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Abstract: The demand for bone substitutes is increasing in Western countries. Bone graft substitutes
aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken
from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds
can be designed by incorporating bone stem cells to decrease the disadvantages of traditional
tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by
insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote
both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful
regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric
signals are locally produced upon mechanical stimulation of these tissues. The specific effects of
electric charge generation on different cells are not fully understood, but a substantial amount of
evidence has suggested their functional and physiological roles. This review summarizes the special
contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration,
including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different
stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key
findings that may enable the development of successful vascularized bone replacements useful in
orthopedic and otologic surgery.

Keywords: biomaterials; scaffold; tissue engineering; angiogenesis; osteogenesis; stem cells; meso-
dermal progenitor cells; orthopedics; otology

1. Introduction

Stem cells are the foundation of tissue development and regeneration. Since tissues
develop as three dimensional (3D) structures, tissue engineering has emerged in recent
decades as a multidisciplinary field to enable 3D regeneration [1]. As such, it is based
on three pillars, namely, cells (primarily, stem cells), biomaterial scaffolds (to allow 3D
spatial organization of the cells), and stimulatory factors (to carry out fundamental cellular
functions, such as proliferation and/or differentiation). Under a classical approach, tissue
engineering provides cells with differentiation potential to be seeded on biocompatible
scaffolds; the resulting cell/scaffold constructs are cultured in media containing chemical
factors stimulating cell proliferation and/or differentiation to mimic in vitro the native
microenvironment of a specific anatomical district [2]. In this view, the biomaterial scaffold
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provides a temporary artificial extra cellular matrix (ECM) to allow the neo-tissue to grow
in 3D. In recent years, the scientific research has highlighted the role of other stimulatory
factors, e.g., exerted by the surrounding fluidic microenvironment, or by the scaffolds
themselves, such as mechanical and architectural [3]. Exogenous electric signals can also be
applied via biomaterials interacting with cells and have resulted to be capable of affecting
cell function [4].

Recently, the role played by the different distribution of electrical charges in biological
systems has been investigated, identifying it as a further pre-eminent biological stimulus
able to modify and guide some biological events, as well as chemical stimulating factors [5].
Indeed, bioelectricity is a fundamental characteristic of organisms, including humans. The
best known electrically stimulable tissues, including nerve and muscle tissues, are made
up by cells that depolarize their membrane by generating an electric potential. Electric
signals can regulate physiological events, such as the muscle contraction and the voluntary
and involuntary functions managed by neurons. Electric stimuli can be induced directly,
and indirectly as a consequence of magnetisms or mechanical forces [6]. In particular,
the piezoelectric effect is the ability of certain materials to generate an electric charge
differential in response to an applied mechanical stress and vice versa (Figure 1) [7].
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Figure 1. Direct piezoelectric effect in a biomaterial element: (A) without external stress,
and (B) subject to compressive stress with charge generation. P: polarization vector; V: voltage;
red arrows: dipoles; black arrows: direction of polarization vector.

When a dielectric solid is placed in an externally applied electric field, the relative
positions of both nuclei and electrons change, generating electric dipoles that determine,
in turn, the material polarization. Dielectrics are poor/non-electrically conductive mate-
rials, but susceptible to polarization in the presence of an electric field, thus behaving as
capacitors. Piezoelectric materials are a subset of dielectric materials that can be polarized
through an externally applied mechanical stress [7]. Piezoelectricity is determined by
the characteristics of some chemical crystalline structures, namely, non-centrosymmetric.
When the charge balance, overall neutral in rest condition, is disturbed by an external
stress applied to the crystalline network, small dipoles are created and material surfaces
result to be charged with opposite polarity during the time of mechanical force applica-
tion [8–10]. The piezoelectric effect has been recognized in highly crystalline structures,
such as perovskite-like ceramics, and to a lower extent also in some polymers and biologi-
cal materials provided with specific crystalline phases, where it mainly derives from the
orientation of the polymeric crystallites and their intrinsic piezoelectric properties [11]. In
the live matter, piezoelectricity is particularly significant in some biological materials, such
as wood, as well as in tissues, such as tendon and bone, among others [12]. In bone, piezo-
electric stimuli enabled by ECM in response to a mechanical stress or strain can influence
the remodeling of osseous tissue or modulate the production of coagulation factors by the
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endothelium layering the internal walls of blood vessels [8]. Moreover, piezoelectric stimuli
can regulate cell cycle, migration, proliferation, and differentiation (Figure 2) [13–15].
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Figure 2. Effect of piezoelectric biomaterials on the cells. Mechanical stress compresses the scaffold or
ECM generating the activation of voltage-dependent channels and channel/transmembrane proteins
activated by mechanical stimuli. Calcium ions and protein kinases generate a signal cascade that
in turn activate nuclear factors able to migrate in cell nuclei, generating different cell responses [4].
SACC = stretch activated calcium channels; SATP = stretch activated transmembrane proteins; VACC
= Voltage activated calcium channels; PKs = protein kinases; NFs = nuclear factors; CM = cell
membrane; NM = nuclear membrane.

Interestingly, piezoelectricity has been found to be incredibly widespread in the
body tissues, being ubiquitously present in some ECM molecules, such as collagen and
elastin [16,17]. Therefore, it is very important that polymeric biomaterials employed for
the fabrication of tissue engineering scaffolds exhibit this property. Indeed, piezoelectric
biomaterials have been investigated in several tissue engineering studies aimed at regener-
ating osseous [18,19], muscular [20], neural [21] and cardiovascular tissues [22], as well as
at healing wounds [23], and repairing vascular tissue [24].

It is expected that the application of piezoelectric biomaterials can guide tissue re-
generative processes led by stem cells in a biomimetic fashion. Indeed, these materials,
because of mechanical signals due to cell attachment or mechanical stress, generate varia-
tions in electrical potential without the need for power supply devices. Obviously, these
materials must be biocompatible and have sufficient piezoelectric properties for the gener-
ated electric charges to be properly sensed by the cells [25,26]. Piezoelectric biomaterials
account for piezoelectric polymers, piezoelectric ceramics and their composites [27]. In
particular, polymer-based materials, including nanoceramic/polymer composites, possess
the advantage of processing flexibility, which makes them appealing for diverse man-
ufacturing technologies, including 3D printing and electrospinning [25,28]. Since pure
ceramics show the strongest piezoelectricity but are mechanically hard and fragile materi-
als, difficult to process, the use of piezoelectric biomaterials for scaffolding mostly relies
on ceramic/polymer composites, which combine the advantages of both [28]. The struc-
tural requirements of piezoelectric polymers include the presence of permanent molecular
dipoles, the ability to align or orient molecular dipoles and to sustain their alignment once
achieved, along with capability of the material to support suitable mechanical stress [29].
Finally, the polymers entitled with the highest piezoelectric properties, i.e., belonging to
the poly(vinylidene fluoride) (PVDF) family, are chemically stable. Therefore, the lack of
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biodegradable polymers showing relevant piezoelectricity is still a bottleneck of tissue
engineering applications, which is invoked to be possibly overcome by polymer nanocom-
posites.

This review summarizes the special contribution of piezoelectricity for bone and
vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and
tissue engineering, by considering different stem cell sources entitled with osteogenic and
angiogenic potential, aimed at collecting the key findings that may enable the success of
novel smart vascularized bone replacements in orthopedic and otologic surgery.

2. Vascularized Bone as a “Piezoelectric” Regenerative Target

As a part of the vertebral skeleton, bone is mineralized tissue entailed with me-
chanically supportive, protective, movement, metabolic, remodeling, and hemopoietic
functions [30]. Histologically, the osseous tissue is constituted by a cellular component,
immersed in a hard ECM, which is predominantly formed by mineral salts (~70% w/w),
collagenic proteins (~20% w/w), and, to a lesser extent, amorphous matter (~2% w/w).
The complement (8% w/w) is water, which improves bone ductility [31,32]. Collagen
type I is the most represented collagenous protein of bone, while the amorphous matter
mainly consists of unsulfated glycosaminoglycans [30]. The mineralization process occurs
via precipitation of hydroxyapatite [Ca10(PO4)6(OH)2] by the surrounding extracellular
liquids on pre-osseous collagen matrix as a nucleating substrate. Bone tissue exists in two
main subtypes: cortical (or compact) on the outer surfaces, and cancellous (also known
as spongy, or trabecular) in the interior [33]. The structural unit of compact bone is the
osteon, or Haversian system, which consists of a central canal serving as a passageway
for blood vessels and nerves, surrounded by tubular subunits of bone ECM, namely, the
bone lamellae [34]. On the other hand, Volkmann’s canals are other vascular channels
that run perpendicular to the major axis of the osteons (Figure 3A). While compact bone
is just provided with incorporated vessels, the spongy bone consists of trabeculae per-
fused by vasculature and bone marrow (BM), the latter representing the hematopoietic cell
factory [35,36].
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The bone cells, representing a low volumetric fraction of the tissue, are responsible for
the fine and fundamental control and maintenance of bone homeostasis. Three main types
of cells concur with this mechanism: the osteoblasts (or bone building cells), the osteocytes,
and the osteoclasts (or bone destroying cells) (Figure 3B) [33].



Biomolecules 2021, 11, 1731 5 of 25

In time, the osteoblasts are found to be enclosed inside the matrix they have built,
thus becoming osteocytes. These cells do not divide and have an average lifespan of about
25 years. Moreover, they can reversibly turn back into osteoblasts, and live a new life
as bone constructors [37]. The osteocytes are able to interact with other cells, forming a
communication network with osteoprogenitor cells, osteoblasts, and osteocytes where the
osteocytes act as mechanosensors [33]. They are stellate cells, with a biconvex-shaped
cellular body and numerous cytoplasmic extensions. As such, between the plasma mem-
brane of the cell body and the extensions, the mineralized matrix remains a thin space
occupied by osteoid tissue [34]. On bony surfaces, the osteoblasts are responsible for the
synthesis and mineralization of the matrix; in addition, they are joined together with the
neighboring osteocytes through gap junctions, through which the cells exchange signal
molecules for the coordination of the metabolism and deposition of the bone matrix. Os-
teoblasts secrete growth factors, including transforming growth factor beta (TGF-β), which
acts in an autocrine and paracrine manner, modulates the proliferation of osteoprogenitor
cells, promotes their differentiation, increases the metabolism of mature osteoblasts, and is
sensitive to electric stimulation [38,39]. These cells are able to respond to various stimuli,
including mechanical, intervening again in growth and remodeling [40]. Remarkably,
the vascularization process is crucial in bone regeneration as well as in remodeling and
homeostasis, and the complex pathways that lead to angiogenesis and osteogenesis are
interdependent [41]. In such a complex tissue microenvironment, mechanical stimuli are
finely sensed by osteocytes and act as signals for bone cells to modify their gene expression
and finally induce synthesis or degradation of the bone ECM. Differently from the os-
teoblasts/osteocytes, of mesenchymal origin, the osteoclasts are polynucleated giant cells,
belonging to the macrophage family (i.e., of hematopoietic origin) [42]. The articulated
system of microscopic channels and lacunae in the compact bone, and/or cavities in the
spongy bone permits an efficient cellular cross-talk that enables the complex mechanism
of bone growth and remodeling. By virtue of remodeling, the osseous tissue is also able
to optimize its shape and resistant sections depending on the load to bear, thus showing
astonishing adaptive changes [43].

Bone has also been recognized to show piezoelectricity, which is suggestive of impor-
tant signaling involved in tissue function. Collagen fibers are considered to play a role in
bone piezoelectricity [44]. The collagen molecule is made up by three polypeptide strands,
connected by hydrogen bonds and twisted to form a triple helix structure. As such, the it
can behave as a crystal, which produces the piezoelectric effect by orientation of dipoles
involving NH and CO groups [12]. Collagen is produced by a fibrillogenic process in which
the procollagen chains produced at an intracellular level nucleate at one end to give rise to
a procollagen trimer, which undergo a self-assembly process occurring extracellularly. In
bone, collagen type I accounts for 90% of collagenic proteins. In osteoblasts, COL1A1 gene
produces the pro-α1(I) chain [38,45]. This chain combines with another pro-α1(I) chain
and with a pro-α2(I) chain (produced by the COL1A2 gene) to make a molecule of type
I procollagen. These triple-stranded, rope-like procollagen molecules are extruded out
of the cell and further processed by enzymes to arrange themselves into long, thin fibrils
that cross-link to one another in the inter-cellular spaces [46]. The cross-links result in the
formation of very strong mature type I collagen fibers (Figure 4A) [47,48]. Collagens are
the main constituents of bone as well as vascular tissues. All vessel lumens are made of
endothelial cells (ECs) anchored on an underlying basement membrane, a thin structure
made of laminin, collagens type IV, type XV, and type XVIII, among other biomolecules.
Under the basement membrane, normal vessels contain elastic fibers and collagens with
different amounts, depending on whether they are arteries or veins, including fibrillar
collagens type I and III [49].
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the direction of the dipole moment. Adapted from [26], reused under Elsevier & Copyright Clearance Center (license
number 5185310303078). (C) Single collagen fibril analysis obtained via atomic force microscopy: (i) topography, and
(ii) corresponding shear piezoelectricity obtained under piezoforce microscopy mode. Reprinted with permission from [50],
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Collagen fibrils show polarization along their axial direction (Figure 4B,C). The piezo-
electric effect is given by the imperfect hexagonal symmetry of their structure at the
nanometric level. In addition, the generation of electrical potentials in bone undergoing
mechanical stress is determined by ion movements in the mineralized matrix [50,51]. The
piezoelectric action can in turn alter the chemistry of the collagen molecules or affect the
cellular activity responsible for the control mechanism involved in the bone growth and
remodeling [52].

More recently, it has been shown that synthetic nanocrystalline hydroxyapatite films
exhibit strong piezoelectricity [53]. In particular, in 2005 two polar symmetries for hydrox-
yapatite were proposed, i.e., monoclinic and a hexagonal, which are not centrosymmetric,
thus opening up new scenarios for hydroxyapatite contribution to bone piezoelectric-
ity [54]. The small energy difference between these polar symmetries and the non-polar
centrosymmetric counterpart, indicates that nanosized hydroxyapatite may have these
polar structures stable as a consequence of large surface energy. For this reason, it is possi-
ble that not only collagen fibrils, but also hydroxyapatite, produced by biomineralization
process in the form of nucleated and precipitated nanocrystals, concur to make bone a
piezoelectric material [55]. In 1969, elastin was entailed (along with collagen) as piezoelec-
tric constitutive matter of large blood vessel walls, led by preferred anisotropic orientation
of the tissue structure [56]. Elastin fibers are at the basis of blood vessel rheological prop-
erties, such as the post-systolic elastic recoil [57]. Elastin has recently been discovered to
demonstrate intrinsic polarization at the monomer level, thus to be considered analogously
to a classical perovskite unit cell [16]. The diffused evidence of piezoelectricity in bone as a
vascularized tissue is thus highly supportive for including piezoelectric stimuli to attain its
functional regeneration.

3. Cell Sources Used to Engineer Vascularized Bone Substitutes, and Cellular
Susceptivity to (Piezo)electric Stimuli

The mesenchymal stem (or stromal) cell (MSC) is considered to be upstream the os-
teogenic lineage, and COL1 gene is an indisputable early marker of osteogenesis [45,58,59].
However, the ancestor progenitor of the MSC is still a subject of debate, the pericyte be-
ing a possible candidate according to some hypotheses [59,60]. The mesengenic process
describes the descendances of the MSC family tree, which includes bone, cartilage and
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vasculature, among other mesodermal origin tissues (Figure 5) [58]. In the osteogenic
lineage, various progenitors at diverse differentiation stages have been described, which
all share the osteogenic hallmark, namely, core binding factor alpha-1 (CBFA1) known
also as Runx2 [45]. Among them, osteoprogenitors are found in the inner layer of the
periosteum, called the osteogenic layer of Ollier, and in the endosteum, resemble MSCs
and can differentiate into osteoblastic cells also exploiting bone morphogenetic proteins
(BMPs).
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The choice of the most suitable cell type for tissue regeneration studies is fundamental
to obtain a functional tissue-engineered construct. To obtain a vascularized bone substitute,
cell precursors able to differentiate into bone cells (i.e., osteoblasts), as well as precursors re-
generating the vascular endothelium and promoting angiogenesis, are considered. Primary
osteoblasts are certainly the most immediate cell type considered for tissue engineering
studies applied to bone tissue regeneration, However, they need to be isolated from bone
biopsies and the long time for their isolation and expansion, along with their low viability,
make primary osteoblasts poorly useful for developing customized 3D models [62,63].

An interesting and widely studied alternative is represented by MSCs, isolated for the
first time from BM, but also present in many other anatomical sites, such as muscle and
adipose tissue, dental pulp, and umbilical cord blood, among others [64–66]. BM-derived
MSCs represent 0.10–0.01% of the entire cellular population present in the BM. They are
able to adhere to the culture flask and show a spindle shape similar to that of fibroblasts.
Moreover, MSCs are characterized by the absence of hematopoietic markers, such as CD34,
CD45, CD14, and by the expression of a specific pattern of adhesion molecules, such as
CD90, CD105, and CD44. They are able to differentiate towards the adipogenic, osteogenic,
and chondrogenic lineages, and produce a variety of cytokines, which, in the preclinical
model, favor engraftment and reduce the rejection of transplants [67–69]. MSC isolation
from BM, however, is somehow painful for the patient, thus other anatomical sites could
be considered.

Adipose tissue-derived MSCs (AD-MSCs) are easily isolated from lipoaspirates in
larger amount than MSCs isolated from BM [70,71]. They show features similar to the
BM-MSCs, but show an increased differentiation capability towards adipogenic lineage
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and a decreased potential towards the osteogenic lineage [72]. In addition, AT-MSCs
highlighted in vivo ability to secrete proangiogenic mediators and molecules stimulating
the activity of the bone tissue [73].

Oral tissue is a good source of stem cells, thus being considered a valuable tool for
bioengineering [74]. They can be isolated from various sites, such as the periodontal
ligaments, the apical papilla, and exfoliated temporal teeth [75]. These MSCs are similar to
BM-MSCs: they adhere in culture flasks and show fibroblastic-like morphology; moreover,
they show stem cell markers and hematopoietic markers are not present; finally, they are
able to differentiate with towards adipogenic, chondrogenic, and osteogenic lineages in a
similar fashion to BM-MSCs [76,77]. In addition to stimulating bone formation in vivo and
in vitro, these cells are able to promote angiogenesis (Figure 6) [78].

Biomolecules 2021, 11, x FOR PEER REVIEW 8 of 24 
 

Oral tissue is a good source of stem cells, thus being considered a valuable tool for 
bioengineering [74]. They can be isolated from various sites, such as the periodontal liga-
ments, the apical papilla, and exfoliated temporal teeth [75]. These MSCs are similar to 
BM-MSCs: they adhere in culture flasks and show fibroblastic-like morphology; moreo-
ver, they show stem cell markers and hematopoietic markers are not present; finally, they 
are able to differentiate with towards adipogenic, chondrogenic, and osteogenic lineages 
in a similar fashion to BM-MSCs [76,77]. In addition to stimulating bone formation in vivo 
and in vitro, these cells are able to promote angiogenesis (Figure 6) [78]. 

 
Figure 6. Osteogenic and vasculogenic potential of dental pulp MSCs: (A) von Kossa staining of 
osteo-differentiated dental pulp MSCs, showing calcium deposits in black and cells in red. Arrows 
point to representative areas of intense mineral deposition in proximity to osteoblasts; and (B) light 
micrograph of dental pulp MSCs after endothelial differentiation, showing capillary tube-like struc-
tures. Reprinted with permission and adapted from [61], under Elsevier and Copyright Clearance 
Center (license number 5166500137992). 

Another cellular source that has been considered to obtain 3D models for bone re-
generation is represented by induced pluripotent stem cells (iPSCs). IPSCs are obtained 
by genetic engineering procedures, transferring transcription factors such as Oct4, Sox2, 
Klf4, and c-Myc to human primary cells, making them acquire pluripotency characteris-
tics similar to those of embryonic cells. Therefore, such cells can also differentiate into 
osteoblasts and osteoclasts. However, the complex procedure required to obtain iPSCs 
and the low efficiency of the procedure render them not yet suitable to obtain predictive 
preclinical models [79–81]. 

To achieve endothelial regeneration for a correct bone vascularization, it is necessary 
that the endothelial cells (EC) already present in a vessel migrate and/or that endothelial 
progenitor cells (EPCs) deriving from BM are recruited to the lesion site [82,83]. EPCs are 
a population of unipotent progenitors with self-renewal, clonogenicity and differentiation 
capability present in the peripheral blood of many organs such as spleen, umbilical cord, 
liver, kidney [84–86]. Recent studies indicate that EPCs can promote endothelial regener-
ation not directly, but through the release of soluble factors such as bone morphogenetic 
proteins (BMPs), vascular endothelial growth factor (VEGF), TGF-β, and by recruiting res-
ident MSCs and ECs at the bone formation site [87–90]. 

Mesangiogenic (or mesodermal) progenitor cells (MPCs), described in 2008 as iden-
tified in human BM mononuclear cell cultures during isolation and expansion of MSCs 
under animal-free conditions, are a powerful cell source to be considered to the endothe-
lial and bone regeneration (Figure 7) [91]. An extensive phenotypic and functional char-
acterization of these interesting cells showed a distinct phenotype from MSCs and the 
expression of CD45, although at much lower levels of leukocytes. Furthermore, the gene 
expression profile of MPCs revealed pluripotency markers, such as Oct-4, Nanog and Nes-
tin (Figure 7) [92,93]. Rigorous studies have demonstrated a differentiative capability of 
MPCs towards MSCs, which in turn can differentiate in vitro and in vivo towards osteo-
blastic, chondrogenic, and adipogenic lineages, among others [94]. Furthermore, MPCs 

Figure 6. Osteogenic and vasculogenic potential of dental pulp MSCs: (A) von Kossa staining of
osteo-differentiated dental pulp MSCs, showing calcium deposits in black and cells in red. Ar-
rows point to representative areas of intense mineral deposition in proximity to osteoblasts; and
(B) light micrograph of dental pulp MSCs after endothelial differentiation, showing capillary tube-
like structures. Reprinted with permission and adapted from [61], under Elsevier and Copyright
Clearance Center (license number 5166500137992).

Another cellular source that has been considered to obtain 3D models for bone regen-
eration is represented by induced pluripotent stem cells (iPSCs). IPSCs are obtained by
genetic engineering procedures, transferring transcription factors such as Oct4, Sox2, Klf4,
and c-Myc to human primary cells, making them acquire pluripotency characteristics simi-
lar to those of embryonic cells. Therefore, such cells can also differentiate into osteoblasts
and osteoclasts. However, the complex procedure required to obtain iPSCs and the low
efficiency of the procedure render them not yet suitable to obtain predictive preclinical
models [79–81].

To achieve endothelial regeneration for a correct bone vascularization, it is necessary
that the endothelial cells (EC) already present in a vessel migrate and/or that endothelial
progenitor cells (EPCs) deriving from BM are recruited to the lesion site [82,83]. EPCs are a
population of unipotent progenitors with self-renewal, clonogenicity and differentiation
capability present in the peripheral blood of many organs such as spleen, umbilical cord,
liver, kidney [84–86]. Recent studies indicate that EPCs can promote endothelial regenera-
tion not directly, but through the release of soluble factors such as bone morphogenetic
proteins (BMPs), vascular endothelial growth factor (VEGF), TGF-β, and by recruiting
resident MSCs and ECs at the bone formation site [87–90].

Mesangiogenic (or mesodermal) progenitor cells (MPCs), described in 2008 as iden-
tified in human BM mononuclear cell cultures during isolation and expansion of MSCs
under animal-free conditions, are a powerful cell source to be considered to the endothelial
and bone regeneration (Figure 7) [91]. An extensive phenotypic and functional char-
acterization of these interesting cells showed a distinct phenotype from MSCs and the
expression of CD45, although at much lower levels of leukocytes. Furthermore, the gene
expression profile of MPCs revealed pluripotency markers, such as Oct-4, Nanog and
Nestin (Figure 7) [92,93]. Rigorous studies have demonstrated a differentiative capability
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of MPCs towards MSCs, which in turn can differentiate in vitro and in vivo towards os-
teoblastic, chondrogenic, and adipogenic lineages, among others [94]. Furthermore, MPCs
retained a demonstrated angiogenic potential both in vitro and in vivo, which is lost upon
differentiation towards the mesenchymal lineage [95].
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Figure 7. MPCs versus MSCs. Immunofluorescent staining confirms the expression of Nanog, Oct-4
and Sox15 (green) in MPC but not in MSC nuclei (blue) MPCs and MSCs show different spatial
organization of F-actin (red). MPCs also differ from MSCs due to their unexpected high expression of
well-organized Nestin filaments (green). Reused from [89] under Creative Commons Attribution
License.

Efforts to determine which BM sub-population might be capable of generating MPCs
in culture have led to the identification of a single subpopulation with monoblast-like char-
acteristics, called Pop#8, which showed high potential for endothelium regeneration [96].

Remarkably, MPCs, as a single stem cell source, retain the potential to generate all
the populations necessary for prevascularized bone substitutes under a tissue engineering
approach [97]. For these reasons, co-culture of MPC-derived EPCs and MPC-derived MSCs
on a biocompatible and bioresorbable scaffold is expected to give rise to a pre-vascularized,
fully-autologous, and functional bone construct relevant for clinical applications. Simul-
taneous employment of different cell populations could improve the efficiency of the
regenerative process. Co-cultures of MSCs and endothelial precursor cells have demon-
strated that these different cell populations have a synergistic action. Indeed, studies
where MSCs and EPCs or human umbilical vein cells (HUVECs) were co-cultured on 3D
scaffolds have shown an improvement in the survival rate of MSCs and stimulation of
bone differentiation as well as angiogenesis [98–101]. A schematic of MSC and HUVEC
co-culture on a scaffold is reported in Figure 8. Recent studies have highlighted the absence
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of MPCs in the adipose tissue, thus raising doubt about the capability of AD-MSCs to
promote an efficient osteogenesis, which includes vascularization potential [96].
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Figure 8. Schematic showing: (A) a fracture involving bone tissue including vasculature; (B) a
porous scaffold; and (C) histological analysis displaying a pore colonized by a dual cell population:
osteoblast-like cells producing mineral matrix (by von Kossa staining positive, in black), and endothe-
lial cells surrounding the pore walls (von Kossa staining negative, in red), reprinted with permission
and adapted from [101], under John Wiley and Sons Copyright Clearance Center (license number
5170741359741).

Bioelectricity, which originates from transmembrane voltage gradients at a cell level, is
known to play a central role in orchestrating cell function during embryonic development,
as well as in tissue regeneration and repair, thus strongly involving stem cells [102].

Human MSCs treated with exogenously applied electrical stimulation (ES) at 15 V
for 10 min every day for 4 weeks through parallel plate electrodes, showed a significant
upregulation of osteocalcin and alkaline phosphatase (ALP) gene expression, as well as
calcium deposition, possibly as a consequence of augmented cytosolic Ca2+ ion flux [103].
ES has also demonstrated to strongly affect, in diverse ways, cell alignment according
to the electric field vector direction. As an example, cardiac and endothelial progenitor
cells, vascular ECs, MSCs and adipose-derived stromal cells aligned perpendicular to
the direction of the electric field vectors to minimize the field gradient across the cell,
whereas ventricular and cardiac myocytes, myoblasts, and osteoblasts aligned parallel
to the field vectors since ES induced cell cytoskeleton rearrangement [104]. Upon ES
application, both MSCs and ECs, independently cultured, oriented perpendicular to the
field vectors; interestingly, EC morphology resembled that of the inner layer of the blood
vessel, with consistent perpendicular alignment to the field vector, which was suggestive
of high angiogenic potential [105,106]. As an exogenous stimulus, ES performed at an
intensity lower than 2 V·cm−1 for 14–28 days was able to induce MSCs towards osteogene-
sis (in place of chondrogenesis), still in presence of dexamethasone [107]. Such evidence
highlights the prominent role of electric signals in stem cell differentiation, which appears
to be specifically important in osteogenesis and vasculogenesis. Piezoelectricity imparts
mechanically-driven ES based on polarization effects; thus, it is mediated by mechanically
solicitated native ECM components, or biomaterials, usually located out of the cells. Hence,
piezoelectricity is usually relevant where mechanical loads are predominant. The intensity,
duration and type of mechanical stimulation, the specific piezoelectric material, and the
resulting electric output thus concur with the effective ES perceived by the stem cells with
activation of their differentiative pathways. In fact, it has been reported that MSCs seeded
on quartz glasses and administrated with ultrasound as a mechanical stimulation, in the
range of 1–20 mW·cm−2 intensity, resulted in the activation of a chondrogenic differen-
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tiative route [108]. In a comparative study using poled and non-poled electrospun PVDF
scaffolds as substrates, it was demonstrated that human MSCs selected either osteogenic
or chondrogenic lineage differentiation depending on the entity of the output voltage
(or streaming potential) generated by the piezoelectric scaffold, namely, either high (i.e.,
61.1 ± 1.5 µV) or low (25.2 ± 2.5 µV) voltage, respectively, upon dynamic sinusoidal com-
pression at 1 Hz and a deformation of 10% obtained using a bioreactor [109]. Such electric
potentials are lower than those applied by direct ES; however, in piezoelectric stimulation,
the cells sense the mechanical stress in addition, and putatively synergistically, to the
generated ES. In fact, pure mechanical stimuli, including substrate stiffness and external
loads, which may be applied in vitro by bioreactors, have largely been demonstrated to
influence stem cell fate [110].

4. Piezoelectricity in Vascular Grafts and Endothelial Regeneration

Blood vessels are an integral part of the skeletal system and essential in maintaining
bone homeostasis. The spatial arrangement of the articulated vascular network in bone
enables the optimal delivery of oxygen and metabolites, as well as carbon dioxide and
catabolite removal within the BM compartment (Figure 9) [111].
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vascularized bone is therefore impellent for gathering clinical success. In fact, resection of 
bone tumors, bone cysts or trauma result in extended skeletal defects that need to be filled 
using large volumes of substitutive material, which makes neo-vascularization funda-
mental for bone cell survival. As a consequence of the inflammatory process taking place 
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gies, which will be discussed in Section 5, vascularized bone grafts can be obtained by 
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and veins branching into L type capillaries in the epiphysis, metaphysis, and diaphysis; (B) cross view showing a main
central vein and a few arteries in the medullary region; and (C) zoomed-in panel showing the connection between cortical
and medullary blood flow. Adapted from [111] and reused under Creative Commons Attribution (CC BY) license.

Blood supply to bone is provided by arteries entering the cortical region, and a central
artery, which divides into arterioles and capillaries. Exhausted blood is finally collected into
a main central vain and thus returns to pulmonary circulation. Regenerating vascularized
bone is therefore impellent for gathering clinical success. In fact, resection of bone tumors,
bone cysts or trauma result in extended skeletal defects that need to be filled using large
volumes of substitutive material, which makes neo-vascularization fundamental for bone
cell survival. As a consequence of the inflammatory process taking place after surgery,
new vessels are only transiently being formed deriving from the neighboring vasculature,
and even in case of porous scaffolds, the process of vasculature infiltration is usually too
long, i.e., lower than 1 mm per day [112]. Among several other strategies, which will be
discussed in Section 5, vascularized bone grafts can be obtained by combining bone tissue
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engineering with microsurgery, for example, by implantation of an arteriovenous loop
around the construct [113]. Under a clinical perspective, reconstructing vasculature at
the moment of large bone defect reduction is highly relevant, which can be performed, if
possible, by rearranging existing vasculature, or even putatively using vascular grafts.

Artificial vessels have been developed for repairing the vascular system, thus are not
directly related to bone regeneration. However, due to the fundamental nature of vascula-
ture in bones, in this review we revise the current knowledge about piezoelectric materials
for vascular monitoring, repair, and regeneration, independently of bone engineering, with
the objective of providing interesting knowledge to develop new materials able to promote
both bone and vascular regeneration by availing themselves of piezoelectricity. A vascular
graft is an artificial duct drawn on the patient’s artery that is used to bypass a damaged
vessel. Atherosclerosis is one of the pathologies responsible for a damage to the vascular
system, which behaves as a progressive disease characterized by the accumulation of lipids
in the blood vessels [114]. The ischemic events resulting from the disease often require the
replacement of some part of a vessel. In many cases, autologous tissue is used; however,
the limited availability of the material, the multiple surgical interventions required, the
morbidity of the donor site, and a high failure rate, make this a not a very functional
technique, prompting scientific research to identify other reparative strategies [115]. The
failure of the vascular graft is not identifiable by the presence of symptoms, but consists
of an inefficient blood flow leading to thrombus formation. To prevent the problem, it
is necessary to constantly monitor the implant, because intervening at late stages can be
difficult, leading to the patient’s death [116]. Currently, techniques are employed that
involve the use of ultrasounds, computed tomography, and angiograms to define blood
pressure and flow velocity in the lumen of the vascular graft [117,118]. However, these
procedures are complex, expensive, and can be toxic to the patient [119,120]. New solutions
to monitor the grafts consist of the use of appropriate sensors, which, placed in direct
contact with the blood flow, allow the blood pressure to be detected at the implant level.
However, they alter the structure of the vessel and can cause turbulence [117]. To overcome
this problem, sensors consisting of membranes were mounted on the external wall of a
graft constituted by polydimethylsiloxane (PDMS), a chemically inert elastomer, thermally
stable, easy to handle and to shape, and interesting for biomedical applications [121]. They
are able to measure blood pressure indirectly and record the mechanical stresses of the
vascular wall because of the blood flow passage [122].

Piezoelectric materials have proved to be very useful in providing a rapid response
to changes in vessel pressure. Indeed, they are very flexible and sensitive to mechanical
stimuli, which makes them perfect for this type of application [123–125]. However, piezo-
electric sensors are also bulky, and this alters the mechanical response of the vascular wall.
For this purpose, a very thin piezoelectric sensor of aluminum nitride integrated with the
prosthesis has been developed, which showed to be non-toxic and very functional [126].
Alternatively, piezoelectric sensors based on nanoceramic zinc oxide (ZnO) and lead zir-
conate titanate (PZT) were created, but issues concerning biocompatibility and fragility
have occurred [127].

A different approach is to create synthetic substitutes instead of the autologous graft,
with the advantage to have a wide availability of easily customizable material. The syn-
thetic substitutes are based on biocompatible materials commercially in use for a long time,
such as poly(tetrafluoroethylene) and poly(ethylene terephthalate), but they are used exclu-
sively to replace vessels with a diameter greater than 6 mm, as their application in smaller
diameter replacements has caused scarce reendothelialization with consequent throm-
bogenesis [128]. An interesting alternative to overcome this limitation is represented by
tissue engineered vascular graft (TEVGs), based on materials that must meet three essential
requirements: they must have mechanical properties matching those of the blood vessels,
high biocompatibility, and adequate porosity to favor a correct reendothelialization, the
latter being a fundamental aspect due to the endothelium playing an active role in all phys-
iological processes, such as homeostasis and the regulation of vascular tone. Elastomers
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are a class of materials with high elasticity that can be finely adjusted. Polyurethanes
are flexible and biocompatible as well as have a high tensile strength. They can also
combine with PDMS to increase elastic properties [129,130]. Vascular grafts have been
developed containing silver nanoparticles and carbon nanotubes exhibiting antithrombotic
and antibacterial properties [131,132].

Since the vessels retain piezoelectric properties, mainly attributable to collagen and
elastin present in ECM [133,134], piezoelectric polymers can be considered in view of pro-
moting vascular regeneration [25]. PVDF, often used in association with trifluoroethylene,
P(VDF-TrFE), is a piezoelectric material, with a piezoelectric coefficient of 20 pC·N−1. It
is a biocompatible but non-biodegradable thermoplastic polymer, with high flexibility as
well as chemical and physical resistance. It has been used in various tissue engineering
studies and recently also for the regeneration of cardiovascular tissue [22,135]. The addition
of piezoceramics such as ZnO nanoparticles and boron nitride nanotubes (BNNTs) can
increase piezoelectricity and other properties of piezoelectric polymers. ZnO nanoparticles
added to a P(VDF-TrFE) scaffold improved the adhesion and growth of HUVECs and
MSCs seeded on the scaffold in vitro and stimulated angiogenesis in rats [24]. A porous
scaffold was also created based on polyurethane and PDMS doped with barium titanate
nanoparticles (BaTiO3), a highly biocompatible ceramic material with high piezoelectricity
coefficient of 191 pC·N−1 [136], to combine elastic with piezoelectric properties. The ad-
dition of piezoelectric nanoparticles improved the mechanical properties, making them
comparable to the vessel ones. The scaffold in both presence and absence of nanoparticles
was seeded with fibroblasts, that showed a better proliferation on the doped biomaterial
counterpart (Figure 10) [137].
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Figure 10. Piezoelectric small caliber vascular graft: (A) photograph; (B) schematic of the polymer
network incorporating BaTiO2 nanoparticles; (C) representative displacement-voltage curves, ob-
tained for the nano-doped samples; and (D) piezoelectric force microscope images showing signal
amplitude maps and corresponding average and maximum d33 values for the nano-doped samples.
Reprinted with permission and adapted from [61], under Elsevier and Copyright Clearance Center
(license number 5166600438237).

The mechanisms involved in controlling the aggregation of platelets on the vessel wall
also seemed to be affected by the charge variations: electrical stimulation of an endothelial
cell culture led to a strong secretion of the mediator prostaglandin I2, which varied with
the electrical stimulus variation [138].

Although quite effective in regenerating the endothelium, TEVGs need a long and
expensive in vitro culture process before implantation and an error in the differentiation
process can lead to an immature endothelium, with consequent implant failure [137].



Biomolecules 2021, 11, 1731 14 of 25

5. Piezoelectricity in Bone Tissue Regeneration

The structural components of the bone tissue are arranged according to precise pat-
terns ranging from nan-o to macro-scale [139,140]. In particular, the fibrillar component
plays a fundamental role in the bone mechanical strength and this is particularly evident
after fractures, which represent one of the most frequent problems affecting bone tissue,
caused by trauma (e.g., due to impact or fall), and favored by certain pathologies (e.g.,
osteoporosis) [141,142]. After fracture, a new, initially disorganized, fibrillar component is
synthesized, which is later converted in parallel fibers giving increased structural rigid-
ity [143]. Bone grafts are the most common solution for repairing a non-union, namely
a fracture that does not heal over a certain time; however, important limitations to this
procedure still remain, such as donor site morbidity, risk of infection transmission and
scarce graft availability. In order to be functional, bone implant must allow the recruitment
of osteoprogenitor cells that are able to proliferate, differentiate, produce new mineral-
ized matrix, and remodel the bone. Furthermore, it is essential that the implant is soon
vascularized [144]. The use of biomaterials, such as bioresorbable polymers, potentially
allows some limits of traditional bone implants to be overcome, thus avoiding multiple
surgical interventions and generating a 3D structure with a microenvironment stimulating
genesis of new bone. However, rejection of synthetic implants and their osseointegration
remain frequent issues to be solved [145,146]. To be considered suitable for bone tissue
regeneration, scaffolds should possess the following characteristics: adequate mechanical
strength capable of withstanding mechanical loads which bones are normally subjected
to [147], high biocompatibility to avoid inflammation and rejection [148], and suitable
porosity that allows deep colonization by cells and neovascularization (suggested to be in
a few hundred microns but also containing pores < 20 µm) [143]. The biomaterial must
then be osteoconductive to promote the migration of osteogenic cells into the scaffold, and
osteoinductive to recruit and allow the commitment of stem cells and progenitors [149–151].
Osteoinductivity is not a merely chemical stimulus. It was demonstrated that material nan-
otopography can induce MPC-MSC transition as a sole factor; in particular, nanogratings,
used as a cell culture substrate, were able to promote cell morphological polarization and
stretching, which finally resulted in phenotype change towards the osteogenic lineage [152].
These results highlighted that some surfaces generate physical stimuli able to address
the cells toward specific lineages, thus opening to the interesting possibility of producing
nanopatterned biomaterials inherently able to induce stem cell differentiation, without the
use of specific growth factors or cell culture media.

Finally, the piezoelectric properties of the scaffold could be considered relevant to
impart physiological-like stimulation, including bone and vascular tissues [4]. Indeed, by
mechano-electric signals, bone regulates many phenomena such as the healing of fractures,
bone growth and remodeling [44,139,153–155]. Upon compressive loads, the mechanical
stress generates a series of events including electrical signals by virtue of collagen fibers,
specifically, collagen type I [8,44,153].

Realizing the piezoelectric nature of bone, in recent years several studies are being
performed to evaluate the effects of piezoelectric polymers and nanoparticles on bone
regeneration processes. Piezoelectric nanoparticulate systems, such as nanoceramics (i.e.,
BNTTs), mechanically activated via ultrasound after being up-taken by osteoblasts in vitro
have proven capability of stimulating bone ECM formation by upregulation of TGF-β,
a factor sensitive to electric signals [156]. On a macroscale level, PVDF was produced
in different structures, such as films, membranes, and 3D scaffolds, tested in rat bone
defects, where mechanical stress was provided by movement. After four weeks, PVDF
films demonstrated BM and trabecular bone formation. Fiber meshes improved bone
regeneration compared to the flat surface of the films, showing that the morphological
structure of the material was also involved in the control of the bone regeneration [157].
This aspect was also evaluated in a study employing P(VDF-TrFE) scaffolds, fabricated
with hexagonal or linear morphology in order to evaluate which shape actually influenced
the proliferation and differentiation of pre-osteoblasts, without using differentiation factors.
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The results showed that only the scaffold with hexagonal morphology elements could
give rise to bone cell differentiation [158]. The incorporation of nanoparticles can improve
many properties of the scaffold also in relation to its biocompatibility. For example, it
was observed that the addition of ZnO and BaTiO3 nanoparticles in electrospun PVDF
scaffolds improved the piezoelectricity of the material and the adhesion, proliferation, and
differentiation of human MSCs [24,159–161]. The use of BaTiO3 nanoparticles increased
the tensile strength, the piezoelectric coefficient, and the bioactivity of the P(VDF-TrFE)
composite scaffold improved osteogenesis in vivo [159,160]. Despite the excellent results
obtained in bone regeneration, PVDF family members are non-biodegradable so the artifi-
cial scaffold cannot be fully substituted by natural tissues. Having available piezoelectric
yet bioabsorbable scaffolds is an important goal for clinical applications. One possibility
relies on the use of polyhydroxyalkanoates (PHAs), a family of largely biocompatible
and bioresorbable biopolyesters synthesized by microorganisms under certain metabolic
conditions, exhibiting, in some members, piezoelectric properties [162,163]. However,
PHAs are more hydrophobic than natural polymers, and well-known polyhydroxybutyrate
(PHB) is rigid and difficult to process [164–167]. It has been observed that despite their low
osteoconductivity, these materials showed a better differentiation capacity than synthetic
polyester counterparts [168–170]. In addition, PHAs are able to bind to ceramic materials
such as hydroxyapatite or natural polymers, thereby improving their mechanical proper-
ties and affinity with the biological substrate. The addition of hydroxyapatite improved
the mechanical properties and osteoconductivity of PHAs [171,172], while the addition
of bioactive glasses stimulated, towards their degradation products, the osteoprogenitor
cells [173]. Finally, the addition of natural polymers, such as gelatin and chitosan, improved
the biological properties and elasticity of these materials [174,175]. Among the PHAs, PHB
and poly(hydroxybutyrate-co-hydroxyvalerate) P(HBHV) (or PHBV), which add piezoelec-
tric properties to improved processability, are the most largely studied members [176,177].
PHB and P(HBHV) have longer degradation times than other biocompatible polymers and
a piezoelectric coefficient of approximately 1.3 pC·N−1, similar to that reported for human
bone. The piezoelectric effect in these polymers originates mainly from their crystalline
properties, by which an external stress applied, induces the internal rotation of the dipoles
in the crystalline phase, which ultimately gives rise to electrical polarization [150,178].
MSC-seeded PHB and P(HBHV) fibers have been shown to improve vascularization in en-
gineered bone tissue [179], and PHB scaffolds coated with collagen type I and chondroitin
sulphate promoted osteodifferentiation and vascularization (Figure 11) [180].

Biomolecules 2021, 11, x FOR PEER REVIEW 15 of 24 
 

of the material was also involved in the control of the bone regeneration [157]. This aspect 
was also evaluated in a study employing P(VDF-TrFE) scaffolds, fabricated with hexago-
nal or linear morphology in order to evaluate which shape actually influenced the prolif-
eration and differentiation of pre-osteoblasts, without using differentiation factors. The 
results showed that only the scaffold with hexagonal morphology elements could give 
rise to bone cell differentiation [158]. The incorporation of nanoparticles can improve 
many properties of the scaffold also in relation to its biocompatibility. For example, it was 
observed that the addition of ZnO and BaTiO3 nanoparticles in electrospun PVDF scaf-
folds improved the piezoelectricity of the material and the adhesion, proliferation, and 
differentiation of human MSCs [24,159–161]. The use of BaTiO3 nanoparticles increased 
the tensile strength, the piezoelectric coefficient, and the bioactivity of the P(VDF-TrFE) 
composite scaffold improved osteogenesis in vivo [159,160]. Despite the excellent results 
obtained in bone regeneration, PVDF family members are non-biodegradable so the arti-
ficial scaffold cannot be fully substituted by natural tissues. Having available piezoelectric 
yet bioabsorbable scaffolds is an important goal for clinical applications. One possibility 
relies on the use of polyhydroxyalkanoates (PHAs), a family of largely biocompatible and 
bioresorbable biopolyesters synthesized by microorganisms under certain metabolic con-
ditions, exhibiting, in some members, piezoelectric properties [162,163]. However, PHAs 
are more hydrophobic than natural polymers, and well-known polyhydroxybutyrate 
(PHB) is rigid and difficult to process [164–167]. It has been observed that despite their 
low osteoconductivity, these materials showed a better differentiation capacity than syn-
thetic polyester counterparts [168–170]. In addition, PHAs are able to bind to ceramic ma-
terials such as hydroxyapatite or natural polymers, thereby improving their mechanical 
properties and affinity with the biological substrate. The addition of hydroxyapatite im-
proved the mechanical properties and osteoconductivity of PHAs [171,172], while the ad-
dition of bioactive glasses stimulated, towards their degradation products, the osteopro-
genitor cells [173]. Finally, the addition of natural polymers, such as gelatin and chitosan, 
improved the biological properties and elasticity of these materials [174,175]. Among the 
PHAs, PHB and poly(hydroxybutyrate-co-hydroxyvalerate) P(HBHV) (or PHBV), which 
add piezoelectric properties to improved processability, are the most largely studied 
members [176,177]. PHB and P(HBHV) have longer degradation times than other biocom-
patible polymers and a piezoelectric coefficient of approximately 1.3 pC∙N−1, similar to 
that reported for human bone. The piezoelectric effect in these polymers originates mainly 
from their crystalline properties, by which an external stress applied, induces the internal 
rotation of the dipoles in the crystalline phase, which ultimately gives rise to electrical 
polarization [150,178]. MSC-seeded PHB and P(HBHV) fibers have been shown to im-
prove vascularization in engineered bone tissue [179], and PHB scaffolds coated with col-
lagen type I and chondroitin sulphate promoted osteodifferentiation and vascularization 
(Figure 11) [180]. 

 
Figure 11. Vascularization in PHBHV-based fiber scaffolds: (A,B) PHBHV fibers after implantation in nude rats, arrows 
indicate the blood vessels, stars point to scaffold fibers [173]: (A) hematoxylin/eosin staining, and (B) 1A4 actin staining, 
reprinted and adapted under John Wiley and Sons Copyright Clearance Center (license number 5170801144911); and (C) 
PHB/PHBHV fibers cultured in vitro with adipose-derived MSCs: expression of VEGFR-2 as an endothelial marker [172], 
reused under Creative Commons Attribution License. 

Figure 11. Vascularization in PHBHV-based fiber scaffolds: (A,B) PHBHV fibers after implantation in nude rats, arrows
indicate the blood vessels, stars point to scaffold fibers [173]: (A) hematoxylin/eosin staining, and (B) 1A4 actin staining,
reprinted and adapted under John Wiley and Sons Copyright Clearance Center (license number 5170801144911); and (C)
PHB/PHBHV fibers cultured in vitro with adipose-derived MSCs: expression of VEGFR-2 as an endothelial marker [172],
reused under Creative Commons Attribution License.

Along with microsurgery, cited in Section 4, the strategies to improve the vascular-
ization of an implanted scaffold also include co-culture with cells capable of endothelial
differentiation and the in vitro pre-vascularization of the construct [112]. The addition of
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factors promoting osteogenesis and angiogenesis could also represent a further strategy
to obtain vascularized bone constructs. Studies performed in this direction showed that
the by loading an osteogenic enzyme, ALP, on a mineralized PHB electrospun scaffold,
adhesion and proliferation of osteoblasts greatly increased in vitro [181]. Another material
with characteristics of biocompatibility, bioresorption, and piezoelectricity is the poly(L-
lactic acid) (PLLA) [182,183]. The piezoelectric effect depends on the crystallinity and
orientation of the polymer and is determined by the displacement of the double bond
between carbon and oxygen in response to mechanical stress, which leads to the creation
of a dipole moment and electric charge [184,185]. The piezoelectric coefficient of PLLA
has been reported to be 1.58 pC·N−1 [186]; however, similarly to PVDF and PHB, it could
be improved by post-fabrication treatments, like poling or mechanical stretching. PLLA
scaffolds containing apatite and collagen stimulated the metabolic activities of osteoblastic
cells in vitro [187]. The addition of BaTiO3 nanoparticles to a PLLA scaffold, with electrical
properties mimicking those of natural bone, generated an electroactive membrane able to
improve the cranial defect without the aid of bone grafts [188].

Natural polymers show improved biocompatibility if compared to synthetic scaffolds,
and are usually bioresorbable. Regeneration of bone defects in rats ameliorated when
collagen fibers were implanted in the damaged area [189], and collagen-based scaffolds
were able to enhance bone cell proliferation and differentiation [190,191]. In addition,
collagen-derived proteins, such as gelatin and collagen peptides, can be blended with
piezoelectric polyesters, such as PLLA, to produce spongy scaffolds, thereby demonstrating
optimal hemocompatibility (i.e., absence of blood clotting) and capability to support bone
stem cell niches in vitro [192,193].

Among natural polymers, polysaccharides, such as chitin, chitosan, and cellulose,
together with piezoelectric properties, can be beneficial in bone regeneration. Indeed,
chitosan, derived from chitin, is a natural and antibacterial piezoelectric polymer exhibiting
osteoconductive properties [194], and cellulose-based scaffolds significantly increases the
osteoblast proliferation [195]. Due to the recognized importance of piezoelectricity in
bone and vasculature to regulate differentiation of stem and progenitor cells, the use
of piezoelectric materials as physically active substrates or as nanoparticles holds great
promise for vascularized bone regeneration (Figure 12).
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Figure 12. Schematic showing stem cell embedded in its extracellular matrix (ECM) and possible
routes of using piezoelectric biomaterials to regulate its differentiation: (A) as substrates or scaffolds,
which upon the application of an external force (F) give rise to electric stimuli in contact with the
cell membrane; and (B) as nanoparticle systems trafficking intracellularly, which can be activated by
ultrasound (US), thus inducing intracellular electric stimulation.

6. Conclusions and Future Perspectives

In Europe and the United States, more than half a million patients annually receive
bone defect repairs with a cost estimate higher than 3 billion euros. Therefore, bone has
become the second most transplanted tissue after blood. These numbers are globally in-
creasing, due to a variety of factors, such as the growing needs of the world population, the
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increased life expectancy, and access to advanced health services and assistance. Arthro-
plasty revision surgery, oncologic surgery, bone fractures, non-union surgery, and otologic
surgery, account for the most frequently graft-assisted reconstructive surgeries. Bone graft
substitutes aim to provide the reconstructive surgeons with off-the-shelf alternatives to the
natural bone taken from humans or animal species. Under the tissue engineering approach,
new scaffolds can be designed incorporating bone stem cells to decrease the disadvantages
of traditional tissue grafts via osteoconductive, osteoinductive, and osteogenic properties.
The key steps towards optimized clinical application of tissue-engineered bone rely on
neovascularization of the engineered construct. One of the major causes of poor implant
integration and survival in standard engineered bone constructs is the lack of vasculariza-
tion. The vascularization process is crucial in bone regeneration and healing as well as in
remodeling and homeostasis, and the complex pathways that lead to angiogenesis and
osteogenesis are interdependent. Without a good blood supply, the bone formation cannot
begin and the implanted scaffold cannot be integrated in the host bone. Blood supply at the
level of the bone defect is crucial to maintain the tissue viability in the initial phases after
scaffold implantation and to allow a proper nutrient diffusion and waste removal. The
development of a new generation of smart scaffolds that can promote bone regeneration
and vascularization is one of the major challenges for bringing bone tissue engineering
research into the clinical practice.

Having realized the special contribution of piezoelectric signals towards the differenti-
ation and function of bone and endothelial cells, piezoelectric biomaterials, particularly
those based on bioresorbable biopolymers, such as PHAs and PLLA, could ultimately
permit the successful implant of bone substitutes through their effective vascularization
in vivo. Piezoelectric, namely mechano-electric stimuli, can be sensed by stem cells. As
intriguing examples, high output electric voltages can determine MSC osteogenic commit-
ment, whereas the direction of an electric field vector has been able to induce endothelial
and osteoblast alignment in a biomimetic fashion, revealing the prominent role of bio-
electricity in bone. Many biological and some synthetic polymers possess appreciable
piezoelectricity, whose demonstration has become the objective of fundamental studies
over time. By mastering such physical cues, in terms of biomaterial and surface properties,
including surface topography, it would be possible to enhance bone healing and regenera-
tion capacity with significant clinical relevance. Despite the current lack of comprehensive
studies designed to control the piezoelectric properties of scaffolds to regenerate vascular-
ized bone as a whole, some in vivo studies are strongly suggestive of possible successful
achievements led by piezoelectric stimulation.
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