Draft Genome Sequences of 13 Vibrio cholerae Strains from the Rio Grande Delta

Jeffrey W. Turner
Jorge Duran-Gonzalez
The University of Texas Rio Grande Valley
David A. Laughlin
Daniel Unterweger
David Silva

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/bio_fac

Part of the Microbiology Commons

Recommended Citation
Draft Genome Sequences of 13 Vibrio cholerae Strains from the Rio Grande Delta

Jeffrey W. Turner,a Jorge Duran-Gonzalez,b David A. Laughlin,b* Daniel Unterweger,c,d David Silva,a,b Boris Ermolinsky,b Stefan Pukatzki,e Daniele Provenzano,b

aDepartment of Life Sciences, Texas A&M Corpus Christi, Corpus Christi, Texas, USA
bDepartment of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, USA
cMax Planck Institute for Evolutionary Biology, Plön, Germany
dInstitute for Experimental Medicine, Kiel University, Kiel, Germany
eDepartment of Biology, The City College of New York, New York, New York, USA

Jeffrey W. Turner and Jorge Duran-Gonzalez contributed equally to this work; author order was determined in order of seniority.

ABSTRACT Vibrio cholerae is the etiologic agent of cholera, an acute and often fatal diarrheal disease that affects millions globally. We report the draft genome sequences of 13 non-O1/O139 V. cholerae strains isolated from the Rio Grande Delta in Texas. These genomes will aid future analyses of environmental serovars.

Vibrio cholerae is a Gram-negative curved bacterium that thrives in tropical and temperate aquatic ecosystems (1). The species was first identified as the cause of cholera by the Italian physician Filippo Pacini in 1854; the German physician and bacteriologist Robert Koch independently confirmed this discovery in 1883 (2). Toxigenic O1 serovar strains are responsible for pandemic disease outbreaks (3). In 1993, a subgroup of O1 strains converted to the O139 serogroup and caused local outbreaks but did not become pandemic (4). Additional serovars are commonly isolated from cholera patients (5), and a global increase in non-O1/O139 infections has been linked to climate change (6).

V. cholerae strains were isolated from plankton samples obtained from the following two sampling sites on the Rio Grande Delta along the Mexico-United States border where the cities of Matamoros and Brownsville form a transborder agglomeration: sites 21 (25°53’56.54”N, 97°29’52.09”W) and 42 (25°57’17.58”N, 97°08’44.42”W). Isolation was achieved by culture on thiosulfate-citrate-bile salts-sucrose (TCBS) agar plates (Becton, Dickinson, Franklin Lakes, NJ) incubated overnight at 30°C as described earlier (7). Genomic DNA was isolated from sucrose-fermenting CFUs by sodium dodecyl sulfate (SDS) solubilization and phenol-chloroform extraction. Amplification of the 16S-23S rRNA intergenic spacer region using the prVC-F and prVCM-R primers (8) was used for typing. Serogrouping was performed by the National Institute of Infectious Diseases in Tokyo, Japan, as described elsewhere (9).

Sequencing libraries (100-bp paired-end format) were prepared using the TruSeq DNA library prep kit (Illumina, San Diego, CA, USA). An Agilent 2100 Bioanalyzer (Santa Clara, CA, USA) was used to determine the library size and concentration. Sequencing was completed by Ambry Genetics Corporation (Aliso Viejo, CA, USA) using an Illumina HiSeq 2000 device. The raw sequence reads were inspected for quality using FastQC version 0.11.5 (10) to inform the genome assembly settings. The draft genome sequences were assembled de novo using Edena version 3.13-11028 (11) with default settings, with the following two exceptions: the 3’ ends were truncated to remove the low-quality bases (option -t 10), and the minimum contig size was set at 500 bp (option -c 500). The Edena assembler features exact read matching and spurious read removal that obviates read preprocessing when working with HiSeq 2000 data. Annotation was completed using the Prokaryotic Genome Annotation Pipeline (PGAP) version 3.2 (12). Table 1 provides the accession

Editor J. Cameron Thrash, University of Southern California

Copyright © 2021 Turner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Daniele Provenzano, daniele.provenzano@utrgv.edu.

* Present address: David A. Laughlin, Citrus Center, Texas A&M University Kingsville, Weslaco, Texas, USA.

Received 25 March 2021
Accepted 18 May 2021
Published 3 June 2021
numbers and general metrics of each assembly as well as the serogroup of each isolate.

The draft genome sequences for DL211 and DL215 were described previously (13); however, those genomes were replaced in DDBJ/ENA/GenBank with the higher-quality assemblies described here.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The 13 genome assemblies were organized under BioProject accession number PRJNA359496.

ACKNOWLEDGMENTS

This project was funded by the National Institutes of Health (NIH) under grants AI137972-01, GM068855-02, and SR01AI139103-02 and CIHR grants MOP-84473 and MOP-137106. We thank Paul Keller, who assisted in the collection of samples that led to the isolation and identification of the strains, and Eiji Arakawa for carrying out serotyping.

REFERENCES

TABLE 1 Accession numbers, genome assembly metrics, and serogroups of the 13 *V. cholerae* isolates from the Rio Grande Delta

<table>
<thead>
<tr>
<th>Strain</th>
<th>GenBank accession no.</th>
<th>SRA accession no.</th>
<th>No. of reads</th>
<th>Coverage (×)</th>
<th>No. of contigs N₅₀ (bp)</th>
<th>GC content (%)</th>
<th>Size (bp)</th>
<th>Serogroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL2111</td>
<td>MSSN000000000000</td>
<td>SRR14319855</td>
<td>12,939,391</td>
<td>113.8</td>
<td>88</td>
<td>189,346</td>
<td>47.4</td>
<td>4,119,702</td>
</tr>
<tr>
<td>DL2112</td>
<td>MSSO000000000000</td>
<td>SRR14319854</td>
<td>6,980,134</td>
<td>64.0</td>
<td>107</td>
<td>123,726</td>
<td>47.4</td>
<td>4,118,072</td>
</tr>
<tr>
<td>DL2113</td>
<td>MSSP000000000000</td>
<td>SRR14319850</td>
<td>5,802,868</td>
<td>52.9</td>
<td>118</td>
<td>79,342</td>
<td>47.4</td>
<td>4,114,702</td>
</tr>
<tr>
<td>DL2114</td>
<td>MSTH000000000000</td>
<td>SRR14319849</td>
<td>7,733,503</td>
<td>69.8</td>
<td>85</td>
<td>231,987</td>
<td>47.4</td>
<td>4,113,495</td>
</tr>
<tr>
<td>DL2115</td>
<td>MSSR000000000000</td>
<td>SRR14319848</td>
<td>9,312,550</td>
<td>82.5</td>
<td>97</td>
<td>164,794</td>
<td>47.4</td>
<td>4,119,886</td>
</tr>
<tr>
<td>DL2116</td>
<td>MSSS000000000000</td>
<td>SRR14319847</td>
<td>11,999,442</td>
<td>107.3</td>
<td>99</td>
<td>150,335</td>
<td>47.4</td>
<td>4,120,548</td>
</tr>
<tr>
<td>DL2117</td>
<td>MSTS000000000000</td>
<td>SRR14319846</td>
<td>9,438,288</td>
<td>83.8</td>
<td>92</td>
<td>160,631</td>
<td>47.4</td>
<td>4,122,195</td>
</tr>
<tr>
<td>DL2118</td>
<td>MSTF000000000000</td>
<td>SRR14319843</td>
<td>9,241,571</td>
<td>82.5</td>
<td>71</td>
<td>195,524</td>
<td>47.4</td>
<td>4,119,122</td>
</tr>
<tr>
<td>DL2119</td>
<td>MSSF000000000000</td>
<td>SRR14319853</td>
<td>5,802,868</td>
<td>52.9</td>
<td>78</td>
<td>269,860</td>
<td>47.6</td>
<td>4,031,163</td>
</tr>
<tr>
<td>DL2120</td>
<td>MSST000000000000</td>
<td>SRR14319842</td>
<td>11,046,830</td>
<td>96.3</td>
<td>83</td>
<td>231,987</td>
<td>47.4</td>
<td>4,113,495</td>
</tr>
<tr>
<td>DL2121</td>
<td>MSSR000000000000</td>
<td>SRR14319841</td>
<td>7,733,503</td>
<td>69.8</td>
<td>85</td>
<td>231,987</td>
<td>47.4</td>
<td>4,113,495</td>
</tr>
<tr>
<td>DL2122</td>
<td>MSSS000000000000</td>
<td>SRR14319852</td>
<td>11,046,830</td>
<td>96.3</td>
<td>83</td>
<td>269,860</td>
<td>47.6</td>
<td>4,031,163</td>
</tr>
</tbody>
</table>

aCoverage refers to the minimum required contig coverage set automatically by the assembler.

bThe rough designation describes isolates devoid of O antigen (9).