
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

9-2023

Complexity of verification in self-assembly with prebuilt Complexity of verification in self-assembly with prebuilt

assemblies assemblies

David Caballero
The University of Texas Rio Grande Valley

Timothy Gomez
The University of Texas Rio Grande Valley

Robert Schweller
The University of Texas Rio Grande Valley, robert.schweller@utrgv.edu

Tim Wylie
The University of Texas Rio Grande Valley, timothy.wylie@utrgv.edu

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Caballero, David, Timothy Gomez, Robert Schweller, and Tim Wylie. "Complexity of verification in self-
assembly with prebuilt assemblies." Journal of Computer and System Sciences 136 (2023): 1-16.
https://doi.org/10.1016/j.jcss.2023.03.002

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact
justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Complexity of Verification in Self-Assembly with

Prebuilt Assemblies

David Caballeroa, Timothy Gomeza,b, Robert Schwellera, Tim Wyliea

aDepartment of Computer Science, University of Texas Rio Grande Valley, 1201 W
University Dr., Edinburg, 78539, TX, USA

bDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, 02139, MA, USA

Abstract

We analyze the complexity of two fundamental verification problems
within a generalization of the two-handed tile self-assembly model (2HAM)
where initial system assemblies are not restricted to be singleton tiles, but
may be larger prebuilt assemblies. Within this model we consider the pro-
ducibility problem, which asks if a given tile system builds, or produces, a
given assembly, and the unique assembly verification (UAV) problem, which
asks if a given system uniquely produces a given assembly. We show that
producibility is NP-complete and UAV is coNPNP -complete even when the
initial assembly size and temperature threshold are both bounded by a con-
stant. This is in stark contrast to results in the standard model with singleton
input tiles where producibility is in P and UAV is coNP-complete with con-
stant temperature. We further provide preliminary polynomial time results
for producibility and UAV in the case of 1-dimensional linear assemblies
with pre-built assemblies, as well as extend our results to the abstract Tile
Assembly Model (aTAM) with constant-size attachable assemblies.

Keywords: self-assembly, 2HAM, two-handed assembly, hierarchical
assembly, producibility, assembly verification, prebuilt assemblies

⋆This research was supported in part by National Science Foundation Grant CCF-
1817602.

Preprint submitted to Nuclear Physics B January 29, 2023

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022000023000296
Manuscript_4b1eefb2334edf3ff49ec6a60b7a96a4

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022000023000296

1. Introduction

Self-assembly is the process by which a system of simple particles au-
tonomously come together to form complex structures. Algorithmic self-
assembly studies scenarios in which dynamics of system molecules encode
computation, allowing for algorithmic control of the self-assembly of matter.
A premiere model for the study of algorithmic self-assembly is the tile self-
assembly model [1, 2], in which system monomers are modeled as four-sided
Wang tiles that randomly collide and combine based on matching tile edges
and a given bonding threshold called the temperature. Tile self-assembly has
received substantial theoretical consideration (see [3, 4, 5] for surveys and re-
cent results) as well as various experimental DNA implementations [6, 7, 8].

In this paper we focus on a specific generalization of the standard 2-
handed tile self-assembly model (2HAM) in which we permit initial assem-
blies to consist of prebuilt assemblies of more than one tile. The motivation
for studying such a generalization is strong. First, some of the most successful
implementations of algorithmic DNA self-assembly utilize a combination of
singleton DNA tiles mixed with larger prebuilt assemblies. For example, the
experimental implementations of DNA tile counters [7] and the 21 DNA tile
circuits implemented in [8] both utilize a combination of single tiles seeded
with a larger prebuilt DNA origami structure encoding the program input.
In [7], they additionally include a mix of singleton and prebuilt domino as-
semblies among the system’s tile set. Second, the inclusion of prebuilt shapes
of different geometries and sizes allows for the potential application of steric
hindrance, in which geometric blocking of potential attachments is used to
control algorithmic growth, as seen in the theoretical works of [9, 10, 11],
and the experimental works of [12, 13]. These examples suggest that consid-
eration of shapes more general than uniform single squares has the promise
to allow for improved computational power and efficiency of self-assembled
systems. We use geometric blocking techniques in our prebuilt construction,
and have more discussion on it there.

Given the importance of understanding self-assembly with prebuilt initial
assemblies, we consider the complexity of two fundamental computational
questions related to verifying the correctness of such systems. First is the
Producibility problem, which asks if a given tile system can build/produce
a given assembly. The second is the Unique Assembly Verification (UAV)
problem, which asks if a given tile system uniquely produces a given assem-
bly, i.e., produces only one terminal assembly. For the producibility problem,

2

the 2HAM with just single-tile initial assemblies has a polynomial time so-
lution [14], whereas we show NP-completeness when prebuilt assemblies are
permitted. In the case of the UAV problem with singleton tile initial as-
semblies and a constant temperature, the problem was recently shown to be
coNP-complete [15]. Previously, membership was known to be in coNP [1],
but was only known to be coNP-complete for larger temperature thresh-
olds [16].

1.1. Previous work

The model used here differs from the polyTAM model of [10] in that the
set of starting elements in our system are defined as assemblies made up
of multiple tiles. In the polyTAM, the set of elements are single tiles that
are allowed to be larger than a unit square. We are attempting to model
the situations where smaller components may have preassembled into larger
structures prior to being introduced to the system, which is beneficial since
production of some individual elements may be more difficult and costly, or
due to standard practices where the entire assembly process may be imple-
mented through multiple experiments. This is similar to the staged model of
self-assembly [9], however, in that model all the bins are usually assumed to
have the same temperature. Thus, any assemblies built in early stages must
be producible. Here, we only require that the input assemblies are stable.

Verification problems have been well-studied in many models of Tile Self-
Assembly. In the Abstract Tile Assembly model (aTAM), both the pro-
ducibility and UAV problem are solvable in polynomial time [17]. When
allowing negative (or repulsive) glues the UAV problem becomes undecid-
able due to detachment [18], but when restricted to growth-only systems
(no detachment can occur) the problem is coNP-complete [19]. Producibility
verification in the 2-handed assembly model at any temperature, along with
UAV for temperature 1, are both solvable in polynomial time [14]. Mem-
bership of producibility for general 2HAM systems was shown to be in the
class coNP in [1]. They also showed that UAV is coNP-completeness when
one step into the 3rd dimension is allowed. By allowing the temperature
to be a part of the input, UAV was shown to be coNP-complete [16] even
in 2 dimensions. The most recent results resolves this line of inquiry and
shows that UAV in the 2HAM, even with a constant temperature of two, is
coNP-complete [15].

More powerful generalizations have shown an increase in complexity of the
UAV problem, such as the aforementioned staged model, which for arbitrary

3

stages is PSPACE-complete [20, 21] and is coNP-complete even with a single
stage [15]. Multiple-handed assembly (the k-handed model), allows for k dif-
ferent assemblies to be combined in a single step as long as the final assembly
was stable. UAV in this generalization was shown to be coNP-complete if
the number of hands, k, is encoded in unary as input, and coNEXP-complete
if encoded in binary [22].

Another generalization is Tile Automata [23], which merges ideas from
Cellular Automata and the 2HAM. The UAV problem was shown to be
coNPNP -complete even with the restrictions of freezing (A tile only changes
states a finite number of times) and growth only (no detachment) [24]. Note
the class coNPNP is the class of problems solvable in coNP with access to an
NP oracle. This is also referred to as ΠP

2 , or the 2nd layer of the polynomial
hierarchy, and more details can be found in [25].

1.2. Contributions

Table 1 and 2 highlight our results in relation to previous research with
producibility (Table 1) and Unique Assembly Verification (Table 2). With
prebuilt assemblies, we show that UAV with a constant temperature is actu-
ally coNPNP -complete. In both scenarios, our hardness results hold even for
prebuilt assemblies of a bounded O(1) size and O(1)-bounded temperature
thresholds. We accompany these results with a preliminary exploration of
the producibility and UAV problems when restricted to 1-dimensional linear
assemblies with pre-built assemblies, and provide polynomial time solutions.
Finally, we show that producibility is NP-complete in the aTAM with pre-
built assemblies and that UAV is coNP-complete.

A version of this paper was originally published in [26]. However, this ver-
sion has several important improvements and additions. We have included
proofs that were previously omitted. Specifically, the proofs related to 1D
UAV and producibility. Besides additional text and providing missing de-
tails in the rest of the paper, we also prove some interesting results related
to the aTAM with prebuilt assemblies. We provide some smaller prebuilt
assemblies, and motivate investigation into the minimal prebuilt assembly
size that maintains the same complexity for the problem. This is further
motivated by the recent result showing that with singleton tiles, UAV is only
coNP-complete instead of coNPNP-complete with prebuilt assemblies.

4

Model Input Assembly Size Temp. Result Reference

aTAM Single Tiles τ P [17]

2HAM Single Tiles τ P [14]

2HAM Constant 2 NP-complete Thm. 3.1

Table 1: Complexity of verifying producibility of an assembly in various models. The
Assembly Size column indicates the size of the assemblies in the initial assembly set.
Previous work has studied the case when only single tiles are allowed. Our results allow
for up to constant sized assemblies.

Model
Input

Temp. Result Reference
Assembly

aTAM Single Tiles τ P [17]

Neg. aTAM G.O.∗ Single Tiles 2 coNP-complete [19]

aTAM Constant 2 coNP-complete Cor. 6.2

2HAM Single Tiles 1 P [14]

2HAM Single Tiles 2 coNP-complete [15]

2HAM Single Tiles τ coNP-complete [16]

2HAM 3D Single Tiles 2 coNP-complete [1]

2HAM Constant 2 coNPNP -complete Thm. 4.3

Table 2: Complexity results of Unique Assembly Verification in the aTAM and the 2HAM.
The results for 2HAM with variable temperature and in 3D follow from the result in [15],
but are included since they were proven first. UAV is undecidable in the negative aTAM,
but coNP-complete with negative glues if the system never allows detachment (∗growth
only).

1.3. Outline

The paper is organized as follows. In Section 2, we overview the model and
problem definitions. The main results then follow with Section 3 covering the
complexity of producibility and Section 4 discussing the hardness of unique
assembly verification. Following, we discuss the problems for one-dimensional
2HAM systems in Section 5. Section 6 discusses an extension of the results
to look at the aTAM with prebuilt assemblies. We wrap the paper up by
discussing some interesting directions for future work in Section 7 and a
conclusion in Section 8.

5

2. Preliminaries

In this section we overview the basic definitions related to the two-handed
self-assembly model and the verification problems under consideration. When
used in reference to an assembly, all cardinal directions are assumed to be in
standard orientation with north being the top.

2.1. Self-Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with
a glue from a set Σ. Each pair of glues g1, g2 ∈ Σ has a non-negative integer
strength str(g1, g2).

Configurations, bond graphs, and stability. A configuration is a
partial function A : Z2 → T for some set of tiles T , i.e., an arrangement of
tiles on a square grid. For a given configuration A, define the bond graph GA

to be the weighted grid graph in which each element of the domain of A,
dom(A), is a vertex, and the weight of the edge between a pair of tiles is
equal to the strength of the coincident glue pair. A configuration is said to
be τ -stable for positive integer τ if every edge cut of GA has strength at least
τ , and is τ -unstable otherwise.

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈
Z2, A+u⃗ denotes the configuration A◦f , where f(x, y) = (x+ux, y+uy). For
two configurations A and B, B is a translation of A, written B ≃ A, provided
that B = A+ u⃗ for some vector u⃗. For a configuration A, the assembly of A
is the set Ã = {B : B ≃ A}. An assembly Ã is a subassembly of an assembly
B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and B ∈ B̃ such that
A ⊆ B. An assembly is τ -stable provided the configurations it contains are
τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided
there exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅,
and C̃ is τ -stable.

Two-handed assembly. A Two-handed assembly system is an ordered
tuple (S, τ) where S is a set of initial assemblies and τ is a positive integer
parameter called the temperature. Each assembly in S must be τ -stable. For
a system (S, τ), the set of producible assemblies P ′

(S,τ) is defined recursively
as follows:

1. S ⊆ P ′
(S,τ).

2. If A,B ∈ P ′
(S,τ) are τ -combinable into C, then C ∈ P ′

(S,τ).

A producible assembly is terminal if it is not τ -combinable with any other
producible assembly, and the set of all terminal assemblies of a system (S, τ)

6

is denoted P(S,τ). Intuitively, P
′
(S,τ) represents the set of all possible assemblies

that can self-assemble from the initial set S, whereas P(S,τ) represents only
the set of assemblies that cannot grow any further. An assembly A is uniquely
produced if P(S,τ) = {A} and for each B ∈ P ′

(S,τ) B ⊑ A.

2.2. Problems

As discussed in the introduction, we focus on two fundamental problems
for self-assembly: producibility and unique assembly verification. The formal
definitions are below.

Problem 2.1 (Producibility). Given a 2HAM system Γ = (S, τ) and an
assembly A, is A a producible assembly of Γ?

Problem 2.2 (Unique Assembly Verification (UAV)). Given a 2HAM system
Γ = (S, τ) and an assembly A, is A uniquely produced by Γ?

3. Producibility Hardness

In this section, we show that the producibility problem is NP-complete if
the initial set of assemblies may include assemblies larger than singleton tiles.
The hardness is derived by reducing from 3SAT and holds even if assembly
size and system temperature is bounded by a constant. Our construction
extends to the seeded abstract tile assembly model where there is a seed tile,
and elements of the tile set (in this case assembly set) attach one at a time
to the growing seed.

3.1. Overview

We reduce from 3SAT 1, which asks whether a given 3CNF formula ϕ
is satisfiable. Let |V | and |C| be the number of variables and clauses in
ϕ, respectively. The reduction creates an instance of producibility (Γ, A)
with τ = 2, such that Γ produces the target assembly A iff ϕ is satisfiable.
The target assembly is a rectangle shown and described in Figure 4a. The
assemblies in the reduction can be divided into two groups: edge assemblies
(Figure 1a) and macroblocks (Figure 1b). There are two variable assemblies
for each bit that each correspond to an assignment of 0 or 1 based on the

1Note this reduction technique works for general SAT but we reduce from 3SAT because
it is well known.

7

Left Edge Assembly

Ci

Ci+1

Right Edge Assembly

Ci

Ci+1

Variable Assembly 0

Xi Xi+1

Variable Assembly 1

Xi Xi+1

Cover Tiles

Left Corner Assembly
C1 X1

Right Corner Assembly

X|V|

C1

(a)

xi

xi

cj cj

north arm

south arm

east armwest arm

north glue

west glue

south glue

east glue

(b)

xi

xi

cj cj01

S
U S

U

10

(c)

Figure 1: (a) Edge Assemblies used to construct the frame of the assembly. For each
clause we include a left and right edge assembly. For each variable we include two variable
assemblies representing 0 and 1. We include a single left corner assembly along with a right
corner assembly. The filler tiles are used to fill in holes between attached macroblocks.
The glue labels xi and Cj are unique to each possible choice of variable and clause for
the given SAT formula. (b) A single macroblock mi,j(0, U, U) with outer glues labeled.
The north and south glues connect to other macroblocks that represent the same variable.
The east and west glues connects to other macroblocks that represent the same clause. (c)
Arm position labels on a macroblock. Opposite sides have complementary values to allow
for attachment.

position of the 3 × 2 arm section of the assembly (the green and red tiles
constitute the 3 × 2 arm assemblies in the figures). As shown in Figure 1c,
each arm position represents a certain value. For vertical arms, the position
represents either 0 or 1. For horizontal arms, their position is either U or S,
meaning unsatisfied or satisfied.

These assemblies will combine to form an assembly for each possible as-
signment to ϕ (Figure 2a). We include a unique left edge assembly for each
clause whose arm is always in the top position representing that the clause
is currently not yet satisfied. A left edge assembly can attach to an assembly
that encodes an assignment to ϕ. This starts to form an L shaped frame
assembly as shown in Figure 2b. Macroblocks may attach to this frame if it
has complementary arms to the currently growing frame assembly. As shown
in Figure 2c, a macroblock can attach using two strength-1 glues on its east
and south sides. If the arms have complementary positions the attachment
will be able to take place. However, if the arms overlap, the macroblock is
geometrically blocked from attaching, and thus not allowed.

The final challenge for designing this reduction is there must exist a sin-
gle assembly that is produced regardless of the satisfying assignment. This

8

x1
1

x1
0

x2
1

x2
0

x3
1

x3
0

x4
1

x4
0

(a)

x1
1 x2

1 x3
0

c1

U

x4
1

(b)

x1
1

c1

U

1

U

x1
1

c1

U

1

U

x1
1

c1

U
U

0

x1

c1

U
U

(c)

Figure 2: (a) Variable gadgets can non-deterministically build a frame assembly for each
possible assignment to ϕ. (b) Example of the assembly made for assignment 1101 with a
single left edge assembly attached. (c) If the macroblock has complementary arm positions
it will be able to attach to the frame assembly. If the macroblocks do not have matching
arm positions the attachment will be geometrically blocked and cannot occur.

means we must hide the values passed between macroblocks. We do this by
including a certain subset of the tiles which will fill any spaces left between
macroblocks.

3.2. Macroblocks

A single macroblock can be seen in Figure 1b and has two parts: the
body that contains glues to allow attachment (blue), and four arms which
encode ϕ (green/red). Each arm on the macroblock encodes a single bit of
information by being in one of two positions. We call these positions “0” and
“1” for the north/south arms and “U” and “S” (unsatisfied/satisfied) for the
east/west arms respectively (Figure 1c).

We denote a macroblock representing a variable/clause pair (vi, cj) by its
glues and arm positions as mi,j(b, w, e) where b ∈ {0, 1} is the position of the
north/south arm, w ∈ {U, S} is the position of the west arm, and e ∈ {U, S}
is the position of the east arm. Each macroblock has a single strength-1
glue on each side (macroblocks representing the last clause do not contain
glues or arms on their north side). The glues indicate which variable and
clause pair this macroblock represents. The north and south glues relate to
the variable, and the east and west glues relate to the clause. The south
and west glues allow for cooperative attachment to an assembly that already
contains macroblocks mi−1,j and mi,j−1. The north and east glues allow for
attachment of the next macroblocks.

9

cj:S

Xi = 1

cj:S

Xi = 1

cj:S

Xi = 0

cj:S

Xi = 0

cj:U

Xi = 0

Xi = 0

cj:U

Xi = 1

Xi = 1

mi,j(0,S,S)

U
S

U
S

Mi,j

mi,j(1,S,S) mi,j(0,U,?) mi,j(1,U,?)

Figure 3: Possible Macroblocks that make up Mi,j . Arm positions represent the value
assigned to xi and whether or not cj has been satisfied. There will always be 4 macroblocks
in each set. The left pair of macroblocks are always included and will attach if a clause is
already satisfied. The remaining macroblocks attach if the clause is not yet satisfied, and
their arm positions depend on ϕ. If the positive literal xi is in cj , thenmi,j(1, U, S) ∈Mi,j ,
otherwise mi,j(1, U, U) ∈Mi,j . If the negative literal x̄i is in cj , then mi,j(0, U, S) ∈Mi,j ,
otherwise mi,j(0, U, U) ∈ Mi,j . The final clause macroblocks do not contain the north
arms and just have the area filled in.

Each variable/clause pair (vi, cj) has a setMi,j of four macroblocks asso-
ciated with it (shown in Figure 3). The exact macroblocks that are included
depends on whether xi or x̄i is present in the jth clause. The macroblocks
mi,j(0, S, S) and mi,j(1, S, S) are always included since the assignment of a
variable can not change a clause from being satisfied to unsatisfied. If the the
positive literal vi appears in cj, then we include the macroblocksmi,j(1, U, S),
or mi,j(1, U, U) if it does not. If the negative literal v̄i appears in cj, include
the macroblock mi,j(0, U, S), or mi,j(0, U, U) if it does not.

3.3. Computing Clauses

The left edge assembly starts with an arm in the U position. Macroblocks
maintain this position (Figure 4b) until a macroblock attaches that satisfies
the clause, and changes the arm to an S position (Figure 4c). Once a row of
the assembly is complete (Figure 4d), if the horizontal arm is in the satisfied
position, the right edge assembly can attach cooperatively and complete the
row (Figure 4e). For a right edge assembly to attach, the clause must be
satisfied and the assembly below it (either another right edge assembly or
the right corner assembly) must attach as well. Thus, the right edge assembly
only attaches if the clause it represents is satisfied.

Each row has multiple size-2 holes between macroblocks. Filler tiles can-
not attach to macroblocks on their own due to the temperature of the system.

10

|C|

|V|

(a)

U

x3
0 x4

1

(b)

x4
1

S

(c)

S

(d)

(e)

Figure 4: (a) Target assembly for producibility in the 2HAM with prebuilt assemblies.
Target assembly is a 10|C| + 3 by 10|V | + 6 rectangle. Smaller rectangles between tiles
denote strength-1 glues. Glues between blue tiles are not shown. Each blue tile shares
a strength-2 glue with neighboring blue tiles. The exceptions are tiles separated by the
thicker borders that do not share a glue unless shown. (b) A frame assembly with mac-
roblocks attached. Here, c1 = x1 ∨ x3 ∨ x4. (c) Here x3 = 0 satisfies the clause so this
macroblock that attaches has its arm in the S position. (d) The macroblocks that attach
after always have their arms in the S position. (e) The right edge assembly can attach to
the last macroblock since its arm position is in the S position completing the row.

However, once two macroblocks are attached, the tiles can cooperatively bind
across the hole with strength-1 glues from each side (Figure 5b). As shown in
Figure 5c, this hides the previously used arm positions. The exposed north-
ern arms also continue to encode the input string so the next clause can be
computed after the attachment of the next left edge assembly. Note again
that the final row of a macroblock does not contain north arms.

3.4. Complexity

Using the construction above, we can show that even with constant-sized
prebuilt assemblies, producibility is NP-complete in the 2HAM. This means

11

even determining if a tile system with prebuilt assemblies can ever build a
specific assembly is hard.

Theorem 3.1. The producibility problem in the 2HAM with prebuilt as-
semblies of size O(1) is NP-complete with τ = 2 and an initial assembly set
containing O(|V ||C|) distinct assemblies.

Proof. For membership in the class NP consider an assembly tree υ for a
producible assembly A. To verify A is producible we may use υ as a certifi-
cate. If υ is a valid tree (each combination is legal) and each leaf is in the
input set I, then A is producible.

To show NP-hardness we reduce from 3SAT. Given a formula ϕ in 3CNF
form with |V | variables and |C| clauses. Our target assembly A is the rectan-
gle described above made from macroblocks and edge assemblies with each of
the spaces between arms completely filled with tiles. The input assembly set
includes I, |C| left edge assemblies with their arms in the unsatisfied position,
and |C| right edge assemblies in their satisfied position. For each variable,
two input assemblies representing 0 and 1 assignments are included. The
clauses are encoded by the selection of macroblock arm combinations. A set
of 4 macroblocks are included in I for each variable and clause combination,
so there are a total of O(|V ||C|) macroblocks. This results in a total initial
assembly set size of O(|V ||C|), and each assembly is constant sized.

The starting assemblies, I, will grow into A if and only if ϕ is satisfiable.
If ϕ is satisfiable by some assignment x, then the ‘L’ shaped frame assembly
representing x will grow by attaching macroblocks. Since x satisfies ϕ each
clause will eventually have its arm position changed to satisfied allowing for
all the right edge assemblies to attach. The single tiles will then fill in the
spaces to complete A. If A is producible then there exists some ‘L’ shaped
frame assembled that grew into A. The only way this frame could have grown
into A is if the position of the arms on the input assemblies represented a
string x that satisfied each clause meaning ϕ is satisfiable.

4. Unique Assembly Verification is coNPNP-complete

In this section we show coNPNP-completeness of the Unique Assembly
verification problem in the 2HAM with constant-sized prebuilt assemblies.
We start by proving UAV is in the class of problems solvable by a nonde-
terministic algorithm with access to an oracle for a problem in the class NP.
We then show hardness by reducing from ∀∃SAT. This is an extension of

12

the reduction shown in the previous section, and further, we utilize simi-
lar techniques used in previous reductions in the 2HAM and Tile Automata
[24, 20].

Lemma 4.1. The Unique Assembly Verification problem in the 2HAM with
prebuilt assemblies is in coNPNP.

Proof. Given an instance (Γ, A), refer to a “rogue assembly” R as a pro-
ducible assembly in the system Γ that is either (1) not a subassembly of the
target assembly A, R ̸⊑ A, or (2) a strict subassembly of A and terminal,
i.e., R ⊏ A and R ∈ P(S,τ). The following nondeterministic algorithm solves
UAV.

1. Nondeterministically build an assembly B of size |B| ≤ 2|A|.
2. If B is a rogue assembly, reject.

It suffices to check all assemblies B up to size 2|A| since any assembly of
size > 2|A| must have been built from at least one other assembly B′, s.t.
|A| < |B′| ≤ 2|A|. B′ is a rogue assembly itself and will be accounted for in
a different branch of the computation. B must still be checked to see if it
is a rogue assembly. The first condition can be verified in polynomial time
by checking if B is a subassembly of A by simply checking if each tile in B
exists in A at the same location. The second condition can be checked using
an NP oracle that answers the following: “Does there exists an assembly C,
|C| ≤ |A|, such that C can attach to B?”. This problem can be solved by
an NP machine that nondeterministically builds an assembly C up to size A
and attempts to attach it to B. If any C can attach to B, B is not terminal.
In other words, for “yes” instances such a C serves as a certificate for NP
membership. If any branch finds a rogue assembly, the co-nondeterministic
machine will reject.

4.1. Reduction Overview

Definition 4.2 (∀∃SAT). Given an n-bit Boolean formula ϕ(x1, x2...xn) with
the inputs divided into two sets X and Y , for every assignment to X, does
there exist an assignment to Y such that ϕ(X, Y) = 1?

We show this problem is coNPNP-hard by reducing from ∀∃SAT. An
overview of the important assemblies and processes are shown in Figure 5a.
The same construction used in the previous reduction is used to create expo-
nentially many ‘SAT assemblies’, each of which evaluates the Boolean formula

13

Sink Assemblies

Test Bit Assemblies

Macroblocks

Edge Assemblies

SAT Assembly

Test Assembly

Matched Test Assembly

Sunk SAT Assembly

Target Assembly

a

b

c

d

e

Unmatched Test Assembly

fClause Verifier

(a)

(b)

x1 1 x2 1 x3 0 x4 1

(c)

Figure 5: (a.a) Test bit assemblies come together to build a test assembly for all possible
assignments of the variables in X. Clause Verifier assemblies may attach to SAT assem-
blies that satisfied all clauses. (a.b) Macroblocks and edge assemblies from the previous
reduction are used to create SAT assemblies that evaluate the formula for every assign-
ment of all the variables. (a.c) The sink assemblies begin attaching to SAT assemblies,
ensuring they all grow into the target assembly. (a.d) A test assembly will attach to a
SAT assembly that satisfies the formula and has matching assignments to the variables in
X. (a.e) Matched test assemblies and sunk SAT assemblies attach to each other forming
the target assembly. (a.f) Any test assemblies that do not find a SAT assembly to attach
to (and are thus unmatched) are terminal. If any unmatched test assemblies exist, the
instance of UAV is false. (b) Once two macroblocks attach, the green filler tiles are able
to cooperatively attach using one glue on the macroblock, and the other glue from the red
tiles of the arms from the other macroblock. The filling process hides the information that
was passed. (c) Another left edge assembly may attach above the first. Since the north
arms of macroblocks encode the variable assignment, the second clause may be computed
in the same way as the first.

on one of its input assignments. A SAT assembly is shown in Figure 6b. We
do not include right edge assemblies, so SAT assemblies that have finished
computing have exposed arms on their right side denoting whether or not
each clause was satisfied. The assembly has exposed arms to the north, above
variables in X, that represent their assigned values. Variables in Y still have
no arms on their north side. We construct a test assembly (Figure 7a) for
each possible assignment to the variables inX (Figure 8a) along with a clause
verifier assembly. The clause verifier assemblies are made of right edge as-
semblies with their arms in the S position. Each test assembly can attach
to any SAT assembly with matching assignments to X (complementary arm

14

(a)

Sink Glue

SAT glue

Edge Glue

Test Glue

X Y

(b)

Figure 6: (a) Target Assembly for UAV. Assembly can be divided into three parts, Test
assembly with satisfied SAT assembly, Sunk SAT assembly, and a column of clean up
frames (b) SAT assembly built using the previous reduction with additional northern
arms for the variables in X. Note we do not add right edge assemblies, and an arm is
exposed that shows whether a clause has been satisfied.

positions) if the clause verifier has already attached. Other assemblies are
included that ‘sink’ all assemblies to the target except for test assemblies that
did not attach to a SAT assembly. Test assemblies may build into the target
assembly if and only if they find a matching SAT assembly. The key question
about the system is “For all test assemblies, does there exist a compatible
SAT assembly where all clauses evaluated to true?”

This system uniquely constructs the target assembly if and only if the
instance of ∀∃SAT is true. If the instance is false, there exists an assignment
to the variables in X where no satisfying assignment of Y exists. In this
case, the test assembly representing that assignment will be terminal, which
means the system does not uniquely produce the target assembly.

15

4.2. SAT Assembly

We use the assemblies from the previous reduction to compute all satis-
fying assignments to ϕ. We use the same macroblocks, input assemblies, and
left edge assemblies, however, we do not include any right edge assemblies or
the right corner assembly. A frame assembly is constructed for each assign-
ment to ϕ. By attaching macroblocks with matching geometry, the assembly
process computes whether or not the assignment satisfies the clauses. In this
construction, we mark the assignment to variables in X by including north-
ern arms to the top most macroblocks for those variables instead of omitting
them as in the previous construction. This results in a final assembly that
has its assignment to X and the computed value of each clause being encoded
in the exposed arm positions.

The assembly can be seen in Figure 6b with glues labeled. The exposed
glues all have strength-2. In the bottom right corner of the assembly, the last
variable assembly has two glues. The bottom glue is called the sink glue and
is one of the glues the sink assembly uses to attach to a SAT assembly. The
glue above it, called the SAT glue, is used by both the left sink base assembly
and the test assembly. The next glue appears on each macroblock with an
exposed arm, and on the northern side of the rightmost macroblock. This
glue allows for sink assemblies to attach and cover exposed arms to reach the
target assembly. The test glue is the last glue on this assembly and appears
in the top left corner. The test assembly uses this glue with the SAT glue to
attach to a SAT assembly with matching geometry.

4.3. Test Assembly

A test assembly is constructed for each possible assignment to X starting
from constant sized test bit assemblies shown in Figure 7a. For each variable
in X, we include two test bit assemblies. For each variable in Y , we include
a blank test bit assembly, which is a 3 × 10 rectangle. This row is capped
by left and right corner test assemblies. The left and right corner assemblies
have a strength-1 glue. The clause verifier assembly is built using right edge
assemblies. These assemblies all have their arms in the satisfied position. The
north most assembly has a strength-1 glue on its left side to attach to SAT
assemblies and another on its north side to allow test assemblies to attach.
They connect downward to a 1× 3 test cap assembly. The test cap has the
strength-1 SAT glue on its left side to allow a test assembly to cooperatively
bind to a SAT assembly with all arms in the satisfied position (Figure 7b).
On its south side it has the test-sink glue which will be used to attach to a

16

Test Glue

1 1

0 0 Test Glue

Left Corner
Test Assembly

Right Corner
Test Assembly

SAT glue

Test-Sink glue

Test Cap
Assembly

S

S

Test Glue

Edge Glue

(a)

1 0

S

S
S

S

(b)

A
X

10

1 0

11

00

S

S

Test Assemblies Clause
Verifier

(c)

Figure 7: (a) Test bit assemblies nondeterministically construct a test assembly for each
assignment to the variables inX. Right edge assemblies with arms in the satisfied positions
are used to build the clause verifier. Only the north most edge assembly has an edge glue
to allow a clause verifier to attach to a SAT assembly. A test assembly may attach to a
SAT assembly with a clause checker attached using the test glues on their south side. The
Test-Sink glue is used to cooperatively attach to a sink assembly once the test assembly
is matched with a SAT assembly. (b) A clause verifier may attach to SAT assemblies that
have their arms in the satisfied position. (c) Test Assemblies that are created for an X
that contains 2 variables along with the single clause verifier.

sink assembly cooperatively once a SAT assembly is found. This assembly
process creates a test assembly for each possible assignment to the variables
in X. The example of test assemblies for an instance where |X| = 2 and
|Y | = 2 can be seen in Figure 7c.

The test assembly has two exposed glues on opposite ends of the assembly.
Thus, the assembly cannot attach to a SAT assembly until it is completely
constructed and a clause verifier assembly has attached. A clause verifier
assembly may only attach to SAT assembly with matching arm positions,
i.e., SAT assemblies that satisfied all clauses. A test assembly may only
attach to SAT assemblies with a clause verifier that has the same assignment
to X. Figure 8a shows an example test assembly and the four possible SAT
assemblies it could attach to. The test assembly is terminal if there does
not exist a SAT assembly with the same assignment to X that satisfies all
clauses. A terminal test assembly can be seen in Figure 8b. We call these

17

terminal test assemblies unmatched test assemblies. Since we construct a
SAT assembly for each possible assignment to the formula ϕ, if the test
assembly representing a partial assignment X is terminal, then there does
not exist a remaining assignment to the variables in Y that satisfies the
formula. Thus, the instance of UAV would be false.

EY

1 0

S

S

1 0

S

S

1 0

S

S

00

S

S

01

1 0

S
10

U S

S

1 0

S

1 1 U

S

S

(a)

Unmatched
Test Assembly

01

EY

1 0

00

U

U

S

S

1 0

10

U

U

S

S

1 0

S

1 1 U

S

S

1 0

S

1 0 U

S

S

(b)

Figure 8: (a) If there exists a satisfying assignment to Y when X = 10, the test assembly
with those arms can attach to a SAT assembly. (b) If there does not exist a satisfying
assignment, all the SAT assemblies will have at least one arm not in the S position that
will geometrically block the test assembly’s arm. This test assembly will be terminal so
the answer to UAV will be no.

4.4. Sink

Since our goal is to design a system that uniquely constructs an assembly
when the instance of ∀∃SAT is true, we will sink assemblies representing
a non-satisfying assignment to the target assembly. This ensures that each

18

assembly (besides unmatched test assemblies) must eventually grow into the
target assembly thus sinking all other producible assemblies to our target.
We do so via sink assemblies and macroblock frames, as shown in Figure 9a.
The first sink assembly, the right sink base assembly, is similar to the right
corner assembly of the previous section but is of height 4. Sink base tiles are
single tiles that may attach to the right base assembly on its left side bottom
row, which eventually connects to the left base assembly.

The right sink base assembly attaches to any SAT assembly that has not
attached to a test assembly using the sink and test-sink glues. We call the
attachments that occur after this the Sink Process. During the Sink Process,
sink edge assemblies attach cooperatively with the right sink base assembly
and with the SAT assembly. This allows for the sink edge assemblies to
attach one-by-one and ‘cover’ each exposed arm on the SAT assembly. The
last sink edge (northern most) is slightly longer to allow for the horizontal sink
edges to attach across the top of the assembly. The left sink base assembly
cooperatively attaches to test assemblies that have already attached to SAT
assemblies using the SAT glue on its right side and the test-sink glue on its
north side.

The last assembly type that has not been accounted for in the final as-
sembly are any unused macroblocks. In the previous reduction, any unused
macroblocks are terminal since they are never used in the computation. In
this reduction, we cannot have any other terminal assembly, so these must
be included in our target assembly. We do this by adding frames to store
the macroblocks. For each macroblock we include in our input set, we also
include a clean up frame (Figure 9b). Any macroblock is now not terminal
as it can attach to the clean up frame. These frames are enumerated and
attach in order to the south side of the sink assembly in a single column
(Figure 9c).

Theorem 4.3. The Unique Assembly Verification problem in the 2HAM
with prebuilt assemblies of size O(1) is coNPNP-complete with an initial
assembly set size of O(|V ||C|) and τ = 2.

Proof. We show membership in Lemma 4.1. Given an instance of ∀∃SAT
with a formula ϕ(x1, x2, . . . , xn) we create a 2HAM system S that uniquely
assembles a target assembly S if and only if the instance of ∀∃SAT is true. If
the instance of ∀∃SAT is false then S will also produce a test assembly that
is terminal.

19

Variable Sink Edges Blank Sink Edges

Last clause

Test-Sink glue SAT glue

Sink Glue Sink Glue

Clause Sink Edges

Left Sink Base Right Sink Base

(a)

(b)

Right Sink
Base Assembly

Left Sink
Base Assembly

(c)

Figure 9: (a) The set of sink assemblies. The sink glue and test-sink glue are utilized for
cooperative attachment. (b) For each macroblock we also include a frame so none of the
macroblocks are terminal. These frames attach to each other in order at the bottom of
the sink assembly. (c) The process of sinking all assemblies towards the target assembly.

The construction of SAT assemblies begins with combinations of variable
and edge assemblies to produce an L shaped frame assembly for each possible
assignment to ϕ. The output of ϕ on each assignment is then computed by
the attachment of macroblocks that encode the clauses of ϕ, and producing a
SAT assembly. The SAT assemblies expose arms representing the assignment
of the variables in X, as well as arms that represent whether each clause has
been satisfied. From the included prebuilt assemblies, a test assembly is
produced for each possible assignment to X. Due to their arm positions,
they may only attach to SAT assemblies that have a matching assignment
to X and that represent an assignment that satisfies every clause.

Each assembly besides unmatched test assemblies will sink to the target

20

assembly. Every prebuilt assembly that was designed for building a SAT as-
sembly will be used in the construction of at least one SAT assembly, besides
the macroblocks. In some cases it is possible for a macroblock to not be
able to attach to any SAT assembly. To account for this we include a mac-
roblock frame for each macroblock to attach to, ensuring that no macroblock
is terminal. The right sink base assembly may attach to any SAT assembly
regardless of arm position so none of the SAT assemblies are terminal. Each
sink assembly is used in the process of reaching the target assembly so none
are terminal.

A test assembly is only terminal if there does not exist a SAT assembly
with matching X arm positions that has each clause satisfied. This means for
that assignment to X there does not exist an assignment to Y that satisfied
ϕ, and the instance of ∀∃SAT is false.

The new assemblies in this reduction only increase the number of assem-
blies by a constant factor. The test and sink assemblies only add O(|V |+|C|)
to the input assembly size, and the added macroblock frames are equal to
the number of macroblocks, which is constant.

5. 1D Verification

In this section, we show that the producibility and the UAV problems in
one-dimensional 2HAM (all assemblies are of height-1, and tiles only have
glues on their left and right sides) with prebuilt assemblies is solvable in
polynomial time.

5.1. Producibility Verification

We first present the algorithm for verifying whether a given assembly
is producible in a given system. At a high level, the algorithm constructs a
graph of initial assemblies that may be combined to form the target assembly
A. An example graph is shown in Figure 10. We add a starting node s that
connects to possible leftmost assemblies and a target node t that connects to
possible rightmost assemblies. There exists an edge between two assemblies
if they may attach as part of an assembly sequence building A. Thus, a
path from s to t implies an assembly sequence using those nodes to build the
target assembly.

Theorem 5.1. The producibility problem in the one-dimensional 2HAM
with prebuilt assemblies is solvable in polynomial time.

21

A B C D E

Target Assembly

B C DA B C

B C D E

A B

Initial Assemblies

E A B C D E

A B Cs t

B C D

E

Graph

Figure 10: Example instance of Producibility with the graph G created. The path between
s and t implies a build sequence to produce the target assembly.

Proof. Given a 2HAM system Γ = (S, τ), note that τ is part of the input
system, but does not affect the system since there is no cooperative binding.
Thus, a one-dimensional system works for any positive temperature. Now
given Γ, create a graph G where each node represents an initial assembly
i ∈ S. For each pair of initial assemblies, create an edge going from assembly
a to b if the leftmost tile of b shares a glue with the rightmost tile of a,
meaning that b may attach to a.

For two assemblies A and B, we say B is consistent with A by an offset
of i, if B ⊂ A and for each 0 < j ≤ |B|, the jth tile of B is the same as the
(i+ j)th tile of A. Informally, B is consistent with A if B has the same tiles
as A starting at the ith tile. We say the consistency ends at position i+ |B|.

The producibility problem can be solved in polynomial time by perform-
ing the following algorithm. Create a graph G initialized with two nodes
called s and t. For 0 ≤ n < |A|, add a node for each initial assembly B ∈ S
where B is consistent with A offset by n. Add an edge from assemblies a to
b if b attaches on the right side of a to form assembly c and c is consistent
with A by the same offset of a. That is, there exists an edge between two
assemblies if they may combine to form an assembly that is still consistent
with A. Finally, for each assembly that ends at the last tile of A, add an
edge from that node to the t node.

If there exists a path between s and t, the assemblies represented by the
path can be used as an assembly sequence. The first node will be the left
most tiles of A. Each consecutive attachment will remain consistent with A
until t is reached and all the tiles of A have been placed. Creating G takes
O(|A||S|) steps so this algorithm runs in O(n2) time.

5.2. Unique Assembly Verification

We now present an algorithm for the unique assembly verification prob-
lem in the same model. Given an instance of UAV (Γ, A), we first present

22

three conditions that, if checked, provide the answer. If and only if all these
conditions are true, the answer to UAV is ‘yes’: 1) A is producible. 2) There
does not exist a subassembly B ⊑ A that is terminal. 3) There does not
exist a producible assembly R ̸⊑ A. Here, R is a rogue assembly since it will
never grow into A. As a given system can have an exponential number of
assemblies of size ≤ |A|, we present a lemma showing a limit on the search
for a witness that condition 3 is false.

Lemma 5.2. Let (Γ, A) be an instance of UAV in the one-dimensional 2HAM
with prebuilt assemblies such that every initial assembly is a subassembly of
A, and A is producible. If there exists a rogue assembly R ̸⊑ A, then there
exists a rogue assembly R′ that can be produced by combining two assemblies
R′

1, R
′
2 that are subassemblies of A.

Proof. Consider a rogue assembly R ̸⊑ A. Let I be the set of initial assem-
blies of Γ. Let a decomposition tree TR of R be a binary tree that describes
a valid assembly process of R starting from initial assemblies in I. A node of
TR is an assembly, e.g., the root node is R. The child nodes n1, n2 of a node
n represent that assemblies n1 and n2 can come together in one production
step to form the assembly n. Every leaf node of T is an initial assembly from
I. With the assumed condition that every initial assembly is a subassembly
of the target A, every leaf of T is a subassembly of A.

Mark every node of the tree that is not a subassembly of A with label ‘r’
(rogue assembly), and every other node with label ‘s’ (subassembly). The
root node R has label ‘r’ while every leaf has label ‘s’.

We are now searching for a witness node R′ with label ‘r’, which must
have two children with label ‘s’ that prove the lemma true. Set the current
candidate node B to R, and let B1 and B2 be the children of B. If B1 and
B2 have label ‘s’, then the witness node has been found. Otherwise, w.l.o.g.,
let B1 have label ‘r’. Set the candidate node B to the node R1 and repeat
the process. Since every leaf has label ‘s’, eventually the witness node R′ is
found.

Utilizing this lemma, we search only the subassemblies of our target as-
sembly A to verify the third condition. 1D assemblies only have a polynomial
number of subassemblies, so this allows us to check both the second and third
condition. Combining these two steps with the polynomial time producibility
algorithm from above, we solve UAV in polynomial time.

23

Result: Given an instance of UAV (Γ, A) in the 1D 2HAM with
prebuilt assemblies, does Γ uniquely assemble A?

if A is not producible in Γ then reject;
if there is an initial assembly a ̸⊑ A then reject;
for every subassembly a of A do

if a is producible and a is terminal then reject;
for every pair of subassemblies a, b of A do

if a is producible and b is producible then
c1 ← the assembly created by attaching a to the left of b;
c2 ← the assembly created by attaching a to the right of b;
if (c1 is stable and c1 ̸⊑ A) or (c2 is stable and c2 ̸⊑ A) then
reject;

accept;
Algorithm 1: A O(n6) time algorithm for UAV in the one-dimensional
2HAM with prebuilt assemblies.

Theorem 5.3. The Unique Assembly Verification problem in the one-dimensional
2HAM with prebuilt assemblies is solvable in polynomial time.

Proof. Algorithm 1 solves the UAV problem in O(n6) time. The algorithm
first checks if the target assembly A is producible in O(n2) time (from
Theorem 5.1). The algorithm then checks for every producible subassem-
bly of the target, and whether that subassembly is terminal. This requires
O(n2) × O(n2) × O(n) = O(n5) time, as there are at most O(|A|2) sub-
assemblies of A. For each subassembly, terminality is checked by comparing
the endpoints of the subassembly to endpoints of all other initial assemblies.
These endpoints can be stored for this process to require O(n) time.

The last step of the algorithm searches for a witness that condition 3 is
false, and therefore a witness to a ‘no’ answer. This witness would be a rogue
assembly R that is producible, but not a subassembly of the target A. Since
R can never grow into A, the answer to UAV must be no. By Lemma 5.2, if
a rogue assembly exists, then there exists some rogue assembly R′ that can
be built by combining two subassemblies of A. The algorithm checks every
pair of subassemblies of A (of which there are |A|4), and checks if they can
be combined to form a rogue assembly.

24

6. aTAM with Prebuilt Assemblies

Here, we show that the hardness reduction holds in the case where growth
happens in a seeded fashion, both in the 2HAM and in the aTAM. In the
aTAM there is a set of tiles that may attach one at a time to the seed
assembly to create the set of producible assemblies. Here, we start with a
seed assembly and a set of initial assemblies that may attach to it. We may
only attach one assembly at a time to the seed or to any other producible
assembly.

Abstract Tile Assembly Model with Prebuilt Assemblies. An
aTAM system is an ordered triple (S, σ, τ) where S is a set of initial assem-
blies, σ is the seed assembly, and τ is a positive integer parameter called the
temperature. Each assembly in S must be τ -stable. For a system (S, σ, τ),
the set of producible assemblies P ′

(S,σ,τ) is defined recursively as follows:

1. σ.
2. If A ∈ P ′

(S,σ,τ) and B ∈ S are τ -combinable into C, then C ∈ P ′
(S,σ,τ).

The definitions and notations carry over from the standard definition for
terminal assemblies and unique production.

Corollary 6.1. The producibility problem in the aTAM, with prebuilt as-
semblies of size O(1), is NP-complete with τ = 2 and an initial assembly set
size of O(|V ||C|).

Proof. In the aTAM, growth begins from a designated seed assembly. All
producible assemblies are formed by starting with this seed assembly and
attaching single assemblies from the input set one-by-one.

The same set of edge assemblies and macroblocks from Section 3 can
be used to show hardness of the producibility problem in this version of the
model. The left corner assembly can be used as the seed. The edge assemblies
are able to attach to this assembly to build the frame. Macroblocks can still
attach one-by-one, which computes the clauses. Each assembly used in the
reduction attaches to the growing frame assembly. No attachments that are
needed occur separate from this assembly, so the target assembly is still
producible if and only if there exists a satisfying assignment to ϕ.

Corollary 6.2. The UAV problem in the aTAM, with prebuilt assemblies
of size O(1), is coNP-complete with τ = 2 and an initial assembly set size of
O(|V ||C|).

25

xi

cj

north arm

south arm

east arm
west arm

north glue

cj

west glue xi

south glue

east glue

Left Edge Assembly

Ci

Ci+1

Left Corner Assembly
C1

X1

Figure 11: Smaller assemblies that can be used for the reduction with modifications to
the other assemblies.

Proof. We can show UAV with constant-sized assemblies by reducing from
∀SAT, which takes as input a formula ϕ and outputs yes if all assignments
evaluate to true and no if any assignment is false. The target assembly will
be the rectangle assembly that is the target in Corollary 6.1. The bottom row
of attachments represents an assignment to the formula, and any satisfying
assignment grows to the target assembly.

If all assignments evaluate to true, then all build sequences will result in
the target assembly and thus it is uniquely produced. If the target assembly
is uniquely produced then all build sequences must represent a satisfying
assignment.

7. Future Work

The macroblocks used above have constant size, but in this section we
provide smaller alternate assemblies that have size 38. This is a substantial
improvement over the size 92 blocks of the original design, and points to
interesting future work in determining at what size of prebuilt assembly the
complexity of verification fundamentally changes.

7.1. Minimizing Assembly Size

In Figure 11, we show equivalent assemblies that can be used in the
reduction described above. The arms are now 2× 2 subassemblies and only
have tiles required to connect them.

Theorem 7.1. The Producibility problem in the 2HAM and aTAM with
prebuilt assemblies of max size 38 is NP-complete with an initial assembly
set size of O(|V ||C|) and τ = 2.

26

Proof. The new assemblies in Figure 11 have the same glues as the assemblies
from the previous proof. The arms also still enforce that only macroblocks
with matching assignments may attach.

Theorem 7.2. The UAV problem in the 2HAM with prebuilt assemblies of
max size 38 is coNPNP-complete with an initial assembly set size of O(|V ||C|)
and τ = 2.

Proof. Even the test and sink assemblies can be minimized to be made of
fewer than 38 tiles. Since these assemblies have an identical structure to
the assemblies used in the reduction for production, we can use the same
methods to shrink the assemblies.

The produciblity problem in the 2HAM with only single tiles is solvable
in polynomial time. This leaves a gap for max assembly sizes 2 ≤ n ≤
35. This points to several open questions related to producibility and UAV
with prebuilt assemblies. Is the producibility problem solvable in polynomial
time with only dominoes, or what is the smallest size of prebuilt assemblies
necessary for it to be NP-complete?

With the recent work in [15], UAV in the 2HAM with constant temper-
ature and singleton tiles is coNP-complete, and we know that with prebuilt
assemblies of size 38, UAV is coNPNP-complete. What is the smallest size of
prebuilt assemblies to maintain coNPNP-completeness? It also is of interest
to find the minimum number of glues needs for hardness of these problems.
Can we show hardness for these problems with a small number of glues?
What is the trade off between number of glues and size of the assembly?

8. Conclusion

In this paper we explored the fundamental self-assembly problems of Pro-
ducibility and Unique Assembly Verification (UAV) in the 2HAM with pre-
built assemblies. These problems have been well studied in the classic sce-
nario in which starting assemblies are singleton tiles, with the producibility
problem being in P , and the UAV problem being coNP-complete. By ex-
tending these models to include prebuilt assemblies, even of constant size,
we have shown that each problem rises one level in the polynomial hierar-
chy, with producibility becoming NP-complete, and UAV becoming coNPNP -
complete. We further showed that in the case of 1-dimensional linear assem-
blies, both of these problems have polynomial time solutions. We also ex-
tended these results to the aTAM with constant-size attachable assemblies,

27

showing NP-completeness for producibility and coNP-completeness for UAV.
Understanding the complexity of these problems is motivated as these are two
of the key problems related to verifying the behavior of self-assembling sys-
tems, and the inclusion of prebuilt assemblies is easily motivated by practical
laboratory procedures. That these hardness results hold even for constant
sized assemblies further leads to an intriguing question: For what size assem-
blies do these verification questions switch complexity classes? Our initial
construction utilizes size 92 prebuilt assemblies, but we show this can be
decreased down to 38. Can it be pushed further? What about the case of
size-2 assemblies?

References

[1] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz,
R. T. Schweller, S. M. Summers, A. Winslow, Two Hands Are Bet-
ter Than One (up to constant factors): Self-Assembly In The 2HAM
vs. aTAM, in: 30th International Symposium on Theoretical Aspects
of Computer Science (STACS 2013), Vol. 20 of Leibniz International
Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2013, pp. 172–184.

[2] E. Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California
Institute of Technology (June 1998).

[3] P.-E. Meunier, D. Regnault, D. Woods, The program-size complex-
ity of self-assembled paths, in: STOC: Proceedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Association for Computing Machinery, 2020, pp. 727–737.
doi:10.1145/3357713.3384263.
URL https://doi.org/10.1145/3357713.3384263

[4] M. J. Patitz, An introduction to tile-based self-assembly and a sur-
vey of recent results, Natural Computing 13 (2) (2014) 195–224.
doi:10.1007/s11047-013-9379-4.

[5] D. Woods, Intrinsic universality and the computational power of self-
assembly, Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences 373 (2046) (2013) 16–22.

28

[6] D. Doty, Theory of algorithmic self-assembly, Communications of the
ACM 55 (12) (2012) 78–88.

[7] C. Evans, Crystals that count! physical principles and experimental
investigations of DNA tile self-assembly, Ph.D. thesis, California Inst.
of Tech. (2014).

[8] D. Woods, D. Doty, C. Myhrvold, J. Hui, F. Zhou, P. Yin, E. Winfree,
Diverse and robust molecular algorithms using reprogrammable DNA
self-assembly, Nature 567 (2019) 366–372. doi:10.1038/s41586-019-1014-
9.

[9] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin,
R. T. Schweller, D. L. Souvaine, Staged self-assembly: nanomanufacture
of arbitrary shapes with o (1) glues, Natural Computing 7 (3) (2008)
347–370.

[10] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers, R. T. Schweller,
Universal computation with arbitrary polyomino tiles in non-cooperative
self-assembly, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, 2014, pp. 148–167.

[11] B. Fu, M. J. Patitz, R. T. Schweller, R. Sheline, Self-assembly with
geometric tiles, in: International Colloquium on Automata, Languages,
and Programming, Springer, 2012, pp. 714–725.

[12] M. Endo, T. Sugita, Y. Katsuda, K. Hidaka, H. Sugiyama, Programmed-
assembly system using DNA jigsaw pieces, Chemistry: A European
Journal (2010) 5362–5368.

[13] S. Woo, P. W. Rothemund, Stacking bonds: Programming molecu-
lar recognition based on the geometry of DNA nanostructures, Nature
Chemistry 3 (2011) 620–627.

[14] D. Doty, Producibility in hierarchical self-assembly, in: O. H. Ibarra,
L. Kari, S. Kopecki (Eds.), Unconventional Computation and Natural
Computation, Springer International Publishing, Cham, 2014, pp. 142–
154.

[15] D. Caballero, T. Gomez, R. Schweller, T. Wylie, Unique assembly veri-
fication in two-handed self-assembly, in: M. Bojańczyk, E. Merelli, D. P.

29

Woodruff (Eds.), 49th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2022), Vol. 229 of ICALP’22, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022,
pp. 34:1–34:21. doi:10.4230/LIPIcs.ICALP.2022.34.

[16] R. Schweller, A. Winslow, T. Wylie, Complexities for high-temperature
two-handed tile self-assembly, in: R. Brijder, L. Qian (Eds.), DNA Com-
puting and Molecular Programming, Springer International Publishing,
Cham, 2017, pp. 98–109.

[17] L. M. Adleman, Q. Cheng, A. Goel, M.-D. A. Huang, D. Kempe, P. M.
de Espanés, P. W. K. Rothemund, Combinatorial optimization problems
in self-assembly, in: Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, 2002, pp. 23–32.

[18] D. Doty, L. Kari, B. Masson, Negative interactions in irreversible self-
assembly, Algorithmica 66 (1) (2013) 153–172. doi:10.1007/s00453-012-
9631-9.

[19] A. A. Cantu, A. Luchsinger, R. Schweller, T. Wylie, Covert computation
in self-assembled circuits, Algorithmica 83 (2) (2021) 531–552.

[20] R. Schweller, A. Winslow, T. Wylie, Verification in staged tile self-
assembly, Natural Computing 18 (1) (2019) 107–117.

[21] D. Caballero, T. Gomez, R. Schweller, T. Wylie, Covert Compu-
tation in Staged Self-Assembly: Verification Is PSPACE-Complete,
in: P. Mutzel, R. Pagh, G. Herman (Eds.), 29th Annual European
Symposium on Algorithms (ESA 2021), Vol. 204 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2021, pp. 23:1–23:18.
doi:10.4230/LIPIcs.ESA.2021.23.
URL https://drops.dagstuhl.de/opus/volltexte/2021/14604

[22] D. Caballero, T. Gomez, R. Schweller, T. Wylie, The complexity of
multiple handed self-assembly, in: I. Kostitsyna, P. Orponen (Eds.),
Unconventional Computation and Natural Computation, Springer In-
ternational Publishing, Cham, 2021, pp. 1–18.

30

[23] C. Chalk, A. Luchsinger, E. Martinez, R. Schweller, A. Winslow,
T. Wylie, Freezing simulates non-freezing tile automata, in: DNA Com-
puting and Molecular Programming, 2018, pp. 155–172.

[24] D. Caballero, T. Gomez, R. Schweller, T. Wylie, Verification and
Computation in Restricted Tile Automata, in: C. Geary, M. J.
Patitz (Eds.), 26th International Conference on DNA Computing
and Molecular Programming (DNA 26), Vol. 174 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2020, pp. 10:1–10:18.
doi:10.4230/LIPIcs.DNA.2020.10.

[25] S. Arora, B. Barak, Computational complexity: a modern approach,
Cambridge University Press, 2009.

[26] D. Caballero, T. Gomez, R. Schweller, T. Wylie, Complexity of verifi-
cation in self-assembly with prebuilt assemblies, in: Proceedings of the
Symposium on Algorithmic Foundations of Dynamic Networks, Vol. 221
of SAND’22, 2022, pp. 8:1–8:15.

31

Graphical Abstract

Complexity of Verification in Self-Assembly with Prebuilt Assemblies⋆

David Caballero, Timothy Gomez, Robert Schweller, Tim Wylie

Highlights

Complexity of Verification in Self-Assembly with Prebuilt Assem-
blies

David Caballero, Timothy Gomez, Robert Schweller, Tim Wylie

� 2HAM producibility with prebuilt assemblies coNP-complete

� 2HAM unique assembly verification with prebuilt assemblies is coNPNP -
complete.

� 2HAM 1D producibility and UAV are polynomial.

� aTAM producibility with prebuilt assemblies is NP-complete.

	Complexity of verification in self-assembly with prebuilt assemblies
	Recommended Citation

	Complexity of verification in self-assembly with prebuilt assemblies

