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DISJOINT NP-PAIRS∗

CHRISTIAN GLASSER† , ALAN L. SELMAN‡ , SAMIK SENGUPTA‡ , AND LIYU ZHANG‡

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 6, pp. 1369–1416

Abstract. We study the question of whether the class DisjNP of disjoint pairs (A, B) of NP-sets
contains a complete pair. The question relates to the question of whether optimal proof systems exist,
and we relate it to the previously studied question of whether there exists a disjoint pair of NP-sets
that is NP-hard. We show under reasonable hypotheses that nonsymmetric disjoint NP-pairs exist,
which provides additional evidence for the existence of P-inseparable disjoint NP-pairs.

We construct an oracle relative to which the class of disjoint NP-pairs does not have a complete
pair; an oracle relative to which optimal proof systems exist, and hence complete pairs exist, but no
pair is NP-hard; and an oracle relative to which complete pairs exist, but optimal proof systems do
not exist.

Key words. disjoint NP-pairs, promise problems, propositional proof systems, oracles, symme-
try

AMS subject classification. 68Q15
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1. Introduction. We study the class DisjNP of disjoint pairs (A,B), where A
and B are nonempty, disjoint sets belonging to NP. Such disjoint NP-pairs are inter-
esting for at least two reasons. First, Grollmann and Selman [GS88] showed that the
question of whether DisjNP contains P-inseparable disjoint NP-pairs is related to the
existence of public-key cryptosystems. Second, Razborov [Raz94] and Pudlák [Pud03]
demonstrated that these pairs are closely related to the theory of proof systems for
propositional calculus. Specifically, Razborov showed that existence of an optimal
propositional proof system implies existence of a complete pair for DisjNP. Primarily
in this paper we are interested in the question raised by Razborov [Raz94] of whether
DisjNP contains a complete pair. We show connections between this question and
earlier work on disjoint NP-pairs, and we exhibit an oracle relative to which DisjNP
does not contain any complete pair.

From a technical point of view, disjoint pairs are simply an equivalent formula-
tion of promise problems. There are natural notions of reducibilities between promise
problems [ESY84, Sel88] that disjoint pairs inherit easily [GS88]. Hence, complete-
ness and hardness notions follow naturally. We begin in the next section with these
definitions, some easy observations, and a review of the known results.

In section 3 we observe that if DisjNP does not contain a Turing-complete disjoint
NP-pair, then DisjNP does not contain a disjoint NP-pair all of whose separators
are Turing-hard for NP. The latter is a conjecture formulated by Even, Selman,
and Yacobi [ESY84] and has several known consequences: Public-key cryptosystems
that are NP-hard to crack do not exist; NP 6= UP, NP 6= coNP, and NPMV *c
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NPSV. Our main result in this section is an oracle X relative to which DisjNP
does not contain a Turing-complete disjoint NP-pair and relative to which P 6= UP.
Relative to X, by Razborov’s result [Raz94], optimal propositional proof systems do
not exist. P-inseparable disjoint NP-pairs exist relative to X, because P 6= UP [GS88].
Most researchers believe that P-inseparable disjoint NP-pairs exist, and we believe
that no disjoint NP-pair has only NP-hard separators. Both of these properties hold
relative to X. This is the first oracle relative to which both of these conditions hold
simultaneously. Homer and Selman [HS92] obtained an oracle relative to which all
disjoint NP-pairs are P-separable, so the conjecture of Even, Selman, and Yacobi holds
relative to their oracle only for this trivial reason. Now let us say a few things about
the construction of oracle X. Previous researchers have obtained oracles relative to
which certain (promise) complexity classes do not have complete sets. However, the
technique of Gurevich [Gur83], who proved that NP∩coNP has Turing-complete sets if
and only if it has many-one-complete sets, does not apply. Neither does the technique
of Hemaspaandra, Jain, and Vereshchagin [HJV93], who demonstrated, among other
results, an oracle relative to which FewP does not have a Turing-complete set.

In section 4 we show that the question of whether DisjNP contains a Turing-
complete disjoint NP-pair has an equivalent natural formulation as a hypothesis
about classes of single-valued partial functions. Section 5 studies symmetric disjoint
NP-pairs. Pudlák [Pud03] defined a disjoint pair (A,B) to be symmetric if (A,B)
is many-one reducible to (B,A). P-separable easily implies symmetric. We give
complexity-theoretic evidence of the existence of nonsymmetric disjoint NP-pairs. As
a consequence, we obtain new ways to demonstrate existence of P-inseparable sets.
Also, we use symmetry to show under reasonable hypotheses that many-one and
Turing reducibilities differ for disjoint NP-pairs. (All reductions in this paper are
polynomial-time-bounded.) Concrete candidates for P-inseparable disjoint NP-pairs
come from problems in UP or in NP ∩ coNP. Nevertheless, Grollmann and Selman
[GS88] proved that the existence of P-inseparable disjoint NP-pairs implies the exis-
tence of P-inseparable disjoint NP-pairs, where both sets are NP-complete. Here we
prove two analogous results. Existence of nonsymmetric disjoint NP-pairs implies ex-
istence of nonsymmetric disjoint NP-pairs, where both sets are NP-complete. If there
exists a many-one-complete disjoint NP-pair, then there exists such a pair where both
sets are NP-complete. Natural candidates for nonsymmetric or ≤pp

m -complete disjoint
NP-pairs arise either from cryptography or from proof systems [Pud03]. Our theorems
show that the existence of such pairs will imply that nonsymmetric (or ≤pp

m -complete)
disjoint NP-pairs exist where both sets of the pair are ≤p

m-complete for NP.
Section 6 constructs two oracles O1 and O2 that possess several interesting prop-

erties. First, let us mention some properties that hold relative to both of these oracles.
Relative to both oracles, many-one-complete disjoint NP-pairs exist. Therefore, while
we expect that complete disjoint NP-pairs do not exist, this is not provable by rel-
ativizable techniques. P-inseparable disjoint NP-pairs exist relative to these oracles,
which we obtain by proving that nonsymmetric disjoint NP-pairs exist. The conjecture
of Even, Selman, and Yacobi holds. Therefore, while nonexistence of Turing-complete
disjoint NP-pairs is a sufficient condition for this conjecture, the converse does not
hold, even in worlds in which P-inseparable pairs exist. Also, relative to these oracles,
there exist P-inseparable pairs that are symmetric. Whereas nonsymmetric implies
P-inseparability, again, we see that the converse does not hold.

In section 6 we discuss the properties of these oracles in detail. Relative to O1,
optimal proof systems exist, while relative to O2, optimal proof systems do not exist.
In particular, relative to O2, the converse of Razborov’s result does not hold. (That
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is, relative to O2, many-one complete pairs exist.)
The construction of O2 involves some aspects that are unusual in complexity

theory. We introduce undecidable requirements, and as a consequence, the oracle is
undecidable. In particular, we need to define sets A and B, such that relative to O2,
the pair (A,B) is many-one complete. Therefore, we need to show that for every two
nondeterministic, polynomial-time-bounded oracle Turing machines NMi and NMj ,
either L(NMO2

i ) and L(NMO2
j ) are not disjoint or there is a reduction from the

disjoint pair (L(NMO2
i ), L(NMO2

j )) to (A,B). We accomplish this as follows: Given
NMi, NMj , and a finite initial segment X of O2, we prove that either there is a finite
extension Y of X such that for all oracles Z that extend Y ,

L(NMZ
i ) ∩ L(NMZ

j ) 6= ∅

or there is a finite extension Y of X such that for all oracles Z that extend Y ,

L(NMZ
i ) ∩ L(NMZ

j ) = ∅.

Then we select the extension Y that exists. In this manner we force one of these two
conditions to hold.

In the latter case, to obtain a reduction from the pair (L(NMO2
i ), L(NMO2

j )) to
(A,B) requires encoding information into the oracle O2. The other conditions that
we want O2 to satisfy require diagonalizations. In order to prove that there is room to
diagonalize, we need to carefully control the number of words that must be reserved
for encoding. This is a typical concern in oracle constructions, but even more so here.
We manage this part of the construction by inventing a unique data structure that
stores words reserved for the encoding, and then prove that we do not store too many
such words.

2. Preliminaries. We fix the alphabet Σ = {0, 1}, and we denote the length of
a word w by |w|. The set of all (resp., nonempty) words is denoted by Σ∗ (resp., Σ+).
Let Σ<n df= {w ∈ Σ∗ | |w| < n}, and define Σ≤n, Σ≥n, and Σ>n analogously. For a set
of words X let X<n df= X ∩Σ<n, and define X≤n, X=n, X≥n, and X>n analogously.
For sets of words we take the complement with respect to Σ∗. For A,B ⊆ Σ∗ let
A⊕B

df= {0x | x ∈ A} ∪ {1y | y ∈ B}.
The set of (nonzero) natural numbers is denoted by N (resp., N+). We use

polynomial-time computable and polynomial-time invertible pairing functions 〈·, ·〉 :
N+×N+→ N+ and 〈·, ·, ·〉 : N+×N+×N+→ N+. For a function f , dom(f) denotes the
domain of f .

Cook and Reckhow [CR79] defined a propositional proof system (proof system,
for short) to be a function f : Σ∗ → TAUT such that f is onto and f ∈ PF. (TAUT
denotes the set of tautologies.) Note that f is not necessarily honest; it is possible
that a formula φ ∈ TAUT has only exponentially long proofs w, i.e., f(w) = φ and
|w| = 2Ω(|φ|).

Let f and f ′ be two proof systems. We say that f simulates f ′ if there is a
polynomial p and a function h : Σ∗ → Σ∗ such that for every w ∈ Σ∗, f(h(w)) = f ′(w)
and |h(w)| ≤ p(|w|). If, additionally, h ∈ PF, then we say that f p-simulates f ′.

A proof system is optimal (resp., p-optimal) if it simulates (resp., p-simulates)
every other proof system. The notion of simulation between proof systems is analogous
to the notion of reducibility between problems. Using that analogy, optimal proof
systems correspond to complete problems.
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2.1. Disjoint pairs, separators, and a conjecture. We begin with the fol-
lowing definition.

Definition 2.1. A disjoint NP-pair (NP-pair, for short) is a pair of nonempty
sets A and B such that A,B ∈ NP and A ∩ B = ∅. Let DisjNP denote the class of
all disjoint NP-pairs.

Given a disjoint NP-pair (A,B), a separator is a set S such that A ⊆ S and B ⊆ S;
we say that S separates (A,B). Let Sep(A,B) denote the class of all separators of
(A,B). For disjoint NP-pairs (A,B), the fundamental question is whether Sep(A,B)
contains a set belonging to P. In that case the pair is P-separable; otherwise, the
pair is P-inseparable. The following proposition summarizes the known results about
P-separability.

Proposition 2.2.
1. P 6= NP ∩ coNP implies that NP contains P-inseparable sets.
2. P 6= UP implies that NP contains P-inseparable sets [GS88].
3. If NP contains P-inseparable sets, then NP contains NP-complete P-insep-

arable sets [GS88].
While it is probably the case that NP contains P-inseparable sets, there is an

oracle relative to which P 6= NP and P-inseparable sets in NP do not exist [HS92].
So P 6= NP probably is not a sufficiently strong hypothesis to show existence of
P-inseparable sets in NP.

Definition 2.3. Let (A,B) be a disjoint NP-pair.
1. X ≤pp

m (A,B) if, for every separator S of (A,B), X ≤p
m S.

2. X ≤pp
T (A,B) if, for every separator S of (A,B), X ≤p

T S.
3. (A,B) is NP-hard if SAT ≤pp

T (A,B).
4. (A,B) is uniformly NP-hard if there is a deterministic polynomial-time oracle

Turing machine M such that for every S ∈ Sep(A,B), SAT ≤p
T S via M .

Grollmann and Selman [GS88] showed that NP-hard implies uniformly NP-hard;
i.e., both statements of the definition are equivalent. Even, Selman, and Yacobi
[ESY84] conjectured that there does not exist a disjoint NP-pair (A,B) such that all
separators of (A,B) are ≤p

T hard for NP.
Conjecture 2.4 (see [ESY84]). There do not exist disjoint NP-pairs that are

NP-hard.
If Conjecture 2.4 holds, then no public-key cryptosystem is NP-hard to crack

[ESY84]. This conjecture is a strong hypothesis with the following known conse-
quences. In section 3 we show a sufficient condition for Conjecture 2.4 to hold.

Proposition 2.5 (see [ESY84, GS88, Sel94]). If Conjecture 2.4 holds, then
NP 6= coNP, NP 6= UP, and NPMV *c NPSV.

2.2. Reductions for disjoint pairs. We review the natural notions of re-
ducibilities between disjoint pairs [GS88].

Definition 2.6 (nonuniform reductions for pairs). Let (A,B) and (C,D) be
disjoint pairs.

1. (A,B) is many-one reducible in polynomial-time to (C,D), (A,B) ≤pp
m (C,D),

if for every separator T ∈ Sep(C,D) there exists a separator S ∈ Sep(A,B)
such that S ≤p

m T .
2. (A,B) is Turing reducible in polynomial-time to (C,D), (A,B) ≤pp

T (C,D),
if for every separator T ∈ Sep(C,D) there exists a separator S ∈ Sep(A,B)
such that S ≤p

T T .
Definition 2.7 (uniform reductions for pairs). Let (A,B) and (C,D) be disjoint

pairs.
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1. (A,B) is uniformly many-one reducible in polynomial-time to (C,D),
(A,B) ≤pp

um (C,D), if there exists a polynomial-time computable function f
such that for every separator T ∈ Sep(C,D), there exists a separator S ∈
Sep(A,B) such that S ≤p

m T via f .
2. (A,B) is uniformly Turing reducible in polynomial-time to (C,D),

(A,B) ≤pp
uT (C,D), if there exists a polynomial-time oracle Turing machine M

such that for every separator T ∈ Sep(C,D), there exists a separator S ∈
Sep(A,B) such that S ≤p

T T via M .
If f and M are as above, then we also say that (A,B) ≤pp

um (C,D) via f and
(A,B) ≤pp

uT (C,D) via M . Observe that if (A,B) ≤pp
m (C,D) and (C,D) is P-

separable, then so is (A,B) (and the same holds for ≤pp
T , ≤pp

um, and ≤pp
uT ). We retain

the promise problem notation in order to distinguish from reducibilities between sets.
Grollmann and Selman proved that Turing reductions and uniform Turing reductions
are equivalent.

Proposition 2.8 (see [GS88]). (A,B) ≤pp
T (C,D) ⇔ (A,B) ≤pp

uT (C,D) for all
disjoint pairs (A,B) and (C,D).

In order to obtain the corresponding theorem for ≤pp
um, we can adapt the proof of

Proposition 2.8, but a separate argument is required.
Lemma 2.9. Let S and T be nonempty, disjoint sets. Let X and Y be nonempty,

finite, disjoint sets such that X ∩T = ∅ and Y ∩S = ∅. Then the disjoint pairs (S, T )
and (S ∪X, T ∪ Y ) are equivalent by polynomial-time uniform reductions.

Proof. First we show that (S ∪X, T ∪ Y ) ≤pp
um (S, T ). Choose a ∈ S and b ∈ T .

Define the polynomial-time computable function f by

f(x) df=

 a if x ∈ X,
b if x ∈ Y,
x otherwise.

Let A ∈ Sep(S, T ). We need to see that f−1(A) ∈ Sep(S ∪ X, T ∪ Y ). So we show
that

1. S ∪X ⊆ f−1(A), and
2. T ∪ Y ⊆ f−1(A).

For item 1, if x ∈ X, then f(x) = a ∈ S ⊆ A. So f(X) ⊆ A. Hence, X ⊆ f−1(A).
If x ∈ S − X, then f(x) = x ∈ S ⊆ A. So, S − X ⊆ f−1(A). For item 2, if x ∈ Y ,
then f(x) = b ∈ T ⊆ A. So f(Y ) ∩ A = ∅. That is, Y ⊆ f−1(A). If x ∈ T − Y , then
f(x) = x ∈ T . So f(T − Y ) ∩A = ∅. That is, T − Y ⊆ f−1(A).

Every separator of (S ∪X, T ∪Y ) is a separator of (S, T ). Therefore, the identity
function provides a uniform reduction from (S, T ) to (S ∪X, T ∪ Y ).

Theorem 2.10. ≤pp
m = ≤pp

um.
Proof. Assume that (Q,R) is not uniformly many-one reducible to (S, T ). That

is, for every polynomial-time computable function f , there exists a set A ∈ Sep(S, T )
such that f−1(A) /∈ Sep(Q,R). Then for every polynomial-time computable func-
tion f , there exists A ∈ Sep(S, T ) and a string y that witnesses the fact that
f−1(A) /∈ Sep(Q,R). Namely, either

y ∈ Q ∧ y /∈ f−1(A) (i.e., f(y) /∈ A) or y ∈ R ∧ y ∈ f−1(A) (i.e., f(y) ∈ A).

We will show from this assumption that (Q,R) is not many-one reducible to (S, T ).
We will construct a decidable separator A of (S, T ) such that for every polynomial-
time computable function f , f−1(A) is not a separator of (Q, R). Let {fi}i≥1 be an
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effective enumeration of the polynomial-time computable functions with associated
polynomial-time bounds {pi}i≥1.

The separator A of (S, T ) will be constructed inductively to be of the form S ∪⋃
{Yi | i ≥ 1}, where

⋃
{Yi | i ≥ 1} is a subset of T and Y0 ⊆ Y1 ⊆ · · · . At stage i of

the construction, we will choose a finite subset Yi of T such that f−1(S ∪ Yi) is not a
separator of (Q,R).

Stage 0. Define Y0 = {0} and n0 = 1.
Stage i (i ≥ 1). By induction hypothesis, Yi−1 is defined, ni−1 ≥ 0 is defined, and

Yi−1 ⊆ T ∩ Σ≤ni−1 .
Now we state a sequence of claims.
Claim 2.11. There exists a set X, X ⊆ T ∪ Σ≤ni−1 , and a witness yi demon-

strating that f−1
i (S ∪ Yi−1 ∪X) is not a separator of (Q,R). That is,

yi ∈ Q ∧ yi /∈ f−1
i (S ∪ Yi−1 ∪X) (i.e., fi(yi) /∈ S ∪ Yi−1 ∪X)

or

yi ∈ R ∧ yi ∈ f−1
i (S ∪ Yi−1 ∪X) (i.e., fi(yi) ∈ S ∪ Yi−1 ∪X).

If the claim is false, then for every X ⊆ T ∪ Σ≤ni−1 , Q ⊆ f−1
i (S ∪ Yi−1 ∪X) and

R ⊆ f−1
i (S ∪ Yi−1 ∪X). The set of all languages S∪Yi−1∪X, where X ⊆ T ∪ Σ≤ni−1 ,

is exactly the set of separators of the disjoint pair

(S ∪ Yi−1, T ∪ (Σ≤ni−1 − (S ∪ Yi−1))).

Thus, if the claim is false, then (Q, R) is uniformly many-one reducible to (S ∪ Yi−1,
T ∪ (Σ≤ni−1 − Yi−1)). However, by Lemma 2.9, this contradicts the assumption that
(Q,R) is not uniformly reducible to (S, T ). Hence the claim is true.

Claim 2.12. There exists a finite set X, X ⊆ T ∪ Σ≤ni−1 , and a witness yi that
satisfy the condition of Claim 2.11.

For X and witness yi, whose existence Claim 2.11 guarantees, |fi(yi)| ≤ pi(|yi|).
So X ′ = X ∩ Σ≤pi(|yi|) and yi satisfy the condition as well.

Claim 2.13. There is an effective procedure that on input (i, Yi−1, ni−1) finds a
finite set X ⊆ T ∪ Σ≤ni−1 and witness yi to satisfy the condition of Claim 2.11.

This is trivial. Effectively enumerate pairs of finite sets and strings until a pair
with the desired property is found.

At Stage i, apply Claim 2.13; define Yi = Yi−1 ∪ X and define ni = 1 +
max(2ni−1 , pi(|yi|)).

Define A = S ∪
⋃
{Yi | i ≥ 1}. Since

⋃
{Yi | i ≥ 1} ⊆ T , A is a separator of

(S, T ). It is easy to see that A is decidable. Finally, for every fi, i ≥ 1, f−1
i (A) is

not a separator of (Q,R): Clearly this holds for f−1
i (S ∪ Yi), and the construction

preserves this property.
We obtain the following useful characterization of many-one reductions. Observe

that this is the way Razborov [Raz94] defined reductions between disjoint pairs.
Theorem 2.14. (Q,R) ≤pp

m (S, T ) if and only if there exists a polynomial-time
computable function f such that f(Q) ⊆ S and f(R) ⊆ T .

Proof. By Theorem 2.10 there is a polynomial-time computable function f such
for every A ∈ Sep(S, T ), f−1(A) ∈ Sep(Q,R). That is, if A ∈ Sep(S, T ), then
Q ⊆ f−1(A) and R ⊆ f−1(A), which implies that f(Q) ⊆ A and f(R)∩A = ∅. Well,
S ∈ Sep(S, T ). So f(Q) ⊆ S. Also, T ∈ Sep(S, T ). So f(R) ∩ T = ∅. That is,
f(R) ⊆ T . The converse is immediate.
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3. Complete disjoint NP-pairs. Keeping with common terminology, a dis-
joint pair (A,B) is ≤pp

m -complete (≤pp
T -complete) for the class DisjNP if (A,B) ∈

DisjNP and for every disjoint pair (C,D) ∈ DisjNP, (C,D) ≤pp
m (A,B) (resp.,

(C,D) ≤pp
T (A,B)).

Consider the following assertions:
1. DisjNP does not have a ≤pp

T -complete disjoint pair.
2. DisjNP does not have a ≤pp

m -complete disjoint pair.
3. DisjNP does not contain a disjoint pair all of whose separators are ≤p

T -hard
for NP (i.e., Conjecture 2.4 holds).

4. DisjNP does not contain a disjoint pair all of whose separators are ≤p
m-hard

for NP.
Assertions 1 and 2 are possible answers to the question raised by Razborov [Raz94]

of whether DisjNP contains complete disjoint pairs. Assertion 3 is Conjecture 2.4.
Assertion 4 is the analogue of this conjecture using many-one reducibility.

We can dispense with assertion 4 immediately, for it is equivalent to NP 6= coNP.
Proposition 3.1. NP 6= coNP if and only if DisjNP does not contain a disjoint

pair all of whose separators are ≤p
m-hard for NP.

Proof. If NP = coNP, then (SAT,SAT) is a disjoint pair in DisjNP all of whose
separators are ≤p

m-hard for NP.
To show the other direction, consider the disjoint pair (A,B) ∈ DisjNP and

assume that all of its separators are ≤p
m-hard for NP. Since B is a separator of

(A,B), SAT ≤p
m B. Therefore, SAT ≤p

m B, implying that SAT ∈ NP. Thus, NP =
coNP.

Proposition 3.2. Assertion 1 implies assertions 2 and 3. Assertion 2 implies
assertion 4. Assertion 3 implies assertion 4.

This proposition states, in part, that assertion 1 is so strong as to imply Conjec-
ture 2.4.

Proof. It is trivial that assertion 1 implies assertion 2, and that assertion 3 implies
assertion 4.

We prove that assertion 1 implies assertion 3. Assume assertion 3 is false and let
(A,B) ∈ DisjNP such that all separators are NP-hard. We claim that (A,B) is ≤pp

T -
complete for DisjNP. Let (C,D) belong to DisjNP. Let S be an arbitrary separator
of (A,B). Note that S is NP-hard and C ∈ NP. So C ≤p

T S. Since C is a separator
of (C,D), this demonstrates that (C,D) ≤pp

T (A,B).
Similarly, we prove that assertion 2 implies assertion 4. In this case, every separa-

tor S of (A,B) is ≤p
m-hard for NP. So C ≤p

m S. Therefore, (C,D) ≤pp
m (A,B).

Homer and Selman [HS92] constructed an oracle relative to which P 6= NP and
every disjoint NP-pair is P-separable. Relative to this oracle, assertion 3 holds and
assertions 1 and 2 are false. To see this, let (A,B) be an arbitrary disjoint NP-pair.
We show that (A,B) is both ≤pp

T -complete and ≤pp
m -complete. For any other pair

(C,D) ∈ DisjNP, since (C,D) is P-separable, there is a separator S of (C,D) that is
in P. Therefore, for any separator L of (A,B), S trivially ≤p

m-reduces and ≤p
T -reduces

to L. So (C,D) ≤pp
m (A,B) and (C,D) ≤pp

T (A,B).
There exists an oracle relative to which UP = NP 6= coNP [GW03]. So, relative

to this oracle assertion 4 holds, but assertion 3 is false. In section 6 we will construct
oracles relative to which assertion 4 holds while assertions 1 and 2 fail.

In Theorem 3.8 we construct an oracle X relative to which assertion 1 is true. In
Corollary 3.11 we observe that P 6= UP relative to X. Therefore, by Proposition 3.2,
all of the following properties hold relative to X:
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1. DisjNP does not have a ≤pp
T -complete disjoint pair.

2. Conjecture 2.4 holds; so UP 6= NP, NP 6= coNP, NPMV *c NPSV, and
NP-hard public-key cryptosystems do not exist [ESY84, Sel94].

3. P 6= UP; therefore P-inseparable disjoint NP-pairs exist [GS88].
4. Optimal propositional proof systems do not exist [Raz94].
5. There is a tally set T ∈ coNP − NP and a tally set T ′ ∈ coNE − E [Pud86,

KP89].
The following lemma is essential to the proofs of Theorems 3.8 and 6.1. Intuitively

this lemma says that, given two nondeterministic machines and some oracle, either
we can force the languages accepted by these machines to be not disjoint, or we can
ensure that one of the machines rejects a given string q by reserving only polynomially
many strings.

Lemma 3.3. Let M and N be nondeterministic polynomial-time oracle Turing
machines with polynomial-time bounds pM and pN , respectively. Let Y be an oracle
and q ∈ Σ∗, |q| = n. Then, for any set T , at least one of the following holds:

• ∃S ⊆ T , ‖S‖ ≤ pM (n) + pN (n), such that q ∈ L(MY ∪S) ∩ L(NY ∪S).
• ∃S′ ⊆ T , ‖S′‖ ≤ pM (n) · (pN (n) + 1), such that either (i) for any S ⊆ T , if

S ∩ S′ = ∅, then MY ∪S(q) rejects, or (ii) for any S ⊆ T , if S ∩ S′ = ∅, then
NY ∪S(q) rejects.

Proof. Let us define the following languages:
• LM = {〈P,Qy, Qn〉 | for some set SM ⊆ T , P is an accepting path of

MY ∪SM (q) and Qy (resp., Qn) is the set of words in SM (resp., T −(Y ∪SM ))
that are queried on P}.

• LN = {〈P,Qy, Qn〉 | for some set SN ⊆ T , P is an accepting path of
NY ∪SN (q) and Qy (resp., Qn) is the set of words in SN (resp., T − (Y ∪SN ))
that are queried on P}.

We say that 〈P,Qy, Qn〉 ∈ LM conflicts with 〈P ′, Q′
y, Q′

n〉 ∈ LN if Qy ∩ Q′
n 6= ∅ or

Q′
y ∩Qn 6= ∅. In other words, there is a conflict if there exists at least one query that

is in T and that is answered differently on P and P ′.
Case I. There exist 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′

y, Q′
n〉 ∈ LN that do not conflict.

Let S = Qy ∪Q′
y. We claim in this case that q ∈ L(MY ∪S) ∩ L(NY ∪S). Let SM

and SN be the subsets of T that witness 〈P,Qy, Qn〉 ∈ LM and 〈P ′, Q′
y, Q′

n〉 ∈ LN .
So P is an accepting path of MY ∪SM (q), and P ′ is an accepting path of NY ∪SN (q).
Assume that on P there exists a query r that is answered differently with respect
to the oracles Y ∪ SM and Y ∪ S. Hence r /∈ Y . Moreover, either r ∈ SM − S or
r ∈ S − SM . However, r cannot belong to SM − S, since otherwise r ∈ Qy, and
therefore r ∈ S. So r ∈ S − SM . Hence r /∈ Qy, and therefore r ∈ Q′

y. On the
other hand, r ∈ S − SM implies r ∈ T − (Y ∪ SM ). Therefore, r ∈ Qn ∩ Q′

y, which
contradicts the assumption in Case I. This shows that P is an accepting path of
MY ∪S(q). Analogously we show that P ′ is an accepting path of NY ∪S(q). Hence
q ∈ L(MY ∪S) ∩ L(NY ∪S). Note that ‖S‖ = ‖Qy ∪Q′

y‖ ≤ pM (n) + pN (n).
Case II. Every triple 〈P,Qy, Qn〉 ∈ LM conflicts with every triple 〈P ′, Q′

y, Q′
n〉 ∈

LN .
Note that in this case we cannot have both a triple 〈P, ∅, Qn〉 in LM and a triple

〈P ′, ∅, Q′
n〉 in LN , simply because these two triples do not conflict with each other.

We use the following algorithm to create the set S′ as claimed in the statement of
this lemma.

S′ = ∅
while (LM 6= ∅ and LN 6= ∅)
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(1) Choose some (P∗, Q∗y , Q
∗
n) ∈ LM

(2) S′ = S′ ∪ Q∗y ∪ Q∗n
(3) For every t = (P, Qy, Qn) ∈ LM
(4) if Qy ∩ (Q∗y ∪ Q∗n) 6= ∅ then remove t
(5) For every t′ = (P′, Q′y, Q

′
n) ∈ LN

(6) if Q′y ∩ (Q∗y ∪ Q∗n) 6= ∅ then remove t′

end while
We claim that after k iterations of the while loop, for every triple (P ′, Q′

y, Q′
n) ∈

LN , ‖Q′
n‖ ≥ k. If this claim is true, the while loop iterates at most pN (n) + 1 times,

since for any triple in LN , ‖Q′
n‖ is bounded by the running time of N on q, i.e., pN (n).

On the other hand, during each iteration, S′ is increased by at most pM (n) strings,
since for any triple in LM , ‖Qy ∪Qn‖ is bounded by the running time of M on q, i.e.,
pM (n). Therefore, ‖S′‖ ≤ pM (n) · (pN (n) + 1) when this algorithm terminates.

Claim 3.4. After the kth iteration of the while loop of the above algorithm, for
every t′ = 〈P ′, Q′

y, Q′
n〉 that remains in LN , ‖Q′

n‖ ≥ k.
Proof. For every k, tk denotes the triple 〈P k, Qk

y , Qk
n〉 ∈ LM that is chosen during

the kth iteration in step (1). For every t′ = 〈P ′, Q′
y, Q′

n〉 that is in LN at the beginning
of this iteration, tk conflicts with t′ (assumption of Case II). Therefore, there is a
query in (Qk

n ∩Q′
y) ∪ (Qk

y ∩Q′
n). If this query is in Qk

n ∩Q′
y, then t′ will be removed

from LN in step (6). Otherwise, i.e., if Qk
y∩Q′

n 6= ∅, then let q′ be the lexicographically
smallest query in Qk

y ∩Q′
n. In this case, t′ will not be removed from LN ; we say that

t′ survives the kth iteration due to query q′. Note that t′ can survive only due to a
query that is in Q′

n. We will use this fact to prove that ‖Q′
n‖ ≥ k after k iterations.

We show now that any triple that is left in LN after k iterations survives each
iteration due to a different query. This will complete the proof of the claim. Assume
that t′ survives iteration k by query q′ ∈ Qk

y∩Q′
n. If t′ had survived an earlier iteration

l < k by the same query q′, then q′ is also in Ql
y ∩ Q′

n. Therefore, Ql
y ∩ Qk

y 6= ∅. So
tk = 〈P k, Qk

y , Qk
n〉 should have been removed in step (4) during iteration l, and cannot

be chosen at the beginning of iteration k, as claimed. Hence, q′ cannot be the query
by which t′ had survived iteration l. This proves Claim 3.4.

Therefore, now we have a set S′ ⊆ T of the required size such that either LM

or LN is empty. Assume that LM is empty, and for some set SM ⊆ T it holds that
SM ∩ S′ = ∅ and M (Y ∪SM )(q) accepts. Let P be an accepting path of M (Y ∪SM )(q)
and let Qy (resp., Qn) be the set of words in SM (resp., T − (Y ∪ SM )) that are
queried on P . The triple 〈P,Qy, Qn〉 must have been in LM and has been removed
during some iteration. This implies that during that iteration, Qy ∩S′ 6= ∅ (step (4)).
Since Qy ⊆ SM , this contradicts the assumption that SM ∩ S′ = ∅.

A similar argument holds for LN . Hence either LM = ∅ and M (Y ∪S)(q) rejects
for any S ⊆ T such that S ∩ S′ = ∅, or LN = ∅ and N (Y ∪S)(q) rejects for any S ⊆ T
such that S ∩ S′ = ∅. This ends the proof of Lemma 3.3.

We define the following notions for reductions relative to oracles.
Definition 3.5. For any set X, a pair of disjoint sets (A,B) is polynomial-

time Turing reducible relative to X (≤pp,X
T ) to a pair of disjoint sets (C,D) if for

any separator S that separates (C,D), there exists a polynomial-time deterministic
oracle Turing machine M such that MS⊕X accepts a language that separates (A,B).

Definition 3.6. For any set X, let

DisjNPX = {(A,B) | A ∈ NPX , B ∈ NPX , A 6= ∅, B 6= ∅, and A ∩B = ∅}.

(C,D) is ≤pp,X
T -complete for DisjNPX if (C,D) ∈ DisjNPX and for all (A,B) ∈
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DisjNPX , (A,B) ≤pp,X
T (C,D). Similarly, (C,D) is ≤pp

T -complete for DisjNPX if
(C,D) ∈ DisjNPX and for all (A,B) ∈ DisjNPX , (A,B) ≤pp

T (C,D).
However, the following proposition shows that if there exists a disjoint pair that

is Turing-complete relative to X, then there is a pair that is Turing-complete such
that the reduction between the separators does not access the oracle.

Proposition 3.7. For any set X, DisjNPX has a ≤pp,X
T -complete pair if and

only if DisjNPX has a ≤pp
T -complete pair.

Proof. The if direction is trivial. We only show the only if direction. Suppose
(C,D) is ≤pp,X

T -complete for DisjNPX . We claim that (C⊕X, D⊕X) is ≤pp
T -complete

for DisjNPX . Observe that (C ⊕ X, D ⊕ X) ∈ DisjNPX . Consider any (A,B) ∈
DisjNPX . Let S′ separate (C ⊕ X, D ⊕ X). Define S = {x | 0x ∈ S′}. Then S

separates (C,D) and S′ = S ⊕ X. Since (C,D) is ≤pp,X
T -complete for DisjNPX ,

there exists a polynomial-time oracle Turing machine M so that L(MS⊕X) separates
(A,B). That is, L(MS′) separates (A,B), which is what we needed to prove.

Theorem 3.8. There exists an oracle X such that DisjNPX does not have a
≤pp,X

T -complete pair.
Proof. By Proposition 3.7, it suffices to show that DisjNPX has no ≤pp

T -complete
pair. By Proposition 2.8, it suffices to construct X such that for every (C,D) ∈
DisjNPX there exists a disjoint pair (A,B) ∈ DisjNPX such that (A,B) �pp

uT (C,D).
Suppose {Mk}k≥1 (resp., {Ni}i≥1) is an enumeration of deterministic (resp., non-

deterministic) polynomial-time oracle Turing machines. Let rk and pi be the corre-
sponding polynomial time bounds for Mk and Ni. For any r, s, d, let Σd

rs = 0r10s1Σd

and ldrs = r + s + d + 2 (i.e., ldrs is the length of strings in Σd
rs). For Z ⊆ Σ∗, i ≥ 1,

and j ≥ 1, define

AZ
ij = {0n | ∃x, |x| = n, 0i10j10x ∈ Z}

and

BZ
ij = {0n | ∃x, |x| = n, 0i10j11x ∈ Z}.

We construct the oracle in stages. Xm denotes the oracle before stage m. We
define X =

⋃
m≥1 Xm. Initially, let X = ∅. In stage m = 〈i, j, k〉, we choose

some number n = nm and add strings from Σn+1
ij to the oracle such that either

L(NXm+1
i ) ∩ L(NXm+1

j ) 6= ∅ or (AXm+1
ij , B

Xm+1
ij ) is not uniformly Turing reducible to

(L(NXm+1
i ), L(NXm+1

j )) via M
Xm+1
k . This construction ensures that for every i and j,

(L(NX
i ), L(NX

j )) is not ≤pp
uT -complete for DisjNPX .

We describe the construction of Xm+1. We choose some large enough n = nm,
and we will add words from Σn+1

ij to the oracle. We need a sufficient number of words
in Σn+1

ij for diagonalization. Therefore, n has to be large enough such that

rk(n)pi(rk(n))(pj(rk(n)) + 1) < 2n.

On the other hand, if m ≥ 2, then we have to make sure that adding words of length
ln+1
ij does not influence diagonalizations made in former steps. Therefore, if m ≥ 2
and m − 1 = 〈i′, j′, k′〉, then n > nm−1 and n has to be large enough such that
ln+1
ij is greater than l

nm−1+1
i′j′ , max(pi′(nm−1), pj′(nm−1)), and max(pi′(rk′(nm−1)),

pj′(rk′(nm−1))). Since nm−1 > nm−2 > · · · , these conditions not only guard against
interference with step m− 1, but guard against interference with all steps m′ < m.
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Suppose there exists an S ⊆ Σn+1
ij such that L(NXm∪S

i )∩L(NXm∪S
j )∩Σ≤rk(n) 6=

∅. Let Xm+1 = Xm ∪ S and go to the next stage m + 1.
Otherwise,

(1) for all S ⊆ Σn+1
ij , L(NXm∪S

i ) ∩ L(NXm∪S
j ) ∩ Σ≤rk(n) = ∅.

In this case, we consider the computation of Mk on 0n. We determine some w ∈ Σn+1
ij

and let Xm+1 = Xm∪{w}. We construct a set Q ⊆ L(NXm+1
j ). Hence L(NXm+1

i )∪Q

is a separator of (L(NXm+1
i ), L(NXm+1

j )). The sets Xm+1 and Q satisfy either

(2) 0n ∈ A
Xm+1
ij and 0n /∈ L(ML(N

Xm+1
i )∪Q

k )

or

(3) 0n ∈ B
Xm+1
ij and 0n ∈ L(ML(N

Xm+1
i )∪Q

k ).

This shows that (AXm+1
ij , B

Xm+1
ij ) does not ≤pp

uT -reduce to (L(NXm+1
i ), L(NXm+1

j ))
via Mk.

The difficulty of finding w and Q rises mainly from the following: If we want
to preserve the computation of Mk on 0n, then we have to ensure that all oracle
queries are preserved. Since the oracle is a separator of two NP languages, we have
to maintain the acceptance behaviors of Ni and Nj with respect to the queries made
by Mk(0n). This results in reserving too many strings. In particular, this may leave
no room for the diagonalization in Σn+1

ij . However, by Lemma 3.3, we can do better.
Now we construct the set Q, and at the same time we reserve strings for Xm+1.

The latter makes sure that either Ni or Nj rejects on certain queries.
Initially we set Q = ∅. We run Mk on 0n using oracle L(NXm

i ) ∪ Q, until the
first string q is queried. We apply Lemma 3.3 with M = Ni, N = Nj , Y = Xm, and
T = Σn+1

ij . By equation (1), the first statement of Lemma 3.3 cannot hold. Hence,
there is a set S′ ⊆ Σn+1

ij , ‖S′‖ ≤ pi(rk(n)) · (pj(rk(n)) + 1), such that either

(4) (∀S, S ⊆ Σn+1
ij , S ∩ S′ = ∅)[q /∈ L(NXm∪S

i )]

or

(5) (∀S, S ⊆ Σn+1
ij , S ∩ S′ = ∅)[q /∈ L(NXm∪S

j )].

We reserve all strings in S′ for Xm+1. If equation (4) is true, then we continue
running Mk without changing Q. (Hence, answer “no” to query q.) Otherwise, let
Q = Q ∪ {q} and continue running Mk with oracle Xm ∪ Q. (Hence, answer “yes”
to query q.) By the choice of q, Q remains a separator of (L(NXm

i ), L(NXm
j )). We

continue running Mk until the next string is queried and then apply Lemma 3.3 again,
obtain the set S′ that satisfies equation (4) or (5) for the new query, and update Q
accordingly. We do this repeatedly until the end of the computation of Mk on 0n.

The number of strings in Σn+1
ij that are reserved for Xm+1 is at most

rk(n) · pi(rk(n)) · (pj(rk(n)) + 1) < 2n.

So there exist a string 0i10j10x ∈ Σn+1
ij and a string 0i10j11y ∈ Σn+1

ij such that neither

string is reserved for Xm+1. If M
L(NXm

i )∪Q
k (0n) accepts, then let w = 0i10j11y.
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Otherwise, let w = 0i10j10x. We define Xm+1 = Xm ∪ {w}. This completes stage m
and we can go to the next stage m + 1.

The following two claims prove the correctness of the construction.
Claim 3.9. After every stage m = 〈i, j, k〉, either L(NXm+1

i ) ∩ L(NXm+1
j )∩

Σ≤rk(nm) 6= ∅ or (AXm+1
ij , B

Xm+1
ij ) does not ≤pp

uT -reduce to (L(NXm+1
i ), L(NXm+1

j ))
via Mk.

Proof. If L(NXm+1
i ) ∩ L(NXm+1

j ) ∩ Σ≤rk(nm) 6= ∅, then we are done. Otherwise,
it follows that equation (1) holds. In this case we constructed Q. We know that
every string that was added to Q is enforced to be rejected by NXm

j . Since w is
not reserved and Xm+1 = Xm ∪ {w}, Q is also in the complement of L(NXm+1

j ).
Therefore, L(NXm+1

i ) ∪Q is a separator of (L(NXm+1
i ), L(NXm+1

j )).

All queries of Mk(0nm) under oracle L(NXm+1
i ) ∪ Q are answered the same way

as in the construction of Q. The reason is as follows: For any query q, if we reserve
strings from Σnm+1

ij for Xm+1 such that Ni always rejects q (equation (4)), then q

will not be put into Q. Hence q will get the answer “no” from oracle L(NXm+1
i ) ∪Q,

which is the same as in the construction of Q. If we reserve strings from Σnm+1
ij for

Xm+1 such that Nj always rejects q (equation (5)), then q will be put into Q. Hence q

gets the answer “yes” under oracle L(NXm+1
i )∪Q, which is the same answer as given

in the construction of Q. Therefore, by the choice of w, we obtain the following:

• If M
L(N

Xm+1
i )∪Q

k (0nm) accepts, then 0nm+1 ∈ B
L(N

Xm+1
i )∪Q

ij .

• If M
L(N

Xm+1
i )∪Q

k (0nm) rejects, then 0nm+1 ∈ A
L(N

Xm+1
i )∪Q

ij .

Hence L(ML(N
Xm+1
i )∪Q

k ) does not separate (AXm+1
ij , B

Xm+1
ij ).

Claim 3.10. For all (C,D) ∈ DisjNPX , where C = L(NX
i ) and D = L(NX

j ), it
holds that (AX

ij , BX
ij ) ∈ DisjNPX and (AX

ij , BX
ij ) �pp

uT (C,D).

Proof. First, we claim that there is no stage m = 〈i, j, k〉 such that L(NXm+1
i ) ∩

L(NXm+1
j )∩Σ≤rk(nm) 6= ∅. Otherwise, since the number nm+1 is chosen large enough,

all strings that are added to the oracle in later stages will not change the computations
of Ni and Nj on inputs of lengths ≤ rk(nm). Therefore, L(NX

i ) ∩L(NX
j ) 6= ∅, which

contradicts our assumption.
From Claim 3.9 it follows that for every stage m = 〈i, j, k〉, (AXm+1

ij , B
Xm+1
ij ) does

not ≤pp
uT -reduce to (L(NXm+1

i ), L(NXm+1
j )) via Mk. Again, since nm+1 is chosen large

enough, all strings added to the oracle in later stages will not change the following:
1. The membership of 0nm in A

Xm+1
ij and B

Xm+1
ij . Strings of length lnm+1

ij are
only added to the oracle at stage m and not in any other stage.

2. The computations of Ni and Nj on inputs of lengths ≤ rk(nm) (which is the
maximal length of strings that can be queried by Mk on 0nm).

Hence, (AX
ij , BX

ij ) does not ≤pp
uT -reduce to (C,D) via Mk. Since this holds for all k,

we obtain (AX
ij , BX

ij ) �pp
uT (C,D).

It remains to observe that (AX
ij , BX

ij ) ∈ DisjNPX : For each m = 〈i, j, k〉 we
added exactly one string from Σnm+1

ij to the oracle. Moreover, for any other m′ =
〈i′, j′, k′〉 we added only words from Σnm′+1

i′j′ to the oracle; this does not influence AX
ij

and BX
ij .

This completes the proof of the theorem.
Corollary 3.11. For the oracle X from Theorem 3.8 it holds that PX 6= UPX .
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Proof. Choose i and j such that NX
i (resp., NX

j ) accepts X (resp., X). We show
that AX

ij ∈ UPX − PX .
Note that L(NX

i ) ∩ L(NX
j ) = ∅. By the construction in Theorem 3.11, for every

length n, we add at most one string of the form 0i10j10x, |x| = n, to the oracle. So
AX

ij ∈ UPX .
Assume AX

ij = L(MX
k ) for some deterministic polynomial-time oracle Turing ma-

chine Mk. Note that X is the only separator of (L(NX
i ), L(NX

j )). Therefore, it follows
that (AX

ij , BX
ij ) ≤pp

uT (L(NX
i ), L(NX

j )) via Mk. This contradicts Claim 3.10.

4. Function classes and disjoint pairs. We show that there exists a Turing-
complete disjoint NP-pair if and only if NPSV contains a Turing-complete partial
function. We know already that there is a connection between disjoint NP-pairs
and NPSV. Namely, Selman [Sel94] proved that Conjecture 2.4 holds if and only if
NPSV does not contain an NP-hard partial function, and Köbler and Messner [KM00]
proved that there exists a many-one-complete disjoint NP-pair if and only if NPSV
contains a many-one-complete partial function. Recall [Sel94] that NPSV is the set
of all partial, single-valued functions computed by nondeterministic polynomial-time-
bounded transducers.

If g is a single-valued total function, then we define M [g], the single-valued partial
function computed by M with oracle g, as follows: x ∈ dom(M [g]) if and only if M
reaches an accepting state on input x. In this case, M [g](x) is the final value of
M ’s output tape. In the case that g is a total function and f = M [g], we write
f ≤p

T g.
The literature contains two different definitions of reductions between partial

functions, because one must decide what to do in case a query is made to the or-
acle function when the query is not in the domain of the oracle function. Fenner
et al. [FHOS97] determined that in this case the value returned should be a special
symbol, ⊥. Selman [Sel94] permits the value returned in this case to be arbitrary,
which is the standard paradigm for promise problems. Here we use the promise prob-
lem definition of Selman [Sel94]. Recall that for multivalued partial functions f and g,
g is an extension of f if dom(f) ⊆ dom(g), and for all x ∈ dom(f) and for every y, if
g(x) 7→ y, then f(x) 7→ y.

Definition 4.1. For polynomial-length-bounded, partial multivalued functions f
and g, f is Turing reducible to g (as a promise problem, so we write f ≤pp

T g) in poly-
nomial time if for some deterministic polynomial-time-bounded oracle transducer M ,
for every single-valued total extension g′ of g, M [g′] is an extension of f .

Here, if the query q belongs to the domain of g, then the oracle returns a value
of g(q). We will use the result [Sel94] that f ≤pp

T g if and only if for every single-
valued total extension g′ of g, there is a single-valued total extension f ′ of f such that
f ′ ≤p

T g′.
A single-valued partial function g is ≤pp

T -complete for NPSV if g belongs to NPSV
and, for all f ∈ NPSV, f ≤pp

T g.
Theorem 4.2. NPSV contains a ≤pp

T -complete partial function ⇔ DisjNP con-
tains a ≤pp

T -complete pair.
Proof. For any f ∈ NPSV, define the following sets:

(6) Rf = {〈x, y〉 | x ∈ dom(f), y ≤ f(x)}

and

(7) Sf = {〈x, y〉 | x ∈ dom(f), y > f(x)}.
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Note that (Rf , Sf ) is a disjoint NP-pair.
Claim 4.3. For every separator A of (Rf , Sf ), there is a single-valued total

extension f ′ of f such that f ′ ≤p
T A.

Consider the following oracle transducer T that computes f ′ with oracle A. On
input x, if x ∈ dom(f), then T determines the value of f(x), using a binary search
algorithm, by making repeated queries to A. Note that for x ∈ dom(f) and for any y,
if y ≤ f(x), then 〈x, y〉 ∈ Rf , and if y > f(x), then 〈x, y〉 ∈ Sf . Clearly, T computes
some single-valued total extension of f . This proves the claim.

Let f be a ≤pp
T -complete function for NPSV and assume that A separates Rf

and Sf . By Claim 4.3, there is a single-valued total extension f ′ of f such that
f ′ ≤p

T A.
Let (U, V ) ∈ DisjNP. We want to show that (U, V ) ≤pp

T (Rf , Sf ). Define

g(x) =

 0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

Then g ∈ NPSV, so g ≤pp
T f . Therefore, there is a single-valued total extension g′

of g such that g′ ≤p
T f ′.

Define L = {x | g′(x) = 0}. It is easy to see that L ≤p
T g′. Also note that U ⊆ L

and V ⊆ L, and, therefore, L separates U and V . Then the following sequence of
reductions shows that L ≤p

T A:

L ≤p
T g′ ≤p

T f ′ ≤p
T A.

Thus, for every separator A of (Rf , Sf ), there is a separator L of (U, V ) such that
L ≤p

T A. Therefore, (Rf , Sf ) is ≤pp
T -complete for DisjNP.

For the other direction, assume that (U, V ) is ≤pp
T -complete for DisjNP. Define

the following function:

f(x) =

 0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

Clearly, f ∈ NPSV.
Let f ′ be a single-valued total extension of f , and let L = {x | f ′(x) = 0}. Clearly,

L ≤p
T f ′. Also, since U ⊆ L and V ⊆ L, L is a separator of (U, V ).
We want to show that for any g ∈ NPSV, g ≤pp

T f . Consider the disjoint NP-pair
(Rg, Sg) for the function g as defined in equations (6) and (7). There is a separator A
of (Rg, Sg) such that A ≤p

T L, since L is a separator of the ≤pp
T -complete disjoint

NP-pair (U, V ). As noted in Claim 4.3, there is a single-valued total extension g′

of g such that g′ ≤p
T A. Therefore, the following sequence of reductions shows that

g ≤pp
T f :

g′ ≤p
T A ≤p

T L ≤p
T f ′.

Hence, f is complete for NPSV.
Corollary 4.4.

1. Let f ∈ NPSV be ≤pp
T -complete for NPSV. Then (Rf , Sf ) is ≤pp

T -complete
for DisjNP.
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2. If (U, V ) is ≤pp
T -complete for DisjNP, then fU,V is complete for NPSV, where

fU,V (x) =

 0 if x ∈ U,
1 if x ∈ V,
↑ otherwise.

3. Relative to the oracle in Theorem 3.8, NPSV does not have a ≤pp
T -complete

partial function.

5. Nonsymmetric pairs and separation of reducibilities. Pudlák [Pud03]
defined a disjoint pair (A,B) to be symmetric if (B,A) ≤pp

m (A,B). Otherwise, (A,B)
is nonsymmetric. For example, the canonical disjoint NP-pair for the propositional
proof system Resolution is symmetric [Pud03] (see section 6.3 for the definition of
canonical pairs). In this section we give complexity-theoretic evidence of the exis-
tence of nonsymmetric disjoint NP-pairs. As a consequence, we obtain new ways to
demonstrate existence of P-inseparable sets and show that ≤pp

m and ≤pp
T reducibilities

differ for disjoint NP-pairs.
A set L is P-printable if there is k ≥ 1 such that all elements of L up to length n

can be printed by a deterministic Turing machine in time nk+k [HY84, HIS85]. Every
P-printable set is sparse and belongs to P. An infinite set A is P-printable-immune if
no infinite subset of A is P-printable.

A set L is p-selective if there is a polynomial-time-bounded function f such that
for every x, y ∈ Σ∗, f(x, y) ∈ {x, y}, and {x, y} ∩ L 6= ∅ ⇒ f(x, y) ∈ L [Sel79].

A partial function f ∈ PF is almost-always one-way [FPS01] if no polynomial-
time Turing machine inverts f correctly on more than a finite subset of range(f).

Proposition 5.1.
1. (A,B) is symmetric if and only if (B,A) is symmetric.
2. If (A,B) is P-separable, then (A,B) is symmetric.

Proof. The proof of the first assertion is trivial. For the proof of the second
assertion, let (A,B) be a P-separable disjoint NP-pair. Fix a ∈ A and b ∈ B, and
let the separator be S ∈ P. Consider the following polynomial-time computable
function f . On input x, if x ∈ S, then f outputs b; otherwise, f outputs a. Therefore,
x ∈ A implies x ∈ S, which implies f(x) = b ∈ B, and x ∈ B implies x /∈ S, which
implies f(x) = a ∈ A. Therefore, (A,B) ≤pp

m (B,A), i.e., (A,B) is symmetric.
We will show the existence of a nonsymmetric disjoint NP-pair under certain hy-

potheses, due to the following proposition, that will separate ≤pp
m and ≤pp

T reducibili-
ties.

Proposition 5.2.
1. If (A,B) is a nonsymmetric disjoint NP-pair, then (B,A) �pp

m (A,B).
2. For any disjoint NP-pair (A,B), (B,A) ≤pp

T (A,B).
Proof. The first assertion follows from the definition of symmetric pairs. For the

second assertion, observe that for any S separating A and B, S separates B and A,
while for any set S, S ≤p

T S.
We will use the following proposition in a crucial way to provide some evidence

for the existence of nonsymmetric disjoint NP-pairs. In other words, we will seek to
obtain a disjoint NP-pair (A,B) such that either A or B is p-selective, but (A,B) is
not P-separable.

Proposition 5.3. For any disjoint NP-pair (A,B), if either A or B is p-
selective, then (A,B) is symmetric if and only if (A,B) is P-separable.

Proof. We know from Proposition 5.1 that if (A,B) is P-separable, then it is
symmetric. Now assume that (A,B) is symmetric via some function f and assume
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(without loss of generality) that A is p-selective and the p-selector function is g. The
following algorithm M separates A and B. On input x, M runs g on the strings
(x, f(x)), and accepts x if and only if g outputs x. If x ∈ A, then f(x) ∈ B, and
therefore g has to output x. On the other hand, if x ∈ B, then f(x) ∈ A. So g will
output f(x) and M will reject x. Therefore, A ⊆ L(M) ⊆ B.

Now we give evidence for the existence of nonsymmetric disjoint NP-pairs.
Theorem 5.4. If E 6= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that

(A,A) is not symmetric.
Proof. If E 6= NE ∩ coNE, then there is a tally set T ∈ (NP ∩ coNP) − P. From

Selman [Sel79, Theorem 5], the existence of such a tally set implies that there is a
p-selective set A ∈ (NP ∩ coNP) − P. Clearly, (A,A) is not P-separable. Hence, by
Proposition 5.3, (A,A) is nonsymmetric.

As a corollary, if E 6= NE ∩ coNE, then there is a set A ∈ NP ∩ coNP such that
(A,A) �pp

m (A,A), yet clearly (A,A) ≤pp
T (A,A).

We will show that the hypotheses in Theorem 5.5 imply the existence of a non-
symmetric disjoint NP-pair. Note that the hypotheses in this theorem are similar to
those studied by Fortnow, Pavan, and Selman [FPS01] and Pavan and Selman [PS02].
However, our hypotheses are stronger than the former and weaker than the latter.

Theorem 5.5. The following are equivalent.
1. There is a UP-machine N that accepts 0∗ and, for every polynomial-time

machine M , {n | M on input 0n outputs the accepting computation of N on
input 0n} is a finite set.

2. There is a set S in UP accepted by a UP-machine N such that S has exactly
one string of every length and, for every polynomial-time machine M , the
following set is finite: {n | M on input 0n outputs the accepting computation
of N on input xn}, where xn denotes the word of length n that belongs to S.

3. There is an honest one-to-one, almost-always one-way function f such that
range(f) = 0∗.

4. There is a language L ∈ P that has exactly one string of every length and L
is P-printable-immune.

5. There is a language L ∈ UP that has exactly one string of every length and
L is P-printable-immune.

Proof. We show the following cycles: 1 ⇒ 2 ⇒ 3 ⇒ 1 and 1 ⇒ 4 ⇒ 5 ⇒ 1.
Trivially, item 1 implies item 2. To prove that item 2 implies item 3, let N be

a UP-machine that satisfies the conditions of item 2 and let S = L(N). For any
y that encodes an accepting computation of N on some string x, define f(y) = 0|x|.
Since y also encodes x, f is polynomial-time computable. Since N runs in polynomial
time, f is honest. On the other hand, if any polynomial-time computable machine
can invert f on 0n for infinitely many n, then that machine actually outputs infinitely
many accepting computations of N .

We show that item 3 implies item 1. Given f as in item 3, we know that since f is
honest, ∃k > 0 such that |x| ≤ |f(x)|k. We describe a UP-machine N that accepts 0∗.
On input 0n, N guesses x, |x| ≤ nk, and accepts 0n if and only if f(x) = 0n. Since f is
one-to-one, N has exactly one accepting path for every input of the form 0n, and since
range(f) = 0∗, L(N) = 0∗. If there is a polynomial-time machine M that outputs
infinitely many accepting computations of N , then M also inverts f on infinitely many
strings.

To prove that item 1 implies item 4, let N be the UP-machine in item 1. We can
assume without loss of generality that for all but finitely many n, on input 0n, N has
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exactly one accepting computation of length nk for some k > 0. Let us define the
following language:

L′ = {x10n10l | n ≥ 0, x is an accepting path of N(0n), and 0 ≤ l ≤ (n + 1)k − nk}.

It is easy to see that L′ is in P, and for all but finitely many n, L has exactly one
string of length n. Therefore, there exists a finite variation L ∈ P such that L has
exactly one string of every length. If L has an infinite P-printable subset, then so
has L′. Let M ′ be a polynomial-time transducer that prints an infinite subset of L′.
It follows that M ′ outputs infinitely many accepting computations of N .

Item 4 trivially implies item 5. We show that item 5 implies item 1. Let L be
such a language in UP via a UP-machine N . Define a UP-machine N ′ to accept 0∗ as
follows. On input 0n, N ′ guesses a string x of length n and a computation path w of N
on x. N ′ accepts 0n if and only if w is an accepting computation. If a polynomial-time
machine can output infinitely many accepting computations of N ′, then essentially
the same machine also outputs infinitely many strings in L, and hence L cannot be
P-printable-immune.

Theorem 5.6. Each of the hypotheses stated in Theorem 5.5 implies the existence
of nonsymmetric disjoint NP-pairs.

Proof. Let us define the following function:

dt(i) =
{

1 if i = 0,

22dt(i−1)
otherwise.

Let M be the UP-machine accepting 0∗, as in the first hypothesis in Theorem 5.5.
Let an be the accepting computation of M on 0n. We can assume that |an| = p(n),
where p(·) is some fixed polynomial. We define the following sets:

LM = {〈0n, w〉 | w ≤ an, n = dt(i) for some i > 0}

and

RM = {〈0n, w〉 | w > an, n = dt(i) for some i > 0}.

Note that (LM , RM ) is a disjoint NP-pair. We claim that LM is p-selective. The
description of a selector f for LM follows. Assume that 〈0k, w1〉 and 〈0l, w2〉 are
input to f . If k = l, then f outputs the lexicographically smaller one of w1 and w2.
Otherwise, assume that k < l, and without loss of generality, both k and l are in
range(dt). In that case, l ≥ 22k

> 2|ak|, and therefore f can compute ak, the accepting
computation of M on 0k, by checking all possible strings of length |ak|. Therefore, in
O(l) time, f outputs 〈0k, w1〉 if w1 ≤ ak, and outputs 〈0l, w2〉 otherwise. Similarly,
we can show that RM is p-selective.

We claim that (LM , RM ) is a nonsymmetric disjoint NP-pair. Assume on the
contrary that this pair is symmetric. Therefore, by Proposition 5.3 (LM , RM ) is P-
separable; i.e., there is S ∈ P that is a separator for (LM , RM ). Using a standard
binary search technique, a polynomial-time machine can compute the accepting com-
putation of M on any 0n, where n = dt(i) for some i > 0. Since the length of the
accepting computation of M on 0n is p(n), this binary search algorithm takes time
O(p(n)) which is polynomial in n. This contradicts our hypothesis, since we assumed
that no polynomial-time machine can compute infinitely many accepting computa-
tions of M . Therefore, (LM , RM ) is a nonsymmetric disjoint NP-pair.
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If the hypotheses stated in Theorem 5.5 hold, then there exists a disjoint NP-pair
(A,B) so that (A,B) �pp

m (B,A) while (A,B) ≤pp
T (B,A).

Grollmann and Selman [GS88] proved that the existence of P-inseparable disjoint
NP-pairs implies the existence of P-inseparable pairs where both sets of the pair are
NP-complete. The following results are in the same spirit. We note that natural
candidates for nonsymmetric (or ≤pp

m -complete) disjoint NP-pairs arise either from
cryptography or from proof systems [Pud03]. However, the following theorems show
that the existence of such pairs will imply that nonsymmetric (or ≤pp

m -complete)
disjoint NP-pairs exist where both sets of the pair are ≤p

m-complete for NP.
Theorem 5.7. There exists a nonsymmetric disjoint NP-pair (A,B) if and only

if there exists a nonsymmetric disjoint NP-pair (C,D) where both C and D are ≤p
m-

complete for NP.
Proof. The if part is trivial. We prove the only if part. Let {NMi}i≥1 be a

standard enumeration of polynomial-time-bounded nondeterministic Turing machines
with associated polynomial-time bounds {pi}i≥1. It is known that the following set
is NP-complete [BGS75]:

K = {〈i, x, 0n〉 | NMi accepts x within n steps}.

Let (A,B) be a nonsymmetric disjoint NP-pair. There exists i ≥ 1 such that A =
L(NMi), and A ≤p

m K via f(x) = 〈i, x, 0pi(|x|)〉. Note that f is honest and one-to-one.
Our first goal is to show that (K, f(B)) is nonsymmetric. Since f is a reduction

from A to K and A ∩ B = ∅, f(A) ⊆ K and f(B) ⊆ K, and so f(B) and K are
disjoint sets. Observe that f(B) is in NP because on any input y, we can guess x,
and verify that x ∈ B and f(x) = y. Therefore, (K, f(B)) is a disjoint NP-pair, and
K is ≤p

m-complete for NP.
In order to prove that this pair is nonsymmetric, assume otherwise. Then

(K, f(B)) ≤pp
m (f(B),K) and, therefore, ∃g ∈ PF such that g(K) ⊆ f(B) and

g(f(B)) ⊆ K. Consider the following polynomial-time computable function h. On
input x, h first computes y = g(f(x)). If y = 〈i, x′, 0pi(|x′|)〉 for some x′, then h
outputs x′; otherwise, it returns a fixed string a ∈ A. We claim that h(A) ⊆ B
and h(B) ⊆ A, thereby making (A,B) symmetric. For any x ∈ A, we know that
f(x) ∈ K. Hence g(f(x)) ∈ f(B), since g(K) ⊆ f(B). So g(f(x)) = 〈i, x′, 0pi(|x′|)〉
for some x′ ∈ B, and so h(x) = x′ ∈ B. For any x ∈ B, y = g(f(x)) ∈ K, since
g(f(B)) ⊆ K. If y = 〈i, x′, 0pi(|x′|)〉 for some x′, then x′ must be in A; else h will
return a ∈ A, and so, in either case, x ∈ B will imply that h(x) ∈ A. Therefore,
h(A) ⊆ B and h(B) ⊆ A. Thus (A,B) ≤pp

m (B,A), contradicting the fact that (A,B)
is nonsymmetric. Hence (K, f(B)) is a nonsymmetric disjoint NP-pair.

To complete the proof of the theorem, apply the construction once again, this time
with an honest reduction f ′ from f(B) to K. Namely, f ′(f(B)) ⊆ K and f ′(K) ⊆ K.
Similar to the above argument, it can be shown that f ′(K) and K are disjoint. Also,
since f ′ is one-to-one, we claim that f ′(K) is ≤p

m-complete for NP. Clearly, x ∈ K
implies f ′(x) ∈ f ′(K). On the other hand, for some x /∈ K, f ′(x) cannot be in f ′(K);
otherwise, f ′(x) = f ′(y) for some y′ ∈ K, contradicting the fact that f ′ is one-to-one.
Then K and f ′(K) are disjoint NP-complete sets, and the argument already given
shows that (f ′(K),K) is nonsymmetric.

Theorem 5.8. There exists a ≤pp
m -complete disjoint NP-pair (A,B) if and only

if there exists a ≤pp
m -complete disjoint NP-pair (C,D), where both C and D are ≤p

m-
complete sets for NP.

Proof. The proof is similar to that of Theorem 5.7. Consider the one-to-one
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function f defined by f(x) = 〈i, x, 0pi(|x|)〉 that many-one reduces A to the canonical
NP-complete set K.

Obviously (A,B) ≤pp
m (K, f(B)) via f , since f(A) ⊆ K, and K ∩ f(B) = ∅, as

shown in the proof of Theorem 5.7. Similar to that theorem, we apply the one-to-
one function f ′ that many-one reduces f(B) to K to obtain another disjoint pair
(f ′(K),K) where (K, f(B)) ≤pp

m (f ′(K),K) via f ′. So (A,B) ≤pp
m (K, f(B)) ≤pp

m

(f ′(K),K). Therefore (f ′(K),K) is also a ≤pp
m -complete disjoint NP-pair, and both

f ′(K) and K are ≤p
m-complete sets for NP.

6. Optimal proof systems relative to an oracle. The question of whether
optimal propositional proof systems exist has been studied in detail. Pudlák [Pud86]
and Kraj́ıček and Pudlák [KP89] showed that NE = coNE implies the existence
of optimal proof systems. Ben-David and Gringauze [BDG98] and Köbler, Mess-
ner, and Torán [KMT03] obtained the same conclusion under weaker assumptions.
On the other hand, Messner and Torán [MT98] and Köbler, Messner, and Torán
[KMT03] proved that existence of optimal proof systems results in the existence of
≤p

m-complete sets for the promise class NP ∩ SPARSE. These results hold relative
to all oracles. Therefore, optimal proof systems exist relative to any oracle in which
NE = coNE holds. Kraj́ıček and Pudlák [KP89], Ben-David and Gringauze [BDG98],
and Buhrman et al. [BFFvM00] constructed oracles relative to which optimal proof
systems do not exist. In addition, NP∩SPARSE does not have complete sets relative
to the latter oracle.

The relationship between the existence of optimal proof systems and disjoint NP-
pairs was first established by Razborov [Raz94], who showed that the existence of
optimal proof systems implies the existence of many-one-complete disjoint NP-pairs.
Köbler, Messner, and Torán [KMT03] proved that this holds even for a stronger form
of many-one reductions. They defined strong many-one reduction (we denote this by
≤pp

sm) between disjoint NP-pairs as follows: (A,B) ≤pp
sm (C,D) if there is f ∈ PF such

that f(A) ⊆ C, f(B) ⊆ D, and f(A ∪B) ⊆ C ∪D.1

In this section, we construct two oracles, O1 and O2. Relative to O1, NE = coNE,
and therefore [Pud86, KP89] optimal proof systems exist, implying the existence
of ≤p

m-complete sets for NP ∩ SPARSE [MT98] as well as the existence of ≤pp
sm-

complete disjoint NP-pairs [KMT03]. On the other hand, relative to this oracle,
E 6= NE∩coNE = NE, thus implying, by Theorem 5.4, that nonsymmetric (and there-
fore P-inseparable) pairs exist. Since nonexistence of ≤pp

T -complete disjoint NP-pairs
implies Conjecture 2.4, it is natural to ask whether the converse of this implication
holds. Relative to O1, Conjecture 2.4 holds, and so the converse is false.

Ben-David and Gringauze [BDG98] asked whether the converse to Razborov’s
result holds. Relative to O2, NP ∩ SPARSE does not have a complete set, and so
optimal proof systems do not exist. On the other hand, ≤pp

sm-complete disjoint NP-
pairs exist. This shows that the converse to Razborov’s result does not hold (even for
the stronger notion of many-one reduction) in a relativized setting. Relative to O2,
the existence of ≤pp

sm-complete disjoint NP-pairs does not imply the existence of ≤p
m-

complete sets in NP∩SPARSE. In addition, relative to O2, NE 6= coNE [Pud86, KP89]
and nonsymmetric disjoint NP-pairs exist.

Since relative to both O1 and O2, Conjecture 2.4 holds, ≤pp
sm-complete disjoint

NP-pairs exist, and nonsymmetric pairs exist, it follows that these are “independent”

1A forthcoming paper [GSS04] proves that there exist ≤pp
sm-complete disjoint NP-pairs if and

only if there exist ≤pp
m -complete disjoint NP-pairs.
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Table 1
Comparison of oracle properties.

O1 O2

∃ ≤pp
sm-complete disjoint NP-pairs Yes Yes

∃ nonsymmetric disjoint NP-pairs Yes Yes

Conjecture 2.4 holds Yes Yes

E 6= NE Yes Yes

NE = coNE Yes No

∃ optimal propositional proof systems Yes No

NP ∩ SPARSE has ≤p
m-complete sets Yes No

of the assertion that NE = coNE, the existence of optimal proof systems, and existence
of ≤p

m-complete sets in NP ∩ SPARSE. In Table 1, we summarize the properties of
both oracles; “Yes” denotes that a particular property holds, while “No” means that
the property does not hold.

6.1. Notation. We fix the following enumerations: {NM i}i is an effective enu-
meration of nondeterministic, polynomial-time-bounded oracle Turing machines;
{NEi}i is an effective enumeration of nondeterministic, linear exponential-time-
bounded oracle Turing machines; {Mi}i is an effective enumeration of deterministic,
polynomial-time-bounded oracle Turing machines; {Ei}i is an effective enumeration
of deterministic, linear exponential-time-bounded oracle Turing machines; and {Ti}i

is an effective enumeration of deterministic, polynomial-time-bounded oracle Turing
transducers. Moreover, NM i, Mi, and Ti have running time pi = ni, and NEi and Ei

have running time 2in independent of the choice of the oracle. For any oracle Z, let
fZ

i denote the function that TZ
i computes.

We use the following model of nondeterministic oracle Turing machines. On some
input the machine starts the first phase of its computation, during which it is allowed
to make nondeterministic branches. In this phase the machine is not allowed to ask
any queries. At the end of the first phase the machine has computed a list of queries
q1, . . . , qn, a list of guessed answers g1, . . . , gn, and a character, which is either +
or −. Now the machine asks in parallel all queries and gets the vector of answers
a1, . . . , an. The machine accepts if the computed character is + and (a1, . . . , an) =
(g1, . . . , gn); otherwise the machine rejects. An easy observation shows that for every
nondeterministic polynomial-time oracle Turing machine M there exists a machine N
that works in the described way such that for all oracles X, L(MX) = L(NX).2

The analogous statement holds for nondeterministic, linear exponential-time-bounded
oracle Turing machines.

A computation path P of a nondeterministic polynomial-time oracle Turing ma-
chine N on an input x contains all nondeterministic choices, all queries, and all guessed
answers. A computation path P that has the character + (resp., −) is called a positive
(resp., negative) path. The set of queries that are guessed to be answered positively
(resp., negatively) is denoted by P yes (resp., P no); the set of all queries is denoted
by P all df= P yes ∪ P no. The length of P (i.e., the number of computation steps) is
denoted by |P |. Note that this description of paths makes it possible to talk about
paths of computations without specifying the oracle; i.e., we can say that N on x has

2Note that for this property we need both: the character must be + and gi must be guessed
correctly. If the machine accepts just when the answers are guessed correctly, then we miss the
machine that accepts ∅ for every oracle.
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a positive path P such that P yes and P no satisfy certain conditions. However, when
talking about accepting and rejecting paths we always have to specify the oracle. (A
positive path can be accepting for certain oracles, and it can be rejecting for other
oracles.)

For X, Y ⊆ Σ∗ we write Y ⊇m X if X ⊆ Σ≤m and Y ≤m = X. We write
Y ⊆m X if and only if X ⊇m Y . We need to consider injective, partial functions
µ : N+ → N × N+ that have a finite domain. We do not distinguish between the
function and the set of all (n, i, j) such that µ(n) = (i, j). We denote both by µ. Let
µ and µ′ be injective, partial functions N+ → N × N+ that have a finite domain. If
µ 6= ∅, then µmax

df= max(dom(µ)). We write µ � µ′ if either µ = ∅, or µ ⊆ µ′ and
µmax < n for all n ∈ dom(µ′ − µ). We write µ ≺ µ′ if µ � µ′ and µ 6= µ′.

For j ≥ 1, SPARSEj denotes the class of all languages L such that for all k ≥ 0,
‖L ∩ Σk‖ ≤ kj + j.

6.2. Existence of optimal proof systems. Now we develop the first of these
oracles.

Theorem 6.1. There exists an oracle relative to which the following holds:
(i) E 6= NE = coNE.
(ii) Conjecture 2.4 holds.
For a fixed set X, let us define the following set, which is complete for NEX :

CX df= {〈i, x, l〉 | NEX
i accepts x within l steps}.

We also define the following property:

P1: 〈i, x, l〉 ∈ CX ⇔ (∀y, |y| = 22|〈i,x,l〉|)[〈i, x, l〉y /∈ X].

We call a set X ⊆ Σ≤k k-valid if property P1 holds for all strings 〈i, x, l〉 such that
|〈i, x, l〉| + 22|〈i,x,l〉| ≤ k. Note that ∅ is 0-valid and that the condition on the right-
hand side of P1 only depends on words in X that have length 22n +n for some natural
number n. We define the following sets:

AX df= {0n | (n is odd) ∧ (∃y, |y| = 2n)[y ∈ X]}

and

BX df= {02n

z | (n is odd) ∧ |z| = 2n ∧ (∃y, |y| = 2n)[zy ∈ X]}.

Clearly, AX ∈ NEX and BX ∈ NPX . We require the following for O1:
1. CO1 ∈ coNEO1 . (This implies NEO1 = coNEO1 , because CO1 is complete for

NEO1 by a reduction that is computable in linear time.)
2. AO1 /∈ EO1 (which implies EO1 6= NEO1 , since AO1 ∈ NEO1).
3. For every i, j, and r, BO1 does not ≤pp

T -reduce to (L(NMO1
i ), L(NMO1

j ))
via Mr. This will ensure that Conjecture 2.4 holds relative to O1.

Proof of Theorem 6.1. We will begin by stating two lemmas that will be used in
this proof.

Lemma 6.2. For every i and every k-valid X, there exists an l-valid Y ⊇k X,
where l > k, such that for every Z ⊇l Y , AZ 6= L(EZ

i ).
Lemma 6.3. For every i, j, r and every k-valid X, there exists an l-valid Y ⊇k X,

where l > k, such that for every Z ⊇l Y , BZ does not ≤pp
T -reduce to (L(NMZ

i ),
L(NMZ

j )) via Mr.
We define the following list T of requirements. At the beginning of the construc-

tion, T contains {i}i≥1 and {(i, j, r)}i,j,r≥1. These have the following interpretations:
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• i ∈ T : ensure that AO1 6= L(EO1
i ).

• (i, j, r) ∈ T : ensure that BO1 does not ≤pp
T -reduce to (L(NMO1

i ), L(NMO1
j ))

via Mr.
The following algorithm is used to construct the oracle O1.
1 O1 := ∅; k := 0
2 while {true} {
3 Remove the next requirement t from T
4 if t = i then
5 apply Lemma 6.2 with X = O1 to get Y and l
6 else // t = (i, j, r)
7 apply Lemma 6.3 with X = O1 to get Y and l
8 O1 := Y; k := l
9 }

It is clear that the oracle constructed by this algorithm satisfies items (i) and (ii)
of Theorem 6.1. It remains to prove Lemmas 6.2 and 6.3.

Proof of Lemma 6.2. Fix an i and let X be any k-valid oracle. Let n be the
smallest odd length such that k ≤ 2n−1, n−1 < 2n−1, and 2in < 22n

. Note first that
we can assume that k = 2n−1. Otherwise, we claim that X can be extended to some
(2n − 1)-valid oracle X ′ ⊇k X. Assume that X is (m− 1)-valid for k < m ≤ 2n − 1;
we will show how X can be extended to an m-valid oracle. This can be iterated to
extend X to be (2n − 1)-valid.

Assume m = 22r + r and consider some 〈j, x, l〉 of length r. (If m is not of this
form, then, by property P1, an (m−1)-valid oracle is automatically an m-valid oracle.)

Note that |x| ≤ r and |l| ≤ r. Hence, NEX
j (x) can ask only queries of length

≤ 2r < m− 1. The answers to these queries will not change during the later stages of
the construction. So the result of NEX

j (x) is fixed. If NEX
j (x) rejects within l steps,

then choose some y of length 22r and put 〈j, x, l〉y in X. Otherwise, do not put any
such string in X. After all strings 〈j, x, l〉 are treated, we obtain an oracle X that is
m-valid. This shows that we can assume X to be (2n − 1)-valid.

Also note that any string w = 〈j, x, l〉y cannot have length 2n. If |w| = 2n, then,
since |y| = 22|〈j,x,l〉|, |〈j, x, l〉| < n/2. Hence, the highest length possible for 〈j, x, l〉 is
(n − 1)/2, in which case |y| = 2n−1 and |w| = (n − 1)/2 + 2n−2 < 2n. If |〈j, x, l〉| is
even smaller, then y is of smaller length as well, and so is |w|. This shows that |w|
can never be 2n for any n. As a consequence, we know that at stage k + 1 we do not
have to put any strings of the form 〈j, x, l〉y into X. Therefore, we can use this stage
for diagonalization.

Now we want to show that there exists an l-valid Y , l ≥ 2n, such that for every
Z ⊇l Y , AZ 6= L(EZ

i ). Consider the computation of EX
i on 0n. Since the running

time of Ei is bounded above by 2in, the queries made by EX
i (0n) have length at

most 2in. Let N be the set of queries of length ≥ 2n (these are answered “no” in this
computation). Note that ‖N‖ ≤ 2in < 22n

. We put some v ∈ Σ2n − N in X if and
only if EX

i (0n) rejects. By the above discussion, k = 2n 6= 22r + r for any r, and so v
cannot be of the form 〈j, x, l〉y. Therefore, X is 2n-valid.

Claim 6.4. We can extend X to some 2in-valid Y ⊇2n X such that N ⊆ Y .
Proof. Fix some 〈j, x, l〉 such that 2n < |〈j, x, l〉y| ≤ 2in. First we show that

there are at least 22n

different such y for this 〈j, x, l〉. We show this by proving that
|y| ≥ 2n. If |y| < 2n, then, since length of y can only be a power of 2, let us assume that
y = 2n−1. Then |〈j, x, l〉| = (n−1)/2, and therefore |〈j, x, l〉y| = (n−1)/2+2n−1 < 2n,
contradicting that |〈j, x, l〉y| > 2n.
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Now, simulate NEX
j (x) for l steps. If the simulation NEX

j (x) accepts within
l steps, then do not update X. Otherwise, i.e., if the simulation rejects, then choose
y′ such that |y′| = 22|〈j,x,l〉| and 〈j, x, l〉y′ /∈ N . Put 〈j, x, l〉y′ in X. Existence of such y′

is ensured, since the possible number of these words is 22n

, whereas ‖N‖ ≤ 2in < 22n

.
So, if NEX

j accepts x within l steps, no extra string is put in X. On the other hand,
if NEX

j (x) does not accept within l steps, then we put an appropriate 〈j, x, l〉y′ /∈ N

in X. Once this procedure is completed for all 〈j, x, l〉, the oracle we obtain is 2in-valid.
We call that oracle Y . This proves Claim 6.4.

The proof of the lemma is completed by noting that Y ⊇2n X and Y ⊆ N .
Hence, 0n ∈ AY ⇔ 0n /∈ L(EY

i ). Let l = 2in (which is the l Lemma 6.2 refers
to). Any Z ⊇2in Y differs from Y only by strings of lengths > 2in. This does not
affect the computation of Ei(0n), and therefore, by our construction, it follows that
0n ∈ AZ ⇔ 0n /∈ L(EZ

i ). This proves Lemma 6.2.
Proof of Lemma 6.3. Similar to the proof of Lemma 6.2, we can assume that

k = 2n+1 − 1, where n is odd. Let c
df= (2n+1)r(i+j). We choose n to be large enough

so that the following hold:
• pr(2n+1)pi(pr(2n+1))(pj(pr(2n+1)) + 1) < 22n

;
• 2(2n+1)2r(i+j) < 22n

, i.e., 2c2 < 22n

.
Claim 6.5. There exist Y ′ ⊆ Σ≤c, N ′ ⊆ Σ≤c such that ‖Y ′‖ ≤ c2, ‖N ′‖ ≤ c2,

and for all X ′ ⊆ Σ2n+1
, if N ′ ⊆ X ′, then X ∪ Y ′ ∪X ′ is c-valid.

We will prove this claim later.
Choose some z such that |z| = 2n and for all y, |y| = 2n, zy /∈ Y ′, and zy /∈ N ′.

(Such a z exists because both ‖Y ′‖, ‖N ′‖ ≤ c2, and 2c2 < 22n

.) We can assume that

(8) (∀X ′ ⊆ zΣ2n

)[L(NMX∪Y ′∪X′

i ) ∩ L(NMX∪Y ′∪X′

j ) ∩ Σ≤pr(2n+1) = ∅].

Otherwise Y = X ∪ Y ′ ∪X ′ satisfies the requirement of Lemma 6.3.
We will consider the computation of Mr on 02n

z and construct sets Q and X ′

such that L(NMX∪Y ′∪X′

i )∪Q is a separator of L(NMX∪Y ′∪X′

i ) and L(NMX∪Y ′∪X′

j ),
and either

02n

z ∈ BX∪Y ′∪X′
and 02n

z /∈ L(ML(NMX∪Y ′∪X′
i )∪Q

r )

or

02n

z /∈ BX∪Y ′∪X′
and 02n

z ∈ L(ML(NMX∪Y ′∪X′
i )∪Q

r ).

This will imply that BX∪Y ′∪X′
does not ≤pp

T -reduce to (L(NMX∪Y ′∪X′

i ),
L(NMX∪Y ′∪X′

j )) via Mr. The details follow.
Initially we set Q = ∅. We run Mr on 02n

z using oracle L(NMX∪Y ′

i ) ∪ Q.
Note that this oracle is a separator of (L(NMX∪Y ′

i ), L(NMX∪Y ′

j )). The simulation
of Mr on 02n

z is continued until it makes some query q. At this point, we apply
Lemma 3.3 with M = NMi, N = NMj , Y = X ∪ Y ′, and T = zΣ2n

. Note that
on input 02n

z, Mr can make queries up to length pr(2n+1), and we have ‖T‖ =
22n

> pi(pr(2n+1))(pj(pr(2n+1)) + 1). By Lemma 3.3 and equation (8), there is a set
S′ ⊆ zΣ2n

such that either

(9) (∀S ⊆ zΣ2n

, S ∩ S′ = ∅)[q /∈ L(NMX∪Y ′∪S
i )]

or

(10) (∀S ⊆ zΣ2n

, S ∩ S′ = ∅)[q /∈ L(NMX∪Y ′∪S
j )].
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We know that ‖S′‖ ≤ pi(pr(2n+1))(pj(pr(2n+1)) + 1). We reserve all strings in S′

for X ′. If equation (9) is true, then we continue simulating Mr without modify-
ing the oracle (hence, answer “no” to query q). Otherwise, if equation (9) does
not hold, we update Q = Q ∪ {q} (hence, answer “yes” to query q and add q to
the oracle) and continue the simulation of Mr on 02n

z. We continue running Mr

until the next query, and then we apply Lemma 3.3 again, obtain the set S′ that
satisfies above equation (9) or equation (10) for the new query and update Q ac-
cordingly. We keep doing this until the end of the computation of Mr on 02n

z. The
number of strings in zΣ2n

we reserved for X ′ during the above process is at most
pr(2n+1)pi(pr(2n+1))(pj(pr(2n+1)) + 1) < 22n

since the running time of Mr on 02n

z
is bounded by pr(2n+1).

Since the number of strings reserved for X ′ in the above process is strictly less
than the number of strings of length 2n, there exists a string zy in zΣ2n

that is not
reserved for X ′. If Mr using oracle L(NMX∪Y ′

i ) ∪Q accepts 02n

z, we define X ′ = ∅.
In this case, 02n

z /∈ BX∪Y ′∪X′
. Otherwise, define X ′ = {zy}, in which case 02n

z ∈
BX∪Y ′∪X′

. Also observe that q is put in Q only when q /∈ L(NMX∪Y ′∪X′

j ). Therefore,
L(NMX∪Y ′∪X′

i ) ∪Q remains a separator of L(NMX∪Y ′∪X′

i ) and L(NMX∪Y ′∪X′

j ).
Let Y

df= X ∪ Y ′ ∪ X ′. It is clear from the discussion above that BY does not
≤pp

T -reduce to L(NMY
i , NMY

j ) via Mr. Since X ′ ⊆ N ′, Y is c = (2n+1)r(i+j)-valid.
Furthermore, any string q that can be queried by Mr on 02n

z is of length ≤ (2n+1)r.
Therefore, the strings that are queried by NMi and NMj on input q are of lengths
at most (2n+1)r(i+j) = c. This implies that for all Z ⊇c Y , BZ does not ≤pp

T -reduce
to (L(NMZ

i ), L(NMZ
j )) via Mr, since any string of length more than c will not affect

the outcome of the computation. It remains to prove Claim 6.5.
Proof of Claim 6.5. We use the following algorithm to construct Y ′ and N ′.

Recall that c = (2n+1)r(i+j).
1. Y′ = ∅, N′ = ∅
2. Treated = ∅
3. L = {〈i, x, l〉 | 2n+1 < |〈i, x, l〉y| ≤ c where |y| = 22|〈i,x,l〉|}
4. while L 6= ∅ {
5. Remove the smallest 〈i, x, l〉 from L
6. Treated = Treated ∪ {〈i, x, l〉}
7. if (∃X′ ⊆ Σ2

n+1

such that X′ ⊆ N′ and

NEX∪Y
′∪X′

i (x) accepts within l steps)
8. Choose an accepting path P
9. Y′ = Y′ ∪ Pyes and N′ = N′ ∪ Pno

else
10. Choose some y ∈ Σ2|〈i,x,l〉| such that 〈i, x, l〉y /∈ N′

11. Y′ = Y′ ∪ {〈i, x, l〉y}
12. } //end while.

We claim that after each iteration of the while loop, the following invariance holds:
For every X ′ ⊆ N ′∩Σ2n+1

, property P1 holds for each 〈i, x, l〉 in Treated with oracle
X ∪ Y ′ ∪X ′. Initially, when Treated is empty, this holds trivially.

Let us assume that 〈i, x, l〉 is put in Treated during iteration m ≥ 1 of the while
loop. It is straightforward to see that after this iteration, the statements in the loop
ensure that the invariance holds for 〈i, x, l〉, since 〈i, x, l〉y is put into the oracle if and
only if NEi does not accept x within l steps. We have to show that the invariance also
holds for every such triple that had been put into Treated in some iteration m′ < m.
Let 〈j, u, t〉 be such a triple. It suffices to show that for t steps, NEj(u) behaves the
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same way after the mth iteration as it does after the m′th iteration. Assume that
during the m′th iteration NEj accepted u in t steps. All the queries that are made on
that accepting path are already in Y ′ or N ′ accordingly. Therefore, that path remains
accepting even during the mth iteration.

On the other hand, let us assume that for every X ′, NEj rejected u in t steps
during the m′th iteration. We will show that it will still reject u after the mth
iteration. To see this, let us assume that a previously rejecting path has become an
accepting path after the mth iteration. A query that was answered “yes” at that
point cannot be answered “no” now, since Y ′ now contains strictly more strings. So
assume that the queries q1, . . . , qd were answered “no” during the m′th iteration with
X∪Y ′∪X ′ as the oracle and are now answered “yes.” All strings that are added to Y ′

after iteration m′ are either of lengths ≥ |〈j, u, t〉y| > t or are from some X ′ ⊆ Σ2n+1
.

Hence q1, . . . , qd must be of length 2n+1. Note that at least one of these queries
must have been in N ′ during the m′th iteration; otherwise NEj would accept u at
that point with oracle X ∪ Y ′ ∪ (X ′ ∪ {q1, . . . , qd}). But any string that was in N ′

during an earlier iteration is not put in X ′ or Y ′ in later iterations. Therefore, our
assumption is false, and NEj will reject u during the mth iteration as well. This
proves the invariance.

What remains to show are the bounds on the sizes of Y ′ and N ′ and the max-
imum length of strings in Y ′ and N ′. For the size of Y ′ and N ′, note that if
|〈i, x, l〉y| ≤ c, then, since |y| = 22|〈i,x,l〉|, |〈i, x, l〉| ≤ (log c)/2, and therefore ‖L‖ ≤
2(log c)/2+1 < c. On the other hand, during every iteration, at most l strings are added
to Y ′ and N ′, and |l| < |〈i, x, l〉| ≤ (log c)/2, and therefore l < c as well. Since both
Y ′ and N ′ are initially empty, they are at most c2 in size. The maximum length
of strings in Y ′ and N ′ is c since the longest string that is added to Y ′ or N ′ is
max〈i,x,l〉∈L |〈i, x, l〉y| ≤ c.

This completes the proof of Claim 6.5.
This finishes the proof of Lemma 6.3.
This proves Theorem 6.1.
Corollary 6.6. The oracle O1 of Theorem 6.1 has the following additional

properties:
(i) UPO1 6= NPO1 6= coNPO1 and NPMVO1 *c NPSVO1 .
(ii) Relative to O1, optimal propositional proof systems exist.
(iii) There exists a ≤pp,O1

sm -complete disjoint NPO1-pair (A,B) that is PO1-insep-
arable but symmetric.

6.3. Nonexistence of optimal proof systems. In this section we construct an
oracle relative to which there exist ≤pp

sm-complete disjoint NP-pairs. For any oracle X,
(A,B) ≤pp,X

sm (C,D) if there is a function f ∈ PFX such that f(A) ⊆ C, f(B) ⊆ D,
and f(A ∪B) ⊆ C ∪D.3

Theorem 6.7. There exists an oracle O2 relative to which the following holds:
(i) There exist ≤pp

sm-complete disjoint NP-pairs.
(ii) There exist nonsymmetric disjoint NP-pairs.
(iii) NP ∩ SPARSE does not have ≤p

m-complete sets.
(iv) Conjecture 2.4 holds.

3(A, B) ≤pp,X
m (C, D) if for every separator T ∈ Sep(C, D), there exists a separator S ∈ Sep(A, B)

such that S ≤p,X
m T . However, since Theorems 2.10 and 2.14 hold relative to all oracles, (A, B) ≤pp,X

m

(C, D) if and only if there is a function f ∈ PFX such that f(A) ⊆ C and f(B) ⊆ D. It follows

immediately that (A, B) ≤pp,X
sm (C, D) implies (A, B) ≤pp,X

m (C, D).
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Proof. In our construction we use the following witness languages, which depend
on an oracle Z:

A(Z) df= {w | w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[0wy ∈ Z]},
B(Z) df= {w | w = 0n10t1x for n, t ≥ 1, x ∈ Σ∗ and (∃y ∈ Σ3|w|+3)[1wy ∈ Z]},
C(Z) df= {0k | k ≡ 1 (mod 4), (∃y ∈ Σk−1)[0y ∈ Z]},
D(Z) df= {0k | k ≡ 1 (mod 4), (∃y ∈ Σk−1)[1y ∈ Z]},
Ei(Z) df= {0i1x | |0i1x| ≡ 1 (mod 4) and (∃y ∈ Σ∗, |y| = |0i1x|)[0i1xy ∈ Z]} for i ≥ 1,

F (Z) df= {0k | k ≡ 3 (mod 4), (∃y ∈ Σk)[y ∈ Z]}.

These languages are in NPZ . By definition, A(Z) and B(Z) depend on oracle words
of length ≡ 0 (mod 4), C(Z) and D(Z) depend on oracle words of length ≡ 1 (mod 4),
all Ei(Z) depend on oracle words of length ≡ 2 (mod 4), and F (Z) depends on oracle
words of length ≡ 3 (mod 4). We construct the oracle O2 such that A(O2)∩B(O2) =
C(O2) ∩D(O2) = ∅ and the following holds:

• (A(O2), B(O2)) is ≤pp
sm-complete. That is,

(∀(G, H) ∈ DisjNPO2)(∃f ∈ PF)
[f(G) ⊆ A(O2) ∧ f(H) ⊆ B(O2) ∧ f(G ∪H) ⊆ A(O2) ∪B(O2)].(11)

• (C(O2), D(O2)) is nonsymmetric. That is,

(12) (∀f ∈ PFO2)[f(C(O2)) * D(O2) ∨ f(D(O2)) * C(O2)].

• NPO2 ∩ SPARSE does not have ≤p,O2
m -complete sets. That is,

(∀j, L(NMO2
j ) ∈ SPARSEj)(∃n, En(O2) contains ≤ 2 words of every length)

(∀f ∈ PFO2)[En(O2) does not ≤p,O2
m -reduce to L(NMO2

j ) via f ].(13)

• F (O2) �pp,O2
T (A(O2), B(O2)). That is,

(14) (∃S, A(O2) ⊆ S ⊆ B(O2))[F (O2) /∈ PS ].

In (11) and (14) we really mean f ∈ PF and F (O2) /∈ PS ; we explain why this
is equivalent to f ∈ PFO2 and F (O2) /∈ PS,O2 . We have to see that expressions
(11), (12), (13), and (14) imply statements (i), (ii), (iii), and (iv) of Theorem 6.7.
For (11) and (12) this follows from the fact that f ∈ PF implies f ∈ PFO2 . Each
language in NP is accepted by infinitely many machines NMj . Therefore, if there
exists a sparse language L such that L is many-one-complete for NPO2 ∩ SPARSE,
then there exists a j ≥ 1 such that L = L(NMO2

j ) and L ∈ SPARSEj . This shows
that expression (13) implies (iii). In (14) we actually should have F (O2) /∈ PS,O2

since the reducing machine has access to the oracle O2. However, since (i) holds and
since (O2, O2) ∈ DisjNPO2 , there exists an f ∈ PF with f(O2) ⊆ A(O2) ⊆ S and
f(O2) ⊆ B(O2) ⊆ S. Hence, q ∈ O2 ⇔ f(q) ∈ S. So we can transform queries
to O2 into queries to S; i.e., it suffices to show F (O2) /∈ PS . By expression (14), the
complete pair (A(O2), B(O2)) is not NPO2-hard; it follows that no disjoint NPO2-pair
is NPO2-hard.

We define the following list T of requirements. At the beginning of the construc-
tion, T contains all pairs (i, n) with i ∈ {1, 2, 3, 4} and n ∈ N+. These pairs have the
following interpretations, which correspond to statements (i)–(iv) of Theorem 6.7:
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• (1, 〈i, j〉): ensure

L(NMO2
i ) ∩ L(NMO2

j ) 6= ∅

or

(L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)).

• (2, i): ensure that there exists some n such that [0n ∈ C(O2) ∧ TO2
i (0n) /∈

D(O2)] or [0n ∈ D(O2) ∧ TO2
i (0n) /∈ C(O2)].

• (3, 〈i, j〉): ensure either L(NMO2
j ) /∈ SPARSEj or [for some n, En(O2) con-

tains ≤ 2 words of every length, and En(O2) does not ≤p,O2
m -reduce to

L(NMO2
j ) via fO2

i ] (in the construction, n does not depend on i; i.e., (3, 〈i, j〉)
and (3, 〈i′, j〉) use the same n).

• (4, i): ensure that (A(O2), B(O2)) has a separator S such that 0n ∈ F (O2) ⇔
0n /∈ L(MS

i ).
Once a requirement is satisfied, we delete it from the list. Conditions of the form (2, ·)
and (4, ·) are reachable by the construction of one counterexample. In contrast, if we
cannot reach L(NMO2

i )∩L(NMO2
j ) 6= ∅ for a condition of the first type, then we have

to ensure (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)). Similarly, if we cannot reach

L(NMO2
j ) /∈ SPARSEj for a condition of the third type, then, for a suitable n, we

have to ensure that En(O2) contains ≤ 2 words of every length. But these conditions
cannot be reached by a finite segment of an oracle; instead they influence the whole
remaining construction of the oracle. We have to encode answers to queries of the
form “does x belong to L(NMO2

i ) or to L(NMO2
j )” into the oracle O2, and we have

to keep an eye on the number of elements of En(O2). For this reason we introduce
the notion of (µ, k)-valid oracles. Here k is a natural number and µ is an injective,
partial function N+ → N × N+ that has a finite domain. Each (µ, k)-valid oracle is
a subset of Σ≤k. If a pair (0, j), j ≥ 1, is in the range of µ, then this means that
L(NMO2

j ) ∈ SPARSEj is forced, and therefore we must construct O2 so that for a
suitable n, En(O2) contains ≤ 2 words of every length. If a pair (i, j), i, j ≥ 1,
is in the range of µ, then L(NMO2

i ) ∩ L(NMO2
j ) = ∅ is forced, and therefore we

must construct O2 so that (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)) holds. For

the latter condition we have to encode certain information into O2, and the number k
says up to which level this encoding has been done. So (µ, k)-valid oracles should be
considered as finite prefixes of oracles that contain these encodings. For the moment
we postpone the formal definition of (µ, k)-valid oracles (Definition 6.9); instead we
mention its essential properties, which we will prove later.

(a) The oracle ∅ is (∅, 0)-valid.
(b) If X is a finite oracle that is (µ, k)-valid, then for all µ′ � µ, X is (µ′, k)-valid.
(c) If O2 is an oracle such that for some µ, O2

≤k is (µ, k)-valid for infinitely
many k, then the following hold:

– A(O2) ∩B(O2) = C(O2) ∩D(O2) = ∅.
– For all (i, j) ∈ range(µ), if i > 0, then

(L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2))

via some f ∈ PF.
– For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every

length and L(NMO2
j ) ∈ SPARSEj .
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Properties (a), (b), and (c) will be proved later in Propositions 6.10 and 6.11. More-
over, we will prove the following for all i, j ≥ 1 and all (µ, k)-valid X. (Note that
there is a correspondence between (i)–(iv) and P1–P4.)

P1: There exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′ such that
• either for all Z ⊇l Y , L(NMZ

i ) ∩ L(NMZ
j ) 6= ∅, or

• (i, j) ∈ range(µ′).4

P2: There exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if
C(Z)∩D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z))
via TZ

i .
P3: (a) There exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′, such that

• either for all Z ⊇l Y , L(NMZ
j ) /∈ SPARSEj , or

• (0, j) ∈ range(µ′).
(b) For every n, if µ(n) = (0, j), then there exists an l > k and a (µ, l)-

valid Y ⊇k X such that for all Z ⊇l Y , En(Z) does not ≤p,Z
m -reduce to

L(NMZ
j ) via fZ

i .
P4: There exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if

A(Z) ∩B(Z) = ∅, then there exists a separator S of (A(Z), B(Z)) such that
F (Z) 6= L(MS

i ).
We will prove properties P1, P2, P3(a), P3(b), and P4 in Propositions 6.21, 6.22,
6.23, 6.25, and 6.32, respectively.

We construct an ascending sequence of finite oracles X0 ⊆k0 X1 ⊆k1 X2 ⊆k2 · · ·
such that each Xr is (µr, kr)-valid, k0 < k1 < k2 < · · · , and µ0 � µ1 � µ2 � · · · . By
definition, O2 =

⋃
r≥0 Xr. By items (b) and (c), A(O2)∩B(O2) = C(O2)∩D(O2) = ∅

follows immediately. Note that for each r ≥ 0 and i ≥ 1 it holds that Xr+i ⊇kr
Xr

and µr � µr+i.
1. r := 0, kr := 0, µr := ∅, and Xr := ∅. Then by (a), Xr is (µr, kr)-valid.
2. Let e be the next requirement on T .

(a) If e = (1, 〈i, j〉), then we apply property P1 to Xr. Define kr+1 = l,
µr+1 = µ′, and Xr+1 = Y . Then kr < kr+1, µr � µr+1, and Xr+1 ⊇kr

Xr is (µr+1, kr+1)-valid such that
• either for all Z ⊇kr+1 Xr+1, L(NMZ

i ) ∩ L(NMZ
j ) 6= ∅, or

• (i, j) ∈ range(µr+1).
Remove e from T and go to step 3.
Comment: If the former holds, then, since O2 ⊇kr+1 Xr+1, it holds that L(NMO2

i )∩
L(NMO2

j ) 6= ∅, and therefore (L(NMO2
i ), L(NMO2

j )) /∈ DisjNPO2 . Otherwise,

(i, j) ∈ range(µr+1). By (b), for all i ≥ 1, Xr+i is (µr+1, kr+i)-valid. Therefore,

by (c), (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2)) via some f ∈ PF.

(b) If e = (2, i), then µr+1
df= µr and apply property P2 to Xr. We de-

fine kr+1 = l and Xr+1 = Y . Then kr+1 > kr and Xr+1 ⊇kr
Xr is

(µr+1, kr+1)-valid so that for all Z ⊇kr+1 Xr+1, if C(Z) ∩ D(Z) = ∅,
then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z)) via TZ
i . Re-

move e from T and go to step 3.
Comment: Since O2 ⊇kr+1 Xr+1 and C(O2)∩D(O2) = ∅, this ensures that (C(O2),

D(O2)) does not ≤pp,O2
m -reduce to (D(O2), C(O2)) via T O2

i .

(c) If e = (3, 〈i, j〉) and (0, j) /∈ range(µr), then we apply property P3(a)
to Xr. Define kr+1 = l, µr+1 = µ′, and Xr+1 = Y . Then kr < kr+1,
µr � µr+1, and Xr+1 ⊇kr

Xr is (µr+1, kr+1)-valid such that
• either for all Z ⊇kr+1 Xr+1, L(NMZ

j ) /∈ SPARSEj , or

4Proposition 6.21 says L(NMZ
i ) ∩ L(NMZ

j ) ∩ Σ≤l 6= ∅, which is a stronger statement.
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• (0, j) ∈ range(µr+1).
If the former holds, then remove e from T and go to step 3. Otherwise,
do not remove e from T (it will be removed in the next iteration) and
go to step 3.
Comment: If the former of the two alternatives holds, then, since O2 ⊇kr+1 Xr+1,

it holds that L(NMO2
j ) /∈ SPARSEj . Otherwise, for a suitable n, (n, 0, j) ∈ µr+1.

By (b), for all i ≥ 1, Xr+i is (µr+1, kr+i)-valid. Therefore, by (c), it is enforced that

En(O2) contains ≤ 2 words of every length and L(NMO2
j ) ∈ SPARSEj . From now

on, all requirements of the form (3, 〈·, j〉) are treated in step 2(d). These steps will

make sure that En(O2) �p,O2
m L(NMO2

j ).

(d) If e = (3, 〈i, j〉) and (0, j) ∈ range(µr), then choose n such that (n, 0, j) ∈
µr and apply property P3(b) to Xr. Define kr+1 = l, µr+1 = µr,
and Xr+1 = Y . Then kr < kr+1, µr � µr+1, and Xr+1 ⊇kr

Xr is
(µr+1, kr+1)-valid such that for all Z ⊇kr+1 Xr+1, En(Z) does not ≤p,Z

m -
reduce to L(NMZ

j ) via fZ
i . Remove e from T and go to step 3.

Comment: In the comment of the previous step we have seen that (0, j) ∈ range(µr)

implies that En(O2) ∈ SPARSEj+1. Since O2 ⊇kr+1 Xr+1 this step ensures that

En(O2) does not ≤p,O2
m -reduce to L(NMO2

j ) via fO2
i .

(e) If e = (4, i), then µr+1
df= µr and apply property P4 to Xr. We de-

fine kr+1 = l and Xr+1 = Y . Then kr+1 > kr and Xr+1 ⊇kr Xr is
(µr+1, kr+1)-valid such that for all Z ⊇kr+1 Xr+1, if A(Z) ∩ B(Z) = ∅,
then there exists a separator S of (A(Z), B(Z)) such that F (Z) 6=
L(MS

i ). Remove e from T and go to step 3.
Comment: Since O2 ⊇kr+1 Xr+1 and A(O2) ∩ B(O2) = ∅, this ensures that there

exists a separator S of (A(O2), B(O2)) such that F (O2) 6= L(MS
i ).

3. r := r + 1, go to step 2.
We see that this construction ensures (i), (ii), (iii), and (iv). This proves Theorem 6.7
except to show that we can define an appropriate notion of a (µ, k)-valid oracle that
has properties (a), (b), (c) and P1, P2, P3, P4.

We want to construct our oracle such that (A(O2), B(O2)) is a ≤pp
sm-complete

disjoint NPO2-pair. So we have to make sure that pairs (L(NMi), L(NMj)) that are
enforced to be disjoint (which means that (i, j) ∈ range(µ)) can be ≤pp

sm-reduced
to (A(O2), B(O2)). Therefore, we put certain codewords into O2 if and only if the
computation NMO2

i (x) (resp., NMO2
j (x)) accepts within t steps.

Definition 6.8 (µ-codeword). Let µ : N+ → N × N+ be an injective, partial
function with a finite domain. A word w is called a µ-codeword if w = 00n10t1xy
or w = 10n10t1xy such that n, t ≥ 1, |y| = 3|00n10t1x|, and µ(n) = (i, j) such
that i, j ≥ 1. If w = 00n10t1xy, then we say that w is a µ-codeword for (i, t, x); if
w = 10n10t1xy, then we say it is a µ-codeword for (j, t, x).

Condition (i) of Theorem 6.7 opposes conditions (ii), (iii), and (iv), because for (i)
we have to encode information about NPO2 computations into O2, and (ii), (iii),
and (iv) say that we cannot encode too much information (e.g., enough information
for UPO2 = NPO2). For this reason we have to look at certain finite oracles that
contain the needed information for (i) and that allow all diagonalization needed to
reach (ii), (iii), and (iv). We call such oracles (µ, k)-valid.

Definition 6.9 ((µ, k)-valid oracle). Let k ≥ 0 and let µ : N+ → N × N+ be
an injective, partial function with a finite domain. We define a finite oracle X to be
(µ, k)-valid by induction over the size of the domain of µ.

(IB) If ‖µ‖ = 0, then X is (µ, k)-valid
df⇐⇒ X ⊆ Σ≤k and A(X) ∩ B(X) =

C(X) ∩D(X) = ∅.



1398 C. GLASSER, A. SELMAN, S. SENGUPTA, AND L. ZHANG

(IS) If ‖µ‖ > 0, then µ = µ0 ∪ {(n0, i0, j0)}, where n0 = µmax and µ0 ≺ µ. X is

(µ, k)-valid
df⇐⇒ k ≥ n0, X is (µ0, k)-valid, and the following holds:

1. If i0 > 0, then we demand the following:
(a) For all t ≥ 1 and all x ∈ Σ∗, if 4 · |00n010t1x| ≤ k, then

(i) (∃y, |y| = 3|00n010t1x|)[00n010t1xy ∈ X] ⇔ NMX
i0 (x) accepts

within t steps, and
(ii) (∃y, |y| = 3|10n010t1x|)[10n010t1xy ∈ X] ⇔ NMX

j0(x) accepts
within t steps.

(b) For all l ≥ n0 and all (µ0, l)-valid Y , if Y ≤n0 = X≤n0 , then
L(NMY

i0) ∩ L(NMY
j0) ∩ Σ≤l = ∅.

2. If i0 = 0, then
(a) for every r ≥ 0, ‖En0(X) ∩ Σr‖ ≤ 2, and
(b) for all l ≥ n0 and all (µ0, l)-valid Y , if Y ≤n0 = X≤n0 , then

L(NMY
j0) ∩ Σ≤l ∈ SPARSEj0 .

Due to conditions 1(b) and 2(b), (µ, k)-valid oracles can be extended to (µ, k′)-
valid oracles with k′ > k (Lemma 6.17). There we really need the intersection with
Σ≤l. Otherwise—for example, in 1(b)—it could be possible that for a small oracle
Y ⊆ Σ≤l both machines accept the same word w that is much longer than l, but there
is no way to extend Y in a valid way to the level |w| such that both machines still
accept w (the reason is that the reservations (Definition 6.12) become too large).

Proposition 6.10 (basic properties of validity).
1. The oracle ∅ is (∅, 0)-valid (property (a)).
2. For every (µ, k)-valid X and every µ′ � µ, X is (µ′, k)-valid (property (b)).
3. For every (µ, k)-valid X and every (n, 0, j) ∈ µ, it holds that

(a) for every r ≥ 0, ‖En(X) ∩ Σr‖ ≤ 2, and
(b) L(NMX

j ) ∩ Σ≤k ∈ SPARSEj.
4. Let X be (µ, k)-valid and S ⊆ Σk+1 such that k + 1 6≡ 0 (mod 4), C(S) ∩

D(S) = ∅, and for all (n, 0, j) ∈ µ it holds that ‖En(S)‖ ≤ 2. Then X ∪S is
(µ, k + 1)-valid.

5. For every (µ, k)-valid X and every (i, j) ∈ range(µ), i > 0, it holds that
L(NMX

i ) ∩ L(NMX
j ) ∩ Σ≤k = ∅.

6. If X is (µ, k)-valid, then for every k′, µmax ≤ k′ ≤ k (resp., 0 ≤ k′ ≤ k if
µ = ∅), it holds that X≤k′ is (µ, k′)-valid.

Proof. Statements 6.10.1 and 6.10.2 follow immediately from Definition 6.9.
Let X be (µ, k)-valid and let (n, 0, j) ∈ µ. Let n0

df= n, i0
df= 0, j0

df= j, and
µ0

df= {(n′, i′, j′) ∈ µ | n′ < n}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and also
(µ0, k)-valid. From 6.9.2(a) it follows that 6.10.3(a) holds. From 6.9.2(b) (for l = k
and Y = X) we obtain L(NMX

j0
) ∩ Σ≤k ∈ SPARSEj0 . This shows 6.10.3(b).

We prove statement 6.10.4 by induction on ‖µ‖. First of all we see that A(S) =
B(S) = ∅, since S contains no words of length ≡ 0 (mod 4). If ‖µ‖ = 0, then, by
Definition 6.9, X ∪ S is (µ, k + 1)-valid. So assume ‖µ‖ > 0 and choose µ0, n0, i0, j0
as in Definition 6.9. We assume as an induction hypothesis that if X is (µ0, k)-valid,
then X ∪S is (µ0, k + 1)-valid. We verify Definition 6.9 for X ∪S and k + 1. Clearly,
k + 1 > k ≥ n0. Since X is (µ, k)-valid it is also (µ0, k)-valid. By the induction
hypothesis we obtain that X ∪ S is (µ0, k + 1)-valid.

Assume that i0 > 0; we verify item 1 of Definition 6.9. Since k + 1 6≡ 0 (mod 4),
the condition 4 · |00n010t1x| ≤ k + 1 is equivalent to 4 · |00n010t1x| ≤ k. Since t < k,
the computations mentioned in 6.9.1(a) cannot ask queries longer than k. So nothing
changes when these machines use oracle X instead of X ∪ S. Moreover, at the left-
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hand sides in 6.9.1(a), we can also use X instead of X ∪ S since we only test the
membership for words of length ≡ 0 (mod 4). This shows that in 6.9.1(a) we can
replace every occurrence of X ∪ S with X and obtain an equivalent condition. This
condition holds since X is (µ, k)-valid. Therefore, 6.9.1(a) holds for X ∪ S and k + 1.
Condition 6.9.1(b) holds for X ∪ S and k + 1, since this condition does not depend
on k and since (X ∪ S) ∩ Σ≤k = X≤k.

Assume that i0 = 0; we verify item 2 of Definition 6.9. By assumption, ‖En0(S)‖ ≤
2 and (since X is (µ, k)-valid) for all r ≥ 0, it holds that ‖En0(X)∩Σr‖ ≤ 2. Words in
En0(X) are of length ≤ bk/2c. In contrast, words in En0(S) are of length d(k+1)/2e.
Hence, words in En0(X) are shorter than words in En0(S). So for all r ≥ 0,

‖En0(X ∪ S) ∩ Σr‖ = ‖(En0(X) ∩ Σr) ∪ (En0(S) ∩ Σr)‖
= ‖(En0(X) ∩ Σr)‖+ ‖(En0(S) ∩ Σr)‖ ≤ 2.

This shows 6.9.2(a). Condition 6.9.2(b) holds for X∪S and k+1, since this condition
does not depend on k, and since (X ∪S)∩Σ≤k = X≤k. This proves statement 6.10.4.

We prove statement 5 of Proposition 6.10 as follows. Let X be (µ, k)-valid and
(i0, j0) ∈ range(µ) such that i0 > 0. Choose n0 such that (n0, i0, j0) ∈ µ. Let
µ0

df= {(n′, i′, j′) ∈ µ | n′ < n0}. By 6.10.2, X is (µ0 ∪ {(n0, i0, j0)}, k)-valid and
also (µ0, k)-valid. Together with 6.9.1(b) (for l = k and Y = X) this implies that
L(NMX

i0 ) ∩ L(NMX
j0) ∩ Σ≤k = ∅.

We prove statement 6 of Proposition 6.10 by induction on ‖µ‖. If ‖µ‖ = 0, then,
by Definition 6.9, X≤k′ is (µ, k′)-valid for 0 ≤ k′ ≤ k. So assume ‖µ‖ > 0 and choose
µ0, n0, i0, j0 as in Definition 6.9. We assume as an induction hypothesis that if X
is (µ0, k)-valid, then, for every k′, n0 ≤ k′ ≤ k, it holds that X≤k′ is (µ0, k

′)-valid.
Choose k′ such that n0 ≤ k′ ≤ k; we show that X≤k′ is (µ, k′)-valid. Since X is
(µ, k)-valid it is also (µ0, k)-valid. By the induction hypothesis we obtain that X≤k′

is (µ0, k
′)-valid.

Assume that i0 > 0; we verify Definition 6.9.1. Note that in 6.9.1(a) we have
the condition 4 · |00n010t1x| ≤ k′. Hence, t < k′, and therefore the computations
mentioned in 6.9.1(a) cannot ask queries longer than k′. So nothing changes when
these machines use oracle X instead of X≤k′ . Moreover, at the left-hand sides in
6.9.1(a), we can also use X instead of X≤k′ since we only test the membership for
words of length ≤ k′. This shows that in 6.9.1(a) we can replace every occurrence
of X≤k′ with X and obtain an equivalent condition. This condition holds since X is
(µ, k)-valid. Therefore, 6.9.1(a) holds. Condition 6.9.1(b) holds, since X≤k′ ∩Σ≤n0 =
X≤n0 .

Assume that i0 = 0; we verify Definition 6.9.2. Condition 6.9.2(a) follows imme-
diately, since X is (µ, k)-valid. Condition 6.9.2(b) holds, since X≤k′ ∩Σ≤n0 = X≤n0 .
This proves statement 6 of Proposition 6.10.

Proposition 6.11. Let O2 be an oracle such that for some µ there exist infinitely
many k such that O2

≤k is (µ, k)-valid (property (c)).
1. A(O2) ∩B(O2) = C(O2) ∩D(O2) = ∅.
2. For all (i, j) ∈ range(µ), i > 0, it holds that L(NMO2

i ) ∩ L(NMO2
j ) = ∅ and

there exists some f ∈ PF such that (L(NMO2
i ), L(NMO2

j )) ≤pp
sm (A(O2), B(O2))

via f .
3. For all (n, 0, j) ∈ µ it holds that En(O2) contains ≤ 2 words of every length,

and L(NMO2
j ) ∈ SPARSEj.

Proof. Assume that A(O2) ∩ B(O2) 6= ∅ and let w ∈ A(O2) ∩ B(O2). Then,
for k = 4 · (|w| + 1), w is already in A(O2

≤k) ∩ B(O2
≤k). This contradicts the
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assumption that there exists a k′ ≥ k such that O2
≤k′ is (µ, k′)-valid. Therefore,

A(O2)∩B(O2) = ∅. Analogously we see that C(O2)∩D(O2) = ∅. This shows item 1
of Proposition 6.11.

Let (i, j) ∈ range(µ), i > 0, and choose n such that (n, i, j) ∈ µ. Assume
L(NMO2

i )∩L(NMO2
j ) 6= ∅, and let w ∈ L(NMO2

i )∩L(NMO2
j ). Then, for k = |w|i+j ,

w is already in L(NMO2
′

i )∩L(NMO2
′

j )∩Σ≤k, where O2
′ df= O2

≤k. By our assumption

there exists a k′ ≥ k such that O2
′′ df= O2

≤k′ is (µ, k′)-valid. It follows that w ∈
L(NMO2

′′

i ) ∩ L(NMO2
′′

j ) ∩ Σ≤k′ . This contradicts Proposition 6.10.5, and therefore
L(NMO2

i ) ∩ L(NMO2
j ) = ∅.

Let µ0
df= {(n′, i′, j′) ∈ µ | n′ < n}. From our assumption and Proposition

6.10.2 it follows that for infinitely many k, O2
≤k is (µ0 ∪ {(n, i, j)}, k)-valid. So by

Definition 6.9, for infinitely many k the following holds: For all t ≥ 1 and all x ∈ Σ∗,
if 4 · |00n10t1x| ≤ k, then

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k

i (x) accepts within
t steps, and

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2
≤k] ⇔ NMO2

≤k

j (x) accepts within
t steps.

During the first t steps a machine can ask queries of length ≤ t < k only. Therefore,
above we can replace NMO2

≤k

i (x) and NMO2
≤k

j (x) by NMO2
i (x) and NMO2

j (x), re-
spectively. Moreover, since we have the condition 4 · |00n10t1x| ≤ k, we can replace
O2

≤k with O2 on the left-hand sides. Since the resulting condition holds for infinitely
many k, the following holds for all t ≥ 1 and x ∈ Σ∗:

• (∃y, |y| = 3|00n10t1x|)[00n10t1xy ∈ O2] ⇔ NMO2
i (x) accepts within t steps.

• (∃y, |y| = 3|10n10t1x|)[10n10t1xy ∈ O2] ⇔ NMO2
j (x) accepts within t steps.

The left-hand sides of these equivalences say 0n10t1x ∈ A(O2) and 0n10t1x ∈ B(O2),
respectively. This shows that (L(NMO2

i ), L(NMO2
j )) ≤pp

sm (A(O2), B(O2)) via some
f ∈ PF.5 Hence statement 2 of Proposition 6.11 holds.

Let (n, 0, j) ∈ µ. Assume that there exists an r ≥ 0 such that ‖En(O2)∩Σr‖ ≥ 3.
Then there exists some k such that ‖En(O2

′) ∩ Σr‖ ≥ 3, where O2
′ df= O2

≤k. By
our assumption there exists some k′ ≥ k such that O2

′′ df= O2
≤k′ is (µ, k′)-valid. It

follows that ‖En(O2
′′)∩Σr‖ ≥ 3. This contradicts Proposition 6.10.3(a), and therefore

En(O2) contains at most two words of every length.
Assume that L(NMO2

j ) /∈ SPARSEj . Then there exists some m such that L(NMO2
j )

∩Σm contains more than mj + j words. Therefore, with k
df= mj and O2

′ df= O2
≤k we

obtain L(NMO2
′

j ) ∩ Σ≤k /∈ SPARSEj . By our assumption there exists some k′ ≥ k

such that O2
′′ df= O2

≤k′ is (µ, k′)-valid. It follows that L(NMO2
′′

j )∩Σ≤k′ /∈ SPARSEj .
This contradicts Proposition 6.10.3(b), and therefore L(NMO2

j ) ∈ SPARSEj .
Remember that our construction consists of a coding part to obtain condition (i)

of Theorem 6.7 and of separating parts to obtain conditions (ii), (iii), and (iv). In
order to diagonalize, we will fix certain words that are needed for the coding part,
and we will change our oracle on nonfixed positions to obtain the separation. For
this we introduce the notion of a reservation for an oracle. A reservation consists of
two sets Y and N , where Y contains words that are reserved for the oracle while N

5We can use f(x)
df
= 0n10|x|

i+j
1x, since NMi(x) and NMj(x) have computation times |x|i and

|x|j , respectively.
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contains words that are reserved for the complement of the oracle. This notion has
two important properties:

• Whenever an oracle X agrees with a reservation that is not too large, we can
find an extension of X that agrees with the reservation (Lemma 6.14).

• If we want to fix certain words to be in the oracle, then this is possible using
a reservation of small size. For this reason we can fix certain words to be in
the oracle and still be able to diagonalize (Lemma 6.18).

Definition 6.12 ((µ, k)-reservation). A pair (Y,N) of finite sets is a (µ, k)-
reservation for X if X is (µ, k)-valid, Y ∩N = ∅, Y ≤k ⊆ X, N≤k ⊆ X, A(Y )∩B(Y ) =
∅, all words in Y >k are of length ≡ 0 (mod 4), and if w ∈ Y >k is a µ-codeword
for (i, t, x), then NM i(x) has a positive path P such that |P | ≤ t, P yes ⊆ Y , and
P no ⊆ N .

Proposition 6.13 (basic properties of reservations). The following holds for
every (µ, k)-valid X:

1. (∅, ∅) is a (µ, k)-reservation for X.
2. If (Y,N) is a (µ, k)-reservation for X, then also (Y, N ∪N ′) for every N ′ ⊆

Y ∪X.
3. For every N ⊆ X, (∅, N) is a (µ, k)-reservation for X.
4. Let (Y,N) be a (µ, k)-reservation for X. For each (µ, k + 1)-valid Z ⊇k X

such that Y =k+1 ⊆ Z=k+1 ⊆ N
=k+1

, it holds that (Y, N) is a (µ, k + 1)-
reservation for Z.

5. Let (Y,N) be a (µ, k)-reservation for X. For every m ≥ 0, (Y ∩ Σ≤m,
N ∩ Σ≤m) is a (µ, k)-reservation for X.

Proof. This follows immediately from Definition 6.12.
Whenever a (µ, k)-reservation of some oracle X is not too large, then X has a

(µ,m)-valid extension Z that agrees with the reservation.
Lemma 6.14. Let (Y,N) be a (µ, k)-reservation for X and let m

df= max({|w| |
w ∈ Y ∪ N} ∪ {k}). If ‖N‖ ≤ 2k/2, then there exists a (µ,m)-valid Z ⊇k X such
that Y ⊆ Z, N ⊆ Z, and (Z − Y ) ∩ Σ>k contains only µ-codewords.

Proof. Assume ‖N‖ ≤ 2k/2. We show the lemma by induction on n
df= m− k. If

n = 0, then let Z = X and we are done.
Now assume n > 0. First of all we show that it suffices to find a (µ, k + 1)-

valid Z ′ ⊇k X such that Y =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

and (Z ′ − Y ) ∩ Σk+1 contains
only µ-codewords. In this case, Proposition 6.13.4 implies that (Y,N) is a (µ, k + 1)-
reservation for Z ′. So we can apply the induction hypothesis to (Y, N) considered as
a (µ, k + 1)-reservation for Z ′. We obtain a (µ, m)-valid Z ⊇k+1 Z ′ such that Y ⊆ Z,
N ⊆ Z, and (Z−Y )∩Σ>k+1 contains only µ-codewords. Together this yields Z ⊇k X
and (Z − Y ) ∩ Σ>k contains only µ-codewords. It remains to find the mentioned Z ′.

If k + 1 6≡ 0 (mod 4), then Y =k+1 = ∅, since Y =k+1 contains only words of
length ≡ 0 (mod 4). We apply Proposition 6.10.4 to S

df= ∅, and obtain that X is
(µ, k + 1)-valid. Therefore, with Z ′ df= X we found the desired Z ′.

If k + 1 ≡ 0 (mod 4), then, starting with the empty set, we construct a set
S ⊆ Σk+1 by doing the following for each (n, i, j) ∈ µ, each t ≥ 1, and each x ∈ Σ∗

such that i > 0 and 4 · |00n10t1x| = k + 1:
• If NMX

i (x) accepts within t steps, then choose some y ∈ Σ3|00n10t1x| such
that 00n10t1xy /∈ N . Add 00n10t1xy to S.

• If NMX
j (x) accepts within t steps, then choose some y ∈ Σ3|10n10t1x| such

that 10n10t1xy /∈ N . Add 10n10t1xy to S.
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Observe that the choices of words y are possible since ‖N‖ ≤ 2k/2 < 23(k+1)/4 =
‖Σ3|00n10t1x|‖. Moreover, S contains only µ-codewords. For Z ′ df= X ∪ S ∪ Y =k+1

we have Z ′ ⊇k X and Y =k+1 ⊆ Z ′=k+1 ⊆ N
=k+1

, since S ⊆ N
=k+1

. In addition,
(Z ′−Y )∩Σk+1 contains only µ-codewords, since this set is a subset of S. It remains
to show that Z ′ is (µ, k + 1)-valid.

Claim 6.15. A(Z ′) ∩B(Z ′) = C(Z ′) ∩D(Z ′) = ∅.
Proof. Since X is (µ, k)-valid we have A(X)∩B(X) = C(X)∩D(X) = ∅. When

we look at the definitions of A(X), B(X), C(X), and D(X), we see that in order to
show Claim 6.15, it suffices to show

A(Z ′) ∩B(Z ′) ∩ Σ
(k+1)

4 −1 = C(Z ′) ∩D(Z ′) ∩ Σk+1 = ∅.

We immediately obtain C(Z ′)∩D(Z ′)∩Σk+1 = ∅, since by definition, C(Z ′) and D(Z ′)
contain only words of lengths ≡ 1 (mod 4). Assume that A(Z ′)∩B(Z ′)∩Σ(k+1)/4−1 6=
∅, and choose some w ∈ A(Z ′) ∩ B(Z ′) ∩ Σ(k+1)/4−1. So there exist n, t ≥ 1,
x ∈ Σ∗, and y0, y1 ∈ Σ3|w|+3 such that w = 0n10t1x and 0wy0, 1wy1 ∈ Z ′. Note
that 0wy0, 1wy1 ∈ S ∪ Y =k+1, but both words cannot be in Y =k+1, since otherwise
we have A(Y ) ∩B(Y ) 6= ∅, which contradicts our assumption that (Y, N) is a (µ, k)-
reservation. Therefore, either 0wy0 or 1wy1 belongs to S. Since all words in S are
µ-codewords, there exist i, j ≥ 1 such that (n, i, j) ∈ µ. Hence 0wy0 and 1wy1 are
µ-codewords. We claim that NMX

i (x) accepts within t steps, regardless of whether
0wy0 belongs to S or to Y =k+1. This can be seen as follows:

• If 0wy0 ∈ S, then from the construction of S it follows that NMX
i (x) accepts

within t steps.
• If 0wy0 ∈ Y =k+1, then, since 0wy0 is a µ-codeword of length > k, NM i(x)

has a positive path P with |P | ≤ t, P yes ⊆ Y , and P no ⊆ N . Since t ≤ k it
follows that P yes ∪P no ⊆ Σ≤k, and therefore P yes ⊆ X and P no ⊆ Σ≤k −X.
It follows that NMX

i (x) accepts within t steps.
Analogously we obtain that NMX

j (x) accepts within t steps. Since |x| ≤ k we have
seen that L(NMX

i )∩L(NMX
j )∩Σ≤k 6= ∅ and (i, j) ∈ range(µ) such that i > 0. This

contradicts Proposition 6.10.5 and finishes the proof of Claim 6.15.
Claim 6.16. Z ′ is (µ′, k + 1)-valid for every µ′ � µ.
Proof. We prove the claim by induction on ‖µ′‖. If ‖µ′‖ = 0, then Z ′ is (µ′, k+1)-

valid by Claim 6.15.
Assume now that ‖µ′‖ > 0, and choose suitable µ0, n0, i0, j0 such that n0 = µ′max,

µ′ = µ0∪{(n0, i0, j0)}, and µ0 ≺ µ′. Clearly, n0 ≤ µmax ≤ k < k+1. As an induction
hypothesis we assume that Z ′ is (µ0, k+1)-valid. We show that Z ′ is (µ′, k+1)-valid.

Assume i0 > 0. We claim that for all t ≥ 1 and all x ∈ Σ∗, if 4·|00n010t1x| ≤ k+1,
then the equivalences in 6.9.1(a) hold for Z ′ instead of X. This is seen as follows:

• If 4 · |00n010t1x| ≤ k, then they hold since X is (µ′, k)-valid and Z ′ ⊇k X.
• If 4 · |00n010t1x| = k + 1, then the implications “⇐” in statement 6.9.1(a)

hold, since NMZ′

i0
(x) and NMZ′

j0
(x) run at most t ≤ k steps and can therefore

use oracle X instead of Z ′, and because S ⊆ Z ′. For the other direction,
let w = 0n010t1x and assume that there exists some y ∈ Σ3|w|+3 such that
0wy ∈ Z ′. If 0wy ∈ S, then we have put this word to S, because NMX

i (x)
accepts within t steps. Since t < k, also NMZ′

i (x) accepts within t steps.
So assume 0wy ∈ Y =k+1 and note that 0wy is a µ-codeword. Since (Y,N)
is a (µ, k)-reservation for X, NM i(x) has a positive path P with |P | ≤ t,
P yes ⊆ Y , and P no ⊆ N . Since t < k, we have P yes ⊆ X and P no ⊆ Σ≤k−X.
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Hence, NMX
i (x) accepts within t steps, and therefore NMZ′

i (x) accepts within
t steps. This shows the implication “⇒” in 6.9.1(a)(i). Analogously we see
the implication “⇒” in 6.9.1(a)(ii).

Condition 6.9.1(b) holds for Z ′ instead of X, since X is (µ′, k)-valid, n0 ≤ k and
therefore Z ′≤n0 = X≤n0 .

Assume i0 = 0. Since X is (µ′, k)-valid, for all r ≥ 0 it holds that ‖En0(X)∩Σr‖ ≤
2. Moreover, we have En0(Z

′ ∩ Σk+1) = ∅, since by definition, En0 depends only on
oracle words of lengths ≡ 2 (mod 4). Therefore, for all r ≥ 0, ‖En0(Z

′)∩Σr‖ ≤ 2. This
shows 6.9.2(a). Condition 6.9.2(b) holds for Z ′ instead of X, since X is (µ′, k)-valid,
n0 ≤ k, and therefore Z ′≤n0 = X≤n0 . This proves Claim 6.16.

Claim 6.16 implies in particular that Z ′ is (µ, k + 1)-valid. This completes the
proof of Lemma 6.14.

One of the main consequences of Lemma 6.14 is that (µ, k)-valid oracles can be
extended to (µ, k′)-valid oracles for larger k′. We needed to include conditions 1(b)
and 2(b) in Definition 6.9 in order to obtain this property. Otherwise it is possible
that a certain way of extending the finite oracle X to some oracle X ′ has no extension
to an infinite oracle O2 so that L(NMO2

i ) ∩ L(NMO2
j ) = ∅. If this happens, then by

statement 6.9.1(a), for all extensions to an infinite oracle O2, A(O2) and B(O2) would
not be disjoint.

Lemma 6.17. If X is (µ, k)-valid, then for every m > k there exists a (µ,m)-valid
Z ⊇k X such that Z>k contains only µ-codewords.

Proof. It suffices to show the lemma for m = k + 1. Let Y = ∅ and N = {0k+1}.
By Proposition 6.13.3, (Y, N) is a (µ, k)-reservation for X. Since ‖N‖ = 1 ≤ 2k/2

we can apply Lemma 6.14, and we obtain a (µ, k + 1)-valid Z ⊇k X such that Z>k

contains only µ-codewords.
For a finite X ⊆ Σ∗, let `(X) df=

∑
w∈X |w|.

Lemma 6.18. Let X be (µ, k)-valid and let Z ⊇k X be (µ,m)-valid such that
m ≥ k and Z>k contains only words of length ≡ 0 (mod 4). For every Y ⊆ Z
and every N ⊆ Z there exists a (µ, k)-reservation (Y ′, N ′) for X such that Y ⊆ Y ′,
N ⊆ N ′, `(Y ′ ∪N ′) ≤ 2 · `(Y ∪N), Y ′ ⊆ Z, and N ′ ⊆ Z.

Proof. For every Y ⊆ Z let

D(Y ) df= {q | Y >k contains a µ-codeword for (i, t, x) and q ∈ P all
i,t,x},

where Pi,t,x is the lexicographically smallest path among all paths of NMZ
i (x) that

are accepting and that are of length ≤ t. Note that D(Y ) is well-defined: If Y >k ⊆ Z
contains a µ-codeword, then this has the form 00n010t1xy (resp., 10n010t1xy), and
there exist i0, j0 ≥ 1 such that (n0, i0, j0) ∈ µ. Let µ0

df= {(n′, i′, j′) ∈ µ | n′ < n0}.
By statement 2 of Proposition 6.10, Z is (µ0∪{(n0, i0, j0)},m)-valid. From statement
6.9.1(a) it follows that the path Pi0,t,x (resp., Pj0,t,x) exists.

If w is a µ-codeword for (i, t, x), then |Pi,t,x| ≤ t < |w|/4. Therefore, when looking
at the definition of D(Y ), we see that the sum of lengths of q’s that are induced by
some µ-codeword w is at most |w|/4 (remember that we use nondeterministic machines
that ask all queries in parallel). This shows the following.

Claim 6.19. For all Y ⊆ Z, `(D(Y )) ≤ `(Y )/4, and words in D(Y ) are not
longer than the longest word in Y .

Given Y and N , the procedure below computes the (µ, k)-reservation (Y ′, N ′).
1 Y0 := Y
2 N0 := N
3 c := 0
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4 do
5 c := c + 1
6 Yc := D(Yc−1) ∩ Z
7 Nc := D(Yc−1) ∩ Z
8 repeat until Yc = Nc = ∅
9 Y′ := Y0 ∪ Y1 ∪ · · · ∪ Yc
10 N′ := N0 ∪ N1 ∪ · · · ∪ Nc

Note that since all Yc are subsets of Z, the expressions D(Yc−1) in lines 6 and 7
are defined. It is immediately clear that Y ⊆ Y ′ ⊆ Z and N ⊆ N ′ ⊆ Z. Therefore
Y ′ ∩ N ′ = ∅. From Claim 6.19 we obtain `(Yi ∪ Ni) = `(D(Yi−1)) ≤ `(Yi−1)/4 for
1 ≤ i ≤ c. Therefore, the procedure terminates and `(Y ′ ∪ N ′) ≤ 2 · `(Y ∪ N). It
remains to show the following.

Claim 6.20. (Y ′, N ′) is a (µ, k)-reservation for X.
Clearly, Y ′≤k ⊆ X and N ′≤k ⊆ X. Moreover, A(Y ′)∩B(Y ′) = ∅, since otherwise

A(Z)∩B(Z) 6= ∅, which is not possible, since Z is (µ, m)-valid. All words in Y ′>k are
of length ≡ 0 (mod 4), since Y ′ ⊆ Z. Let v ∈ Y ′>k be a µ-codeword for (i, t, x). More
precisely, v ∈ Yi′ ⊆ Z for a suitable i′ < c. Z is (µ,m)-valid and v is a µ-codeword that
belongs to Z. Therefore, as seen at the beginning of this proof, it follows that NMZ

i (x)
accepts within t steps. Thus the path Pi,t,x exists and we obtain P all

i,t,x ⊆ D(Yi′). It
follows that P yes

i,t,x ⊆ Yi′+1 ⊆ Y ′ and P no
i,t,x ⊆ Ni′+1 ⊆ N ′. Therefore, NM i(x) has a

positive path P with |P | ≤ t, P yes ⊆ Y ′, and P no ⊆ N ′. This proves Claim 6.20 and
finishes the proof of Lemma 6.18.

For any (µ, k)-valid oracle either we can find a finite extension that makes the
languages accepted by NM i and NM j not disjoint, or we can force these languages
to be disjoint for all valid extensions.

Proposition 6.21 (property P1). Let i, j ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′ such that

• either for all Z ⊇l Y , L(NMZ
i ) ∩ L(NMZ

j ) ∩ Σ≤l 6= ∅, or
• (i, j) ∈ range(µ′).

This proposition tells us that if the first property does not hold, then by Defini-
tion 6.9, since Y is (µ′, l)-valid, L(NMZ

i ) ∩ L(NMZ
j ) ∩ Σ≤m = ∅ for all (µ′,m)-valid

extensions Z of Y , where m ≥ l.
Proof. By Lemma 6.17, we can assume that k is large enough so that 2 · ki+j <

2k/2. If (i, j) ∈ range(µ), then by Lemma 6.17, for µ′ = µ and l = k + 1 there exists
a (µ′, l)-valid Y ⊇k X. Otherwise we distinguish two cases.

Case 1. There exists an l′ > k and a (µ, l′)-valid Y ′ ⊇k X such that L(NMY ′

i ) ∩
L(NMY ′

j ) ∩ Σ≤l′ 6= ∅. Choose some x ∈ L(NMY ′

i ) ∩ L(NMY ′

j ) ∩ Σ≤l′ and let Pi, Pj

be accepting paths of the computations NMY ′

i (x), NMY ′

j (x), respectively. Note that
(P yes

i ∪P yes
j )∩Σ>l′ = ∅ and let N

df= (P no
i ∪P no

j )∩Σ>l′ . By Proposition 6.13.3, (∅, N)
is a (µ, l′)-reservation for Y ′. Since ‖N‖ ≤ 2 · |x|i+j ≤ 2 · l′i+j

< 2l′/2 we can apply
Lemma 6.14. We obtain some l ≥ l′ > k and some (µ, l)-valid Y ⊇l′ Y ′ ⊇k X such
that N ⊆ Σ≤l and N ⊆ Y . Therefore, for every Z ⊇l Y the computations NMZ

i (x)
and NMZ

j (x) will accept at the paths Pi and Pj , respectively. Hence L(NMZ
i ) ∩

L(NMZ
j ) ∩ Σ≤l 6= ∅ for every Z ⊇l Y .

Case 2. For every l′ > k and every (µ, l′)-valid Y ′ ⊇k X it holds that L(NMY ′

i )∩
L(NMY ′

j ) ∩ Σ≤l′ = ∅. By Lemma 6.17, there exists a (µ, l)-valid Y ⊇k X where
l

df= k + 1. Let n0
df= l, i0

df= i, j0
df= j, µ0

df= µ, and µ′
df= µ0 ∪ {(n0, i0, j0)}. Observe

that n0 > k ≥ µmax, and therefore µ � µ′. We show that Y is (µ′, l)-valid.
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We already know that l ≥ n0 and that Y is (µ0, l)-valid. Since i0 > 0 we
only have to verify Definition 6.9.1. When looking at condition 6.9.1(a), we see that
4 · |00n010t1x| ≤ l is not possible, since n0 = l. Therefore, condition 6.9.1(a) holds.
Condition 6.9.1(b) follows from our assumption in Case 2. Therefore, Y is (µ′, l)-
valid.

In order to show that (C(O2), D(O2)) is not symmetric we have to diagonalize
against every possible reducing function, i.e., against every deterministic polynomial-
time oracle transducer. The following proposition makes sure that this diagonalization
is compatible with the notion of valid oracles.

Proposition 6.22 (property P2). Let i ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if C(Z)∩D(Z) = ∅,
then (C(Z), D(Z)) does not ≤pp,O2

m -reduce to (D(Z), C(Z)) via TZ
i .

Proof. By Lemma 6.17 we can assume that k ≡ 0 (mod 4) and (k + 1)i + 1 <
2(k+1)/2. Consider the computation TX

i (0k+1), let x be the output of this computa-
tion, and let N be the set of queries that are of length greater than k. If |x| > k,
then additionally we add the word 0|x| to N . Note that this yields an N such that
X ∩N = ∅ and ‖N‖ ≤ (k + 1)i + 1 < 2(k+1)/2.

If x ∈ C(X) (note that this implies x = 0k′ for some k′ ≤ k), then choose
some y ∈ 0Σk − N and let S

df= {y}. In this case it holds that 0k+1 ∈ C(X ∪ S) ∧
x /∈ D(X ∪ S). The right part of the conjunction holds, since X is (µ, k)-valid, and
therefore C(X)∩D(X) = ∅. Otherwise, if x /∈ C(X), then choose some y ∈ 1Σk −N
and let S

df= {y}. Here we obtain 0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S). Together this
means that we find some y ∈ Σk+1 −N such that with S

df= {y} it holds that

(15) [0k+1 ∈ C(X ∪ S) ∧ x /∈ D(X ∪ S)] ∨ [0k+1 ∈ D(X ∪ S) ∧ x /∈ C(X ∪ S)].

Note that S ⊆ Σk+1 and k + 1 6≡ 0 (mod 4). Moreover, C(S) ∩ D(S) = ∅ and for
every n, En(S) = ∅, since by definition En depends only on oracle words of length
≡ 2 (mod 4). From Proposition 6.10.4 it follows that X ∪ S is (µ, k + 1)-valid. So by
Proposition 6.13.3, (∅, N) is a (µ, k+1)-reservation for X∪S. Since ‖N‖ < 2(k+1)/2 we
can apply Lemma 6.14. For l

df= max({|w| | w ∈ N}∪ {k + 1}) we obtain a (µ, l)-valid
Y ⊇k+1 X∪S such that N ⊆ Y and Y >k+1 contains only words of length ≡ 0 (mod 4).
Therefore, TY

i (0k+1) computes x. Since all queries asked at this computation are of
length ≤ l, we obtain that TZ

i (0k+1) computes x for every Z ⊇l Y . Since Y >k+1

does not contain words of length ≡ 1 (mod 4) we have C(Z) ∩ Σ≤l = C(X ∪ S) and
D(Z)∩Σ≤l = D(X ∪S) for each Z ⊇l Y . Note that k +1 ≤ l and |x| ≤ l. Therefore,
by equation (15), the following holds for every Z ⊇l Y :

(16) [0k+1 ∈ C(Z) ∧ TZ
i (0k+1) /∈ D(Z)] ∨ [0k+1 ∈ D(Z) ∧ TZ

i (0k+1) /∈ C(Z)].

Hence, for every Z ⊇l Y , if C(Z) ∩ D(Z) = ∅, then (C(Z), D(Z)) does not ≤pp,O2
m -

reduce to (D(Z), C(Z)) via TZ
i .

For any (µ, k)-valid oracle, either we can find a finite extension that destroys
NM j ’s promise to be sparse, or we can force NM j to be sparse for all valid extensions.

Proposition 6.23 (property P3(a)). Let j ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ′, l)-valid Y ⊇k X, µ � µ′, such that

• either for all Z ⊇l Y , L(NMZ
j ) /∈ SPARSEj, or

• (0, j) ∈ range(µ′).
This proposition tells us that if the first property does not hold, then there exists

some n such that (n, 0, j) ∈ µ′. In this case, from Definition 6.9 we obtain that for all
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(µ′,m)-valid extensions Z of Y it holds that L(NMZ
j )∩Σ≤m ∈ SPARSEj and En(Z)

contains at most 2 words of every length.
Proof. By Lemma 6.17, we can assume that k is large enough so that (kj + j +1) ·

kj < 2k/2. If (0, j) ∈ range(µ), then by Lemma 6.17, for µ′ = µ and l = k + 1 there
exists a (µ′, l)-valid Y ⊇k X. Otherwise we distinguish two cases.

Case 1. There exists an l′ > k and a (µ, l′)-valid Y ′ ⊇k X such that L(NMY ′

j ) ∩
Σ≤l′ /∈ SPARSEj . More precisely, there exists an m ≤ l′ such that ‖L(NMY ′

j )∩Σm‖ >

mj + j. We choose mj + j + 1 different words x0, . . . , xmj+j from L(NMY ′

j ) ∩ Σm.
For 0 ≤ i ≤ mj + j, let Pi be an accepting path of the computation NMY ′

j (xi).
For all i, note that P yes

i ∩ Σ>l′ = ∅ and let N be the union of all P no
i ∩ Σ>l′ . By

Proposition 6.13.3, (∅, N) is a (µ, l′)-reservation for Y ′. Since ‖N‖ ≤ (mj+j+1)·mj ≤
(l′j + j + 1) · l′j < 2l′/2 we can apply Lemma 6.14. We obtain some l ≥ l′ > k and
some (µ, l)-valid Y ⊇l′ Y ′ ⊇k X such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for every
Z ⊇l Y and every i, the computation NMZ

j (xi) will accept at path Pi. Hence, for
every Z ⊇l Y , L(NMZ

j ) /∈ SPARSEj .

Case 2. For every l′ > k and every (µ, l′)-valid Y ′ ⊇k X, it holds that L(NMY ′

j )∩
Σ≤l′ ∈ SPARSEj . By Lemma 6.17, there exists a (µ, l)-valid Y ⊇k X with l

df= k + 1.
Let n0

df= l, i0
df= 0, j0

df= j, µ0
df= µ, and µ′

df= µ0 ∪ {(n0, i0, j0)}. Observe that
n0 > k ≥ µmax, and therefore µ0 � µ′. We will show that Y is (µ′, l)-valid.

Since l = µ′max we have l ≥ µ′max. We already know l ≥ n0 and that Y is
(µ0, l)-valid. Since i0 = 0, we only have to verify Definition 6.9.2. Since l = n0 and
Y ⊆ Σ≤l, we have En0(Y ) = ∅, which shows 6.9.2(a). Condition 6.9.2(b) follows from
our assumption in Case 2. Therefore, Y is (µ′, l)-valid.

If NMj is forced to be sparse for all valid extensions (Proposition 6.23), then
we have to make sure that L(NMj) is not many-one-complete for NP ∩ SPARSE.
We show that a certain En is sparse but is not many-one reducible to L(NMj). For
this we have to diagonalize against every possible reducing function, i.e., against
every deterministic polynomial-time oracle transducer. Proposition 6.25 makes sure
that this diagonalization is possible. Before we give this proposition, we prove the
following argument, which is used in the proofs for Proposition 6.25 and Lemma 6.29.

Proposition 6.24. Let X be (µ, k)-valid. Let (Y1, N1) be a (µ, k+1)-reservation
of some (µ, k +1)-valid Z1 ⊇k X, and let (Y2, N2) be a (µ, k +1)-reservation of some
(µ, k + 1)-valid Z2 ⊇k X such that Y1

>k+1 ∪ Y2
>k+1 contains only µ-codewords. If

‖N1 ∪ N2‖ ≤ 2(k+1)/2, Y1 ∩ N2 = Y2 ∩ N1 = ∅, and X ′ df= X ∪ Y1
=k+1 ∪ Y2

=k+1 is
(µ, k + 1)-valid, then A(Y1 ∪ Y2) ∩B(Y1 ∪ Y2) = ∅.

Proof. In order to see that (Y1, N1) is a (µ, k +1)-reservation for X ′, it suffices to
show that Y1

=k+1 ⊆ X ′ and N1
=k+1 ⊆ X ′. The first inclusion holds by the definition

of X ′. The second one holds, since otherwise either Y1 ∩ N1 6= ∅ (not possible since
(Y1, N1) is a (µ, k + 1)-reservation) or Y2 ∩ N1 6= ∅ (not possible by assumption). It
follows that (Y1, N1) is a (µ, k + 1)-reservation for X ′, and, analogously, (Y2, N2) is a
(µ, k + 1)-reservation for X ′.

Assume that A(Y1 ∪ Y2) ∩ B(Y1 ∪ Y2) 6= ∅. Choose a shortest w ∈ A(Y1 ∪ Y2) ∩
B(Y1 ∪ Y2). Hence, there exist y0, y1 ∈ Σ3|w|+3 such that 0wy0, 1wy1 ∈ Y1 ∪ Y2. Let
m

df= |0wy0| − 1. We show m ≥ k + 1. Otherwise, if m ≤ k, then |0wy0| = |1wy1| ≤
k + 1. It follows that 0wy0, 1wy1 ∈ X ′, since (Y1, N1) and (Y2, N2) are (µ, k + 1)-
reservations for X ′. This implies w ∈ A(X ′)∩B(X ′), which is not possible. Therefore,
m ≥ k + 1.
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By Proposition 6.13.5, (Y1
≤m, N1

≤m) and (Y2
≤m, N2

≤m) are (µ, k+1)-reservations
for X ′. Let Y

df= Y1
≤m ∪Y2

≤m and N
df= N1

≤m ∪N2
≤m. We show that (Y,N) is a (µ,

k+1)-reservation for X ′. For this it suffices to verify Y ∩N = ∅ and A(Y )∩B(Y ) = ∅.
The first equality holds, since otherwise either Y1∩N2 6= ∅ or Y2∩N1 6= ∅, which is not
possible by assumption. If A(Y )∩B(Y ) 6= ∅, then there exists some w′ ∈ A(Y )∩B(Y )
such that |w′| < |w|. This is not possible, since A(Y )∩B(Y ) ⊆ A(Y1∪Y2)∩B(Y1∪Y2)
and since w was chosen as short as possible. Therefore, (Y,N) is a (µ, k+1)-reservation
for X ′.

Note that ‖N‖ ≤ 2(k+1)/2. By Lemmas 6.14 and 6.17, there exists a (µ, m)-
valid Z ⊇k+1 X ′ such that Y ⊆ Z and N ⊆ Z. We know that |0wy0| > k + 1 and
0wy0 ∈ Y1 ∪ Y2. Without loss of generality we assume 0wy0 ∈ Y1. So by assumption,
0wy0 is a µ-codeword. Hence, w = 0n10t1x for suitable n, t, x such that n is in the
domain of µ. Let µ(n) = (i, j), where i, j ≥ 1. From 0wy0 ∈ Y1 it follows that
NMi(x) has a positive path P such that |P | ≤ t, P yes ⊆ Y1, and P no ⊆ N1. Since
elements from P yes and P no are of length ≤ t ≤ m, we obtain P yes ⊆ Y ⊆ Z, and
P no ⊆ N ⊆ Z. It follows that NMZ

i (x) accepts. Analogously (i.e., with the help of
1wy1) we obtain that NMZ

j (x) accepts. This shows x ∈ L(NMZ
i ) ∩ L(NMZ

j ) ∩Σ≤m,
which contradicts Proposition 6.10.5.

Proposition 6.25 (property P3(b)). Let i, j ≥ 1 and let X be (µ, k)-valid such
that for a suitable n, µ(n) = (0, j). There exists an l > k and a (µ, l)-valid Y ⊇k X
such that for all Z ⊇l Y , En(Z) does not ≤p,Z

m -reduce to L(NMZ
j ) via fZ

i .
Proof. Let α

df= (k + 1)i, β
df= (α + 1) · (αj + j) + 1, and γ

df= β · (2 · αj + 2).
Note that if i and j are considered as constants, then the values of α, β, and γ are
polynomial in k + 1. By Lemma 6.17, we can assume that k ≡ 1 (mod 4), and that k
is large enough such that n + 2 + log γ ≤ (k + 1)/2 and (2 · αj + 2) · γ < 2(k+1)/2.

Let x1, . . . , xγ be the binary representations (possibly with leading zeros) of
1, . . . , γ, respectively, such that for all r, |0n1xr| = (k + 1)/2. For 1 ≤ r ≤ γ, let
zr

df= fX
i (0n1xr) and note that the lengths of these words are bounded by α. We

consider two cases.
Case 1. There exist a, b such that 1 ≤ a < b ≤ γ and za = zb. Let N be the

set of queries of length > k that are asked during the computations fX
i (0n1xa) and

fX
i (0n1xb). Note that these are negative queries. Observe that ‖N‖ ≤ 2 ·α < 2(k+1)/2

and choose a word ya of length (k+1)/2 such that 0n1xaya /∈ N . Let S
df= {0n1xaya}.

It follows that C(S) ∩ D(S) = ∅. Moreover, for all n′ ≥ 1, ‖En′(S)‖ ≤ 1. From
Proposition 6.10.4 it follows that X ′ df= X ∪ S is (µ, k + 1)-valid. By Proposition
6.13.3, (∅, N) is a (µ, k + 1)-reservation for X ′. By Lemma 6.14, there exists a (µ, l)-
valid Y ⊇k+1 X ′ such that N ⊆ Σ≤l and N ⊆ Y . Therefore, for all Z ⊇l Y it holds
that fZ

i (0n1xa) = fZ
i (0n1xb) = za. Moreover, 0n1xa ∈ En(Z) and 0n1xb /∈ En(Z).

This shows that for all Z ⊇l Y , En(Z) does not ≤p,Z
m -reduce to L(NMZ

j ) via fZ
i .

Case 2. For 1 ≤ r ≤ γ, all zr are pairwise different. The remaining part of the
proof deals with this case. Until the end of the proof, r will always be such that
1 ≤ r ≤ γ. For every r, define the following set:

Lr
df= {(Yr, Nr) | (Yr, Nr) is a (µ, k +1)-reservation for some (µ, k +1)-valid Z ⊇k X

such that Z=k+1 ⊆ 0n1Σ∗, ‖Z=k+1‖ ≤ 1, Yr
>k+1 contains only µ-

codewords, `(Yr∪Nr) ≤ 2 ·αj , and NMj(zr) has a positive path Pr

such that P yes
r ⊆ Yr and P no

r ⊆ Nr}.

In the following we consider vectors v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrs
, Nrs

))
such that 1 ≤ s ≤ β, all ra are from [1, γ] and are pairwise different, and (Yra

, Nra
) ∈
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Lra
. Such vectors v are called vectors of reservations from L1, . . . , Lγ . We say that v

has a conflict if there exist a, b such that 1 ≤ a < b ≤ s, and either Yra
∩Nrb

6= ∅ or
Nra

∩ Yrb
6= ∅. In this case we also say that the reservations (Yra

, Nra
) and (Yrb

, Nrb
)

conflict. Now we are going to prove three claims. After this, with Claim 6.28 at hand,
we are able to finish Case 2.

Claim 6.26. Let (Ya, Na) ∈ La and (Yb, Nb) ∈ Lb. If (Ya, Na) and (Yb, Nb) do
not conflict, then A(Ya ∪ Yb) ∩B(Ya ∪ Yb) = ∅.

Assume that (Ya, Na) and (Yb, Nb) do not conflict. Let S
df= Ya

=k+1 ∪Yb
=k+1 and

X ′ df= X ∪S. From the definition of La and Lb it follows that ‖S‖ ≤ 2. Therefore, for
all n′ ≥ 1, ‖En′(S)‖ ≤ 2. Moreover, C(S) = D(S) = ∅, since C and D depend only
on oracle words of length ≡ 1 (mod 4). From Proposition 6.10.4, we obtain that X ′ is
(µ, k+1)-valid. Note that ‖Na∪Nb‖ ≤ 2(k+1)/2, since ‖Na∪Nb‖ ≤ `(Na)+`(Nb)+2 ≤
2(2αj + 1) ≤ γ(2αj + 1). By assumption, Ya ∩ Nb = Yb ∩ Na = ∅. Therefore, from
Proposition 6.24 it follows that A(Ya ∪ Yb) ∩B(Ya ∪ Yb) = ∅. This shows Claim 6.26.

Claim 6.27. Every β-dimensional vector of reservations has a conflict.
Proof. Assume that there exists a vector of reservations

v = ((Yr1 , Nr1), (Yr2 , Nr2), . . . , (Yrβ
, Nrβ

))

such that v has no conflict. Let µ′
df= {(n′, i′, j′) ∈ µ | n′ < n}. Note that X is (µ′, k)-

valid and also (µ′ ∪ {n, 0, j}, k)-valid (Proposition 6.10.2). Let Y
df=

⋃
1≤a≤β Yra

,
N

df=
⋃

1≤a≤β Nra , and X ′ df= X ∪ Y =k+1. We show that X ′ is (µ′, k + 1)-valid. Since
C and D depend only on oracle words of length ≡ 1 (mod 4), we have C(Y =k+1) =
D(Y =k+1) = ∅. Moreover, since n is not in the domain of µ′ and since all words
in Y =k+1 have the prefix 0n1, for all (n′, 0, j′) ∈ µ′ it holds that En′(Y =k+1) = ∅.
Therefore, from Proposition 6.10.4 it follows that X ′ is (µ′, k + 1)-valid.

Let us show that for 1 ≤ a ≤ β, (Yra
, Nra

) is a (µ′, k + 1)-reservation for X ′.
By definition, (Yra

, Nra
) is a (µ, k + 1)-reservation for some (µ, k + 1)-valid Z ⊇k X.

Since every µ′-codeword is a µ-codeword, it suffices to verify Yra

=k+1 ⊆ X ′ and
Nra

=k+1 ⊆ X ′. The first inclusion holds by the definition of X ′. If the latter inclusion
does not hold, then Nra

=k+1 ∩ Y =k+1 6= ∅. Since Nra
∩ Yra

= ∅, it follows that
Nra ∩Yrb

6= ∅ for some b 6= a. This implies that v has a conflict, which is not possible
by our assumption. This shows that for all a, if 1 ≤ a ≤ β, then (Yra , Nra) is a
(µ′, k + 1)-reservation for X ′.

We show that (Y,N) is a (µ′, k+1)-reservation for X ′. All (Yra
, Nra

) are (µ′, k+1)-
reservations that do not conflict with each other. From this we immediately obtain
that Y ∩ N = ∅, Y ≤k+1 ⊆ X ′, N≤k+1 ⊆ X ′, and all words in Y >k+1 are of length
≡ 0 (mod 4). If A(Y ) ∩ B(Y ) 6= ∅, then there exist a, b such that A(Yra

∪ Yrb
) ∩

B(Yra
∪Yrb

) 6= ∅. This contradicts Claim 6.26. Therefore, A(Y )∩B(Y ) = ∅. Finally,
if w ∈ Y >k+1 is a µ′-codeword for (i′, t′, x′), then there exists some a such that
w ∈ Yra

>k+1. Since (Yra , Nra) is a (µ′, k + 1)-reservation, NMi′(x′) has a positive
path P such that |P | ≤ t′, P yes ⊆ Yra ⊆ Y , and P no ⊆ Nra ⊆ N . This shows that
(Y, N) is a (µ′, k + 1)-reservation for X ′.

By definition, for all r and all (Yr, Nr) ∈ Lr it holds that `(Yr∪Nr) ≤ 2·αj . There-
fore, ‖Nr‖ ≤ 2 ·αj +1 and it follows that ‖N‖ ≤ β ·(2 ·αj +1) ≤ 2(k+1)/2. By Lemmas
6.14 and 6.17 there exists some (µ′,m)-valid Z ⊇k+1 X ′ such that Y ∪ N ⊆ Σ≤m,
Y ⊆ Z, N ⊆ Z, and m ≥ α. From the definition of the sets Lr it follows that for
all a, if 1 ≤ a ≤ β, then NMZ

j (zra
) accepts. The length of all zra

is bounded by α. So
there exists a length l such that 0 ≤ l ≤ α and at least β/(α + 1) > (αj + j) ≥ lj + j
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of the words zra
are of length l. Hence ‖L(NMZ

j ) ∩ Σl‖ > lj + j, and therefore
L(NMZ

j ) ∩ Σ≤m /∈ SPARSEj .
We know that X is (µ′∪{n, 0, j}, k)-valid. Moreover, m ≥ k ≥ n and Z is (µ′,m)-

valid such that Z≤k = X≤k, and therefore Z≤n = X≤n. From Definition 6.9.2(b) it
follows that L(NMZ

j ) ∩ Σ≤m ∈ SPARSEj . This contradicts our observation in the
last paragraph and finishes the proof of Claim 6.27.

Claim 6.28. There exist some r and an N ⊆ Σ>k such that ‖N‖ ≤ (2 ·αj +2) ·γ
and, for every (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗,
‖Z ∩ Σk+1‖ ≤ 1, and Z>k+1 contains only µ-codewords, then NMZ

j (zr) rejects.
Proof. We use the following algorithm to create the set N . Note that this al-

gorithm modifies the sets Lr. This will decrease the number of possible vectors of
reservations from L1, . . . , Lγ .

1 N(0) := ∅, R(0) := ∅, i := 0
2 while (all Lr 6= ∅)
3 i := i + 1
4 choose the largest d such that there exists a

d-dimensional vector v = ((Yr1 , Nr1), . . . , (Yrd , Nrd)) of
reservations from L1, . . . , Lγ such that
v has no conflict

5 R(i) := R(i− 1) ∪ {r1, r2, . . . , rd}
6 N(i) := N(i− 1) ∪ Y>k

r1
∪ N>k

r1
∪ · · · ∪ Y>k

rd
∪ N>k

rd

7 for every r and every (Yr, Nr) ∈ Lr:
remove (Yr, Nr) if Yr ∩ N(i) 6= ∅

8 end while
9 N := N(i)
Let i ≥ 1 and consider the algorithm after the ith iteration of the while loop.

We claim that for every r /∈ R(i) and every (Yr, Nr) that remains in Lr, it holds
that Nr ∩ (N(i) − N(i − 1)) 6= ∅. Otherwise, there exist r and (Yr, Nr) such that
r /∈ R(i), (Yr, Nr) ∈ Lr, Nr ∩ (N(i) − N(i − 1)) = ∅, and (Yr, Nr) has not been
removed in step 7. Therefore, Yr∩N(i) = ∅, which implies Yr∩ (N(i)−N(i−1)) = ∅.
Together with our assumption, this gives us (Yr ∪ Nr) ∩ (N(i) − N(i − 1)) = ∅. By
step 6 this means that (Yr, Nr) does not conflict with any reservation in v. There-
fore, with ((Yr, Nr), (Yr1 , Nr1), . . . , (Yrd

, Nrd
)) we found a (d + 1)-dimensional vec-

tor of reservations that has no conflict. This contradicts the choice of v in step 4.
Therefore, for every r /∈ R(i) and every (Yr, Nr) that remains in Lr, it holds that
Nr ∩ (N(i) − N(i − 1)) 6= ∅. It follows that after l iterations of the while loop, for
every r /∈ R(l) and every (Yr, Nr) that remains in Lr, it holds that ‖Nr‖ ≥ l.

By Claim 6.27 and the choice of d in step 4 we have d < β. Therefore, after
(2 ·αj +2) iterations, ‖R(i)‖ < (2 ·αj +2) ·β = γ. So during the first (2 ·αj +2) itera-
tions i there always exists an r /∈ R(i). Moreover, for every r and every (Yr, Nr) ∈ Lr,
it holds that `(Yr ∪Nr) ≤ 2 ·αj , and therefore ‖Nr‖ ≤ 2 ·αj +1. From the conclusion
of the previous paragraph it follows that the while loop iterates at most 2 · αj + 2
times. This shows that the algorithm terminates. Since d < β, for all i ≥ 1 it holds
that ‖N(i) −N(i − 1)‖ < β · (2 · αj + 1) ≤ γ. Therefore, ‖N‖ ≤ (2 · αj + 2) · γ and
N ⊆ Σ>k when the algorithm terminates.

So we have a set N of the required size and an r such that Lr = ∅. We show
that N and r satisfy Claim 6.28. Assume that for some m ≥ k + 1 there exists a
(µ,m)-valid Z ⊇k X such that N ⊆ Z ∩ Σ≤m, Z=k+1 ⊆ 0n1Σ∗, ‖Z ∩ Σk+1‖ ≤ 1,
Z>k+1 contains only µ-codewords, and NMZ

j (zr) accepts. Let Pr be an accepting
path of NMZ

j (zr).
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Let Z ′ df= Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid
(since k + 1 > k ≥ µmax). Z>k+1 contains only words of length ≡ 0 (mod 4), since it
contains only µ-codewords. So we can apply Lemma 6.18 (for X = Z ′, Y = P yes

r , and
N = P no

r ). We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that P yes
r ⊆ Y ′,

P no
r ⊆ N ′, `(Y ′ ∪ N ′) ≤ 2 · `(P yes

r ∪ P no
r ) ≤ 2 · αj , Y ′ ⊆ Z, and N ′ ⊆ Z. Together

with N ⊆ Z, this implies

(17) Y ′ ∩N = ∅.

We show that at the beginning of the algorithm, (Y ′, N ′) must have been in Lr . Since
Z>k+1 contains only µ-codewords and since Y ′ ⊆ Z, then Y ′>k+1 also contains only µ-
codewords. Moreover, Z ′=k+1 = Z=k+1 ⊆ 0n1Σ∗ and ‖Z ′∩Σk+1‖ = ‖Z ∩Σk+1‖ ≤ 1.
By our assumption, Pr is a positive path of NMj(zr), and it holds that P yes

r ⊆ Y ′

and P no
r ⊆ N ′. It follows that (Y ′, N ′) must have been in Lr.

Since Lr = ∅ when the algorithm terminates, (Y ′, N ′) has been removed during
some iteration i. This implies that during that iteration, Y ′ ∩ N(i) 6= ∅ (by line 7).
Moreover, by line 9, N(i) ⊆ N . This implies Y ′ ∩ N 6= ∅, which contradicts (17).
This proves Claim 6.28.

Now we finish Case 2. Let r and N be as in Claim 6.28. Choose a word yr

of length (k + 1)/2 such that 0n1xryr /∈ N . Let S
df= {0n1xryr}. It follows that

C(S) = D(S) = ∅. Moreover, for all n′ ≥ 1, ‖En′(S)‖ ≤ 1. From Proposition 6.10.4
it follows that X ′ df= X ∪ S is (µ, k + 1)-valid. By Proposition 6.13.3, (∅, N) is a
(µ, k + 1)-reservation for X ′. Note that ‖N‖ ≤ (2 · αj + 2) · γ < 2(k+1)/2. Therefore,
by Lemmas 6.14 and 6.17 there exists an l ≥ αj and a (µ, l)-valid Y ⊇k+1 X ′ such that
N ⊆ Y ∩Σ≤l and Y >k+1 contains only µ-codewords. From Claim 6.28 it follows that
NMY

j (zr) rejects. The computation times of fY
i (0n1xr) and NMY

j (zr) are bounded
by αj ≤ l. Therefore, for all Z ⊇l Y it holds that fZ

i (0n1xr) = zr, 0n1xr ∈ En(Z),
and NMZ

j (zr) rejects. This shows that En(Z) does not ≤p,Z
m -reduce to L(NMZ

j ) via
fZ

i . This finishes the proof of Proposition 6.25.
Recall that we want to construct the oracle in a way such that (A(O2), B(O2)) is

not ≤pp,O2
T -hard for NPO2 . We have seen that it suffices to construct F (O2) such that

it does not ≤pp
T -reduce to (A(O2), B(O2)). We prevent F (O2) ≤pp

T (A(O2), B(O2))
via Mi as follows: We consider the computation Mi(0n), where the machine can ask
queries to the pair (A(X), B(X)). In Lemma 6.29 we show that each query to this
pair can be forced to be either in the complement of A(X) or in the complement
of B(X). For this forcing it is enough to reserve polynomially many words for the
complement of X. If we forced the query to be in the complement of A(X), then
the oracle can safely answer that the query belongs to B(X). Otherwise it can safely
answer that the query belongs to A(X). After forcing all queries of the computation,
we add an unreserved word to F (X) if and only if the computation rejects. This will
show that F (X) does not ≤pp

T -reduce to (A(X), B(X)) via Mi (Proposition 6.32).
Lemma 6.29. Let k ≡ 2 (mod 4) and let X be (µ, k)-valid. For every q ∈ Σ∗,

|q| ≤ 2k/2−4 − 2, there exists an N ⊆ Σ>k such that ‖N‖ ≤ (8 · |q|+ 10)2 and one of
the following properties holds:

1. For all (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z, and Z>k+1 contains only
µ-codewords, then q /∈ A(Z).

2. For all (µ,m)-valid Z ⊇k X, if m > k, N ⊆ Z, and Z>k+1 contains only
µ-codewords, then q /∈ B(Z).
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Proof. We can assume that q = 0n10t1x for suitable n, t, x. Otherwise, q cannot
belong to A(Z) ∪B(Z) for all oracles Z, and we are done. Define the following sets:

LA
df= {(YA, NA) | (YA, NA) is a (µ, k+1)-reservation for some (µ, k+1)-valid Z ⊇k X,

YA
>k+1 contains only µ-codewords, `(YA ∪ NA) ≤ 8(|q| + 1), and

(∃y ∈ Σ3|q|+3)[0qy ∈ YA]},

LB
df= {(YB , NB) | (YB , NB) is a (µ, k+1)-reservation for some (µ, k+1)-valid Z ⊇k X,

YB
>k+1 contains only µ-codewords, `(YB ∪ NB) ≤ 8(|q| + 1), and

(∃y ∈ Σ3|q|+3)[1qy ∈ YB ]}.

We say that (YA, NA) ∈ LA and (YB , NB) ∈ LB conflict if and only if YA∩NB 6= ∅ or
NA∩YB 6= ∅. Note that if (YA, NA) and (YB , NB) conflict, then even YA∩NB∩Σ>k 6= ∅
or NA ∩ YB ∩ Σ>k 6= ∅.

Claim 6.30. Every (YA, NA) ∈ LA conflicts with every (YB , NB) ∈ LB.
Proof. Assume that there exist (YA, NA) ∈ LA and (YB , NB) ∈ LB that do not

conflict. Let Y ′ df= YA ∪ YB , N ′ df= NA ∪NB and S
df= YA

=k+1 ∪ YB
=k+1.

We show that (Y ′, N ′) is a (µ, k + 1)-reservation for X ′ df= X ∪ S. Since k ≡
2 (mod 4) and S ⊆ Σk+1, it holds that C(S) = D(S) = ∅ and, for all n′ ≥ 1,
En′(S) = ∅. From Proposition 6.10.4, it follows that X ′ is (µ, k + 1)-valid. Note that
‖NA ∪NB‖ ≤ 2(k+1)/2, since ‖NA ∪NB‖ ≤ `(NA) + `(NB) + 2 ≤ 16|q| + 18 ≤ 2k/2.
By assumption, YA ∩ NB = YB ∩ NA = ∅. From Proposition 6.24 it follows that
A(YA∪YB)∩B(YA∪YB) = ∅. Therefore, it remains to verify Y ′∩N ′ = ∅, Y ′=k+1 ⊆ X ′,
and N ′=k+1 ⊆ X ′. The first condition holds, since (YA, NA) and (YB , NB) do not
conflict. The second one holds by the definition of X ′. Finally, N ′=k+1 ⊆ X ′ holds,
since otherwise N ′=k+1 ∩S 6= ∅, and therefore Y ′ ∩N ′ 6= ∅. This shows that (Y ′, N ′)
is a (µ, k + 1)-reservation for X ′.

From the definition of LA and LB it follows that ‖N ′‖ ≤ 16 · |q| + 18 ≤ 2k/2.
By Lemma 6.14, there exist an m ≥ k + 1 and a (µ,m)-valid Z ⊇k+1 X ′ such that
Y ′ ⊆ Z. Since (YA, NA) ∈ LA and (YB , NB) ∈ LB , there exist y0, y1 ∈ Σ3|q|+3 such
that 0qy0 ∈ YA ⊆ Y ′ ⊆ Z and 1qy1 ∈ YB ⊆ Y ′ ⊆ Z. Therefore, q ∈ A(Z) ∩ B(Z),
which contradicts the fact that Z is (µ,m)-valid. This proves Claim 6.30.

We use the following algorithm to create the set N as claimed in the statement
of this lemma.

1 N := ∅
2 while (LA 6= ∅ and LB 6= ∅)
3 choose some (Y′A, N

′
A) ∈ LA

4 N := N ∪ Y′A
>k ∪ N′A

>k

5 for every (YA, NA) ∈ LA
6 remove (YA, NA) if YA ∩ (Y′A

>k ∪ N′A
>k) 6= ∅

7 for every (YB, NB) ∈ LB
8 remove (YB, NB) if YB ∩ (Y′A

>k ∪ N′A
>k) 6= ∅

9 end while
We claim that after l iterations of the while loop, for every (YB , NB) ∈ LB ,

‖NB‖ ≥ l. If this claim is true, the while loop iterates at most 8 · |q|+ 10 times, since
for any (YB , NB) ∈ LB , `(NB) ≤ 8 · |q| + 8, and therefore ‖NB‖ ≤ 8 · |q| + 9. On
the other hand, during each iteration, N is increased by at most 8 · |q| + 9 strings.
Therefore, ‖N‖ ≤ (8 · |q|+ 10)2 and N ⊆ Σ>k when this algorithm terminates.

Claim 6.31. After l iterations of the while loop, for every (YB , NB) that remains
in LB, ‖NB‖ ≥ l.
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Proof. For every l, let us denote the pair that is chosen during the lth iteration
in step 3 by (Y l

A, N l
A). By Claim 6.30, every (YB , NB) that belongs to LB at the

beginning of this iteration conflicts with (Y l
A, N l

A), i.e., N l
A ∩ YB ∩ Σ>k 6= ∅ or Y l

A ∩
NB∩Σ>k 6= ∅. If N l

A∩YB∩Σ>k 6= ∅, then (YB , NB) will be removed from LB in step 8.
Otherwise, Y l

A∩NB ∩Σ>k is not empty, and therefore there exists a lexicographically
smallest word wl in this set. In this case, (YB , NB) will not be removed from LB ; we
say that (YB , NB) survives the lth iteration due to the word wl. Note that (YB , NB)
can survive only due to a word that belongs to NB . We will use this fact to prove
that ‖NB‖ ≥ l after l iterations.

We show now that any pair (YB , NB) that is left in LB after l iterations survives
each of these iterations due to a different word. Since these words all belong to NB ,
this will complete the proof of the claim. Assume that there exist iterations l and l′

with l < l′ such that wl = wl′ . Then wl ∈ Y l
A ∩NB ∩Σ>k and wl′ ∈ Y l′

A ∩NB ∩Σ>k.
Therefore, Y l

A ∩ Y l′

A ∩ Σ>k 6= ∅. So the pair (Y l′

A , N l′

A) should have been removed in
iteration l (step 6) and cannot be chosen at the beginning of iteration l′, as claimed.
Hence, wl 6= wl′ . This proves Claim 6.31.

Therefore, we now have a set N of the required size such that either LA or LB

will be empty. Assume that LA is empty; we will show that Lemma 6.29.1 holds.
Analogously we show that if LB is empty, then Lemma 6.29.2 holds. Assume that for
some m ≥ k + 1 there exists a (µ,m)-valid Z ⊇k X such that q ∈ A(Z), N ⊆ Z, and
Z>k+1 contains only µ-codewords. Hence, there exists some y ∈ Σ3|q|+3 such that
0qy ∈ Z.6

Let Z ′ df= Z≤k+1. From Proposition 6.10.6 it follows that Z ′ is (µ, k + 1)-valid.
Since Z>k+1 contains only µ-codewords, we can apply Lemma 6.18 for ({0qy}, ∅).
We obtain a (µ, k + 1)-reservation (Y ′, N ′) for Z ′ such that 0qy ∈ Y ′, `(Y ′ ∪ N ′) ≤
2 · |0qy| = 8 · (|q|+ 1), and Y ′ ⊆ Z ⊆ N ′. Together with N ⊆ Z, this implies

(18) Y ′ ∩N = ∅.

Moreover, since Y ′ ⊆ Z, it holds that Y ′>k+1 contains only µ-codewords. It follows
that (Y ′, N ′) must have been in LA and has been removed during some iteration. This
implies that during that iteration, Y ′ ∩ (Y ′

A
>k ∪ N ′

A
>k) 6= ∅ (by line 6). Moreover,

by line 4, Y ′
A

>k ∪ N ′
A

>k is a subset of N when the algorithm stops. This implies
Y ′ ∩N 6= ∅, which contradicts equation (18). This proves Lemma 6.29.

Proposition 6.32 (property P4). Let i ≥ 1 and let X be (µ, k)-valid. There
exists an l > k and a (µ, l)-valid Y ⊇k X such that for all Z ⊇l Y , if A(Z)∩B(Z) = ∅,
then there exists a separator S of (A(Z), B(Z)) such that F (Z) 6= L(MS

i ).
Proof. By Lemma 6.17, we can assume that k ≡ 2 (mod 4) and 64(k+10)3i < 2k/2.
We describe the construction of SA and SB , which are sets of queries we reserve

for B(Y ) and A(Y ), respectively. Let SA := A(X) and SB := B(X). We simulate the
computation MSA

i (0k+1) until we reach a query q1 that belongs to neither SA nor SB .
Note that |q1| ≤ (k + 1)i ≤ 2k/2−4 − 2. From Lemma 6.29 we obtain some N1 ⊆ Σ>k

such that ‖N1‖ ≤ (8 · |q1|+ 10)2 and either property 6.29.1 or property 6.29.2 holds.
If property 6.29.1 holds, then add q1 to SB ; otherwise add q1 to SA. Now return the

6Actually, it even holds that 0qy ∈ Z−X, but we do not need this explicitly in our argumentation.
In order to see this, we assume that 0qy is in X. Then q is in A(X) and ({0qy}, ∅) is a (µ, k)-
reservation for X. Therefore, ({0qy}, ∅) is a (µ, k + 1)-reservation for every (µ, k + 1)-valid Z ⊇k X.
Hence, ({0qy}, ∅) is in LA at the beginning of the algorithm. So it has been removed during the
algorithm. But this is not possible since elements in LA can only be removed in step 6, and there
we remove only (YA, NA) with YA ∩ Σ>k 6= ∅. This shows 0qy ∈ Z −X.
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answer of “q1 ∈ SA?” to the computation. We continue the simulation until we reach
a query q2 that belongs to neither SA nor SB . Again we apply Lemma 6.29, obtain
the set N2, and add q2 either to SA or to SB . We continue the simulation until the
computation stops. Let n be the number of queries that were added to SA or SB .
Observe that SA ∩ SB = ∅ at the end of our simulation.

Let N
df= N1∪· · ·∪Nn∪{04(k+1)i+4}. Then ‖N‖ ≤ (k+1)i ·(8·(k+1)i+10)2+1 ≤

2k/2. Hence there exists some w ∈ Σk+1 − N . If the simulation accepts, then let
S′ = ∅; otherwise let S′

df= {w}. Since S ⊆ Σk+1 and k + 1 ≡ 3 (mod 4), we have
C(S′) = D(S′) = ∅ and for all n ≥ 1, En(S′) = ∅. From Proposition 6.10.4, it follows
that Y ′ df= X ∪ S′ is (µ, k + 1)-valid. Since N ⊆ Σ>k and N ∩ S′ = ∅, we have
N ⊆ Y ′. Therefore, by Proposition 6.13.3, (∅, N) is a (µ, k + 1)-reservation for Y ′.
By Lemma 6.14, there exist an l ≥ 4(k + 1)i + 4 and a (µ, l)-valid Y ⊇k+1 Y ′ such
that N ⊆ Y and Y >k+1 contains only µ-codewords. In particular, it holds that l > k
and Y ⊇k X.

Claim 6.33. For every Z ⊇l Y it holds that SA ⊆ B(Z) and SB ⊆ A(Z).
Assume that SA∩B(Z) 6= ∅ for some Z ⊇l Y , and choose a v ∈ SA∩B(Z). Since

SA contains only words of length ≤ (k + 1)i, we obtain v ∈ SA ∩ B(Z≤4(k+1)i+4) ⊆
SA ∩ B(Y ). So v cannot belong to A(Y ) since A(Y ) ∩ B(Y ) = ∅. In particular this
means v ∈ SA−A(X); i.e., v = qj for a suitable j with 1 ≤ j ≤ n. By our construction
qj was only added to SA when property 2 of Lemma 6.29 holds. Remember that Y is
(µ, l)-valid with l > k, Y ⊇k X, Nj ⊆ N ⊆ Y , and Y >k+1 contains only µ-codewords.
Therefore, from property 6.29.2 it follows that v = qj /∈ B(Y ), which contradicts
v ∈ SA ∩ B(Y ). This shows SA ⊆ B(Z). By the symmetric argument we obtain
SB ⊆ A(Z). This proves Claim 6.33.

Consider any Z ⊇l Y with A(Z) ∩ B(Z) = ∅. Let S
df= A(Z) ∪ SA. Assume that

S is not a separator of (A(Z), B(Z)). Since A(Z) ⊆ S, we must have S ∩ B(Z) 6= ∅.
Since A(Z)∩B(Z) = ∅, this implies SA ∩B(Z) 6= ∅. This contradicts Claim 6.33. So
S is a separator of (A(Z), B(Z)). It remains to show F (Z) 6= L(MS

i ).
By our construction, 0k+1 ∈ F (Y ′) if and only if MSA

i (0k+1) rejects. Since
Z ⊇k+1 Y ′, it holds that 0k+1 ∈ F (Z) if and only if MSA

i (0k+1) rejects. Assume that
there exists a query q that is answered differently in the computations MSA

i (0k+1)
and MS

i (0k+1) (take the first such query). Since SA ⊆ S, we obtain q ∈ S − SA, i.e.,
q ∈ A(Z). If q is in B(X), then q is in B(Z) ⊆ S, which is not possible. So q is neither
in SA nor in B(X), but q is asked in the computation MSA

i (0k+1). It follows that
q = qj for some j with 1 ≤ j ≤ n, and during the construction we added qj to SB . So
we have q ∈ SB ∩A(Z), which contradicts Claim 6.33. Therefore, MSA

i (0k+1) accepts
if and only if MS

i (0k+1) accepts. This shows 0k+1 ∈ F (Z) if and only if MS
i (0k+1)

rejects, i.e., F (Z) 6= L(MS
i ).

This finishes the proof of Theorem 6.7.
Corollary 6.34. The oracle O2 of Theorem 6.7 has the following additional

properties:
(i) UPO2 6= NPO2 6= coNPO2 and NPMVO2 *c NPSVO2 .
(ii) Relative to O2, no optimal propositional proof systems exist.
(iii) There exists a ≤pp

sm-complete disjoint NPO2-pair (A,B) that is PO2-insepa-
rable but symmetric.

Proof. It is known that Conjecture 2.4 implies item (i) [ESY84, GS88, Sel94].
Relative to O2, NP∩SPARSE does not have ≤p,O2

m -complete sets. Messner and Torán
[MT98] proved that this implies that there are no optimal propositional proof systems.
This shows (ii).
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Since (A,B) is ≤pp
sm-complete, it is symmetric. If (A,B) is PO2-separable, then

every disjoint NPO2-pair is PO2-separable, and therefore symmetric. This contradicts
item (ii) of Theorem 6.7. So (A,B) is PO2-inseparable.

7. Relationship to optimal propositional proof systems. It is known that
existence of optimal propositional proof systems implies existence of ≤pp

m -complete
disjoint NP-pairs. Messner and Torán [MT98] state that this result was communicated
to them by Impagliazzo and Pitassi. Ben-David and Gringauze [BDG98] cite Razborov
[Raz94] for this result. Köbler, Messner, and Torán [KMT03] cite Razborov, and
they prove the stronger result that existence of optimal propositional proof systems
implies existence of ≤pp

sm-complete disjoint NP-pairs.7 For the sake of completeness,
we provide here a straightforward proof of the weaker result.

Theorem 7.1. If optimal propositional proof systems exist, then there is a ≤pp
m -

complete disjoint NP-pair.
Proof. Let f be an optimal propositional proof system. We define the canonical

pair [Raz94, Pud03] for this proof system, (SAT∗,REFf ), where

SAT∗ = {(x, 0n) | x ∈ SAT}

and

REFf = {(x, 0n) | ¬x ∈ TAUT and ∃y[|y| ≤ n and f(y) = ¬x]}.

Note that since f is polynomial-time computable, both SAT∗ and REFf are in
NP. Also, for any n, if (x, 0n) ∈ SAT∗, then x ∈ SAT, and if (x, 0n) ∈ REFf ,
then x /∈ SAT. Therefore, these sets are disjoint, and so (SAT∗,REFf ) is a disjoint
NP-pair. We will prove that this pair is ≤pp

m -complete.
Consider any other disjoint NP-pair (A,B). We will define a proof system fA,B

using this pair. Assume that A ≤p
m SAT via g ∈ PF and there is a polynomial p(·)

and a polynomial-time predicate R(·, ·) such that z ∈ B ⇔ ∃w, |w| ≤ p(|z|), R(z, w).

(19) fA,B(y) =


¬g(z) if y = (z, w), where |w| ≤ p(|z|) and R(z, w),
z if y = (z, w), where |w| > 2|z| and z ∈ TAUT,

z ∨ ¬z otherwise.

We claim that fA,B is a proof system. First, note that for every z ∈ TAUT,
fA,B(z, w), for some w, |w| > 2|z|, will output z in time polynomial in |(z, w)|. Also,
since A ∩ B = ∅ and g reduces A to SAT, g(B) ⊂ SAT. Therefore, for every z ∈ B
(i.e., for every z such that R(z, w) for some w, |w| ≤ p(|z|)), g(z) /∈ SAT. Therefore,
fA,B outputs all possible tautologies and does not output anything that is not in
TAUT. Also, since g is polynomial-time computable, so is fA,B . It is therefore clear
that fA,B is a proof system; since f is an optimal proof system, there is a polynomial
q(·) such that for every tautology φ, and for every w such that fA,B(w) = φ, there is
a w′, |w′| ≤ q(|w|) and f(w′) = φ.

Now we define h ∈ PF such that (A,B) ≤pp
m (SAT∗,REFf ) via h. On input x,

h outputs (g(x), 0r(|x|)), where r(·) is some polynomial that we will fix later. If x ∈ A,
then g(x) ∈ SAT, and therefore h(x) ∈ SAT∗.

On the other hand, for all x ∈ B, g(x) /∈ SAT, i.e., ¬g(x) ∈ TAUT. Since
x ∈ B, there exists y = (x,w), where |w| ≤ p(|x|) such that fA,B(y) = ¬g(x). So,

7However, a forthcoming paper [GSS04] proves that there exist ≤pp
sm-complete disjoint NP-pairs

if and only if there exist ≤pp
m -complete disjoint NP-pairs.
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there is some y′, |y′| ≤ q(|y|), such that f(y′) = ¬g(x). We choose r to be large
enough so that r(|x|) > |y′|, and since q and p are polynomial, r can be chosen to
be a polynomial as well. This shows that x ∈ B implies h(x) ∈ REFf . Therefore,
(A,B) ≤pp

m (SAT∗,REFf ); i.e., (SAT∗,REFf ) is ≤pp
m -complete.

8. Conclusions. We partially summarize the import of the oracle results we
obtained in this paper. Various implications have been known and/or are observed
here for the first time. For several of these, our oracles demonstrate that the converses
do not hold robustly. The following are convenient lists of these instances:

• Existence of optimal proof systems implies existence of ≤pp
sm-complete NP-

pairs [Raz94, KMT03]. Relative to oracle O2, the converse is false.
Relative to both oracles O1 and O2, the converses of the following implications

are false:
1. Nonexistence of ≤pp

T -complete NP-pairs implies Conjecture 2.4 (observed in
section 3).

2. Nonsymmetric implies P-inseparable (observed in section 5).
3. Nonexistence of ≤pp

T -complete NP-pairs implies NP 6= coNP (observed in
section 3).

4. Nonexistence of ≤pp
m -complete NP-pairs implies NP 6= coNP (observed in

section 3).
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