2018

Study of Anaemia in children and current update

Sanjeev Kumar Shukla

Shubhra Shukla

Rajesh Kumar Verma

Lakshya Veer Singh

Bashah J. Khan

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/som_pub

Part of the Medicine and Health Sciences Commons

Recommended Citation

Shukla, Sanjeev Kumar; Shukla, Shubhra; Verma, Rajesh Kumar; Singh, Lakshya Veer; Khan, Bashah J.; Gupta, Vikas; Saxena, D. P.; Ahmed, Shahaj Uddin; Dhasmana, Anupam; and Sharma, Naveen, "Study of Anaemia in children and current update" (2018). School of Medicine Publications and Presentations. 154. https://scholarworks.utrgv.edu/som_pub/154

This Article is brought to you for free and open access by the School of Medicine at ScholarWorks @ UTRGV. It has been accepted for inclusion in School of Medicine Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
Authors
Study of Anaemia in children and current update

Sanjeev Kumar Shukla1, Shubhra Shukla2, Rajesh Kumar Verma3, Lakshya Veer Singh4, Bashah J. Khan5, Vikas Gupta6, D.P. Saxena7, Shahaj Uddin Ahmed8, Anupam Dhasmana9, Naveen Sharma10

1Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
2Department of Bioscience, Integral University, Lucknow, Uttar Pradesh, India
3T.V.C.C, College of V.S & A.H., N.D. University of Agriculture and Technology, Kumarganj, Faizabad, India
4Tuberculosis Aerosol Challenge Facility Laboratory, ICGEB, New Delhi, India
5Bioinformatics Technologies of India, Bareilly, Uttar Pradesh, India
6Department of Biochemistry and Bioprocess Technology, SHIATS Allahabad University, Uttar Pradesh, India
7Department of Biotechnology, Vinayaka Missions University, Salem, Tamil Nadu 636308
8Himalayan School of Biosciences, Swami Ramo Himalayan University, Dehradun, U.K., India
9Department of Health Research, IRCs Building, Red Cross Road, New Delhi, India

ABSTRACT

Anaemia in children is a major public health problem throughout the biosphere. It is estimated that at least one-third of the populace has been at one-time anemic. It is often multifactorial, iron deficiency being the most frequent etiology and reasons like malaria endemicity, poor nutrition including micronutrient deficiency, haemoglobinopathies, frequent bacterial infections and high parasitic infestations have been given for these high prevalence rates. Chronic Anaemia may impair growth, cardiac function and cognitive development in infants but other consequences are rather poorly explored more thoroughly. Chronic disorders and iron deficiency were the most common causes of Anaemia. Anaemia was frequently diagnosed in this series of elderly patients. Partly treatable nutritional deficiencies, such as iron or folate deficiency, were identified as possible causes. A complex and heterogeneous interplay of chronic inflammation, functional iron deficiency, and renal impairment was identified in a large proportion of patients. Measures directed at prevention and control of anaemia, include increased coverage of supplementation and fortification programs are strongly recommended.

Key Words: Anaemia; iron-deficiency hemoglobin; prevalence of Anaemia; haemoglobin

Introduction

National Health and Nutrition Examination Survey (NHANES II) provide adequate data on which to base estimates of the prevalence of iron-deficiency Anaemia and the Anaemia of inflammatory disease (Mozaffarian et al. 2015). An edited data tape for the laboratory analyses that are relevant to iron deficiency (Dallman et al., 1980).

Values for serum ferritin on a subpopulation of 157 subjects were used in certain of the analyses. The prevalence of Anaemia is usually defined in terms of the percentage of individuals with Hb values below a 95% reference range (Hong et al., 2012).

Received: 01.07.2018, Revised: 13.07.2015, Accepted: 18.07.2018

*Address for Correspondence: Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
Tel.: +91-9457273980. E-mail: sanjeevcloning@gmail.com
inflammatory disease (in which laboratory abnormalities are similar), even if that depression occurs within the “normal” reference range. The relative prevalence of Anaemia defined in this manner was estimated from the degree to which the frequency distribution for Hb concentration shifted toward higher values after exclusion of subjects who had one or more laboratory values indicative of iron deficiency and/or inflammatory disease.

Signs and symptoms of Anaemia

When Anaemia is present insidiously, such as with iron deficiency, the diagnosis is often delayed. Cutaneous pallor is not helpful because of the wide variability in skin pigmentation depending on ethnic origin. Conversely, conjunctival pallor, tongue pallor, and pallor of palms and soles seem to be more reliable (Kalantri et al., 2010). Reduced food intake and fatigue may be frequent (Panepinto et al., 2014). The degree of tachycardia is correlated with the Hb level and reflects the tolerance of Anaemia (Gv et al., 2014). Signs of hemolysis may be present, such as jaundice or dark urine. Dysmorphic features may help to diagnose a thalassemic syndrome (frontal bossing, prominent malar eminence, and depressed bridge of the nose).

Vitamin B12 deficiency Anaemia was diagnosed if the serum vitamin B12 level was low (less than 211 ng/l), associated with macrocytosis (mean corpuscular hemoglobin > 98 fl). Folate deficiency Anaemia was diagnosed if the erythrocyte folate level was low (less than 186 μg/l) combined with macrocytosis. The diagnosis of hematological malignant conditions was based on examinations of the bone marrow aspirate and biopsy. Renal disease was accepted as the cause of Anaemia if the patient was known to have chronic renal failure, or had small kidneys on ultrasound examination and the results of the iron studies, serum vitamin B12 levels and erythrocyte folate levels were normal (Wonke et al., 1998). Dietary iron intake Overall, women do not make major changes in their dietary habits during pregnancy (Pedersen et al., 2003), which means that the results of nutrition surveys in non-pregnant women can be transferred to pregnant and postpartum women. Danish women of reproductive age have a mean dietary iron intake of ~9 mg/day (Pedersen et al., 2003), which means that more than 90% of the women have an intake below the recommended daily allowance of ~18 mg/day (NCM, 2004). 96% of the women had a dietary iron intake below the recommended 18 mg/day (Trygg et al., 1995; NCM, 2004). In the third trimester, there is too short time for oral iron treatment to be effective in the correction of Anaemia due to the limited iron absorption capacity. Gastrointestinal iron absorption is regulated according to body iron reserves and the intensity of erythropoiesis. Exhausted body iron reserves in otherwise healthy women will increase the intestinal iron absorption (Kraft and Breymann 2011). In women who do not respond to oral iron, i.v. iron therapy should be considered. The recently introduced third-generation i.v. iron compounds are ferric iron carboxymaltose (Ferinject; Vifor Pharma Ltd.) (Lyseng-Williamson and Keating, 2009) and ferric iron isomaltoside 1000 (Monofer Pharmacosmos Ltd., 2011).

Discussion

The majority of our patients had a mild normocytic Anaemia, the most likely cause in these cases being Anaemia of chronic disease, which was confirmed with special investigations in patients. The data for adult males are of interest in showing a definite peak in Hb concentration in the early twenties with a gradual decline thereafter to median values that were 1.0 g/dl lower in the oldest age group. One distinct possibility is a decrease in an androgen stimulation of erythropoiesis that began during puberty. Another hypothesis proposed by (Lipschitz et al., 1981) is that Anaemia in otherwise healthy, aged subjects may indicate an overall reduction in hematopoietic reserve. The application of Hb reference values to elderly men will strongly influence the percentage that are considered anemic. Application of the same criteria for Anaemia to adult men of all ages might result in classifying a very large percentage of elderly men as anemic. Until there is strong evidence to the
contrary, it seems reasonable to apply age-specific reference standards to elderly men. In contrast, the lower limit of the reference range remains almost constant in women, making it practical to use the same criterion for Anaemia at all adult ages. The apparent predominance of iron-deficiency Anaemia among children, adolescents, and women during the child-bearing years is in accord with previous data (Bothwell et al., 1979; Dallman et al., 1980).

Conclusion

Overall prevalence of Anaemia was high in the study population. The most common cause of Anaemia was nutritional deficiency followed by chronic kidney disease and blood loss due to antiplatelet agents. The presence of Anaemia is a risk factor for increased morbidity and in-hospital mortality in these patients. As Anaemia is a relatively frequent condition which remains often under-diagnosed and untreated, its prevention and earlier detection may lead to improved outcomes. Mothers are fostering the future citizens of our societies. The most reliable way to obtain this goal is to give oral ferrous iron supplements from early pregnancy in doses ranging from 40 to 50 mg daily and perform obstetric prophylactic measures in pregnancies at risk for complications.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

How to Cite This Article: