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Abstract—Multiple agents with relatively low cost, decentral-
ized control, and robustness have the advantages of completing
a foraging task more efficiently than a single advanced robot.
Despite many foraging algorithms are efficient in multiple robot
systems, most are pre-designed or not very adaptive to different
environments since they have to evolve the parameters of the for-
aging algorithm in each different environment. Besides, designing
an efficient collision avoidance strategy for multiple agents is
a challenge. Addressing these issues, we introduce the multi-
actor-attention-critic(MAAC) reinforcement learning method into
the multiple foraging agents. We train the foraging strategy
for multiple simulated agents. We compare our approach with
existing foraging algorithms for multiple robots, the Central Place
Foraging Algorithm (CPFA) and the Distributed Deterministic
Spiral Algorithm (DDSA). Experimental results demonstrate that
our approach outperforms the two algorithms. Also, we illustrate
that our approach has a better performance in avoiding obstacles
and adapting to different environments.

Index Terms—multi-agent reinforcement learning, swarm in-
telligence, foraging, multi-agent systems

I. INTRODUCTION

Swarm robots behave well in many complex tasks for their
inexpensive price and robust performance comparing with an
individual robot. A huge task could be distributed to many
sub-tasks by space, time, or both. Many swarm robots have
the demands for searching for and collecting targets. The tasks
include planetary surveys [1], survivor location in hazardous
environments [2], collection of hazardous material and natural
resources [3] and so on. If the system asks robots to deposit
the targets in a single nest, it is a central place foraging task.

To solve the foraging problem, various approaches were
proposed, such as the Central Place Foraging Algorithm
(CPFA) [4] and the Distributed Deterministic Spiral Algorithm
(DDSA) [5]. Both of them need to use artificially designed
parameters to control the actions of robots. However, the real-
world environment is too complicated for humans to design
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effective strategies. For robots to have the ability to complete
tasks in a complex and constantly changing real world, we
need robots that can automatically generate the strategies
without the need of designing complex parameters.

We abstract robots into agents to control its actions, building
several foraging scenarios in the multi-agent particle environ-
ment (MPE) [6] and using the idea of the multi-actor-attention-
critic (MAAC) [7] method to construct effective agents that
handle foraging tasks by maximizing future rewards we de-
fined. We compared our method with the CPFA and the DDSA
algorithms. First, we showed that the agents have a better
foraging performance. Second, we showed that our method
is more adaptive to different environments without updating
the model. Finally, we proved that our method can get a better
collision avoidance strategy and therefore reduce collisions in
the foraging task.

The rest of this paper is structured as follows: Section II
reviews some related work of foraging problems and sum-
maries the theoretical foundation of multi-agent reinforcement
learning. Section III introduces a brief notation of MAAC
and our method’s details. Different aspects of our model’s
performance will be verified in section IV. In section V, we
have drawn the conclusions and the directions of our future
work is also discussed.

II. RELATED WORK

In this section, we will introduce the state-of-the-art al-
gorithms for swarm foraging and multi-agent reinforcement
learning (MARL).

A. Foraging problem

The foraging problem is an abstract of many real-world
tasks. In this task, robots are required to search resource and
then take it back to a nest as soon as possible. Usually, each
robot could hold only one resource at a time. Thus, foraging



Fig. 1. The states of a robot using the CPFA algorithm.

Fig. 2. The states of a robot using the DDSA algorithm.

algorithms aim to collect resources quickly within a certain
time instead of collecting all the resources.

The CPFA [4] artificially designs seven parameters to con-
trol robots finishing the task. The parameters mimic seed-
harvester ants, which gather resources in the desert with
efficient behaviors. Fig. 1 shows the concrete states of CPFA.
It uses a genetic algorithm to optimize parameters for a special
case. However, CPFA needs to re-optimize the parameters to
adjust the behavior every time the type of resource distribution
changes, so that the robot can perform well in the new
scenario.

In DDSA, agents search for resources by traveling on pre-
planned spiral paths in the arena. When an agent finds a
resource, it delivers the resource to the central nest and then
returns to the last position where it found the resource. It
resumes the search on the pre-planned path. The states of the
DDSA is in Fig. 2. Because agents start foraging from the
nest, they always collect the resources close to the nest first.
Thus, the foraging performance of the DDSA is high at the
beginning. However, avoiding obstacles is challenging in the
DDSA since agents search for resources on pre-defined paths.
The pre-planned paths are computed without considering the
distribution of obstacles.

The NeatFA [8] uses Neuroevolution of Augmented Topolo-
gies (NEAT) to evolve a controller. It has a competitive
performance with The CPFA and the DDSA. However, it
still needs to design several parameters to control the robots.
Our method lets the agents move into the area without any
action design. Besides, neatFA evolves the same strategy for
all robots, but our approach evolves individual strategy for
each agent. It is helpful for future work such as cooperative

foraging and different types of agents completing tasks.
The Multi-Place Foraging Algorithm (MPFA) [9]–[12] is

an extension of the CPFA. It uses the same parameters as the
CPFA but extends one nest to several nests. After an agent
finds a resource, it will return to the nearest nest to it and
exchange the waypoints only between robots in the same nest.
The MPFA affects swarm foraging performance by drastically
reducing the travel time. In this paper, we focus on the central
place foraging task, taking the MPFA in future work.

B. Multi-Agent Reinforcement Learning

There are two basic types of methods in the reinforcement
learning field: value-based and policy-based. [13] proposed a
value calculation method, which records rewards of agent’s
states in a table. One issue is that the states of many practical
tasks are continuous, a limited table cannot store unlimited
state space. Deep learning method [14] introduced to Q-
learning to address this problem. Later [15] was proposed to
let agents can take actions in a continuous space. However,
Policy Gradients (PG) algorithm has a high estimated variance
due to the sparse rewards. [16] combined Q-learning and PG.
An actor utilizes PG to choose actions, meanwhile, a critic
estimates these actions and return the potential rewards of
states in the form of value. [17] attempted to solve the problem
of convergence by introducing a deep neural network [14].
[18] took the entropy into the actor-critic method for agents
to better explore the environment and a stable system. To solve
the challenge of multi-agent, these RL methods were extended
to the field of multi-agent and achieved good results in some
basic scenarios [6], [7]. Although those applications in basic
scenarios of multi-agents have few elements in environments,
these methods have not been applied to complex scenarios,
such as foraging problems. To the best of our knowledge,
this is the first paper is to solve multi-agent foraging problem
through the multi-agent reinforcement learning method [19].

III. METHODS

In this section, we first introduce some fundamental no-
tations of our approach and then describe our approach in
details.

A. Notations

Markov Games In this work, Markov Games [20], the
multi-agent extension of Markov decision processes (MDP)
has been utilized as a framework. A Markov Games is defined
as a set of states S and a collection of action A1, A2, . . ., AN ,
for N agents in the environment. A state transition function
S×A1×A2...×AN → S

′
, which is a probability distribution

produces the next state. Each agent i has an observation oi and
an associated reward function ri: S ×A1×A2...×AN → R.
Each agent use a policy πi : oi → P (Ai) to choose actions,
where P is the action probability distribution. The goal of
each agent is to maximize its expected discounted returns
Ri =

∑T
t=0 γ

trti , where γ ∈ [0, 1] is a discount factor and
T is the total time of one episode.



Fig. 3. The network structure of Multi-Actor-Attention-Critic(MAAC) for
n agents. The MAAC has a centralized critic and decentralized actors. For
agent i, Critic inputs are observations and actions of all agents. Actor input
is observations of agent i.

Policy gradient It is a policy-based technology of rein-
forcement learning tasks. Instead of outputting value, it aims
to solve the failure of continuous action space by directly
output actions through maximizing the objective J(θ) =
Es∼pπ,a∼πθ [R], which updates the form through the following
form:

∇θJ(θ) = Es∼pπ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)] (1)

Actor-critic Actor-critic algorithm combines Q-learning
and PG so as to ameliorate the high variance of returns
between episodes. A value function finds the potential rewards:

LQ(ϕ) = E(s,a,r,s′ )∼D[(Qϕ(s, a)− y)
2]

where y = r(s, a) + γEa′∼π(s′ )[Qϕ̄(s
′, a′)]

(2)

Multi-Actor-Attention-Critic MAAC is the foundation of
our methods. It aims to solve the credit assignment issue by
introducing COMA and attention. Using the concept of cross-
entropy promotes the agent to use the surrounding information
for learning more effectively when exploring by reducing the
loss set as in (3).

LQ(ϕ) =
N∑
i=1

E(o,a,r,o′)∼D[(Q
ϕ
i (o, a)− yi)

2]

where y = ri + γEa′∼πθ̄(o′)[Q
ϕ̄
i (o
′, a′)− α log(πθ̄i(a

′
i|o′i))]

(3)

Gradient updates following the (4).

∇θiJ(πθ) =Eo∼D,a∼π[∇θi log(πθi(ai|oi))
(−α log(πθi(ai|oi)) +Qϕi (o, a)− b(o, a\i))]

(4)

where a\i donates the set of all agents without agent i. The
main architecture of the MAAC is shown in Fig. 3

B. Our methods

MPE-foraging We construct an environment called MPE-
foraging to represent the foraging problem. Several agents are
placed surrounding the nest. A limited time will be set to

let them search in the area. The task of an agent is to find
the resource and take it back to the nest. An agent only take
one resource at each time. Each agent receives the information
from other agents about detected resources in the environment
and then takes actions using this information.

Reward function Now, we describe the design of reward
function. The whole reward consists of two parts: global
reward and personal reward. A centralized critic would receive
the state and reward of the environment, and then calculate
the joint action-value function. Each agent uses this function
to choose their own action. At each time step t, each agent
receives a partial observation oti = [at, ft], where at is other
agents’ relative position to agent i, and ft is the resource
which is sited in 10 times the agent’s size area (max is 7). The
personal reward of an agent in each time step t is designed as
following:

Rpt =

{
rcollC

t + rdisD
t
resource, if agent hold = None;

rcollC
t + rdisD

t
nest, otherwise.

(5)
where the Ct is the number of collisions with other agents.
The Dt

resource is the distance between the agent and the closest
resource to it. rcoll = −3 affect the penalty level for agent
collision. rdis = −0.5 affect the penalty level for the distance
between the agent and the closest resource. The Dt

nest is the
distance between the agent and the nest to it.

Rgt = rholdH
t + rdepD

t (6)

Equation (6) is the global reward of an agent at time step t.
Ht is the number of agents which hold resources at time step
t, and the value of rhold is +5. Dt is the number of agents
which deposit resources in the nest at time step t. The reward
of it is rdep = +5.

Training Approach This task trains for 35000 episodes. In
each episode, agents move 100 steps. In a training, actors have
partial observations. Central critic has global observations.
Input of the actor network for agent i is oi = [p\i, fpos].
p\i represents other agents’ relative position to agent i. fpos
denotes seven closest resources’ relative position to agent
i. Output of the actor network determines agent i’s action
ai. Without any pre-designed parameters, ai consist of five
dimensions determining the force on agent i. Formula (7)
shows how the force transits into the movement of one step.

Positiont+1 = Positiont + f(t(ai)) (7)

where t(ai) transfers the five-dimensional output of the net-
work into a two-dimensional action direction. The velocity is
the result of t(ai) times acceleration. If the velocity is more
than max speed, it will be scaled down to max speed. For
fairness, we set the speed of agents in the DDSA and the
CPFA to 0.034 m/s. The speed of agents in MAAC-foraging
cannot exceed 0.04 m/s, because their speed is continuous
rather than constant.



Fig. 4. Three semi-clustered distribution of foraging scenario. The big blue-
gray dot in the center of the screen is the nest. The small blue-gray dots
randomly scattered throughout the scene are 256 resources. The resources are
in groups of 1 × 1, 2 × 2, 4 × 4, and 8 × 8. The 6 medium gray dots are
agents. When the agents collect resources, they will turn to blue. When agents
are delivering resources to the nest, they turn back to gray. A small area is
magnified to show the clusters of resources.

IV. EXPERIMENTS AND RESULTS

In this section, we will introduce our experiments from
three parts: the experimental environments, results of various
experiments, and the corresponding analysis.

A. Experimental environments

We use the multi-agent partial environment to build our
experimental environments. The multi-agent particle environ-
ment foraging scenario consists of N agents, one nest, M
resource, and K blocks (K could be zero) inhabiting a two-
dimensional world with continuous space and discrete-time.
The agents’ position and velocity both consist of two float
numbers. All elements in the arena are points with their size.
In each step, agents could choose an action in the environment.
Agents move 1000 steps for each episode. MPE-foraging has
several scenarios with different resource distribution to test
agents’ ability to finish the task in various scenarios. Fig. 4
shows the semi-clustered foraging scenario.

The area is 10 × 10m and the nest is in the center of the
arena with a 0.1m radius and 4.9m away from the edge. In
a random distribution, 256 resources are randomly placed. In
semi-clustered distribution the same 256 resources are grouped
in 1, 4, 16, and 64, each arranged in a square with each group
placed randomly in the arena. In clustered distribution, the 256
resources are divided into 4 groups, each with 64 resources.
There are 8 resources in each row and column, arranged in
a square, randomly scattered in the area. Table I shows the
configuration of the environment.

B. Foraging performance

Experiment 1 compares the performance of the MAAC-
foraging model with the CPFA and the DDSA in the semi-
clustered scenario. The task of the foraging problem aims to

TABLE I
EXPERIMENTAL CONFIGURATION IN MPE-FORAGING

Size of the arena (m) 10*10
Number of nests 1

Radius of nests(m) 0.5
Number of resources 256

Number of robots 6
Foraging step 1000

Radius of resources(m) 0.015
Radius of agents(m) 0.085

Fig. 5. Comparison of the performance of three algorithms (the CPFA, the
DDSA and the MAAC-foraging) in semi-clustered scenario. The green dot
is the CPFA. Blue dot is the DDSA. The orange dot is the MAAC-foraging.
Experiments are 6 agents in 1000 steps for one episodes. The dots indicate
the number of resources agents deposit in the nest for each 100 steps.

gain as many resources as possible in a limited time. Thus,
this experiment separately compares the number of resources
of agents collecting and depositing to nest at the step of 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000. Each plotted
point in Fig. 5 is the average of ten results. We train 6 agents in
the scenario for 35000 episodes, each episode the agents move
100 steps (to reduce the calculation) to search for resources
and deposit them to the central nest. During testing, each agent
moves 1000 steps in one episode. Only the resources deposited
in the central nest successfully are counted.

It shows that the MAAC-foraging has low variance than the
DDSA. In DDSA, agents cannot search the entire arena in a
limited time. Agents always collect resources close to the nest
first. The distributions of resources may vary the performance
in some sense. The rate of the DDSA collecting resources
gradually slows down as the step increases. While the MAAC-
foraging could keep a stable rate. As the step grows, the
resources near the nest have been taken to the nest. The DDSA
needs to spend more time traveling and searching as a result
of that they have to go far away from the nest.

C. Robustness

Experiment 2 shows the robustness of the MAAC-foraging
model with the CPFA. This experiment aims to build model
agents that can effectively use without knowing the distribu-
tions of resources ahead of time. In this experiment, both the
algorithms only train once in the semi-clustered scenario. Then
the model will be used in three different resource distributions.



The number in Table II is the average of 10 runs. Table

TABLE II
MAAC-FORAGING OVER DISTRIBUTIONS

Distribution ways MAAC-foraging CPFA
Random 145.67(↑ 9.05%) 57.7(↓ 21.91%)

Semi-clustered 133.58 73.89
Clustered 118.5(↓ 11.28%) 51.22(↓ 30.68%)

II shows how MAAC-foraging model and perform in three
different distributions. When using the model trained in semi-
clustered distribution to the other two distributions, the CPFA
has a high change, decreasing by 21.91% and 30.68% respec-
tively. The MAAC-foraging has less change, increasing 9.05%
in random distribution and decreasing 11.28% in clustered
distribution, which are both less than 15%. The MAAC-
foraging performs better in random distribution than in semi-
clustered distribution. It may because that resource is more
clustered in semi-clustered distribution. Thus, agents need to
spend more time avoiding collisions with other agents.

D. Collision Avoidance

Experiment 3 compared the ability of collision avoidance
between the MAAC-foraging and DDSA. MAAC-foraging
could let agents own the ability to avoid the collision with
other agents and blocks.

Collision with other agents To avoid losses of devices,
agents should have the ability to avoid collisions with each
other. In practice, agents often need to spend a lot of time
avoiding each other. We use MAAC-foraging, which allows
agents to learn the ability to avoid collisions by penalizing
agents when they have collisions. The experiment set six
agents to train in three different scenarios for 35000 episodes,
and each episode agents can take 100 steps. When testing,
each episode agents take 1000 steps. The experiment counts
the number of collisions with other agents between MAAC-
foraging and the DDSA in different scenarios, as shown in
Fig. 6. The blue bar is the result of DDSA, and the red one is
the result of MAAC-foraging. From left to right are the three
different resource distributions: random, semi-clustered, and
clustered.

The results are an average of 10 episodes. It shows that
MAAC-foraging learned a policy that can actively avoid
collisions with other agents. In all food distribution, MAAC-
foraging has less collision than the DDSA, which is all under
one hundred. the DDSA collide more in the situation where
resources are fully clustered. In clustered distribution, food is
highly concentrated, and as result agents collecting food here
easily lead to continuous collisions.

Collision with blocks In the real world, the scene is usually
not completely smooth but has many obstacles. Thus, agents
must have the ability to avoid them instead of hitting obstacles
and causing damage. Based on the previous random scene
of MPE-foraging, we constructed a new scene with several
blocks, as in Fig. 7. We set up 6 agents in this scene to learn
to forage while avoiding collisions with these blocks. In this

Fig. 6. Comparison of avoiding collisions with other agents of MAAC-
foraging and the DDSA. Blue bar represents collision times of the DDSA.
Red bar represents collision times of the MAAC-foraging.

Fig. 7. The scenario of MPE-foraging random distribution with obstacles (12
dark blue points are randomly placed in the center of the area, 3 in a row).
The big blue-gray dot in the center of the screen is the nest. The small blue-
gray dots randomly scattered throughout the scene are 256 resources. The
resources are randomly placed. The 6 medium gray dots are agents. When
the agents collect resources, they will turn blue. When they put resources
back in the nest, they turn back to gray.

experiment, we added 12 blocks to the scene. Agents move 100
steps in an episode and train for 30000 episodes. We record the
collision times of agents with blocks in 10 episodes, in which
agents move 1000 steps in one episode. Because the block
is larger than agents, sometimes agents will collide with the
blocks for several steps. In our setting, that calls one collision.

The total collision times with blocks is shown in Fig. 8. The
CPFA has the most collisions. The parameter of the CPFA does
not take care of collisions. During the agents’ searching, they
may just near the blocks and continuously collide the blocks.
The DDSA has a low variance, which is caused by the simple
strategy they have. Agents will not continue to explore the
same place. No matter where the blocks appear, DDSA keeps
exploring here a certain number of times. The MAAC-foraging
has the smallest number of collisions, learned to bypass blocks
to find food. The average number of collisions of the MAAC-



Fig. 8. Comparison of avoiding collisions with blocks of MAAC-foraging,
the CPFA and the DDSA. Pink represents collision times of the DDSA. Blue
represents collision times of the CPFA. Green represents collision times of
the MAAC-foraging.

foraging is 43.9% less than that of the DDSA, and 50.93%
less than that of the CPFA, according to the results of ten
experiments.

V. CONCLUSION

In this work, we introduce the reinforcement learning algo-
rithm multi-actor-attention-critic (MAAC) to train a policy that
improves the foraging performance of multiple agents in an
unknown environment. We have shown that MAAC-foraging
outperforms other two foraging algorithms, the CPFA and the
DDSA. We fix the input observation to let the agents train in a
few resources environment with small steps but test in a whole
resources environment with large steps. Through the deep
reinforcement learning network and a simple reward function,
the agents can learn how to explore resources and deliver
them to the nest. The training model is remarkably simple,
but it is very efficient. Besides, the experimental results show
that multiple agents using MAAC-foraging are more adaptable
to environmental changes like different resource distribution.
Last, we demonstrate that agents trained by using MAAC-
foraging have the ability of avoiding other agents and obstacles
more efficient. These results demonstrate that the feasibility
of incorporating fully automatic design of foraging algorithms
using deep reinforcement learning.

A future work is to apply this approach to the issue
of number expansion, building a scalable system, or in the
jointcloud computing scenarios [21]. We also plan to utilize
extra information for agents to better exploring the unknown
environments.
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