parameter

d ∈ [0, 1) so that (1− d) = ωi
ω and (1 + d) =

ωj
ω . Rearranging the two equations we obtain

d =
ωj−ωi

2ω , and interpret d as a parameter controlling the difference between the price tiers.

With this notation, using equation (20) we obtain

∂V (·)
∂ρ

= 2(1− d2)ω2(σi,T ) · (σj,T )

which is decreasing in d. Further, substituting ωi and ωj with (1 − d)ω and (1 + d)ω,

respectively, in equation (8) we obtain that ∂ΘOWN (·)
∂d < 0 which confirms that the volatility

of homeownership is lower when the difference between the two tiers is smaller.

8 Conclusion

“Real hedging” is a strategy pursued by households in which a starter home is purchased

partly because the household intends to move up the property ladder in the future. In this

paper we view real hedging as an investment activity and the choice of home ownership

versus renting as a portfolio choice problem. In particular, we represent the two tenure

modes as portfolios of hypothetical financial instruments pegged to the home values of each

price tier and explore their multiperiod volatilities. Focusing on the insurance aspect of

home ownership, we define the value of the real hedge as the difference between the present

values of the risk premiums of renting and owning. Our theoretical framework allows us to

explore how the value of the real hedge depends on the characteristics of local residential

real estate market (correlations between the appreciation rates of price tiers, volatilities of

the returns on starter and trade-up homes, house price levels, and momentum, measured

by the serial correlation in housing returns) and the characteristics of the household (risk

and time preferences, time horizon, and lifetime earnings). The value of the real hedge is

directly related to the correlation between the house price tiers. It can be positive when

the tiered house prices are strongly correlated and not too volatile relative to rents.

We estimate the dynamic conditional correlations between the Standard & Poor’s Case-

Shiller tiered price indices for seventeen metropolitan areas over the past 25 years using a

DCC-GARCH specification which reflects the structure of our theoretical framework. We
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find positive and statistically significant correlations between price tiers. Furthermore, we

pool the time-varying conditional correlations and estimate a dynamic panel specification

that takes into account the endogenous nature of the housing crisis. We find an economically

and statistically significant increase in the correlation after the crisis which suggests an

improvement in the hedging value of home ownership.
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Figure 1: Low and high price tiers and returns for Miami and Los Angeles
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Figure 3: Value of the real hedge for Atlanta, Denver and San Diego. Owning and renting risk

premiums are given by equations (8) and (9). The value of the real hedge is given by equation

(10). The real hedge is expressed as percentage of the lifetime disposable income of the median

U.S. household. Household parameter values are set to θ = 2.0, and δ = 0.96. Housing market

parameters are as reported in Table 9 for the period after the bubble burst.
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Table 1: Mean and standard deviations of the appreciation rates before and after the burst

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Tiers: Low (rit) Middle (rjt ) High (rkt )

Begin End Obs. Mean Sd.Dev. Mean Sd.Dev. Mean Sd.Dev.

Panel A. Before the Bubble Burst:

Atlanta 1991m1 2007m1 193 0.401 0.401 0.330 0.263 0.339 0.313

Boston 1987m1 2006m1 229 0.510 0.893 0.416 0.665 0.379 0.625

Chicago 1992m1 2007m3 183 0.557 0.646 0.474 0.393 0.427 0.434

Cleveland 1987m1 2005m5 221 0.505 0.854 0.385 0.407 0.328 0.422

Denver 1987m1 2005m4 220 0.526 0.786 0.453 0.556 0.420 0.493

Las Vegas 1993m1 2006m7 163 0.723 1 0.621 1.083 0.611 1.036

Los Angeles 1987m1 2007m2 242 0.721 0.965 0.642 0.953 0.574 0.974

Miami 1987m1 2007m3 243 0.699 0.876 0.608 0.736 0.530 0.718

Minneapolis 1989m1 2006m4 208 0.587 0.630 0.497 0.466 0.429 0.526

New York 1987m1 2007m3 243 0.536 0.809 0.440 0.652 0.390 0.591

Phoenix 1989m1 2006m6 210 0.640 0.891 0.565 0.851 0.566 0.791

Portland 1987m1 2007m5 245 0.777 0.835 0.639 0.603 0.549 0.629

San Diego 1989m1 2006m4 208 0.719 0.945 0.611 0.885 0.547 0.892

San Francisco 1987m1 2006m5 233 0.751 0.908 0.670 0.921 0.600 0.964

Seattle 1990m1 2007m5 209 0.705 0.618 0.583 0.640 0.516 0.792

Tampa 1987m1 2006m7 235 0.628 0.990 0.503 0.669 0.428 0.744

Washington DC 1987m1 2007m3 243 0.632 0.818 0.551 0.726 0.499 0.747

Panel B. After the Bubble Burst:

Atlanta 2007m2 2016m6 113 -0.150 3.036 -0.0471 1.442 -0.00874 0.901

Boston 2006m2 2016m6 125 0.0120 1.338 0.0300 0.828 0.0474 0.629

Chicago 2007m4 2016m6 111 -0.276 1.916 -0.224 1.071 -0.177 0.904

Cleveland 2005m6 2008m11 42 -1.106 3.980 -0.315 0.788 -0.234 0.895

Denver 2005m5 2016m6 134 0.298 1.054 0.270 0.656 0.178 0.569

Las Vegas 2006m8 2016m6 119 -0.372 2.454 -0.375 1.762 -0.357 1.493

Los Angeles 2007m3 2016m6 112 -0.191 1.943 -0.0918 1.352 0.00170 1.040

Miami 2007m4 2016m6 111 -0.335 2.332 -0.250 1.594 -0.204 1.300

Minneapolis 2006m5 2016m6 122 -0.121 2.443 -0.0733 1.372 -0.113 1.039

New York 2007m4 2016m6 111 -0.239 0.875 -0.157 0.699 -0.0841 0.534

Phoenix 2006m7 2016m6 120 -0.311 3.069 -0.269 1.731 -0.284 1.317

Portland 2007m6 2016m6 109 0.148 1.286 0.120 1.032 0.0369 0.928

San Diego 2006m5 2016m6 122 -0.109 1.640 -0.0968 1.213 -0.0684 1.111

San Francisco 2006m6 2016m6 121 -0.132 2.235 0.0201 1.495 0.146 1.223

Seattle 2007m6 2016m6 109 -0.0419 1.267 0.0238 1.008 0.0712 0.914

Tampa 2006m8 2016m6 119 -0.281 2.155 -0.244 1.314 -0.183 1.117

Washington DC 2007m4 2016m6 111 -0.226 1.725 -0.131 1.055 -0.0382 0.669

Notes: Total number of observations is 4,229. The monthly appreciation rates, reported in percentage terms are

calculated as rτt = (pτt − pτt−1) · 100 = [log(P τt )− log(P τt−1)] · 100 for τ = i, j, k. P τt is the S&P Case-Shiller price

tier for the corresponding metropolitan market.
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Table 2: Unconditional correlations before and after the burst

(1) (2) (3) (4) (5) (6) (7) (8)

Correlation: ρk-S&P ρi-k

Before After z-stat p-value Before After z-stat p-value

Metropolitan Statistical Area:

Atlanta -0.0268 0.236 -2.227 0.013 0.217 0.631 -4.349 0.000

Boston -0.150 0.178 -2.944 0.002 0.605 0.330 3.178 0.999

Chicago -0.0323 0.290 -2.713 0.003 0.306 0.616 -3.309 0.000

Cleveland -0.139 0.218 -2.079 0.019 0.102 -0.0921 1.121 0.869

Denver -0.0112 0.374 -3.647 0.000 0.481 0.536 -0.669 0.252

Las Vegas -0.0215 0.225 -2.052 0.020 0.765 0.824 -1.321 0.093

Los Angeles -0.0589 0.268 -2.884 0.002 0.805 0.880 -2.273 0.012

Miami -0.150 0.273 -3.717 0.000 0.764 0.787 -0.497 0.309

Minneapolis -0.0121 0.192 -1.786 0.037 0.384 0.676 -3.613 0.000

New York -0.0746 0.0793 -1.330 0.092 0.686 0.532 2.136 0.984

Phoenix -0.0120 0.336 -3.125 0.001 0.812 0.869 -1.692 0.045

Portland -0.00270 0.0789 -0.702 0.241 0.253 0.703 -5.281 0.000

San Diego -0.0378 0.245 -2.494 0.006 0.764 0.773 -0.196 0.422

San Francisco -0.0686 0.252 -2.880 0.002 0.697 0.725 -0.504 0.307

Seattle 0.0741 0.139 -0.546 0.293 0.466 0.719 -3.351 0.000

Tampa -0.0259 0.311 -3.054 0.001 0.454 0.592 -1.679 0.047

Washington DC -0.129 0.261 -3.426 0.000 0.660 0.549 1.524 0.936

Notes: Total number of observations is 4,229. The null hypothesis is that the correlations are the same, and the

alternative is that the correlation is smaller before the bubble burst.
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Table 5: Panel data results. Correlations within tiers

(1) (2) (3) (4) (5) (6) (7) (8)

Dep. Variable: Low-High (ρi-kmt) Middle-High (ρj-kmt) Low-Middle (ρi-jmt) All

Estimator: Pooled FE Pooled FE Pooled FE Pooled FE

Variables:

Bubble Burst 0.0512*** 0.0411*** 0.0411*** 0.0359*** 0.0566*** 0.0477*** 0.0496*** 0.0415***

(0.00291) (0.00193) (0.00303) (0.00198) (0.00318) (0.00200) (0.00178) (0.00130)

Constant 0.270*** 0.329*** 0.312*** 0.304***

(0.00171) (0.00178) (0.00187) (0.00105)

Observations 11,146 11,146 11,146 11,146 11,146 11,146 33,438 33,438

R-squared 0.027 0.912 0.016 0.931 0.028 0.927 0.023 0.901

Notes: The figures in parentheses are standard errors. * significant at 10%; ** significant at 5%; *** significant at

1%.

Table 6: Panel data results. Correlations between the tiers and the S&P 500

(1) (2) (3) (4) (5) (6) (7) (8)

Dep. Variable: Low-High (ρi-kmt) Middle-High (ρj-kmt) Low-Middle (ρi-jmt) All

Estimator: Pooled FE Pooled FE Pooled FE Pooled FE

Variables:

Bubble Burst 0.0325*** 0.0314*** 0.0260*** 0.0243*** 0.0468*** 0.0392*** 0.0351*** 0.0316***

(0.00261) (0.00236) (0.00294) (0.00238) (0.00275) (0.00237) (0.00160) (0.00144)

Constant 0.0331*** 0.0290*** 0.0337*** 0.0319***

(0.00153) (0.00173) (0.00162) (0.000941)

Observations 5,573 5,573 5,573 5,573 5,573 5,573 16,719 16,719

R-squared 0.027 0.359 0.014 0.436 0.050 0.443 0.028 0.352

Notes: The figures in parentheses are standard errors. * significant at 10%; ** significant at 5%; *** significant at

1%.
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Table 7: Dynamic panel data results. Correlations within tiers

(1) (2) (3) (4)

Dep. Variable: Low-High (ρi-kmt) Middle-High (ρj-kmt) Low-Middle (ρi-jmt) All

Lagged Dep. Variable 0.733*** 0.710*** 0.727*** 0.719***

(0.0126) (0.00767) (0.00961) (0.00379)

Bubble Burst 0.0163*** 0.0127*** 0.0155*** 0.0133***

(0.000862) (0.00189) (0.00117) (0.000433)

Observations 11,112 11,112 11,112 33,336

Instruments 32 32 32 96

Serial Correlation -1.318 1.082 1.401 1.614

Serial Correlation (p-value) 0.187 0.279 0.161 0.107

Hansen 25.01 30.07 28.42 100.4

Hansen (p-value) 0.678 1 0.496 0.283

Notes: Figures in parentheses are the Windmeijer finite-sample corrected standard errors of the GMM two-

step estimates. * significant at 10%; ** significant at 5%; *** significant at 1%. a The null hypothesis is that

the errors in the first-difference regression exhibit no second-order serial correlation (valid specification). b

The null hypothesis is that the instruments are not correlated with the residuals (valid specification).

Table 8: Dynamic panel data results. Correlations between the tiers and the S&P 500

(1) (2) (3) (4)

Dep. Variable: Low-High (ρi-kmt) Middle-High (ρj-kmt) Low-Middle (ρi-jmt) All

Lagged Dep. Variable 0.697*** 0.709*** 0.704*** 0.710***

(0.0179) (0.00793) (0.00756) (0.00359)

Bubble Burst 0.00875*** 0.00700*** 0.0141*** 0.00948***

(0.00102) (0.000611) (0.000868) (0.000224)

Observations 5,556 5,556 5,556 16,668

Instruments 16 16 16 48

Serial Correlation -1.707 1.353 -0.513 0.777

Serial Correlation (p-value) 0.0877 0.176 0.608 0.437

Hansen 15.81 13.45 12.76 50.27

Hansen (p-value) 0.260 1 0.467 0.273

Notes: Figures in parentheses are the Windmeijer finite-sample corrected standard errors of the GMM two-

step estimates. * significant at 10%; ** significant at 5%; *** significant at 1%. a The null hypothesis is that

the errors in the first-difference regression exhibit no second-order serial correlation (valid specification). b

The null hypothesis is that the instruments are not correlated with the residuals (valid specification).
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Table 9: Volatility and correlation estimates before and after the bubble burst

(1) (2) (3) (4) (5) (6)

Volatilities Correlations

Tiers Low (σ̂i) Middle (σ̂j) High (σ̂k) Low-High (ρ̂i-k) Middle-High (ρ̂j-k) Low-Middle (ρ̂i-j)

Before 0.661 0.451 0.507 0.287 0.361 0.332

After 1.243 0.713 0.644 0.356 0.415 0.401

Notes: Figures represent estimates of conditional volatilities and correlations. Estimates are obtained by

estimating the parameters for each individual metropolitan area and taking averages across all areas for the

periods before and after the housing bubble burst.
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