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ABSTRACT

Medina, Daniel P., Disease Modeling using Fractional Differential Equations and Estimation. Mas-

ter of Science (MS), May, 2017, 44 pp., 2 tables, 18 figures, references, 8 titles.

Ordinary differential equations has been the most conventional approach when modeling

spread of infectious diseases. Effective research has shown that using fractional-order differentiation

can be a very useful and efficient extension for some mathematical models. In this thesis, fractional

calculus is used to depict an SEIR model with a system of fractional-order differential equations. I

also simulate the fractional-order SEIR using integer-order numerical methods. I also establish the

estimation framework and show that it is accurately working.
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CHAPTER I

INTRODUCTION

Disease modeling has had an increasing number of approaches. Epidemiology is studied

to further understand and estimate disease spread and control. For a long time, integer order

differential models were used to depict disease models. With the increase of interest in fractional

calculus, more fields have begun using this for several fields of research. Being able to use fractional

calculus allows models to take into consideration the memory effect in the model. For each different

disease, there exists a more suitable model to be used. In this thesis the SEIR model is used to

show the transition between those who are susceptible, exposed, infected, and finally recovered.

Depending on the disease of interest, different models are used. The different models and their

specific applications are covered on Chapter 2.

1.1 Special Functions

Since this thesis revolves around fractional calculus, it is important to also introduce some

special functions that are used in this subject. Functions like the gamma, beta, and Metteg-Leffler

functions are to be used in fractional calculus.

1.1.1 Gamma Function

The Gamma function, denoted by Γ(z), is a generalization of the factorial function when z

is not an integer. Particularly, Γ(n) = (n−1)! for n ∈ N. For z > 0, it is defined as [5],

Γ(z) =
∫

∞

0
tz−1e−tdt.

Some noteworthy examples of the Gamma function are:

1



Γ(1) = 1,

Γ(z+1) = zΓ(z),

Γ

(
1
2

)
=
√

π.

(1.1)

Figure 1.1: The Gamma function Γ(x).

1.1.2 The Mittag-Leffler Function

The Mittag-Leffler is a function that generalizes the exponential function. The function can

be written as follows[5],

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, α ∈ R+, z ∈ C, (1.2)

or more generally using two parameters,

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, α,β ∈ R+, z ∈ C. (1.3)

Note. [4] Let α,β > 0 and z ∈ C, and the Mittag-Leffler functions satisfy the equality given by

Theorem 4.2 in [3],

Eα,β (z) = zEα,α+β (z)+
1

Γ(β )
. (1.4)

Some interesting examples of the Mittag-Leffler function with α = 0,1,2 are [5]:

2



Eα,1(z) = Eα(z),

E0,1(z) =
1

1− z
; if |z|< 1,

E1,1(z) = ez,

E2,1(z) = cosh(z),

E2,2(z) =
sinh(z)

z
.

(1.5)

Figure 1.2: The Mittag-Leffler function at α = 1,2 and β = 1,2 [5].

1.2 Fractional Calculus and Differential Equations

In 1675, Gottfried Leibniz achieved an amazing breakthrough by discovering differential

and integral calculus. Since then, many mathematicians, namely Isaac Barrow, James Gregory, and

Isaac Newton, explored this field even further. The concept of change in time through calculus has

been a major part of mathematics since then. Such research opened up many fields of mathematics,

like complex analysis, functional analysis, differential geometry, measure theory, and abstract

algebra. In 1695 the idea of fractional calculus was sparked by L’Hopital and Leibniz; however, it
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remained somewhat dormant until the past couple of decades when new fields of studies found this

idea to be very useful. These two mathematicians sent letters to one another regarding the notation

of differentiation of order 1
2 and it’s visual representation [7]. With the progression in the field of

calculus, many other mathematicians have been contributors to this study like Laplace, Fourier,

Abel, Liouville, Reimann, Grunwald, Letnikov, Heaviside, Weyl, Erdelyi, and even more [5]. From

this, one might ask, "What makes fractional differentiation so important and different from integer-

order differentiation?" The answer can be seen through comparing the effect both approaches have

on the study. In medicine, finances or economics, physics, engineering, or describing polymers,

arbitrary-ordered derivatives are extremely useful because of their added effect of memory and

hereditary properties. These properties are not evident when using integer-order differentiation.

1.2.1 The Caputo Derivative

Through modification of the Riemann-Liouville derivative, the Caputo derivative was found

with the goal of forming an extension from integer differential equations to fractional differential

equation without the need to define fractional initial conditions. In this section, Dn will be used as

the standard integer-order differential operator [5].

Dn f =
dn f
dtn = f (n).

To show the following operators, we define Jn to be our integration operator of integer order given

by,

Jn f (t) =
1
n!

∫ t

0
(t− τ)n−1 f (τ)dτ, (1.6)

where n ∈ Z+. For fraction-order integrals, we use

Jn−α f (t) =
1

Γ(n−α +1)

∫ t

0
(t− τ)n−α−1 f (τ)dτ, (1.7)

where n−1 < α ≤ n.

Remark 1. When using the integration operator for a fractional order n ∈Q.

4



Thus, the representation for the Caputo fractional differential operator can now be defined as,

Dα
∗ f (t) = Jn−αDn f (t),

where n−1 < α ≤ n, for n ∈ N.

We also introduce the Riemann-Liouville fractional derivative as,

Dα f (t) = DnJn−α f (t).

The Riemann-Liouville fractional derivative seems similar to the Caputo fractional operator

but since

DnJn−α f (t) 6= Jn−αDn f (t),

then,

Dα f (t) 6= Dα
∗ f (t).

Lemma 1 ([5]). Let n−1 < α ≤ n, for any n ∈ N and f (t) be such that Dα
∗ f (t) exists. Then the

following properties for the Caputo operator hold ,

lim
α→n

Dα
∗ f (t) = f (n)(t),

lim
α→n−1

Dα
∗ f (t) = f (n−1)(t)− f (n−1)(0).

(1.8)

Proof. First,

5



Dα
∗ f (t) =

1
Γ(n−α)

∫ t

0

f (n)(τ)
(t− τ)α+1−n dτ

=
1

Γ(n−α)
(− f (n)(τ)

(t− τ)n−α

n−α
|tτ=0 +

∫ t

0
f (n+1)(τ)

(t− τ)n−α

n−α
dτ)

=
1

Γ(n−α +1)
( f (n)(0)tn−α +

∫ t

0
f (n+1)(τ)(t− τ)n−αdτ).

(1.9)

We now take the limit as α approaches n and n−1, respectively,

lim
α→n

Dα
∗ f (t) = f (n)(0)+ [ f (n)(τ))]tτ=0 = f (n)(t), (1.10)

and

lim
α→n−1

Dα
∗ f (t) = ( f (n)(0)+ f (n)(τ)(t− τ))|tτ=0 +

∫ t

0
f (n)(τ)dτ

= f (n−1)(τ)|tτ=0

= f (n−1)(t)− f (n−1)(0).

(1.11)

Now, we present some properties of the Caputo derivative.

• Linearity of Caputo derivative

Lemma 2 ([5]). Let n− 1 < α ≤ n, for n ∈ N, c ∈ R and functions f (t) and g(t) be such that

Dα
∗ f (t) and Dα

∗ g(t) exist. Then the Caputo fractional derivative is a linear operator defined as,

Dα
∗ (c f (t)+g(t)) = cDα

∗ f (t)+Dα
∗ g(t).

• Caputo is non-commutative

Lemma 3 ([5]). Let n− 1 < α ≤ n, with n, m ∈ N and function f (t) be such that Dα
∗ f (t) exists.

Then,

Dα
∗Dm f (t) = Dα+m

∗ f (t) 6= DmDα
∗ f (t). (1.12)

6



1.3 Laplace Transform

The Laplace transform can be used to solve differential equations. It reduces a linear

differential equation to an algebraic one which can then be solved by rules of algebra. The transform

is written as follows:

L { f (t)}= F(s) =
∫

∞

0
e−st f (t)dt. (1.13)

Whereas Laplace transform of the Caputo fractional derivative is given by [4]

L [Dα
∗ f (t)] = sαF(s)−

n−1

∑
k=0

f (k)(0)sα−k−1. (1.14)

The Laplace transform of the Mittag-Leffler function is given by [4]

L [tβ−1Eα,β (±λ tα)] =
sα−β

sα ∓λ
. (1.15)

1.3.1 Laplace Transform Examples

On Table 1.1 examples of the Laplace transform can be seen. On top of these, other examples

can be found in [5].

f (t) D f Dα
∗ f L ( f ) L (D f ) L (Dα

∗ f )

c 0 0 c
s 0 0

t 1 tα

Γ(α+1)
1
s2

1
s

1
sα+1

et et tn−αE1,n−α+1(t) 1
s−1

1
s−1

s2α−n+1)

sα−α

tn ntn−1 ntn−α n!s−n−1 n!s−n n!s−n−α

nt nt log(n) nt log(n)αetlog(n) 1
s−log(n)

log(n)
s−log(n)

log(n)α

s−log(n)

Table 1.1: Laplace transform of various functions, their derivative, and their derivative of fractional

order α .
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1.3.2 Inverse Laplace Transform

If we have some integrated function F(s) and wish to retrace back to its pre-integrated form,

f (s), then we can use the inverse Laplace transform, defined as,

f (t) = L −1{F(s); t} :=
1

2πi

∫ c+∞i

c−∞i
estF(s)ds, c = Re(s)> c0.

Corollary 1. Let n−1 < α ≤ n, n ∈ N, 0 < β = α− (n−1)≤ 1, and function f (t) be such that

Dα
∗ f (t) exists. Then,

Dα
∗ f (t) = Dβ

∗Dn−1 f (t).

Proof. Using (1.12), substitute β for α and n−1 for m, then

Dβ
∗Dn−1 f (t) = Dβ+n−1

∗ f (t) = Dα
∗ f (t).

Lemma 4. The Taylor series of a real function f (t) which is algebraic at a real or complex value a

is the power series,

f (t) = f (a)+ f ′(a)(t−a)+
f ′′(a)

2!
(t−a)2 +

f ′′′(a)
3!

(t−a)3 + ...,

which can be rewritten as,
∞

∑
n=0

f (n)(a)
n!

(t−a)n,

where f (n)(a) denotes the nth order derivative of the function f .

Proposition 1 ([5]). For 0 < α ≤ 1,

Dα
∗ f (t) =

∞

∑
k=0

f (k)(0)
Γ(k−α +1)

tk−α , where k = 1,2,3... (1.16)

8



Example 1. For f (t) = tk and k ∈ N,

Dα
∗ f (t) = Dα

∗ tk =
∞

∑
k=0

f (k)(0)
Γ(k−α +1)

tk−α

=
k!

Γ(k−α +1)
tk−α .

(1.17)

Example 2. Fix λ ∈ R,

f (t) = eλ t , for t ∈ R. (1.18)

From Proposition 1,

Dα
∗ f (t) = Dα

∗ eλ t =
∞

∑
k=0

f (k)(0)
k!

Dα
∗ tk

=
∞

∑
k=0

λ k

k!
Dα
∗ tk

=
∞

∑
k=0

λ k

k!
Γ(k+1)

Γ(k−α +1)
tk−α

=
∞

∑
k=0

λ k

k!
k!

Γ(k−α +1)
tk−α

=
∞

∑
k=0

(λ t)k−α

Γ(k−α +1)
tα

= tαE1,1−α(λ t).

(1.19)

Now we turn to solving fractional differential equations.

Theorem 1 ([2]). Consider the initial value problem

Dα
∗ x(t) = f (t,x(t)),

x(0) = x0.

(1.20)

Let

g(v,x∗(v)) = f (t− (tα − vΓ(α +1))
1
α ,x(t− (tα − vΓ(α +1))

1
α )). (1.21)

9



Then, a solution of (1.20) is given by

x(t) = x∗

(
tα

Γ(α +1)

)
, (1.22)

where x∗(v) is a solution of the integer order differential equation

d(x∗(v))
dv

= g(v,x∗(v)), (1.23)

with initial condition

x∗(0) = x0.

Proof. Let τ = t− (tα − vΓ(α +1))
1
α . Then we can rewrite (1.6)[2]

x(t) = x0 +
∫ tα

Γ(α+1)

0
f (t− (tα − vΓ(α +1))

1
α ,x(t− (tα − vΓ(α +1))

1
α )dv

= x0 +
∫ tα

Γ(α+1)

0
g(v,x∗(v))dv.

(1.24)

Thus, every solution of (1.23) is also a solution of the Volterra integral equation given below and

vice versa

x∗(v) = x0 +
∫ v

0
g(s,x∗(s))ds, 0≤ v≤ aα

Γ(α +1)
. (1.25)

Since 0≤ tα

Γ(α+1) ≤
aα

Γ(α+1) , the right-hand side of (1.25) is equal to x∗
(

tα

Γ(α+1)

)
.

When using this method of solving a fractional differential equation, the substitution of f (τ) is

used to turn the problem into the integer-order differential equation (1.23). From then we solve

the problem as an ordinary differential equation and end up with (1.24). The integration from 0 to

tα

Γ(α+1) is done because, from (1.22), we know the solution to the original equation is found by this

final substitution. Thus, we are able to solve fractional differential equations using this method.

10



1.4 Algorithm

Here, we show the algorithm of the method to solve differential equations used in the Matlab

code found in the appendix.

Algorithm 1 Numerical solution of Dα
∗ x(t) = f (t,x(t)) with x(0) = x0 for 0 < t < T using Runge-

Kutta 4/5th order (ode45 solver in MatLab)
Input: α,T, f (t,x(t)),m,n

Output: x

begin

BDivide the interval [0,T ] using 0 = t0 < t1 < .. . < tn = T

for i = 1,2, . . . ,n

IDivide the interval [0,
tα
i

Γ(α +1)
] using 0 = v0 < v1 < .. . < vm =

tα
i

Γ(α +1)
ISolve the system x′∗(v) = f (ti− (tα

i − vΓ(α +1))
1
α ,x∗(v)) with x∗(0) = x0 using Runge-Kutta

4/5th order

IRetain x(ti) = x∗(vm)

end

BReturn [x0,x(t1),x(t2), . . . ,x(tn)]

end

1.4.1 Examples of Fractional Differential Equations

Example 3 ([2]). Consider the fractional order initial value problem given by,

D
1
2 x(t) = t,

x(0) = x0.

(1.26)

For this example,

g(v) = 2
√

tΓ
(

3
2

)
v− v2

Γ
2
(

3
2

)
.

11



The solution of the corresponding integer order initial value problem is,

x1(v) =
√

tΓ
(

3
2

)
v2−

v3Γ2 (3
2

)
3

+ x0.

The solution of the given fractional order initial value problem is

x(t) = x1

(
t

1
2

Γ
(3

2

))=
4t

3
2

3
√

π
+ x0.
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Figure 1.3: Graph of the actual solution compared to the estimate and the error.

From Figure 1.4, it can be seen that the numerical solution overlaps the estimation on the

left. This graph shows just how close the numerical solution is to the actual one. Further illustration

is seen on the right side graph, where the error is shown to be extremely low. The error is calculated

by subtracting the value of the estimated x(t) by the actual values for each t.
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Example 4 ([2]). Consider the fractional order initial value problem given by,

D
1
2 x(t) = t + x(t),

x(0) = x0.

The corresponding differential equation of this fractional initial value problem is

dx1(v)
dv

= f1(v) = x1(v)+2
√

tΓ
(

3
2

)
v− v2

Γ
2
(

3
2

)
,

x(0) = x0.

Hence, the solutions of this integer order linear initial value problem is

x1(v) =−2
√

tΓ
(

3
2

)
(v+1)+Γ

2
(

3
2

)
(v2 +2v+2)+ ev

(
x0 +2

√
tΓ
(

3
2

)
−2Γ

2
(

3
2

))
,

x(0) = x0.

Consequently, the solution of the given fractional order initial value problem is

x(t) = x1

(
t

1
2

Γ
(3

2

))=−t +
π

2
+ e

2
√

t√
π

(
x0 +
√

tπ− π

2

)
.

Example 5. An example of nonlinear fractional differential equations describing the process of

cooling of a semi-infinite body by radiation is given by [2]

D
1
2 (x(t))−α(u0− x(t))4 = 0

x(0) = 0

The solution of this problem can be found as
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x(t) = u0−
(

u3
0
√

π

6
√

t +
√

π

) 1
3

Example 6 ([5]). Consider the fractional order initial value problem given by,

Dα
∗ x(t) = µx(t),

x(0) = 1,
(1.27)

where µ ∈ R. The solution to (1.27) is given by

x(t) =
∞

∑
k=0

µktαk

Γ(αk+1)
= Eα,1(µtα). (1.28)

The proof can be found in [5].

1.5 Geometrical Interpretation of Fractional Integration

For a long time, integer-order calculus has become the standard when working with most

models in most fields. The geometric interpretation has been simple and easy to understand visually.

This means that for models of any n-th order can be covered easily where n is an integer. Because

of this, it only makes sense that a visual understanding of an arbitrary order α should be found.

Now that fields are beginning to use fractional calculus to estimate their models, the need for

this visualization has become more necessary. A lot of papers have been published trying to

explain or represent fractional calculus visually but most don’t hold images representing their words

[8]. Because of this, even if you understand the difference in integer and fractional calculus, the

difference in geometry is extremely hard to visualize. Igor Podlubny [8] wrote a paper on his

approach towards a geometric interpretation for fractional integrals and differentiation. With this

approach, he introduces a simple and really geometric interpretation of several fractional-order

integration such as the left and right-sided Riemann-Louiville integrals under inhomogeneous and

changing time scale. It is suggested that this form of interpretation holds with current views of

space and time. With this, a physical approach to Caputo differentiation is also interpreted.
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1.5.1 Left-sided Riemann-Louiville fractional integral

First, geometric interpretation of left-sided and right-sided Riemann-Louiville fractional

integrals [8]. Let us consider the left-sided Riemann-Liouville fractional integral of order α ,

0Iα
t f (t) =

1
Γ(α)

t∫
0

f (τ)(t− τ)α−1dτ, (1.29)

and rewrite it in the form

0Iα
t f (t) =

t∫
0

f (τ)dgt(τ), (1.30)

gt(τ) =
1

Γ(α)
{tα − (t− τ)α}. (1.31)

If we take t1 = kt and τ1 = kτ , then

gt1(τ1) = gkt(kτ) = kαgt(τ). (1.32)

Let us take the axes τ , g, and f from Figure 1.4. In the plane (τ,g) we plot the function gt(τ)

for 0≤ τ ≤ t and where t is fixed. Podlubny describes the curve obtained as a "fence" of varying

height f (τ), so the top edge of the "fence" is a three-dimensional line (τ,gt(τ), f (τ)), 0≤ τ ≤ t. In

this, the fence can be projected onto the two surfaces as seen on Figure 1.4 [8]:

• the area of the projection of the fence on the plane (τ, f ) corresponds to the value of the

integral

0I1
t (t) =

t∫
0

f (τ)dτ; (1.33)

• the area of the projection of the fence on the other plane (g, f ) corresponds to the value of the

integral (1.30) or (1.29).

It should also be said that the fence throws two shadows on the two mentioned walls as

seen on Figure 1.4. The former is the recognized integer-order integral and its standard geometric
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representation. Whereas, the latter shadow is representing the geometric representation of the

fractional integral (1.29) [8].

Note that for gt(τ) = τ , both shadows are equal in area. This shows that classical definite

integration is a particular case of the left-sided Riemann-Louiville fractional integration even from

the geometric point of view.

This raises the question, "What if t wasn’t fixed?" If t were to increase, then the shadows

change with the fence. The length, the height, or in general the whole shape would possibly change

and so would its shadows.

1.5.2 Right-sided Riemann-Louiville fractional integral

Let us consider the right-sided Riemann-Liouville fractional integral [8],

tI
α
0 f (t) =

1
Γ(α)

b∫
t

f (τ)(τ− t)α−1dτ, (1.34)

and rewrite it in the form

tI
α
0 f (t) =

b∫
t

f (τ)dht(τ), (1.35)

ht(τ) =
1

Γ(α +1)
{tα +(τ− t)α}. (1.36)

Like before, we can now provide a geometric interpretation similar to the one used for the

left-sided Riemann-Louiville fractional integral. In this case, there is no fixed point int he fence

basis. The end, corresponding to τ = b, moves along the line τ = b in the plane (τ,g) when the

fence is changing shape. This type of movement is observed in Figure 1.7. Because t is fixed in the

left-sided integral, the left end which corresponds to τ = 0 is fixed and does not move. Besides this,

all other parts of the geometric interpretation remains the same. The fence’s shape is changed as

t changes from 0 to b and the shadows also change accordingly on the two walls (g, f ) and (τ, f )

which corresponds to the right-sided integral (1.34) and the classical integral with the moving lower

limit [8]:
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I1
b (t) =

b∫
t

f (τ)dτ. (1.37)

Just how gt(τ) = τ shows both shadows being equal on the left-sided integral’s visual

representation, it can be shown the same when ht(τ) = τ for the right-sided integral.

Figure 1.4: The fence and its shadows: I1
t f (t) and Iα

t f (t), for α = 3
4 , f (t) = t + sin(t)

2 [8].
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Figure 1.5: The process of change of the fence’s basis shape for Iα
t f (t), α = 3

4 [8].

Figure 1.6: Snapshots of the changing shadow of a changing fence for Iα
t f (t), α = 3

4 , f (t)= t+ sin(t)
2 ,

with time interval ∆t = 1
2 between the snapshots [8].

19



Figure 1.7: The process of change of the fence’s basis shape for tI
α
10 f (t), α = 3

4 [8].
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CHAPTER II

EPIDEMIOLOGICAL MODELS

2.1 SEIR Model

Mathematical models can help understand how the disease spreads in a population. Several

models exist and each have their own type of disease they work best with. Within these models the

two most used are the SIR and the SEIR. The model we will be using is the SEIR model. The name

SEIR serves as an acronym for its four categories it comprises: susceptible, exposed, infectious, and

recovered compartments [6]. Figure 2.1 depicts the flow of individuals from one compartment to the

next with the recruitment of new susceptible individuals through birth at rate µ . This compartment,

like all other compartments, have a natural death rate µ . The individuals that successfully contact

the disease become exposed are then moved to compartment E at the transmission rate of βN, where

N is the total population size. After a latent period with average length 1
8 , the exposed then become

infected/infective, thus moving to compartment I at rate δ . Lastly, from compartment I, those who

recover from the disease get moved to compartment R at rate σ . So then why the SEIR model over

SIR? The most notable difference is the missing ’E’ in SIR. The reason why this model does not

have an exposed compartment is because the diseases this model works best with are those which

show symptoms instantly, whereas some disease take time to surface. Because the nature of the

disease this paper will look at, it is better to consider the latent period and use SEIR.

The movement from one compartment to another can be expressed through a system of fractional

differential equations, with 0 < α < 1,
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Figure 2.1: This model displays the compartmental flow of the SEIR model.

Dα
∗ S = µ−βSI−µS

Dα
∗ E = βSI− (µ +δ )E

Dα
∗ I = δE− (µ +σ)I

Dα
∗ R = σ I−µR

(2.1)

Note. When considering the dimension of parameters µ , δ , σ , and β it has been defined as 1
time

when working with systems of integer-order differential equations. However, as we are working

with a fractional-order system, the dimension changes. From an integer-order system we have

dI
dt

= δE− (µ +σ)I, (2.2)

where the dimensions of the parameters are 1
time . When the system is changed into a fractional-order

system

Dα
∗ I = δ∗E− (µ∗+σ∗)I, (2.3)

the parameters are actually the integer-order system’s parameters to the power α where n−1 <

α ≤ n. So then

[µ∗] = [δ∗] = [σ∗] = [β∗] =
1

timeα
(2.4)

In (2.1) S, E, I, and R are the proportion of susceptible, exposed, infectious, and recovered. Then
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S+E + I +R = 1. Thus, the last equation is redundant.

We state several basic definitions and theorems on the stability of fractional order linear systems [4].

Let A ∈ R,

Dα
∗ x(t) = Ax(t),

x(0) = x0.

(2.5)

Definition 1. [4] We say that (2.5) is stable if for all ε > 0, δ > 0 exists such that ||x0||< δ ; then

||x(t)||< ε , for all t ≥ 0; linear system (2.5) is asymptotically stable if limt→∞ x(t) = 0.

Theorem 2 ([4]). System (2.5) is asymptotically stable if and only if |arg(λi)| > απ

2 is satisfied

for all eigenvalues of matrix A. Moreover, the system is also stable if and only if |arg(λi)| > απ

2

is satisfied for all eigenvalues of the matrix A and the eigenvalues satisfying |arg(λi)|> απ

2 have

geometric multiplicity equal to one.

Consider the following system of fractional order,

Dα
∗ x(t) = f (x),

x(0) = x0.

(2.6)

Definition 2. [4] E is an equilibrium point for (2.6), if and only if f (E) = 0.

Remark 2. [4] When α ∈ (0,1), the fractional system Dα
∗ x(t) = f (x) has the same equilibrium

points as the system x′(t) = f (x).

Definition 3. The equilibrium point E of (2.6) is said to be stable if for all ε > 0, δ > 0, exists

such that if ||x0−E||< δ , then ||x(t)−E||< ε , t ≥ 0; the equilibrium point E of (2.6) is said to be

asymptotically stable if limt→∞ x(t) = E.

Theorem 3. [4] The equilibrium points of (2.6) are locally asymptotically stable if all eigenvalues

λi of a Jacobian matrix J, calculated in the equilibrium points, satisfy |arg(λi)|> απ

2 .
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Lemma 5. The closed region M = {(S,E, I) ∈ R3
+ : 0≤ S+E + I ≤ 1} is a positive invariant set.

Proof. If E(0) = I(0) = 0 and 1 ≥ S(0) = S0 ≥ 0, Then on the S-axis using (1.27) and Theorem

4.2 in [3],

S(t) = tαEα,α+1(−µtα)(µ)+Eα,1(−µtα)S(0)≥ 0

since µ > 0, t ≥ 0.

If S(0), I(0) = 0 and E(0) = E0 ≥ 0. On the E-axis,

E(t) = Eα,1(−(µ +δ )tα)E(0)≥ 0

If S(0),E(0) = 0 and I(0) = I0 ≥ 0. On the I-axis,

I(t) = Eα,1(−(µ +σ)tα)I(0)≥ 0

Thus, all axes are positive invariant, for S(0),E(0), I(0)≥ 0.

If it escapes from E-I plane, then S(te) = 0 and E(te), I(te) > 0 for some te > 0 such that for all

t > te we have S(t)≤ S(te). Then Dα
∗ S|t=te = µ > 0.

From Lemma 9 in [4] and (1.6) we have

S(t) = S(te)+
1

Γ(α)
(Dα
∗ S(τ)(t− te)α for te ≤ τ < t

for some te ≤ τ < t, then S(t)> S(te) contradicting the original statement. The same could be said

with Dα
∗ E|t=te = βS(te)I(te)> 0 and Dα

∗ I|t=te = αE(te)> 0.

To show S+E + I ≤ 1, if S(0)+E(0)+ I(0)≤ 1,

Dα
∗ (S+E + I) = µ−µ(S+E + I)−σ I

≤ µ−µ(S+E + I)
(2.7)
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Using the Laplace transform property in (6)-(7) from [4],

S(t)+E(t)+ I(t)≤ tαEα,α+1(−µtα)µ +Eα,1(−µtα)(S(0)+E(0)+ I(0))

≤ tαEα,α+1(−µtα)µ +Eα,1(−µtα) = 1
(2.8)

2.2 Stability Analysis of a Disease-Free Equilibrium

For the local stability of a disease-free equilibrium, we must evaluate the Jacobian matrix at

EDF = (1,0,0)

J(EDF) =


−µ 0 −β

0 −(µ +δ ) β

0 δ −(µ +σ)


The disease free equilibrium EDF is locally asymptotically stable if |arg(λ )| > απ

2 , for

i = 1,2,3.

|J(EDF)−λ I|= det


−µ−λ 0 −β

0 −(µ +δ )−λ β

0 δ −(µ +σ)−λ

= 0

The eigenvalues of the matrix are,

λ1 =−µ,

λ2 =
−(δ +2µ +σ)−

√
∆

2
,

λ3 =
−(δ +2µ +σ)+

√
∆

2
,

where ∆ = δ 2 +4δβ −2δσ +σ2. From this it is clear that λ1 is negative and because δ > 0, λ2

and λ3 are real-valued, since
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∆ = δ
2 +4δβ −2δσ +σ

2 = (δ −σ)2 +4δβ > 0.

Hence λ2 < 0 and it can be inferred that,

λ3 =
−(δ +2µ +σ)+

√
∆

2

<
−(δ +2µ +σ)+

√
(δ +2µ +σ)2

2

=
−(δ +2µ +σ)+δ +2µ +σ

2
= 0.

Since λ3 < 0, we can see all eigenvalues of the Jacobian matrix EDF are negative, and so |Re(λi)|< 0,

i = 1,2,3. This implies that |arg(λi)|> α
π

2 for all i and any 0 < α ≤ 1.
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CHAPTER III

SIMULATIONS AND ESTIMATION

The purpose of this chapter is to display the effect α and β both have on the model. As

mentioned before fractional calculus adds a memory effect onto the model which helps fit specific

diseases and the speed at which a person moved from one compartment to another. Figures 3.2-3.6

show this effect. First, it is important to show how the different models look when being graphed.

Figure 3.1 shows the SIR and SEIR models being graphed in the same order.

Figure 3.1: Graph of the SIR model and SEIR model using α = 1
2 and β = 40.

The disease fades out in both SIR and SEIR, since the values of the parameters entail that the

disease free equilibrium is stable. Because of this, the exposed follow the trend over time. Again,

because of the diseases in mind when preforming this research, the SEIR model was used.
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Figure 3.2: Numerical solution of I when β α = 5 for different values of α .

Figure 3.3: Numerical solution of I when β α = 10 for different values of α .
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Figure 3.4: Numerical solution of I when β α = 20 for different values of α .

Figure 3.5: Numerical solution of I when β α = 40 for different values of α .
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In this paper, different values of α were compared using increasing values of β α . It can be

seen that as α increases, a higher peak of infection is reached at an increased rate. When simulating

under a higher β α , the rate of infection for different values of α are closer to one another and the

equilibrium and peak are reached at earlier times. The time difference in reaching equilibrium

displays the memory effect in these models. Depending on the disease one chooses to work with,

the time it moves from one compartment to another could vary. Different values of β α and α could

better fit those diseases. Using integer-order differential equations to estimate these models only

follows exponential distributed curves which may not fit every disease. Using fractional-ordered

equations allow this flexibility to better fit different diseases as shown through heavy tail distribution.

This type of effect has become increasingly useful in several fields. These simulations are made to

show the relationship between α and β α , but it is important to test a value of β α where R0 < 1 to

numerically support the claims in our disease free equilibrium calculations.

Figure 3.6: Numerical solution of I when β α = 0.5 and R0 < 1 for different values of α .

Through simple algebra, we get S = (µ+σ)(µ+δ )
βδ

= 1
R0

. We use this to find a suitable β < R0

to test. In this case, we chose β α = 0.5.
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3.1 Estimation: Nonlinear Least Squares Method

The nonlinear least squares problem takes the form of

minimize
x

f (x) =
m

∑
j=1

r j(x)2. (3.1)

It is called least squares because we are minimizing the sum of squares for these functions [1].

Given a set of data d(t j,y j) and a model function φ(x; t j) the difference of the functions is obtained

with r j(x) = φ(x; t j)−y j, where y j is the y component of the data at point t j. The objective function

of least squares problems is therefore

f (x) =
1
2

m

∑
j=1

r2
j (x). (3.2)

Through minimizing the function f , parameters that match the model of the observed data best can

be found. Each r j is called a residual. They are smooth functions from Rn to R. Now (3.2) can be

rewritten using the residual vector f (x) = 1
2 ||r(x)||

2
2[1].

In the appendix, the code for this method can be seen in ESS. The function is called with a

vector of two parameters, a and beta representing α and β respectively. The model is then simulated

with the estimated values of α and β and compared to the actual simulation. Then to fit the sum of

squares "fminsearch" is ran with the sum of residd squared which is the same as the residue vectors

r j(x) from (3.1) and (3.2).

3.2 Akaike Information Criterion

On 1973, Hirotugu Akaike published a paper discussing a new information criterion. It

eventually became known as the Akaike information criterion (AIC). This was introduced with the

intention of estimating information lost when simulating data through a model. The AIC can be

calculated by

AIC = 2k−2ln(M),
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where M is the maximum value of the likelihood function and k is the number of estimated

parameters in the model. A few years later, another publication was released in which the AICc was

discussed. This was like AIC with a correction for finite sample sizes. Although the formula for the

AICc depends on the type of model being used, under the assumption that the model is univariate,

linear, and has normally-distributed residuals, the formula is written

AICc = AIC+
2k(k+1)
n− k−1

,

where n denotes the sample size. Eventually, the Bayesian information criterion (BIC) was discov-

ered. The BIC is defined as

BIC = ln(n)k−2ln(M).

Similar to the AIC, the BIC is used to measure the efficiency of the parameterized model to predict

data. This criterion, however, penalizes the model more than the AIC. So what this means is,

although the model could possibly increase the likelihood by adding parameters during fitting, it

may also result in overfitting. This is considered to be an error when the model becomes overly

complex and the predictive performance reacts harshly to minor fluctuations in the data.

3.3 Results

As mentioned in chapter 2, the natural immunity variable γ in the SEIR model was removed

for simplicity. Over the lapse of this research it was hard to find raw data for the disease we could

work with prior to the date in which the vaccination was made and distributed. Initially the disease

in mind was measles; but because the vaccine was created in 1963, finding data from an epidemic

much earlier than that proved to be difficult. Although other diseases were also searched for, none

of them had data prior to vaccination. Unfortunately because of this situation, our results are based

on simulated data. Graphs with different α and β values were tested and displayed in Figures 3.1

through 3.6. However, this was just showing the simulation side of the code used. Those figures

were made to show the different effects changing those two variables had to models, but it is also

important to have code to estimate those values off of a model of fractional differential equation.
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α β α Estimated β Estimated AICc BICc Percent Error

.1 .5 .1 .5 -∞ -∞ 0

.1 30 .1 30 -∞ -∞ 0

.1 40 .1 40 -∞ -∞ 0

.5 20 .5 20 -∞ -∞ 0

.5 30 .5 30 -∞ -∞ 0

.5 40 .5 40 -∞ -∞ 0
1 20 1 20 -∞ -∞ 0
1 30 1 30 -∞ -∞ 0
1 40 1 40 -∞ -∞ 0

Table 3.1: Actual values, estimated values, and the error between them

On Table 4.1, one can see the different α and β values used to simulate a model, as well as work

backwards and find them off of the model created using those values. For this reason, the AICc,

BICc, Error, and final values of the estimated α and β are also displayed on Table 4.1 to show the

accuracy the code used has.

Figure 3.7: Side by side comparison of the model when α = .1 and β α = .5.
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Figure 3.8: Side by side comparison of the model when α = .1 and β α = 30.

Figure 3.9: Side by side comparison of the model when α = .5 and β α = 30.

Figure 3.10: Side by side comparison of the model when α = .5 and β α = 40.

As shown on Table 4.1, there was error of 0 for all these examples. This means the code used

was most accurate when estimating the α and β α when solving a system of fractional differential
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equations in an SEIR model. The estimated values are all the same to the actual ones being solved

for as can seen from Figures 3.7 - 3.10.

3.4 Data

The MatLab code used to calculate these estimations and produce the graphs shown in this

paper can be found in the appendix. This section will go over what each code contributes towards

the research and what it all does file by file.

Taking a look at the first code, mainFrac2, the first two lines are just to clear any cache data

on the system. Under the note of "Simulation", time T is adjusted to the type of figure needed.

For the estimations, I used T = 600 to show a the model, Figures 4.2 through 4.5 used T = 150

to show when the infected reach equilibrium, but for Figure 4.6 a much higher T was needed

to show the delayed reach in equilibrium by other values of α . The variable "ynot" is used for

proportions of the model. The four values are meant for the susceptible, exposed, infected, and

recovered compartments respectively. Variables "a" and "b" represent the α and β values used in

the model. The model can be found in the file odeFrac2, but is called and solved for in solodeFrac.

The matrix output by solodeFrac is then registered under matrix "x". Variable "z" is only used to

copy "x" and removed the collective vector which is not needed to graph. It is then graphed through

"createfigure1" with the preferred settings. This has been all for the simulation portion of the code.

These solutions are the actual solutions compared to after running the estimation part of this code.

This portion of the code is what we tested for accuracy in Section 5.1. In all these files,

variables "T", "actual", and "ynot" are global. This means they are shared through all the files. The

former and latter variable were already introduced as time and the proportions of the model, where

"actual" holds the same values as "z", or the four compartment mentioned from "x". Earlier α and

β were introduced for simulations, to find those two values through estimation, "a0" and "beta0"

are introduced as starting points for the program to work around. When calling a function from

another code, like ESS or solodeFrac, parameters and options are needed for the code to have some

guidance in how one wants the program to run and return values. For this, "options" is created with

the specific values we want to work around. The first two options are the tolerance in the solutions.
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The lower the tolerance, the more precise the code tries to be. Naturally, a low quantity is entered

so we get as precise as possible. Note that all options that begin with single quotes refer to the name

of the option we are setting up. The next options are regarding the maximum number of iterations

we want the program to run for and also the maximum number of evaluations done by the program.

For these two, the higher the number assigned the better, but just like having a lower tolerance, it

takes a lot out of your computer to run this. Initially the code ran this with a maximum iteration

of 3000, meaning it would run the optimization at most 3000 times to ensure the smallest error

and highest precision possible. After testing different estimations for varied pairs of α and β , a

steep diminishing return was found due to the code already being optimal around 100 iterations.

So instead of running one estimation for 4 to 6 hours and still be in iteration 1000 with an error

value low enough to approximate zero, it was lowered down to 120 to keep low enough values for

error as shown on Table 5.1 and save time. Once setting up the options for the function, we call

the function "ESS" we use the values introduced to use the sum of squared errors of prediction

and find the values of interest. The output then gives "phat" the values of the discovered α and

β as well as the error found in the function. As introduced in Section 4.2, the formulas for the

Akaike information criterion and the Bayesian information criterion are used next. This part gives

the accuracy of your results and information lost. Lastly, similar to the simulation part of the code,

the estimated model is given to matrix "y" and graphed with the preferences wanted and then the

simulated and estimated models are compared with createfigureError.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

From the difference in distribution for epidemic models using fractional or integer-order

differential equations, it can be seen from Figures 3.2 - 3.6 how fractional calculus is worth taking

into consideration. The memory effect the fractional-order differentiation can be used to better fit

specific diseases and their latent period in jumping from one compartment to the next. Because

some diseases may peak faster than others, the option to change order of differentiation for better

fitting. Unfortunately, for this paper raw data prior to vaccination was not found. So having to

simulate the data and then attempting to estimate the values for α and β proved the code to be

accurate in Table 3.1. The next step would be to contact authors who have used their private data

and test the code. Another possibility, is to further update the code to be able to work with different

models and eventually with inclusion of the natural immunity variable γ .
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APPENDIX A

MATLAB CODE

To give the results credibility, as well as share the code to anyone interested in continuing

this research on their own, the data is included for anyone to use.

mainFrac.m

c l e a r a l l

c l c

%%%%%%%%%%%%%%%%%%%%% S i m u l a t i o n

t i c

T=600;

yno t = [1− .001 0 . 0 0 1 0 . 0 0 1 ] ;

a = . 5 ; beta =40;

x = S o l o d e F r a c ( ynot , T , a , beta ) ;

t =1 :T ;

z = x ;

z ( : , 5 ) = [ ] ;

c r e a t e f i g u r e 1 ( z ) ;

t o c
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%%%%%%%%%%%%%%%%%%% E s t i m a t i o n

t i c

g l o b a l a c t u a l T yno t ;

yno t = [1− .001 0 . 0 0 1 0 . 0 0 1 ] ;

t =1 :T ;

a c t u a l =x ( : , 5 ) ;

a0 = . 1 ; b e t a 0 =20;

o p t i o n s = o p t i m s e t ( ’ TolX ’ ,1 e−40 , ’ TolFun ’ ,1 e−40 , ’ D i s p l a y ’ , ’ i t e r ’ , ’

↪→ MaxI t e r ’ , 120 , ’ MaxFunEvals ’ ,2000 ) ;% , ’ Jacobian ’ , ’ on ’ ) ;% , ’

↪→ alg ’ , ’ i n t e r i o r −p o i n t ’ ) ;% , ’ GradObj ’ , ’ on ’ , ’ a lg ’ , ’ i n t e r i o r −

↪→ p o i n t ’

[ p h a t SSEmin ]= f m i n s e a r c h (@ESS , [ a0 , b e t a 0 ] , o p t i o n s )

RSS=ESS ( p h a t ) / 1 0 0 0 ; %d l e n=l e n g t h ( t s p a n ) ;

d l e n =T ;

MLF= ( 1 / ( 2∗ pi ∗RSS / d l e n ) ^ ( d l e n / 2 ) ) ∗exp(− d l e n / 2 ) ;

s igma = s q r t ( RSS / d l e n ) ;

q= l e n g t h ( p h a t )−3;

AICc = −2∗ l o g (MLF) +2∗ ( q ) +(2∗ q ∗ ( q +1) / ( d len−q−1) ) ;

BICc = −2∗ l o g (MLF) +q∗ l o g ( d l e n ) +(2∗ q ∗ ( q +1) / ( d len−q−1) ) ;

y = S o l o d e F r a c ( ynot , T , p h a t ( 1 ) , p h a t ( 2 ) ) ;

t o c

t =1 :T ;

zy = y ;

zy ( : , 5 ) = [ ] ;

c r e a t e f i g u r e 1 ( z ) ;
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%%%%%%%%%%%%%%%%%%%%%%%%%% Error

p l o t ( t , x−a c t u a l , ’ LineWidth ’ , 2 ) ;

x l a b e l ( ’ t ’ , ’ F o n t S i z e ’ , 1 2 , ’ FontName ’ , ’ Times ’ ) ; y l a b e l ( ’ E r r o r ’ , ’

↪→ F o n t S i z e ’ , 1 2 , ’ FontName ’ , ’ Times ’ ) ;

c r e a t e f i g u r e E r r o r ( x−y ) ;

%%%%%%%%% sim o f f i t t e d

solodeFrac.m

f u n c t i o n x = S o l o d e F r a c ( ynot , T , a , beta )

x= z e r o s ( 0 , 1 ) ;

f o r t =1 :T

y =( t ^ a ) / gamma ( a +1) ; t e y =100; t e = t e y ∗y ;

xspan = l i n s p a c e ( 0 , y ,1+ t e ) ;

[X,Y] = ode45 ( @odeFrac2 , xspan , ynot , [ ] , t , a , beta ) ;

x =[ x ;Y( end , : ) ] ;

end

odeFrac.m

%ODE f u n c t i o n

f u n c t i o n xpr ime = odeFrac2 ( v , x , t t , a , beta )

%% A u x i l l a r y f u n c t i o n s

% f=@( u , x ) ( u+x ) ;

% u= t t ∗(1−(1−( v ) . / ( ( t t ^ a ) / gamma ( a+1) ) ) . ^ ( 1 / a ) ) ;
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%% p a r a m e t e r s

mu= ( 1 / 6 0 ) ;

d e l t a = ( 3 6 5 / 7 ) ;

s igma = ( 3 6 5 / 2 1 ) ;

%% SEIR

xpr ime ( 1 ) = (mu . ^ a )−( beta . ^ a ) .∗ x ( 1 ) . ∗ x ( 3 ) −(mu . ^ a ) .∗ x ( 1 ) ;

↪→ %S ’

xpr ime ( 2 ) = ( beta . ^ a ) .∗ x ( 1 ) .∗ x ( 3 )−( d e l t a . ^ a ) .∗ x ( 2 ) −(mu . ^ a ) .∗ x ( 2 )

↪→ ; %E ’

xpr ime ( 3 ) = ( d e l t a . ^ a ) .∗ x ( 2 ) −(mu . ^ a ) .∗ x ( 3 )−( s igma . ^ a ) .∗ x ( 3 ) ;

↪→ % I ’

xpr ime ( 4 ) = ( s igma . ^ a ) .∗ x ( 3 ) −(mu . ^ a ) .∗ x ( 4 ) ; % R ’

xpr ime ( 5 ) = ( d e l t a . ^ a ) .∗ x ( 2 ) ; %C’

%% Re tu rn

xpr ime = xpr ime ( : ) ;

ESS.m

f u n c t i o n [ E ] = ESS ( p a r a )

g l o b a l a c t u a l T yno t ;

a= p a r a ( 1 ) ;

beta = p a r a ( 2 ) ;

ymodel= S o l o d e F r a c ( ynot , T , a , beta ) ;

r e s i d d = ymodel ( : , 5 )−a c t u a l ;

E = r e s i d d .∗ r e s i d d ;

E=sum ( E ) ∗1000 ;
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