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ABSTRACT

Putra, Ryanto, Problem Book on Higher Algebra and Number Theory. Master of Science (MS),

May, 2017, 121 pp., references, 7 titles.

This book is an attempt to provide relevant end-of-section exercises, together with their

step-by-step solutions, to Dr. Zieschang’s classic class notes Higher Algebra and Number Theory.

It’s written under the notion that active hands-on working on exercises is an important part of

learning, whereby students would see the nuance and intricacies of a math concepts which they

may miss from passive reading. The problems are selected here to provide background on the text,

examples that illuminate the underlying theorems, as well as to fill in the gaps in the notes.
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CHAPTER I

INTRODUCTION

This problems and solutions set is written to accompany Dr. Zieschang’s class note on

Higher Algebra and Number Theory, to satisfy my degree requirement for MS degree from

UT-RGV. I am planning to use this introduction to lay out my case for providing these problems

and solutions set to the class notes, and explaining the methods that I compiled these exercises

with. I would like to begin with the story of my late mother.

My mother was an elementary teacher at a village in southern China in 1930s. She told me

that on the first day of her job, the principal handed her a stack of writing slates for her students, a

worn-out textbook for her and pointed to a worn-out poster pinned to the wall written by

Confusius, the 550 BC Chinese sage, as the only guide:

I hear and I forget;

I see and I remember;

I do and therefore I understand.

Years passed by quickly. When I was in primary school, I remembered my homework on

Chinese class consisted mostly of the so-called Chao-Xie, which literally means copying by

longhand the assigned text to workbook. This practice, of course, was understandable because the

Chinese is character-based, thus the longhand copying enhanced memorization of the number of

strokes, whereas in schools of alphabetic language such practice is unknown of. I knew it was

tedious, laborious and time-consuming, but it was effective beyond any measurement. That was

my first encounter with learning-by-doing.

Years later I found out interestingly that the Cistercian monastery there required its Trappist

monks to copy Bible daily in longhand – word by word, page by page, supposedly to internalize
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the godly words deep into their mind and soul. Therefore even in my early age, I was an

unapologetic believer in the merit of hand-on learning.

Moving fast forward to my years of high school math teacher in the US. In a workshop I

attended, I was vindicated learning that the ancient proverb is affirmed not only by a few separate,

incidental and anecdotal evidences as above, but has since become the subject of many modern

studies, the most notable being the Cone of Experience developed by an American educationist

Edgar Dale (1900 – 1987) while he was professor of education at the Ohio State University. At its

simplest description, the research found that students tend to remember only about 10% to 20% of

what they hear and see as depicted at the narrowing tip of the cone, versus about 90% of what

they do hands-on, as depicted at the wider bottom of the cone.

Moving fast forward again to this present tense as math graduate student at UT-RGV, I am

very excited to know that this ancient 2,500-year old proverb is not only still resonating well but

has surfaced in so many situations and forms. First and foremost, of course, is the legend of

Srinivasa Ramanujan (1887 – 1920.) Because he is so central in this writing, his brief biography

sketch is in order here.

Ramanujan was an Indian mathematician who, with almost no formal schooling in

mathematics, made extraordinary contributions to mathematical analysis, number theory, infinite

series, etc. He initially did his research in isolation, but eventually went to England and forged a

historical partnership with the mathematician G. H. Hardy there. Plagued by health problems

throughout his life and obsessively involved with his works, Ramanujan’s health deteriorated. He

returned to India and died soon thereafter at the age of 32 in 1920. During his short life, he

independently compiled nearly 3,900 identities and equations, nearly all his claims have now

been proven correct.

It’s said that Ramanujan taught himself pure mathematics not by formalism, but by

systematically working through 6,000s problems of George S. Carr’s Synopsis of Elementary

Results in Pure and Applied Mathematics, and derived much of his intuition from the patterns he

observed from those computations. (The book is actually not a problem book, it’s an exam-prep
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book for taking Cambridge Tripos. Ramanjuan made it famous by using it as problem book.) In a

lighter case, I can relate also to Freeman Dyson, the American mathematician and theoretical

physicist, who spent his long summer months of his youth working through hundreds and

hundreds of problems in differential equations, to eventually become a master in the field.

In another front, I am gratified to learn that the Confusius proverb is the favorite quote of

Robert L. Moore (1882 – 1974), the Texas-born topologist who pioneered the famous Moore

method of teaching higher math. In its most basic form, the Moore method is a hand-on way of

learning higher math that he discovered while teaching the subject at the University of

Pennsylvania in 1911.

And traditional longhand learning even excels digital. There was a research in 2014 as

reported by this article: The Pen Is Mightier Than the Keyboard: Advantages of Longhand Over

Laptop Note-Taking, written by Princeton researcher Pam Mueller and Daniel Oppenheimer of

UCLA. Their studies followed the note-taking habits of Princeton students and tested the

knowledge retention of those pupils who used a laptop to take notes against those who wrote

longhand. Here is their result: Note-takers who used laptops created nearly verbatim records of

the lectures in the study, but scored lower on tests of retention than those who wrote their notes

longhand, even when the test was given one week later.

Finally, here are these trivia: Googling the search word “I hear and I forget” gets

210,000,000 hits; “ich hore und ich vergesse” in German gets 169,000; “Oigo y olvido” in

Spanish gets 392,000; “Je entends et je l’oublie” in French gets 16,400,000; “Ik hoor en ik

vergeet” in Dutch gets 559,000, etc. Unfortunately I do not have the keyboards to search in

Chinese – the native language of the ancient sage.

While I am unquestionably a firm believer of the learning-by-doing, but I am fully aware that

this learning style is not the only one. Without being judgmental, there is at least one style that is

diametrically opposite of my style. It is the so-called Bourbaki formalism, named after Nicolas

Bourbaki, which is the collective pseudonym for a group of mainly French 20th-century

mathematicians, characterized by their stringent adherence to the sequence of definition –
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theorem – proof writing, providing very few if any examples. Everything is presented as general

as possible without any diagram or geometric illustration, with little narration on motivation.

When reading Dr. Zieschang’s class notes, I realized that they are mostly leaning toward

Bourbaki styles, hence my desire to complement them with exercises so that they are adaptable

also to students who are conversant in learning-by-doing. It would be a waste of resource if these

elegant class notes are fruitful only to learners of Bourbaki style.

In composing the exercises, I followed these four patterns. First, I provide background to

what the chapter is about. For example, on chapter about Commutative Ring with unity, I

provided questions about which rings form Commutative Ring with unity and which do not, thus

giving students backdrops to understand the materials further. Secondly, I looked for small

components of proof that Dr. Zieschang omitted because they are too simple to be discussed in

the note. For instance, where the notes state that “. . . it is obvious that T is also a R-module. . . , “

or that “. . . it is easy to see that R is a noetherian ring. . . ” etc., then I will pick them up and

compose them as end-of-section exercises.

Thirdly, I provided instantiation of an abstract math concept, in that I provide a real and

concrete instance of an abstraction. For example, students may have difficulties internalize the

concept of a field, but can easily visualize it by giving ring of rational numbers as an example.

Finally, I composed exercises incorporating the theorems or lemmas in the note. Of these four

methods, this fourth one is the hardest since theorems in abstract algebra are not as

straightforward as in lower math.

It has been my sincere hope that these exercises are useful to future students in

understanding the materials, and instrumental in appreciating the beauty of abstract algebra. It is

also hoped that this problem set is suitable for independent study. If even only one single student

benefits from my endeavor, I will feel amply rewarded. Finally, I would like to conclude this

preface by once again thanking Dr. Zieschang for allowing me this opportunity. Any error or

omission in the problem sets, however, should always be attributed to me.
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CHAPTER II

HIGHER ALGEBRA

2.1 Basic Facts on Commutative Rings with 1

Problem 2.1.1

Find out if each of the following rings is commutative ring with unity by analyzing each in

terms multiplicative identity, commutativity and multiplicative inverse:

(a) (Z,+,×), (b) (2Z,+,×), (c) (Q,+,×), (d) (R,+,×), (e) (Z5,+,×) and (f) (Z6,+,×).

Solution: (a) For (Z,+,×), we have:

Identity: Yes; 1 ∈ Z.

Commutativity: Yes; ∀a, b ∈ Z, ab = ba.

Zero divisor: None; ab = 0 implies a = 0 or b = 0.

Multiplicative inverse: None; ∀a ∈ Z \ {1,−1}, a ∈ Z but 1
a
/∈ Z.

Conclusion: (Z,+,×) is commutative ring with 1. (Analyzing even further down, we find that it

is an integral domain but not a field.)

(b) For (2Z,+,×), we have:

Identity: None; 1 /∈ 2Z.

Commutativity: Yes.

Zero divisor: None.

Multiplicative inverse: None.

Conclusion: (2Z,+,×) is commutative ring but without unity.

(c) For (Q,+,×), we have:

Identity: Yes; 1 ∈ Q.

Commutativity: Yes.
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Zero divisor: None.

Multiplicative inverse: Yes; ∀ p
q
∈ Q, p

q
6= 0, there exists q

p
∈ Q.

Conclusion: (Q,+,×) is commutative ring with 1. (Analyzing even further, we find that it is an

integral domain and it is a field.)

(d) For (R,+,×), we have:

Identity: Yes; 1 ∈ R.

Commutativity: Yes.

Zero divisor: None.

Multiplicative inverse: Yes.

Conclusion: (R,+,×) is commutative ring with 1. (Analyzing even further, it is an integral

domain and it is a field.)

(e) For (Z6,+,×), we have:

Identity: Yes; [1] ∈ Z6.

Commutativity: Yes; [a][b] = [ab] = [ba] = [b][a].

Zero divisor: Yes; [2][3] = [6] = [0].

Multiplicative inverse: None.

Conclusion: (Z6,+,×) is commutative ring with 1.

(f) For (Z5,+,×), we have:

Identity: Yes; [1] ∈ Z5.

Commutativity: Yes.

Zero divisor: None.

Multiplicative inverse: Yes; [1][1] = [1], [2][3] = [1], [3][2] = [1], etc.

Conclusion: (Z5,+,×) is commutative ring with 1. (Analyzing even further down, we find that it

is an integral domain and a field.)

�
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Problem 2.1.2

Show that the set of the following form:

I = {

a a

b b

 | a, b ∈ R}

is not an ideal of the ring M2×2(R).

Solution: Consider an arbitrary

A =

x y

z w

 ∈M2×2(R).

The product x y

z w


a a

b b

 =

xa+ yb xa+ yb

zb+ wb za+ wb

 ∈M2×2(R),

but a a

b b


x y

z w

 =

ax+ az ay + aw

bx+ bz by + bw

 /∈M2×2(R).

Therefore I is only a left ideal of M but not an ideal of M .

�

Problem 2.1.3

Show that the following subset

I = {

0 b

0 0

 | b ∈ Z}

of a non-commutative ring

S = {

a b

0 c

 | a, b, c ∈ Z}
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is an ideal of S.

Solution: I is clearly closed under addition since

0 x

0 0

 +

0 y

0 0

 =

0 x+ y

0 0

 .

I contains an additive inverse of each of its element since

−

0 b

0 0

 =

0 −b

0 0

 .

Finally for an arbitrary element

x y

0 z

 ∈ S, we have

0 b

0 0


x y

0 z

 =

0 bz

0 0

 ∈ I
and x y

0 z


0 b

0 0

 =

0 xb

0 0

 ∈ I.
Thus I is an ideal of S.

�

Problem 2.1.4

Let R be a commutative ring with 1. Show that every maximal ideal is a prime ideal.

Solution: Let M be a maximal ideal of R with xy ∈M, we need to show that either x ∈M or

y ∈M. Suppose that x ∈M, then we are done. Suppose, on the other hand, that x /∈M. Let

A = {ax+ b | a ∈ R, b ∈M}, then A is an ideal and M ( A. But maximality of M dictates that

A = R. Thus 1R ∈ A, then 1R = ax+ b for some a ∈ R and b ∈M. From 1R = ax+ b and

8



y ∈ R, we have

y = yax+ yb

= axy + yb.

We know that b ∈M, and by definition of ideal therefore yb ∈M and also axy ∈M. Hence

(axy + yb) ∈M, and thus y ∈M , as desired.

�

Problem 2.1.5

Find out all the prime and maximal ideals in Z8,Z9 and Z10.

Solution: (a) First, for Z8: We know that the ideals in Zn are all principal ideals and if J = (j) is

such an ideal, with j ∈ Z+, then j | n. The positive divisors of 8 are 1, 2, 4 and 8, so the principal

ideal generators in Z8 are

(1) = {0, 1, 2, 3, 4, 5, 6, 7} = Z8,

(2) = {0, 2, 4, 6},

(4) = {0, 4}

(8) = {0}.

Of these, by inspection, (2) is maximal and therefore prime, whereas (1) and (8) are trivial, so

they are neither prime nor maximal. Also notice that (4) ⊂ (2) therefore (4) is not maximal.

Additionally, since 2(2) ∈ (4) but 2 /∈ (4), therefore (4) is not prime.

(b) Secondly for Z9: The positive divisors of 9 are 1, 3, 9, so the principal ideal generators in Z9

are
(1) = {0, 1, 2, 3, 4, 5, 6, 7, 8} = Z9,

(3) = {0, 3, 9},

(9) = {0}.

Of these, by inspection, (3) is maximal and therefore prime, whereas (1) and (9) are trivial thus

they are neither prime or maximal.

(c) Finally for Z10: The positive divisors of 10 are 1, 2, 5 and 10, so the principal ideal generators

in Z10 are these followings:

9



(1) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} = Z10,

(2) = {0, 2, 4, 6, 8},

(5) = {0, 5}

(10) = {0}.

Of these, by inspection (2) and (5) are maximal and therefore prime, whereas (1) and (10) are

trivial therefore they are neither prime nor maximal.

�
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2.2 Modules

Problem 2.2.1

Complex product plays an important role not only in this section, but also throughout

commutative algebra. Complex product is defined in the class note as follow:

Let P and Q be non-empty subsets of R, a commutative ring with 1. Define PQ to be the

set of all elements

p1q1 + . . .+ pnqn

with p1, . . . , pn ∈ P and q1, . . . , qn ∈ Q. Then the set PQ is called the complex product of

P and Q.

Consider R = R6 = {0, 1, 2, 3, 4, 5}, the classic example of commutative ring with 1, with

R ⊃ P = {4, 5} and R ⊃ Q = {0, 1, 2}. Compute and show that PQ = Z/Z6.

Solution: First we need to consider all pairwise products of elements of P and Q:

{4, 5}{0, 1, 2} = {4 · 0, 4 · 1, 4 · 2, 5 · 0, 5 · 1, 5 · 2} = {0, 2, 4, 5}

Next, we need to consider all possible sums of a finite number of these products:

(a) One-term sums:

{0, 2, 4, 5}

(b) Two-term sums:

{0 + 2, 0 + 4, 0 + 5, 2 + 0, 2 + 4, 2 + 5, 4 + 0, 4 + 2, 4 + 5, 5 + 0, 4 + 2, 4 + 5, }

= {0, 1, 2, 3, 4, 5}

(c) Three-term sums and four-term sums: Since the set of two-term sums has all elements of

R, therefore the three- and four-term sums are no longer relevant.

Hence PQ = {0, 1, 2, 3, 4, 5} = Z/6Z.

�
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Problem 2.2.2

Complete the proof on Dr. Zieschang’s Lemma 2.2 by proving the second step of

containment, i.e., L(PQ) ⊆ (LP )Q.

Solution: Let m be an element in L(PQ). Then we find a positive integer n, elements m1, . . . ,mn

in PQ and elements l1, . . . , ln in L such that

m = l1m1 + . . .+ lnmn.

For each element i ∈ {1, . . . , n}, we find a positive integer ki, elements p1, . . . , pki in P and

elements q1, . . . , qki in Q such that

mi = p1q1, . . . , pkiqk1 .

Thus
m = l1(p1q1, . . . , pkiqki) + . . .+ ln(p1q1, . . . , pknqkn)

= [l1(p1q1) + . . .+ l1(pk1qk1)] + . . .+ [ln(p1q1) + . . .+ ln(pknqkn)]

= [(l1p1)q1 + . . .+ (l1pki)qki ] + . . .+ [(lnp1)q1 + . . .+ (lnpkn)qkn ]

∈ (LP )Q.

Since m ∈ L(PQ) implies m ∈ (LP )Q, therefore L(PQ) ⊆ (LP )Q as desired.

�

Problem 2.2.3

Let M be an R-module. A subgroup L of the additive group M is called submodule of M if,

for any two elements l ∈ L and r ∈ R, lr ∈ L. Prove that {0} and M are submodules of M.

Solution: Let r ∈ R and 0 ∈ {0}. Since 0r = 0 ∈ {0}, therefore {0} is submodule of M. Next,

let’s fix r ∈ R and m ∈M . Since lm ∈M by definition of module M , therefore M is submodule

of M.

�
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Problem 2.2.4

If R is any ring, and n ∈ N. Prove that the following Cartesian product defined as

Rn = {(a1, a2, . . . , an) | ai ∈ R} is a right R-module, based on the following operations for

(a1, . . . , an), (b1, . . . , bn) ∈ Rn, and r ∈ R :

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

(a1, . . . , an)r = (a1r, . . . , anr).

Solution: We need to satisfy all of the four conditions of module as stated in the class note.

(a) Here is the first condition: For s, t ∈ R,

(a1, . . . , an)(st) = (a1st, . . . , anst)

= (a1s, . . . , ans)(t).

(b) Next, the second condition:

(a1, . . . , an)(s+ t) = (a1(s+ t), . . . , an(s+ t))

= ((a1s+ a1t), . . . , (ans+ ant))

= (a1s+ . . .+ ans) + (a1t+ . . .+ ant)

= (a1, . . . , an)s+ (a1, . . . , an)t.

(c) The third condition:

[(a1, . . . , an) + (b1, . . . , bn)]r = (a1, . . . , an)r + (b1, . . . , bn)r.

(d) Finally for the fourth condition: For 1 ∈ R,

(a1, . . . , an)1 = (a1, . . . , an).

�
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Problem 2.2.5

Let C[0, 1] be an additive group of continuous R-valued functions defined on the interval

[0, 1], and define its operations by:

(f + g)(x) = f(x) + g(x), for f, g ∈ C[0, 1]

(kf)(x) = kf(x), for k ∈ R.

By recalling from calculus that the sum of continuous functions is again a continuous function,

prove that C[0, 1] is an R-module.

Solution: Similar to the above problem, here we need to satisfy the four conditions of module as

stated in the class note. Let f, g ∈ C[0, 1] and r, s ∈ R.

(a) For the first condition:

f(x) · rs = r · f(x) · s

= (rf)(x) · s.

(b) Next, the second condition:

f(x)(r + s) = r · f(x) + s · f(x)

= (rf)(x) + (sf)(x).

(c) The third condition:

(f(x) + g(x))r = r · f(x) + r · g(x)

= (rf)(x) + (rg)(x).

(d) Finally, the fourth condition:

f(x) · 1 = f(x).

�
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2.3 The Field of Fractions of an Integral Domain

Problem 2.3.1

In Dr. Zieschang’s note, [s, t] is defined as the equivalence class containing (s, t). Find

[2, 3] ∈ Z11 × (Z11 \ {0}).

Solution: We note that Z11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is an integral domain since there is no

zero divisor. Here we have

[2, 3] = {(a, b) ∈ Z11 × (Z11 \ {0}) | 2b = 3a},

2b = 3a

b =
3

2
a.

And by inspection, for a ∈ {2, 4, 6, 8, 10} we have

b ∈ {3, 6, 9, 12, 15}

= {3, 6, 9, 1, 4}.

Hence we have

[2, 3] = {(2, 3), (4, 6), (6, 9), (8, 1), (10, 4), (1, 7), (3, 10), (5, 2), (7, 5), (9, 8)}.

Verifying:

(2, 3) ∼ (2, 3) ⇐⇒ 2 · 3 = 2 · 3

(2, 3) ∼ (4, 6) ⇐⇒ 2 · 6 = 4 · 3, 12 = 12, 1 = 1

(2, 3) ∼ (6, 9) ⇐⇒ 2 · 9 = 6 · 3, 18 = 18, 7 = 7

(2, 3) ∼ (8, 1) ⇐⇒ 2 · 1 = 8 · 3, 2 = 24, 2 = 2

(2, 3) ∼ (10, 4) ⇐⇒ 2 · 4 = 10 · 3, 8 = 30, 8 = 8

�
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Problem 2.3.2

In the class note, F (R) is defined as the set of all equivalence class of ∼, with R an integral

domain. Find F (Z3), where Z3 an integral domain.

Solution: Notice that Z3 = {0, 1, 2}. Let’s fix [s, t] ∈ Z3 × (Z3 \ {0}), then by preliminary

observation, we have

F (Z3) = {[0, 1], [1, 1], [1, 2]}.

Each equivalence class has the following elements:

[0, 1] = {(0, 1), (0, 2)}. Verifying: 0 · 1 = 0 · 1; 0 · 2 = 0 · 1.

[1, 1] = {(1, 1), (2, 2)}. Verifying: 1 · 1 = 1 · 1; 1 · 2 = 2 · 1.

[1, 2] = {(1, 2), (2, 1)}. Verifying: 1 · 2 = 1 · 2; 1 · 1 = 2 · 2.

�

Problem 2.3.3

Dr. Zieschang’s note defines the operations on the equivalence classes F (R), with R is an

integral domain, as:

[s, t] + [u, v] := [sv + tu, tv]

[s, t][u, v] := [su, tv],

where [s, t], [u, v] ∈ R×R \ {0}. They are called fractional addition and fractional

multiplication respectively. Prove that these two opertions are well-defined.

Solution: (a) In proving that the fractional addition is well-defined, we need to prove that + is

unambiguous:

[s, t] = [a, b], [u, v] = [c, d]⇒ [sv + tu, tv] = [ad+ bc, bd],

where [s, t], [u, v], [a, b] and [c, d] are arbitrary elements of R×R \ {0}.

We notice that
[s, t] = [a, b]→ (s, t) ∼ (a, b)

→ sb = ta,
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and also
[u, v] = [c, d]→ (u, v) ∼ (c, d)

→ ud = vc.

We observe that

(sv + tu)bd = svbd+ tubd

= sbvd+ udtb

= tavd+ vctb

= (ad+ bc)tv,

implying that

(sv + tu, tv) ∼ (ad+ bc, bd)

[sv + tu, tv] = [ad+ bc, bd],

which further implying that the additive operation + is well-defined, as desired.

(b) In proving that the multiplicative operation · is well-defined, we need to show that · is

unambiguous:

[s, t] = [a, b], [u, v] = [c, d]⇒ [sv, tv] = [ac, bd],

where as in the above, [s, t], [u, v], [a, b] and [c, d] are arbitrary elements of R×R \ {0}.

From the above, we have shown that

sb = ta

ud = vc.

We observe that
(su)bd = sbud

= tavc

= (tv)ac,
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implying that

(su, tv) ∼ (ac, bd)

[su, tv] = [ac, bd],

which further implying that the multiplication operation · is well-defined, as desired.

�

Problem 2.3.4

Prove that F (R) is commutative ring with unity.

Solution: (a) First, consider [a, b], [c, d], [e, f ] ∈ F (R) where b, d, f 6= 0. Here F (R) is +

associative:
([a, b] + [c, d]) + [e, f ] = [ad+ bc, bd] + [e, f ]

= [(ad+ bc)f + (bd)e, (bd)f ]

= [a(df) + b(cf + de), b(bf)]

= [a, b] + [cf + de, df ]

= [a, b] + ([c, d] + [e, f ]).

(b) Secondly, F (R) is · associative:

([a, b][c, d])[e, f ] = ([ac, bd])[e, f ]

= [ace, bdf ]

= [a(ce), b(bf)]

= [a, b]([ce, df ])

= [a, b]([c, d][e, f ]).

(c) Thirdly, F (R) is + commutative:

[a, b] + [c, d] = [ad+ bc, bd]

= [cb+ da, db]

= [c, d] + [a, b].
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(d) F (R) is · commutative:

[a, b][c, d] = [ac, bd]

= [ca, db]

= [c, d][a, b].

(e) F (R) is closed in +:

[a, b] + [c, d] = [ad+ bc, bd].

Since b, d 6= 0 and R does not have zero divisor, therefore bd 6= 0 and hence

[ad+ bc, bd] ∈ F (R).

(f) F (R) is closed in +:

[a, b][c, d] = [ac, bd].

Since bd 6= 0 therefore

[ac, bd] ∈ F (R).

(g) And distributivity law holds in F (R):

[a, b]([c, d] + [e, f ]) = [a, b][cf + de, df ]

= [a(cf + de), b(df)]

= [acf + ade, bdf ]

= [bacf + bade, bbdf ]

= [acbf + bdae, bdbf ]

= [ac, bd] + [ae, bf ]

= [a, b][c, d] + [a, b][e, f ].

(h) Next, F (R) has + neutral element [0, 1]:
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[a, b] + [0, 1] = [a · 1 + b · 0, b · 1]

= [a, b]

(i) Finally, ∀[a, b] ∈ F (R), [a, b] has + inverse [−a, b]:

[a, b] + [−a, b] = [ab− ab, bb]

= [0, b2]

= [0, 1]

�

Problem 2.3.5

Show that F (R) is a field.

Solution: (a) Frist, we note that F (R) has multiplicative neutral element [1, 1]:

[a, b][1, 1] = [a · 1, b · 1]

= [a, b].

(b) Here ∀a, b ∈ R \ {0}, [b, a] is a multiplicative inverse of [a, b] since

[a, b][b, a] = [ab, ab]

= [1, 1].

�
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2.4 Integrality

Problem 2.4.1

Show that the Gaussian integers, Z[i], is integral over Z. Show also the same for Z[
√

2].

Solution : (a) For Z[i]: For all (a+ bi) ∈ Z[i], there exists a monic polynomial

P (x) = x2 − 2ax+ (a2 + b2),

where 2a is the so-called the trace of a+ bi and a2 + b2 is the so-called norm of a+ bi, such that

P (a+ bi) = (a+ bi)2 − 2a(a+ bi) + (a2 + b2)

= a2 + 2abi− b2 − 2a2 − 2abi+ a2 + b2

= 0.

Hence Z[i] is integral over Z.

(b) Next, for Z[
√

2]: For all (a+ b
√

2) ∈ Z[
√

2], a slightly modified monic polynomial as in (a)

above has a+ b
√

2 as its root:

P (x) = x2 − 2ax+ (a2 − 2b2),

where 2a is the so-called the trace of a+ b
√

2 and a2 + b2 is the so-called norm of a+ b
√

2, that is,

P (a+ bi) = (a+ b
√

2)2 − 2a(a+ b
√

2) + (a2 − 2b2)

= a2 + 2ab
√

2 + 2b2 − 2a2 − 2ab
√

2 + a2 − 2b2

= 0.

Hence Z[
√

2] is integral over Z.

�
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Problem 2.4.2

Prove the assertion found in Dr. Zieschang’s class note:

S ⊆ IR(S) ⊆ R,

where IR(S) is defined as the set of all elements in R which are integral over S ⊆ R, with R

being a commutative ring with unity.

Solution : For ∀a ∈ S, there exists a monic polynomial

Pa(x) = x− a,

such that

Pa(a) = a− a = 0.

Therefore for all a ∈ S, a is the root of a monic polynomial Pa(x), thus a ∈ IR(S). Hence

S ⊆ IR(S). Since IR(S) is defined as set of all elements in R which are integral over S, therefore

IR(S) ⊆ R.

By combining the results from above, therefore we have S ⊆ IR(S) ⊆ R, as desired.

�

Problem 2.4.3

Prove the assertion found in Dr. Zieschang’s note:

IR(S) ⊆ IR(T ),

where S and T are subrings of a commutative ring with unity R, and S ⊂ T .

Solution : Here we have S ⊆ T, therefore

∀a ∈ S ⇒ a ∈ T.
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For IR(S), from Exercise 4.2 above we have

S ⊆ IR(S) ⊆ R,

hence

∀a ∈ S ⇒ a ∈ IR(S).

For IR(T ), from the same Exercise 4.3 above, we have

T ⊆ IR(T ) ⊆ R,

hence

∀a ∈ T ⇒ a ∈ IR(T ).

Therefore, by combining all of the above, we finally have the following, as desired.

∀a ∈ IR(S)⇒ a ∈ IR(T )

IR(S) ⊆ IR(T ).

�
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2.5 Integrality and Fields

Problem 2.5.1

Show that integral domain Z is integrally closed in the rational field Q.

Solution: According to Dr. Zieschang’s note, for each subring S ⊆ R, where R is a commutative

ring with unity, IR(S) is defined to be the set of all elements of R which are integral over S, thus,

S ⊆ IR(S) ⊆ R.

If S = IR(S), S is said to be integrally closed in R.

Consider

IQ(Z) = {a
b
| a ∈ Z, b = 1}.

Obviously IQ(Z) consists of all elements of Q which are integral over Z. For every x ∈ IQ(Z),

there exists polynomial P (x) with coefficient in Z, such that

P (x) = x− a = 0.

Hence

Z ⊆ IQ(Z) ⊆ Q.

Now, consider c ∈ IQ(Z). Since IQ(Z) is the set of elements of Q which are integral over Z,

therefore P (c) = c− a = 0, consequently c = a, implying that c is an element of Z. Thus

∀c ∈ IQ(Z) we have c ∈ Z, hence IQ(Z) ⊆ Z.

Since IQ(Z) ⊆ Z and Z ⊆ IQZ, therefore IQ(Z) = Z. Hence Z is integrally closed in the field Q,

as desired.

�

Problem 2.5.2

Show that Z[
√

5] is not integrally closed in Q[
√

5].

Solution: Again from Dr. Zieschang’s class note, we learned that for each subring S ⊆ R, where
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R is commutative ring with unity, IR(S) is defined to be the set of all elements in R which are

integral over S. Thus we have

S ⊆ IR(S) ⊆ R.

If S = IR(S), then S is said to be integrally closed in R.

Here we are going to prove by counterexample: We know that q = 1
2

+ 1
2

√
5 ∈ Q[

√
5] is integral

over Z because Z[
√

5] ⊂ Q[
√

5], and there exists a monic polynomial with coefficient from

Z[
√

5],

P (x) = x2 − x− 1

such that q is its root:

P (x) = (
1

2
+

1

2

√
5)2 − (

1

2
+

1

2

√
5)− 1

=
1

4
+

2

4

√
5 +

5

4
− 1

2
+

1

2

√
5− 1

= 0

Hence q ∈ IQ[
√
5](Z[
√

5]) but q /∈ Z[
√

5], consequently Z[
√

5] 6= IQ[
√
5](Z[
√

5]), that is, Z[
√

5] is

not integrally closed in Q[
√

5], as desired.

�

Problem 2.5.3

Show that Z is integrally closed in field C.

Solution: Consider

ICQ = {a+ bi | a ∈ Z, b = 0}.

Obviously IC(Z) consists of all elements of C which are integral over Z. For every x ∈ IC(Z),

there exists polynomial P (x) with coefficient in Z, such that

P (x) = x− a = 0.

Hence

Z ⊆ IC(Z) ⊆ C.
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Now, consider c ∈ IC(Z). Since IC(Z) is the set of elements of C which are integral over Z,

therefore P (c) = c− a = 0, consequently c = a, implying that c is an element of Z. Thus

∀c ∈ IC(Z) we have c ∈ Z, hence IC(Z) ⊆ Z.

Since IC(Z) ⊆ Z and Z ⊆ ICZ, therefore IC(Z) = Z. Hence Z is integrally closed in the field C,

as desired.

�

Problem 2.5.4

Dr. Zieschang concludes this chapter by making reference in Lemma 5.8 to UFD, the

Unique Factorization Domain. Show that the ring integer Z[
√
−6] is not a UFD.

Solution: UFD is a commutative ring in which every non-zero, non-unit element is a product of

prime (or irreducible) elements, uniquely up to order and unit. This is a generalization to the

Fundamental Theorem of Arithmetic.

Here, Z[
√
−6] is not UFD because we have these followings:

(6 + 0 · [
√
−6]) = (2 + 0 · [

√
−6])(3 + 0 · [

√
−6]),

and

(6 + 0 · [
√
−6]) = (0 + [

√
−6])(0 + [

√
−6])

as our counterexamples. But we need to show that 2, 3 and [
√
−6] are irreducibles in Z[

√
−6].

We begin with the first one, which is 2. Suppose to the contrary that 2 is reducible, therefore for

some r, s, t, u ∈ Z :

2 = (r + s
√
−6)(t+ u

√
−6),

where (r + s
√
−6) and (t+ u

√
−6) are not units since the only units are −1 and 1.
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Consequently the product of their conjugates is also 2:

2 = (r − s
√
−6)(t− u

√
−6)

4 = (r − s
√
−6)(r + s

√
−6)(t− u

√
−6)(t+ u

√
−6)

= (r2 + 6s2)(t2 + 6u2).

Hence

(r2 + 6s2) ∈ {1, 2, 4}.

(a) From the set {1, 2, 4}, first we consider

(r2 + 6s2) = 1,

which implies r = 1 and s = 0, thus forcing 2 to be irreducible.

(b) Secondly we consider

(r2 + 6s2) = 2,

which implies that r, s /∈ Z hence not possible.

(c) Consider finally

(r2 + 6s2) = 4,

which implies that r = {−2, 2} and s = 0, thus forcing (t2 + 6u2) ∈ {−1, 1}.

Hence there is no non-trivial factorization of 2 in Z[
√
−6].

Using the same steps as above, we can similarly show that 3,
√
−6 are also irreducible in

Z[
√
−6], as desired.

�
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2.6 Prime Ideals

Problem 2.6.1

Show that Z× {0} is prime ideal of Z× Z.

Solution: Recall from Dr. Zieschang’s Algebra I that an ideal T of a commutative ring with unity

R is called a prime if the following conditions hold:

(1) T 6= R,

(2) If a, b ∈ R and ab ∈ T, then either a ∈ T or b ∈ T.

Obviously Z×Z 6= Z× {0}. Suppose that (a, b), (c, d) ∈ Z×Z, and (a, b)(c, d) ∈ Z× {0}, then

bd = 0 ∈ Z. And then since Z is an integral domain, hence either

b = 0 −→ (a, b) ∈ Z× {0}

or

d = 0 −→ (c, d) ∈ Z× {0}.

Hence Z× {0} is prime ideal of Z× Z.

�

Problem 2.6.2

Consider E as set of even integers. Show that the ideal (4) ⊂ E is not a prime ideal of E, but

(10) and (14) are prime ideals of E.

Solution: (a) For (4), we have

(4) = {4z | z ∈ Z}

= {. . . ,−12,−8,−4, 0, 4, 8, 12, . . .}

Let’s take 2, 6 ∈ E as counterexamples. Here we have 2 · 6 = 12 ∈ (4) but 2 ∈ (4) and 6 ∈ (4).

Hence (4) is not a prime ideal.
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(b) For (10), we have

(10) = {10z | z ∈ Z}

= {. . . ,−30,−20,−10, 0, 10, 20, 30, . . .}

Suppose that a, b ∈ E and that ab ∈ (10). This implies that 10 | ab, implying further that either

10 | a or 10 | b. This is because a and b are even integers which effectively exclude 5 that is the

generator of 10, hence proving that (10) is a prime ideal, as desired.

(c) And finally for (14), we have

(14) = {14z | z ∈ Z}

= {. . . ,−42,−28,−14, 0, 14, 28, 42, . . .}

Suppose that a, b ∈ E and that ab ∈ (14). This implies that 14 | ab, implying further that either

14 | a or 14 | b. This is because a and b are even integers which effectively exclude 7 that is the

generator of 14, hence proving that (14) is a prime ideal, as desired.

�

Problem 2.6.3

Prove Dr. Zieschang’s assertion in the note that commutative ring with unity R is an integral

domain if and only if {0} is prime ideal of R.

Solution: Here we need to prove both ways:

(a) For proving =⇒: Suppose that R is an integer domain, which means that R does not have zero

divisor. If a, b ∈ R and ab ∈ {0}, then either a ∈ {0} or b ∈ {0} since R does not have zero

divisor.

(b) Next, for proving⇐=: Suppose that {0} is prime ideal of R. If ab ∈ {0}, then either a ∈ {0}

or b ∈ {0}, implying that R does not have zero divisor.

�
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Problem 2.6.4

Complete Lemma 6.1 in Dr. Zieschang’s note by proving (b)⇒ (c), (d)⇒ (b) and (b)⇒ (d).

Solution: From Dr. Zieschang’s class note, we have Lemma 6.1 that reads as follow: For each

ideal T different from R, the following conditions are equivalent:

(a) The ideal T is a prime ideal of R.

(b) For any two ideal U and V of R with UV ⊆ T we have U ⊆ T or V ⊆ T.

(c) For any two ideals U and V of R with T ⊆ U , T ⊂ V , and UV ⊆ T , we have U = T or

V = T .

(d) Let U1, ..., Un be ideals of R with U1 · · · Un ⊆ T . Then there exists an element i in

{1, ..., n} such that Ui ⊆ T .

(1) Proving (b)⇒ (c): Given that U ⊆ T in (b) and given that T ⊆ U in (c), we have therefore

U = T . Given that V ⊆ T in (b) and T ⊆ V in (c), we therefore have V = T .

(2) Proving (d)⇒ (b): Set n = 2 for n in (d), then we have U1 · U2 ⊆ T and either U1 ⊆ T or

U2 ⊆ T . All of these translate perfectly to (b).

(3) Proving (b)⇒ (d): Proof by mathematical induction: Let P (n) be the proposition as stated in

the point (d).

(3a) For n = 2, P (2) is true: For any two ideal U and V of R with UV ⊆ T , we have

U ⊆ T or V ⊆ T .

(3b) For n = k, assume that P (k) is true: For any U1, ..., Uk ideals of R with

U1 · · · Uk ⊆ T . Then there exists an element i ∈ {1, ..., k} such that Ui ⊆ T .

(3c) We need to prove P (k + 1) for n = k + 1 is true. Consider any U1, ..., Uk, Uk+1 ideals

of R with U1 · · · Uk · Uk+1 ⊆ T . Recall that by assumption U1 · · · Uk ⊆ T , therefore let

U1 · · · Uk = V , and hence V · Uk+1 ⊆ T . By P (2) we have V ⊆ T or Uk+1 ⊆ T , and by

P (k) we have Ui, an ideal that makes up the V , such that Ui ⊆ T . Hence P (k + 1) is true,

as desired.

�
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2.7 The Krull Dimension

Problem 2.7.1

Find dim(Z6).

Solution: Recall Lemma 7.3 from Dr. Zieschang’s Algebra I: Let R be commutative ring with

unity and let s be an element of R, then the following statements hold:

(i) If s is a prime element in R, sR is a prime ideal of R.

(ii) Assume that s 6= 0 and sR is a prime ideal of R, then s is a prime element.

Here, first of all we need to find the prime elements of Z6. Again according to Algebra I, an

element r of a unital commutative ring R is called a prime if it meets the following two

conditions:

(i) r ∈ R \ U(R) \ {0}, where U(R) is the set of units of R.

(ii) If r divides a product of two elements of R \ {0}, then r divides one of the two factors.

From Z6 = {0, 1, 2, 3, 4, 5}, we have the units of Z6, that is U(Z6) = {1, 5}. Consequently we

have

Z6 \ U(Z6) \ {0} = {2, 3, 4}.

Of the above, the element 2 does not meet the condition (ii) because, for instance, we have

2 | 2 · 4, where 2 · 4 is the product of two elements of Z6, but we have 2 | 2 and at the same time

2 | 4. Accordingly, the prime elements of Z6 are 3 and 4 only.

We have therefore the prime ideals of Z6:

3Z6 = {0, 3, 6, 9, 12, 15}

= {0, 3}.

4Z6 = {0, 4, 8, 12, 16, 20}

= {0, 4, 2, 0, 4, 2}

= {0, 2, 4}.
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Since {0} is the prime ideal of Z6, and since

{0} ( 3Z6

and also

{0} ( 4Z6,

therefore the order of the non-empty set of chain of prime ideals S, that is |S|, is 2. Then

dim(Z6) = |S| − 1

= 2− 1

= 1.

�

Problem 2.7.2

Show that dim(Z) = 1, dim(R) = 1 and dim(Q) = 0.

Solution: (a) Consider pi, with i ∈ {1, 2, ..., n}, as prime numbers of Z. According to Lemma 7.3

again, then piZ are the prime ideals of Z. Since piZ are also the maximal ideals of Z, therefore Z

has only chain set of prime ideals S of oder 2:

{0} ( piZ.

Hence,

dim(Z) = |S| − 1

= 2− 1

= 1.
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(b) Using similar argument like the above, we can derive

dim(R) = |S| − 1

= 2− 1

= 1.

(c) We know that Q is a field, and field does not have any prime ideal except {0}, hence the order

of chain set of prime ideals S is |S| = 1. Therefore

dim(Q) = |S| − 1

= 1− 1

= 0.

�

Problem 2.7.3

Find dim(Z[i]), the Krull dimension of the Gaussian integer.

Solution: We have learned from exercise 4.3 that Gaussian integer Z[i] is integral over Z. At the

same time we also learned from section 4 that if S is a subring of R,R being commutative ring

with unity, and IR(S) denotes the set of all elements in R which are integral over S, then

S ⊆ IR(S) ⊆ R.

If IR(S) = R, we say that R is integral over S.

Hence,

Z ⊆ IZ[i](Z) ⊆ Z[i],

and also

IZ[i](Z) = Z[i].
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Recall from Lemma 7.9 that if IR(S) = R, then dim(S) = dim(R). Consequently

dim(Z[i]) = dim(Z)

= 1.

�

Problem 2.7.4

Show that the polynomial ring over integral domain Z[x1, . . . , xn] has dimension of n.

Solution: We know that Z is integral domain, then so is its polynomial ring Z[x1, . . . , xn].

Proof: Consider f(x1, . . . , xn) and g(x1, . . . , xn) be any two non-zero polynomial in

Z[x1, . . . , xn], and let af and ag be the leading coefficients of the f and g. Thus as af 6= 0 and

ag 6= 0, we have af · ag 6= 0. But as af · ag is the leading coefficient of f · g, therefore f · g can

not be a zero polynomial. Consequently Z[x1, . . . , xn] has no zero divisor, hence Z[x1, . . . , xn] is

an integral domain.

Having proven the above, we then call from Lemma 7.1 of Dr. Zieschang’s Algebra I, that if T is

an ideal of R and T 6= R, then the ideal T is prime if and only if R/T is an integral domain.

Z[x1, . . . , xn] is an integral domain, and so are (x1), the subset of Z[x1, . . . , xn], and

Z[x1, . . . , xn]/(x1). Hence by Lemma 7.1, (x1) is a prime ideal.

By similar argument, we can prove that (x1, x2), (x1, x2, x3), . . . , (x1, . . . , xn) are all prime ideals

of Z[x1, . . . , xn]. Since 0 ( (x1) ( (x1, x2), . . . ,( (x1, . . . , xn), therefore we have

dim(Z[x1, . . . , xn]) = n, as desired.

�
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2.8 Noetherian Modules

Problem 2.8.1

Show that Rn, the set of all n-tuples with components in unitary ring R, is R-module under

the usual definition of addition and scalar multiplication:

(x1, . . . , xn) + (y1, . . . , yn) =
(
(x1 + y1), . . . , (yn + yn)

)
r(x1, . . . , xn) = (rx1, . . . , rxn).

Solution: Recall the formal definition of module: Let R be a ring and M an additively written

group, then M is a R-module if for r, s ∈ R, and x, y ∈M :

(a) r(x+ y) = rx+ ry

(b) (r + s)x = rx+ sx

(c) r(sx) = (rs)x

(d) 1Rx = x.

(a) For the first condition, consider (x1, . . . , xn), (y1, . . . , yn) ∈ Rn, and r, s ∈ R, then

r
(
(x1, . . . , xn) + (y1, . . . , yn)

)
= r
(
(x1 + y1), . . . , (xn + yn)

)
=
(
r(x1 + y1), . . . , r(xn + yn)

)
=
(
(rx1 + ry1), . . . , (rxn + ryn)

)
=
(
(rx1, . . . , ry1) + (ryn, . . . , ryn)

)
=
(
r(x1, . . . , x1) + r(yn, . . . , yn)

)
.

(b) For the second condition, we have:

(r + s)(x1, . . . , xn) =
(
(r + s)x1, . . . , (r + s)xn

)
=
(
(rx1 + sx1), . . . , (rxn + sxn)

)
=
(
(rx1, . . . , rxn) + (sx1, . . . , sxn)

)
= r(x1, . . . , xn) + s(x1, . . . , xn).
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(c) And for the third condition, we have:

r
(
s(x1, . . . , xn)

)
= r(sx1, . . . , sxn)

= rsx1, . . . , rsxn

= (rs)(x1, . . . , xn).

(d) Finally for the last condition, we have:

1R(x1, . . . , xn) = (1Rx1, . . . , 1Rxn)

= (x1, . . . , xn).

Consequently M is R-module under the usual definition of addition and scalar multiplication, as

desired.

�

Problem 2.8.2

Prove the assertion Dr. Zieschang made in the note: Let M be a R-module, and S be subring

of R, then M is also an S-module.

Solution: Let’s fix s, t ∈ S, and x, y ∈M . Since S is subring of R hence ∀s ∈ S → s ∈ R,

therefore we have s(x+ y) = sx+ sy, which satisfies the first condition of the definition of a

module.

And for the same reason that ∀s, t ∈ S → s, t ∈ R, we have the second, the third and the fourth

condition satisfied:
(s+ t)x = sx+ tx

s(tx) = (st)x

1Sx = x.

Consequently M is an S-module, as desired.

�
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Problem 2.8.3

Show that Z is a noetherian module.

Solution: Recall that an R-module is called noetherian if each non-empty ascending chain of

submodules of M ,

L1 ⊆ L2 ⊆ L3 ⊆ . . .

possess a maximal element with respect to set theoretic inclusion.

Notice that Z is a Z-module, and Z is a principal ideal domain. If we have a, b ∈ Z and (a) ⊂ (b),

then b must divides a. As an illustration:

(2) = {. . .− 4,−2, 0, 2, 4, 6, 8, . . .}

(4) = {. . .− 4, 0, 4, 8, 12, 16 . . .}

then obviously (4) ⊂ (2) and 2 | 4.

If we have ai ∈ Z and

(a1) ⊂ (a2) ⊂ (a3) ⊂ (a4) ⊂ . . .

then

a2 | a1, a3 | a1, a4 | a1 . . .

implying that the submodules (ai) must eventually stabilizes, i.e., possesses a maximal element

since ai has only finite number of divisors. Consequently Z is a noetherian module, as desired.

�

Problem 2.8.4

Show that field F as a ring, i.e., F of F -module, is always noetherian.

Solution: First we note that field F has only trivial ideals {0} and F itself as ideals. Proof by

contradiction:

Suppose that by contradiction F possess an ideal I , with I 6= {0} and I 6= F , therefore I must

contain an element x, with x /∈ {0}.

Since F is a field, x must possess a multiplicative inverse, i.e., there is x−1 ∈ F such that
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xx−1 = 1F . This implies that 1F ∈ I by definition of ideal, since x ∈ I and x−1 ∈ F , therefore

xx−1 = 1F must be in I .

But for ∀y ∈ F, y1F ∈ I since 1F ∈ I . Hence F ⊆ I . However as an ideal of F , I ⊆ F .

Consequently I = F . Because field F has only {0} and F itself as ideals, therefore F as an

F -module is always noetherian, as desired.

�

Problem 2.8.5

Show that Z-module Q is not noetherian.

Solution: Proof by counterexample: Suppose that (1
p
) is a submodule of Q generated by 1

p
, thus

there exists a sequence of submodules with respect to set-theoritic inclusion:

(
1

p

)
⊂
(

1

p2

)
⊂
(

1

p3

)
⊂ . . .

As an illustration: (
1

2

)
= {1

2
,

2

2
,

3

2
,

4

2
,

5

2
,

6

2
. . .}

= {1

2
, 1,

3

2
, 2,

5

2
, 3, . . .}

(
1

22

)
= {1

4
,

2

4
,

3

4
,

4

4
,

5

4
,

6

4
,

7

4
,

8

4
, . . .}

= {1

4
,

1

2
,

3

4
, 1,

5

4
,

3

2
,

7

4
, 2, . . .}

(
1

23

)
= {1

8
,

2

8
,

3

8
,

4

8
,

5

8
,

6

8
,

7

8
,

8

8
, . . .}

= {1

8
,

1

4
,

3

8
,

1

2
,

5

8
,

3

4
,

7

8
, 1, . . .}

(
1

24

)
= . . .

= . . .
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Thus (1
2
) ⊂ ( 1

22
) ⊂ ( 1

23
) ⊂ . . . Since the sequence does not stabilize, therefore it does not have

maximal element. Hence Z-module Q is not noetherian, as desired.

�
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2.9 Noetherian Integral Domain

Problem 2.9.1

Show that every principal ideal domain is noetherian.

Solution: We start by proving this Lemma: If every ideal of commutative ring R is finitely

generated, then R is noetherian. Proof:

Let I1 ⊆ I2 ⊆ I3 ⊆ . . . be an ascending chain of ideals in R, then I =
⋃∞

n=1 In is an ideal

of R. Since I is finitely generate, we have

I = (x1, . . . , xn),

with xi ∈ R. For each j ∈ [1, k], xj ∈ I , therefore xj ∈ Inj
for some positive integer nj .

Thus

{x1, . . . , xk} ⊆ Imax(n1,...,nk),

from which it follows that I ⊆ Imax(n1,...,nk) and hence I = Imax(n1,...,nk). Let’s take

N = max(n1, . . . , nk) then we have IN = I(N+s) for s ∈ N, hence the chain stabilizes and

thus R is noetherian, as desired.

Having proven the above lemma, we recall that in principal ideal domain, every ideal is generated

by one single element and thus it is finitely generated. By the above lemma, then every principal

ideal domain is noetherian.

�

Problem 2.9.2

Show that polynomial of one inderminate over Z, that is Z[x], is noetherian integral domain.

Solution: Obviously Z is an integral domain because Z does not have zero divisor: ∀a, b ∈ Z,

ab = 0 means either a = 0 or b = 0. At the same time, we know that Z is principal ideal domain.

Proof:

Suppose I is an ideal of Z. If I = 0 then 0 generates I and we are done. Suppose instead

that I 6= 0 and suppose further a is the least positive element of I . We need to prove that a
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generates I , that is, (a) = I. Obviously a ∈ I . In set-builder form: (a) = {ar | r ∈ Z},

hence ar ∈ I . Let b ∈ I . If b = 0, we have b = a · 0 ∈ (a). But if b 6= 0, we assume b > 0

and by Euclidean algorithm we have

b = aq + r,

where the quotient q ∈ Z and remainder r ∈ Z and 0 ≤ r ≤ a.

Now we have r = b− aq ∈ I since a ∈ I and b ∈ I . This implies r = 0 since r < a and a

is the least positive element in Z. Hence b = aq ∈ I , thus (a) = I , as desired.

The fact that Z is principal ideal domain means that every ideal of Z is finitely generated. By

Lemma in the previous exercise, if every ideal of a commutative ring is finitely generated, then

the ring is noetherian. Combined with the fact that Z is integral domain, consequently Z is

noetherian integral domain.

By Hilbert’s Basis Theorem: If R is a noetherian ring, then R[x] is noetherian ring. The corollary

of this theorem is that if R is a noetherian integral domain, then R[x] is noetherian. Consequently,

since Z is noetherian integral domain, therefore Z[x] is noetherian integral domain, as desired.

�

Problem 2.9.3

Show that Z[x] is a noetherian integral domain which is not principal ideal domain.

Solution: By previous exercise, Z[x] is a noetherian integral domain. We need only to prove that

Z[x] is not principal ideal domain. We will prove it by showing a counterexample. Let’s consider

ideal generated by integer 2 and indeterminate x:

I = (2, x)

= (2) + (x)

First we need to show that I is an ideal of Z[i].
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Let’s consider these arbitrary elements of I where a, b ∈ Z.:

p1(x) = 2a+ f(x),

p2(x) = 2b+ g(x),

Then
p1(x)− p2(x) = 2(a− b) + (f(x)− g(x))

∈ I,

this is because 2(a− b) ∈ (2) and
(
f(x)− g(x)

)
∈ Z[x].

Now, let’s consider r(x) an arbitrary element of Z[x], not necessarily has to be in I:

r(x) = cnx
n + . . .+ c1x+ c0

with ci ∈ Z. Then

r(x)p(x) = (cnx
n + . . .+ c1x+ c0)(2a+ f(x)).

Here, 2ac0 ∈ (2) and the rest of the terms will be elements of (x). Therefore r(x)p(x) ∈ I ,

and consequently I = (2) + (x) is ideal of Z[x], as desired.

Assume that I is generated by a polynomial h(x). Then h(x) will have to divide 2, so there are

two possible scenarios:

(a) First scenario: h(x) will have to be a unit, which is not possible since obviously

I = (2) + (x) is not a unit ideal.

(b) Alternatively, h(x) will have to be the product of a unit and 2, which again generates a

different ideal since the indeterminate x is not suppose to be in (2).

Hence with I = (2) + (x) as a counterexample, we conclude that Z[x] does not form principal

ideal domain.

�
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Problem 2.9.4

Show that C(x1, x2, . . .) is a noetherian ring that contains a subring that is not noetherian.

Solution: Consider polynomial ring over complex number

R = C[x1, x2, . . .]

with infinitely many indeterminates. Then

(x1) = {x1f(x1, x2, . . .) | f(x1, x2, . . .) ∈ R}

is obviously an ideal of R because, among other things, (x1) absorbs multiplication, i.e.,

∀f ∈ (x1), ∀g ∈ R, fg ∈ (x1). And by similar argument,

(x1, x2), (x1, x2, x3), (x1, x2, x3, . . .)

are also ideals of R.

Here, R is not noetherian because the chain of ideals,

(x1, x2) ⊂ (x1, x2, x3) ⊂ (x1, x2, x3, x4) ⊂ . . .

does not stabilize. On the other hand, R is contained in C(x1, x2, . . .), the field of fraction of the

polynomial ring C[x1, x2, . . .]. Since according to problem 8.5 every field is noetherian, hence

C(x1, x2, . . .) is noetherian. Therefore, C(x1, x2, . . .) is a noetherian ring that contains a subring

C[x1, x2, . . .] that is not noetherian.

�
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2.10 Commutative Artinian Rings

Problem 2.10.1

Show that Z and any polynomial ring K[x] is not artinian.

Solution: Be definition, a commutative ring R with unity is called artinian if each descending

chain

T1 ⊆ T2 ⊆ T3 ⊆ . . .

of ideals of R possess a minimal element with respect to set theoretic inclusion.

In integer Z, for x ∈ Z, (x) is an ideal of Z. Sketch of proof:

(a) The identity element 0 ∈ (x) obviously, since 0 ∈ Z.

(b) For a, b ∈ (x), a+ b ∈ (x).

(c) The ideal (x) obsorbs multiplication: ∀y ∈ Z and ∀z ∈ (x), we have yz = zy ∈ (x).

Using similar argument, we have also

(x2), (x3), (x4) . . .

as ideals of Z. However, the chain of descending ideals

(x) ⊇ (x2) ⊇ (x3) ⊇ (x4) ⊇ . . .

is strictly descending and does not stabilize. Hence Z is not artinian.

In polynomial ring over K with one indeterminate K[x], we have

(x) = {xf(x) | f(x) ∈ K[x]}

as ideal of K[x]. Sketch of proof:

(a) The identity element 0 ∈ (x).

(b) For a, b ∈ (x), a+ b ∈ (x).
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(c) For a ∈ (x) and c ∈ K[x], (x) absorbs multiplication, i.e., ac ∈ (x).

Using similar argument, we have

(x2), (x3), (x4) . . .

also as ideals of K[x]. However, the chain of descending ideals,

(x) ⊇ (x2) ⊇ (x3) ⊇ (x4) ⊇ . . .

is strictly descending and does not stabilize. Hence polynomial ring K[x] is nor artinian.

�

Problem 2.10.2

Show that field Q is both artinian and noetherian.

Solution: Recall that R, a commutative ring with unity, is called noetherian if each ascending

chain of ideals

T1 ⊆ T2 ⊆ T3 ⊆ . . .

possesses a maximal element with respect to set theoretic inclusion.

Recall also that the same ring R is artinian if each descending chain of ideals

T1 ⊇ T2 ⊇ T3 ⊇ . . .

possesses a minimal element with respect to set theoretic inclusion.

First we need to show that Q has only trivial ideals, which are {0} and Q itself. Proof:

(a) We will assume by contrary that Q has a non-trial ideal I . Since I is an ideal, then I has

multiplication absorbing property, that is

∀q ∈ Q⇒ qI ⊆ I.

(b) Since I ⊂ Q, therefore ∀x ∈ I ⇒ x ∈ Q. Consequently x has an inverse x−1. Therefore
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x−1x = 1 ∈ I .

(c) Since 1 ∈ I and ∀q ∈ Q⇒ qI ⊆ I , it is easy to see that I = Q. Hence Q has only

tirival ideal {0} and Q itself, as desired.

Since the ascending chain of the two ideals in Q stabilizes,

{0} ⊂ Q,

hence Q is noetherian. At the same time, since the descending chain is also stabilizes,

Q ⊃ {0},

consequently Q is artinian.

�

Problem 2.10.3

Show that Q/Z as Z-module is not noetherian but it is artinian.

Solution: Consider (1
p
) ⊂ Q/Z with p a prime number of Z. Sketch of proving that (1

p
) is ideal of

Q/Z:

(a) Obviously 0 ∈ (1
p
) and 0 is the neutral number of (1

p
).

(b) If a, b ∈ (1
p
) then it is easy to see that a+ b ∈ (1

p
).

(c) If x ∈ Q/Z and a ∈ (1
p
), again it is obvious that ax ∈ (1

p
). Hence (1

p
) is an ideal of Q/Z.

By the same reasoning, we take ( 1
p2

), ( 1
p3

), . . . as ideals of Q/Z. Then we have

(
1

p
) ⊂ (

1

p2
) ⊂ (

1

p3
) ⊂ . . .

as an increasing chain of ideals which goes on forever without being stationary. Hence Q/Z is not

noetherian.

Now consider ( 1
n
) as subgroup of Q/Z, with n ∈ Z. By the same argument as above, ( 1

n
) is an
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ideal of Q/Z. With ( 1
n
) and ( 1

m
) as ideals of Q/Z, we have

(
1

n
) ⊃ (

1

m
)⇒ mn.

(Here is an illustration of the above claim: Since (1
4
) ⊃ (1

2
), therefore 2 | 4.)

Consequently the descending chain of ideals

(
1

n1

) ⊃ (
1

n2

) ⊃ (
1

n3

) ⊃ . . .

will eventually stabilize since there are only finite number of factors of n1. Therefore Q/Z is

artinian, as desired.

�

Problem 2.10.4

Show that simple modules are both artinian and noetherian.

Solution: Recall that simple module is analogues to a simple group. A module is called simple if

the only submodules are {0} and the module itself.

Recall from the previous Section 2 in Dr. Zieschang’s note, that if R is a commutative ring with

unity, then an additive group M is called R-module if the followings hold for ∀a, b ∈ R and

x, y ∈M :

(a) a(x+ y) = ax+ ay

(b) (a+ b)x = ax+ by

(c) (ab)x = a(bx)

(d) 1Rx = x.

By comparing this definition with that of a ring, we see that moduel is in fact generalization of

ring.

Recall also that if N is a subgroup of M , then N is R-submodule if N has the absorbing property,

that is, for ∀n ∈ N, r ∈ R =⇒ rn = nr ∈ N . Again, by contrasting this definition with that of an

ideal, we see that submodule is in fact a generalization of ideal.
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With these definitions in hand, we can now generalize the ACC (Ascending Chain Condition) and

DCC (Descending Chain Condition) to modules by generalizing ring with module and by

generalizing ideal with submodule.

From here, we have submodules in a simple modules, S, stablizing in both ascending chain:

{0} ⊂ S,

and stabilizing in descending chain:

S ⊂ {0}.

Consequently, simple module is both noetherian as well as artinian.

�

48



2.11 Noetherian Domain of Dimension 1

Problem 2.11.1

Prove Dr. Zieschang’s assertion in the note that for a unital commutative ring R, with T and

U being the ideals of R, that

NR(U/T ) := {r ∈ R | Ur ⊆ T}

is an ideal of R.

Solution: We first need to show that NR(U/T ) is an additive subgroup of R. Let’s denote

NR(U/T ) simply as N for simplicity.

Here N has additive identity element 0, because 0 ∈ R and also because U0 = 0 and also

{0} ⊆ T . If r ∈ R and Ur ⊆ T , then of course we have these as their additive inverses:

−r ∈ R and U(−r) ⊆ T . If a, b ∈ R and Ua, Ub ⊆ T , then

a+ b ∈ R

and
U(a+ b) = Ua+ Ub

⊆ T + T

= T,

hence U(a+ b) ⊆ T .

Secondly, we need to show that N ”absorbs” multiplication by any element a ∈ R. Here, if a ∈ R

and r ∈ N , then

ra ∈ R
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and
U(ra) = (Ur)a

⊆ Ta

= T,

this is because T being an ideal of R, hence T ”absorbs” multiplication by a ∈ R. Therefore

U(ra) ⊆ T . Consequently N := NR(U/T ) is an ideal of R, as desired.

�

Problem 2.11.2

Show that the ring Z is a noetherian domain of dimension 1.

Solution: From Section 7 about Krull Dimension, we have learned that the Krull dimension of Z,

that is dim(Z), is 1. Very briefly: The prime ideals of ring of Z are of the form piZ, where pi are

prime numbers of Z. Recall also that {0} is a prime ideal of Z and that each non-zero prime ideal

is maximal ideal. Consequently there is a strictly increasing chain

{0} ( PiZ

of prime ideals for each prime number Pi, thus

dim(Z) = 1.

(More generally, we say that any principal ideal domain that is not a field has Krull dimension of

1, because every non-zero prime ideal is maximal ideal.) From Section 9 about Noetherian

Integral Domain, we also learned that Z is noetherian. Very briefly: Z is principal ideal domain by

which each ideal of Z is generated by one single element, which further means that ideals of Z are

finitely generated. Recall Dr. Zieschang’s Lemma 8.1: If M is an R-module, then the module M

is noetherian if and only if each submodule of M is finitely generated. Here, because Z is finitely

generated, therefore Z is noetherian. Thus Z is noetherian domain of dimension 1, as desired.

�
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Problem 2.11.3

Show that the Gaussian integer Z[i] is a noetherian domain of dimension 1.

Solution: First we need to prove that Z[i] forms an integral domain. Proof by contradiction:

(a) We know that Z[i] is commutative ring. Suppose that (a+ bi) ∈ Z[i] and suppose also

that (c+ di) ∈ Z[i], with a, b, c, d ∈ Z \ {0}.

(b) Suppose further that there is zero divisor in Z[i]:

0 = (a+ bi)(c+ di)

= (ac− bd) + (ad+ bc)i

∈ Z[i],

implying that

ac− bd = 0

ac = bd,

(1)

and also

ad+ bc = 0

ad = −bc.
(2)

(c) If we multiple the above (1) and (2), then we have

a2cd = −b2cd

a2 = −b2

which is impossible to be true. Hence we have to conclude that Z[i] does not have zero
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divisor, consequently Z[i] is integral domain.

Secondly, we need to prove that Z[i] forms a principal ideal domain.

(a) By corollary to Lemma 8.5 of Dr. Zieschang’s Algebra I, Z[i] is euclidean with respect

to the degree function:

δ : Z[i]→ N, x+ yi 7→ x2 + y2.

(b) Recall Dr. Zieschang’s Theorem 8.6 in Algebra I which states that euclidean rings are

principal ideal domain. Hence Z[i] forms a principal ideal domain.

Since Z[i] is a principal ideal domain, hence its ideals are finitely generated, resulting in

conclusion that Z[i] is noetherian.

We recall from Lemma 8.2 of Algebra I again: That in principal ideal domain, all prime ideals

different from {0} are maximal. Consequently if I is an ideal of Z[i], then there is a strictly

increasing chain of prime ideals

{0} ( I

such that

dim(Z[i]) = 1.

Hence Z[i] is noetherian domain of dimension 1, as desired.

�
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2.12 Dedekind Domain

Problem 2.12.1

Show that each of rings of R,Q,C and Z is Dedekind domain.

Solution: First we recall the following chain of class inclusion:

Field ⊂ PID ⊂ UFD ⊂ Integral Domain,

and also Corollary 12.6 from Dr. Zieschang’s class note: The Principal Ideal Domains are exactly

the Dedekind domains which are Unique Factorization Domains. Here, for proving R,Q and C,

we will go down the shortest route by finding out if each of them is a field.

(a) The real number ring R does not have zero divisor, has multiplicative identity of 1, and each

element has multiplicative inverse, hence R is a field and consequently R is a Dedekind domain.

(b) The rational number Q does not have zero divisor, has multiplicative identity of 1, and each

element has multiplicative inverse, hence as in the case of R, Q is a field and consequently it is a

Dedekind domain.

(c) The complex number C has multiplicative inverse of 1 + 0 · i = 1, which we can easily

confirm. Additionally, ∀(a+ bi) ∈ C, with a, b ∈ R, it has

1

(a+ bi)
=

1

(a+ bi)
· (a− bi)

(a− bi)

=
(a− bi)
(a2 + b2)

=
a

(a2 + b2)
− bi

(a2 + b2)

as its multiplicative inverse. Therefore C forms a field and consequently C is a Dedekind domain.

(d) The integer Z is of course not a field, because Z does not have multiplicative inverse.

However, we do know that Z forms a Principal Ideal Domain. Proof:

Suppose I is an ideal of Z. If I = 0 then 0 generates I and we are done. Suppose instead

that I 6= 0 and suppose further a is the least positive element of I . We need to prove that a
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generates I , that is, (a) = I. Obviously a ∈ I . In set-builder form: (a) = {ar | r ∈ Z},

hence ar ∈ I . Let fix b ∈ I . If b = 0, we have b = a · 0 ∈ (a). But if b 6= 0, we assume

b > 0 and by Euclidean algorithm we have

b = aq + r,

where the quotient q ∈ Z and remainder r ∈ Z and 0 ≤ r ≤ a. Now we have

r = b− aq ∈ I since a ∈ I and b ∈ I . This implies r = 0 since r < a and a is the least

positive element in Z. Hence b = aq ∈ I , thus (a) = I , as desired.

Since Z is a Principal Ideal Domain hence it’s a Dedekind domain.

�

Problem 2.12.2

Find out if each of these polynomial rings with one indeterminate is Dedekind domain: R[x],

Q[x], C[x] and Z[x].

Solution: We will use the Corollary 12.6 as in the previous exercise by first showing that each of

the above polynomial rings is Principal Ideal Domain. To do that, first we need the following

Lemma: Let K be a field, then the polynomial ring K[x] is a Principal Ideal Domain. Proof:

Let I ⊂ K[x] be an ideal. We want to prove that I is principal. If I = 0, then I is trivial and

we are done. If, on the other hand, I 6= 0, then let’s fix f(x) ∈ I be a non-zero polynomial

of the least degree. Here we are claiming that I = (f(x)). For any given g(x) ∈ I , we have

g(x)

f(x)
= q(x) · f(x) + r(x),

where q(x) and r(x) are the quotient and remainder polynomials respectively, and where

r(x) has strictly smaller degree then f(x). However, r(x) = g(x)− q(x) · f(x), where f(x)

has been set in the above to have the least possible degree. Hence the minimality of the
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degree of f(x) forces r(x) to be 0. Therefore

g(x) = q(x) · f(x)

∈ (f(x)).

Since we have set g(x) ∈ I as arbitrary, hence I = (f(x)), as desired.

Having proven the lemma, we now turn our attention to previous exercise, where we have shown

R, Q and C are fields. Because of this result, therefore we conclude that polynomial rings with

one indeterminate R[x], Q[x] and C[x] are Principal Ideal Domains and hence they are Dedekind

domains, as desired.

Having done with R[x], Q[x] and C[x], we will now focus on Z[x]. Since Z is not a field and

therefore Z[x] is not a Principal Ideal Domain. Consequently Z[x] is not a Dedekind domain.

�

Problem 2.12.3

Find dim(R), dim(Q) and dim(Z) to confirm the validity of Dr. Zieschang’s Lemma 12.3.

Solution: Here is the Lemma 12.3 from Dr. Zieschang’s class note: Dedekind domains have

exactly Krull dimension of either 0 or 1.

First we would like to show that dim(Z) = 1, dim(R) = 1 and dim(Q) = 0.

(a) Consider pi, with i ∈ {1, 2, ..., n}, as prime numbers of Z. According to Lemma 7.3 of

Dr. Zieschang’s Algebra I, then piZ are the prime ideals of Z. Since piZ are also the

maximal ideals of Z, therefore Z has only chain set of prime ideals S of oder 2:

{0} ( piZ.

Hence,

dim(Z) = |S| − 1

= 2− 1

= 1.
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(b) Using similar argument like the above, we can derive

dim(R) = |S| − 1 = 2− 1 = 1.

(c) We know that Q is a field, and field does not have any prime ideal except {0}, hence the

order of chain set of prime ideals S is |S| = 1. Therefore

dim(Q) = |S| − 1 = 1− 1 = 0.

Since we now have had dim(Z) = 1, dim(R) = 1 and dim(Q) = 0, and since by Problem 12.1

we have shown that the rings of R, Q and Z are Dedekind domains, thus we confirm the validity

of Dr. Zieschang’s Lemma 12.3, as desired.

�

Problem 2.12.4

By using ring of integer Z, give an example to illustrate the validity of Dr. Zieschang’s

Corollary 12.1 in his class note.

Solution: Here is the Corollary 12.1: Let T be an ideal of Dedekind domain R, and let p be a

non-zero element in T . Then T possesses an element q such that pR + qR = T .

From previous exercise, we have known that Z is Dedekind domain. Consider Z as the R in the

Corollary 12.1, and the set of even integers 2Z, an ideal of Z, as T in the Corollary 12.1. Let’s

take as an example p = 8 ∈ 2Z, then we need to find q ∈ 2Z. Since q ∈ 2Z, hence there exists

q̄ ∈ Z such that q = 2q̄.

8Z + qZ = 2 · 4Z + 2q̄Z = 2Z.

Here, p can be any arbitrary element of the set of even integer 2Z.

�
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2.13 The Field of Fractions of a Dedekind Domain

Problem 2.13.1

Verify Dr. Zieschang’s Lemma 13.2 by using Z as an illustration.

Solution: Recall Lemma 13.2 from Dr. Zieschang’s class note: Assume that R is integrally closed

noetherian domain of Krull dimension 1. Then each non-zero prime ideal of R is invertible.

From previous exercise 11.2, we have learned that the ring Z is a noetherian domain of dimension

1. We will show that Z is integrally closed in Q. Proof:

Take any element of Q which is integral over Z, and reduce it in the form of x
y
, with

x, y ∈ Z and gcd(x, y) = 1. Then
(

x
y

)n
+ a1

(
x
y

)n−1
+ . . .+ an = 0 with ai ∈ Z.

Multiplying both sides by yn, then

xn + a1x
n−1y + . . .+ any

n = 0

xn + (a1x
n−1 + . . .+ any

n−1)y = 0.

This implies that y divides xn. So y = {−1, 1} and hence Z is integrally closed in Q, as

desired.

Having proven that Z is integrally closed in Q, next we need to show that for each prime number

p ∈ Z, then pZ is prime ideal of Z. According to Dr. Zieschang’s Algebra I note, the proof is as

follow:

Obviously pZ 6= Z. We know that p ∈ Z, if a ∈ Z then obviously pa ∈ pZ. Hence pZ is

prime ideal of Z.

Then prime ideal pZ of Z is invertible:

(Z : (p)) = {x ∈ Q | (p)x ⊂ Z}

=
1

p
Z ⊂ Q,

as desired.

�
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Problem 2.13.2

Repeat the previous exercise by using Gaussian integer Z[i] as illustration.

Solution: From Dr. Zieschang’s Corollary 4.11 in his class note on Number Theory, we learn that

Z[i] forms Euclidean domain, and since

Euclidean domain ⊂ Principal Ideal Domain,

therefore Z[i] forms Principal Ideal Domain.

From Corollary 12.6 of this class note, we have learned that the principal ideal domains are

exactly the gaussian Dedekind domain. Consequently Z[i] forms Dedekind domain.

From Proposition 13.1 of this chapter, we learn that Dedekind domains are integrally closed.

Specifically Z[i] is integrally closed in Q[i]. Therefore the ring of Gaussian integer Z[i] is an

integrally closed noetherian domain of dimension 1.

From Theorem 5.4 of Number Theory class note, we have (p) as prime element of Z[i], with

prime number p ∈ Z and p ≡ 3( mod 4):

(p) = pZ[i].

Then prime ideal (p) = pZ[i] of Z[i] is invertible, as desired:

(Z[i] : (p)) =
{
x ∈ Q[i] | (p)x ⊂ Z[i]

}
=

1

p
Z[i] ⊂ Q[i].

�

Problem 2.13.3

Using only Dr. Zieschang’s Lemma 13.3, prove that Z is a Dedekind domain.

Solution: Recall Lemma 13.3: Let R be an integral domain, and assume that F(R) \ {{0}} is a

group. Then R is a Dedekind domain.
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Recall also from this class note’s section 3: The Field of Fractions of an Integral Domain, that

m

n
Z : =

{mz
n
| m, z ∈ Z, n ∈ Z \ {0}

}
is called the fractional ideal of Z in Q, and that FQ(Z) is the set of all fractional ideals of Z in Q.

Let Fi ∈ FQ(Z) with i ∈ N, and that

Fi =
{miz

ni

| mi, z ∈ Z, ni ∈ Z \ {0}
}
.

We then need to prove that FQ(Z) \ {{0}} is a group.

Let’s denote F : = FQ(Z) \ {{0}} for simplicity. Then obviously F can’t be additive group

because it does not contain additive neutral element {0}. We then proceed to prove that (F , ·) is a

group.

(a) The neutral element of (F , ·) is {{1
1
}} = {{1}}.

(b) The inverse element of Fi is

F−1i =
{ ni

miz
| ni ∈ Z, mi, z ∈ Z \ {0}

}
,

because Fi · F−1i = {{1}}.

(c) If F1, F2 ∈ F , then

F1 · F2 =
{
{m1

n1

Z} · {m2

n2

Z}
}

=
{
{m1 ·m2

n1 · n2

Z}
}

∈ F ,

hence the closure property.

59



(d) If F1, F2 and F3 ∈ F , then

(F1 · F2) · F3 =

{(
{m1

n1

Z} · {m2

n2

Z}
)
· {m3

n3

Z}
}

=

{(
{m1 ·m2

n1 · n2

Z}
)
· {m3

n3

Z}
}

=

{
{m1 ·m2 ·m3

n1 · n2 · n3

Z}
}

=

{
{m1

n1

Z} ·
(
{m2 ·m3

n2 · n3

Z}
)}

=

{
{m1

n1

Z} ·
(
{m2

n2

Z} · {m3

n3

Z}
)
}
}

= F1 · (F2 · F3),

hence the associative property and consequently, F is a group, as desired.

Since Z is an integral domain and since FQ(Z) \ {{0}} is a group, therefore Z is a Dedekind

domain per Lemma 13.3.

�
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CHAPTER III

NUMBER THEORY

3.1 Commutative Rings

Problem 3.1.1

Using only the concept of coprime, provide alternative proof of Lemma 1.7 as stated in the

class note.

Solution: Here is the Lemma 1.7 from class note: There are infinitely many prime elements in Z.

Before we start with the proof, let’s recall also that for m,n ∈ Z, m and n are said to be coprime

if gcd(m,n) = 1. (The following proof is adopted from Filip Saidak, 2005.)

First, we will prove and use this little lemma: Consecutive integers are coprime. Proof:

Let’s assume that for n ∈ Z, n and (n+ 1) are not coprime, implying that there exists

d ∈ Z, such that if d | n, then d | (n+ 1). Consequently,

d | (n+ 1)− n

= d | 1,

which is not possible. Hence gcd
(
n, (n+ 1)

)
= 1.

Having proven the lemma, let’s denote n ∈ Z and n > 1. Since n and (n+ 1) are consecutive

integers, they must be coprime, and hence the number

N2 = n(n+ 1)

must have at least two different prime factors.
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Similarly, since N2 and (N2 + 1) are consecutive integers, they must be coprime and hence the

number

N3 = N2(N2 + 1)

must have at least 3 different prime factors. And this process can be continued indefinitely, thus

proving our case.

Indeed, using concrete integer, if n = 5 then n+ 1 = 6, and

5 · 6 = 30

= 2 · 3 · 5,

and

30 · 31 = 930

= 2 · 3 · 5 · 31,

and

930 · 931 = 865, 830

= 2 · 3 · 5 · 31 · 72 · 19

= 2 · 3 · 5 · 72 · 19 · 31,

and this operation can be carried on indefinitely.

�

Problem 3.1.2

Prove that a right triangle of Pythagorean triple dilated by an integer factor is still a right

triangle of Pythagorean triple.

Solution: Recall from Lemma 1.8 in Dr. Zieschang’s class note: Let R be a Unique Factorization
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Domain, let x, y and z be elements in R, and let m and n be positive integers. Then we have

xn + yn = zn

if and only if

(mx)n + (my)n = (mz)n.

Next, we recall from Dr. Zieschang’s Algebra I that Z forms Unique Factorization Domain due to

the Fundamental Theorem of Arithmetic. Now, let’s fix x, y, z ∈ Z+ as Pythagorean triple such

that

x2 + y2 = z2,

and let’s assume that right tringle is dilated by factor of m, where m ∈ Z+. Hence

x′ = mx

y′ = my,

z′ = mz.

Since Lemma 1.8 asserts that (mx)2 + (my)2 = (mz)2, therefore (x′)2 + (y′)2 = (z′)2, and hence

it is still Pythagorean triple.

�

Problem 3.1.3

Use examples of Gaussian integers Z[i] to illustrate the Lemma 1.9 from the class note.

Solution: First, we need to mention these following four facts:

(a) Recall the Lemma 1.9 from class note: Let R be a Unique Factorization Domain, x, y ∈ R,

and n ∈ Z+ such that xn | yn. Then x | y.

(b) We have learned from Dr. Zieschang’s Algebra I, that Gaussian integers (a+ bi) ∈ Z[i],

where a, b ∈ Z, forms Unique Factorization Domain. And that the norm N of Gaussian integer

α = (a+ bi) is defined as the product of the Gaussian integer and its conjugate:
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N (α) = αᾱ

= (a+ bi)(a− bi)

= a2 + b2.

(c) Additionally, we recall the Gaussian integer’s division theorem: For α, β ∈ Z[i], with β 6= 0,

α

β
= βq + r,

where q, r ∈ Z[i] are the quotient and remainder, with N (r) < N (β). If r = 0, we say that β | α.

(d) Finally, we recall the divisibility of Z[i]: For α, β ∈ Z[i], if β | α ∈ Z[i] then

N (β) | N (α) ∈ Z.

Having recalled the above four facts, we take these as examples of Gaussian integers Z[i]:

α = −8 + 6i,

β = 3 + 4i.

Here apparently β | α, as demonstrated by the followings:

−8 + 6i

3 + 4i
=
−8 + 6i

3 + 4i
· 3− 4i

3− 4i

=
50i

25

= 2i.

And indeed, since N (α) = 100, (β) = 25, hence N (β) | N (α).

Then, expressing the α and β in perfect square terms, we have

α = −8 + 6i

= (1 + 3i)2,
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and
β = 3 + 4i

= (2 + i)2.

If we divide the square root of α by the square root of β, we have

√
α√
β

=
α′

β′
=

1 + 3i

2 + i

=
(1 + 3i)

(2 + i)
· (2− i)

(2− i)

=
5− 5i

5

= 1− i

Since the remainder r = 0, therefore β′ | α′ and indeed, since N (α′) = 10 and N (β′) = 5,

consequently N (β′) | N (α′).

�

Problem 3.1.4

Similar to previous exercise, use the example of polynomial ring to illustrate the Lemma 1.9.

Solution: As we have learned from Algebra I that P [x] forms Unique Factorization Domain,

where P is a field. We have learned also the division of polynomial rings:

P1[x]

P2[x]
= P2[x] ·Q[x] +R[x],

where P2[x] 6= 0, and deg(P2[x]) > deg(R[x]). Additionally, P2[x] | P1[x] if and only if

R[x] = 0.

Here, we take these as our examples:

P1[x] = x4 +
7

3
x3 +

73

36
x2 +

7

9
x+

1

9
,

P2[x] = x2 + x+
1

4
.

By polynomial long division, we have
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P1[x]

P2[x]
= x2 +

4

3
x+

4

9

= (x+
2

3
)2.

Since the remainder R[x] = 0 we have P2[x] | P1[x].

By expressing the P1[x] and P2[x] in perfect square terms, we then have

P1[x] = x4 +
7

3
x3 +

73

36
x2 +

7

9
x+

1

9

= (x2 +
7

9
x+

1

3
)2.

P2[x] = x2 + x+
1

4

= (x+
1

2
)2.

We then square root the P1[x] and P2[x] and divide P1[x] by P2[x], we have

√
P1[x]√
P2[x]

=
P ′1[x]

P ′2[x]
=
x2 + 7

6
x+ 1

3

x+ 1
2

= x+
2

3
.

Since the remainder R[x] = 0, we have P ′2[x] | P ′1[x], as desired.

�

Problem 3.1.5

Show that the difference of two square of odd integers is always divisible by 4.

Solution: Recall Lemma 1.12 from Dr. Zieschang’s note: Let z be an odd integer. We have z2 ≡ 1

(mod 4). Recall also that for ai, bi,m ∈ Z, if

a1 ≡ b1 (mod m),

a2 ≡ b2 (mod m),

then we have
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a1 ± a2 ≡ b1 ± b2 (mod m).

Having recalled those results, suppose that z1 and z2 are odd integers, then based on Lemma 1.12:

z21 ≡ 1 (mod 4),

z22 ≡ 1 (mod 4),

consequently

z21 − z22 ≡ 0 (mod 4).

Therefore 4 | (z21 − z22), as desired.

�

Problem 3.1.6

Show that the sum of n square of odd integers is congruent to n modulo 4.

Solution: Recall Lemma 1.12 from the note and the two properties of modulo arithmetic we

referred to in previous problem.

Let’s fix zi as an odd integer, with i = {1, 2, . . . , n}. Then we have

z21 ≡ 1 (mod 4),

z21 ≡ 1 (mod 4),

. . .

. . .

z2n ≡ 1 (mod 4),

hence
n∑

i=1

z2i ≡ n (mod 4),

as desired.

�
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3.2 Some Basic Arithmetic

Problem 3.2.1

Using Lemma 2.11 from Dr. Zieschang’s class note, find all the subgroups of Z4,Z7 and Z12.

Solution: Recall that according to the note’s Lemma 2.1 on Lagrange Theorem, the order of

subgroup divides the order of the group. Recall also that in order to be a subgroup, each element

has to have inverse and to close under the operation.

(a) First, we have Z4 = {0, 1, 2, 3}. Since its order |Z4| = 4, therefore the order of any subgroup

of Z4 has to be the factors of 4, which are 1, 2 and 4. By observation and trial and error, we have

the following subgroups:

(a1) The first subgroup is the trivia {0}, its order is 1. Here 0 has itself as inverse, and it

closes under the operation.

(a2) The second is {0, 2}, its order is 2. Here, 2 has itself as the inverse, and the subgroup is

closed under the opration.

(a3) The third is Z4 itself, its order is 4. Here since the subgroup is the group itself,

therefore we do not have to investigate each element’s inverse and the subgroup’s closure.

(b) Next we have Z7 = {0, 1, 2, 3, 4, 5, 6}. Because its order |Z7| = 7, hence the order of each of

its subgroup has to be either 1 or 7. Again by observation and trial and error, we have

(b1) The trivia subgroup {0}, its order is 1.

(b2) The Z7 itself, its order is 7.

(c) Finally we have Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Since its order |Z12| is 12, therefore

each of its subgroups’ order must be 1, 2, 3, 4, 6 or 12.

(c1) The trivia subgroup {0}, its order is 1.

(c2) The second subgroup is {0, 6}, its order is 2. Here 6 has itself as the inverse, and the

subgroup closes under the operation.

(c3) The third is {0, 4, 8}, with order of 3. Here 4 and 8 have each other as the inverse, and

the subgroup closes under the operation.
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(c4) The fourth is {0, 3, 6, 9}, with order of 4. Here 3 and 9 have each other as the inverse,

and 6 has itself as the inverse, and the subgroup closes under the operation.

(c5) The fifth one is {0, 2, 4, 6, 8, 10}, with order of 6. Here 2 and 10, 4 and 8 have each

other as the inverse, 6 has itself as the inverse, and the subgroup closes under the operation.

(c6) The last one is the Z12 itself with order of 12.

�

Problem 3.2.2

Use the order of each element of Z10 to validate the Lemma 2.2 in the class note.

Solution: Recall Dr. Zieschang’s Lemma 2.2: Let G be a finite group, and g ∈ G, then the order

of g divides the order of G. Recall also that the order of an element of a finite group is the

smallest positive integer n, such that gn = e.

We have Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Since 01 = 0, therefore the order O(0) = 1;

110 = 0, the order O(1) = 10;

25 = 0, the order O(2) = 5;

310 = 0, the order O(3) = 10;

45 = 0, the order O(4) = 5;

52 = 0, the order O(5) = 2;

. . .

910 = 0, the order O(9) = 10.

The order of each element of Z10 is therefore 1, 2, 5 and 10, and each of these divides the order of

Z10.

�

Problem 3.2.3

With respect to Dr. Zieschang’s Lemma 2.5, show that if pi > 2 are the prime numbers, with

i = {1, 2, . . . , n}, and if it is established that pi ≡ 1 (mod 4) and the existence of zi ∈ Z such

that pi | (z2i + 1), then
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(a) the product of pi is also congruent to 1 (mod 4);

(b) the product of pi divides the product of their respective (z2i + 1).

Solution: (a) Recall that one of the properties of modular arithmetic is that if a1 ≡ b1 (mod n)

and a2 ≡ b2 (mod n), then we have

a1a2 ≡ b1b2 (mod n).

Here we have
p1 ≡ 1 (mod 4),

p2 ≡ 1 (mod 4),

. . .

pn ≡ 1 (mod 4),

and consequently
n∏

i=1

pi ≡ 1n (mod 4)

≡ 1 (mod 4),

as desired.

(b) If pi | (z2i + 1), then (z2i + 1) must be ki multiples of pi, where ki are positive integers:

kipi = z2i + 1.

Therefore we have
k1p1 = z21 + 1,

k2p2 = z22 + 1,

. . .

knpn = z2n + 1,

and consequently
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n∏
i=1

kipi =
n∏

i=1

(z2i + 1),

implying that the product of pi divides the product of (z2i + 1), as desired.

�

Problem 3.2.4

With respect to Dr. Zieschang’s Lemma 2.5, find out the z numbers for prime numbers

101, 113, 157, 137 and 149.

Solution: (a) For prime number 101, we observe that 101 ≡ 1 (mod 4). Lemma 2.5 guarantees

that ∃z ∈ Z such that 101 | z2 + 1. This implies that z2 + 1 must be an n-multiple of 101, with

n ∈ Z :

101n = z2 + 1

n =
z2 + 1

101
.

Substituting y for n and x for z, we observe that y = x2+1
101

is actually a simple quadratic function

with x as independent variable and y as dependent variable. Using graphic calculator’s simple

table feature, we can easily input integers into x, and specifically look for y values that are

integers. Here we find that y(10) = 1. Hence z = 10 for prime number 101.

(b) Similarly for prime number 113, we have 113 ≡ 1 (mod 4), and from

y =
x2 + 1

113

we find out that its z values is 15.

(c) Using the same method, we have 28, 100 and 44 as z values for prime numbers 157, 137 and

149, respectively.

�
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3.3 Theorems of Euler, Fermat and Wilson

Problem 3.3.1

Using Lemma 3.4 (i) from Dr. Zieschang’s class note, find the last digit of expansion of 555.

Solution: Recall Lemma 3.1 (i) on Euler’s theorem: If a and n are positive integers such that

gcd(a, n) = 1, then

aϕ(n) ≡ 1 (mod n),

where ϕ(n) is the Euler’s totient function that counts the positive integers less than or equal to n

that are relatively prime to n. For examples, ϕ(5) = 4 because out of 5 digits of 1, 2, 3, 4, 5, there

are only 4 of them relatively prime to 5:

gcd(5, 1) = 1,

gcd(5, 2) = 1,

gcd(5, 3) = 1,

gcd(5, 4) = 1,

gcd(5, 5) = 5,

where 5 is the only one that is not co-prime with 5.

Here we need to solve 555 ≡ x (mod 10) for x by using the Euler’s theorem:

aϕ(n) ≡ 1 (mod 10).

We note that ϕ(10) = 4 because only 4 out of the 10 numbers are co-prime with 10. Note also

since gcd(55, 10) 6= 1, we have to break up 55 into 5 · 11 and use only 11:

11ϕ(n) ≡ 1 (mod 10)

114 ≡ 1 (mod 10).
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Then we have
555 = 55 · 115

= 55 · 114 · 11

≡ 55 · 1 · 11 (mod 10)

≡ 55 · 11 (mod 10)

≡ 34375 (mod 10)

≡ (34370 + 5) (mod 10)

≡ 5 (mod 10),

consequently the last digit of 555 is 5.

�

Problem 3.3.2

Using the same lemma as above, find the last two digits of 33334444.

Solution: Here we first have to solve 33334444 ≡ x (mod 100) for x using Euler’s theorem:

aϕ(100) ≡ 1 (mod 100).

Since we note that gcd(3333, 100) = 1, we can use 3333 for the a in Lemma 3.4 (i):

3333ϕ(100) ≡ 1 (mod 100).

Next we need to find ϕ(100):

ϕ(100) = ϕ(22)ϕ(52).

Recall the theorem for finding ϕ(pk):

ϕ(pk) = pk(1− 1

p
),
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hence
ϕ(22) = 22(1− 1

2
)

= 4(
1

2
)

= 2,

and
ϕ(52) = 52(1− 1

5
)

= 25(
4

5
)

= 20,

consequently

ϕ(100) = ϕ(22)ϕ(52)

= 2 · 20

= 40.

Therefore we have

333340 ≡ 1 (mod 100).

Then we have
33334444 = (333340)111 · (3333)4

≡ (1)111 · (3333)4 (mod 100)

≡ (3333)4 (mod 100)

≡ (3300 + 33)4 (mod 100)

≡ 334 (mod 100)

≡ 1185921 (mod 100)

≡ (1185900 + 21) (mod 100)

≡ 21 (mod 100),

consequently, the last 2 digits of 33334444 is 2 and 1.

�
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Problem 3.3.3

Show that the inverse of 5 (mod 101) is 599.

Solution: Recall Lemma 3.4 (ii) on Fermat’s theorem: If p is a prime, a any integer and p - a, then

ap−1 ≡ 1 (mod p).

Since 101 is prime and 5 - 101, then according to Fermat’s theorem

5101−1 ≡ 1 (mod 101)

5100 ≡ 1 (mod 101)

5 · 599 ≡ 1 (mod 101),

implying that the inverse of 5 (mod 101) is 599.

�

Problem 3.3.4

Calculate 2234 (mod 11), using only Fermat’s theorem.

Solution: Since gcd(2, 11) = 1, therefore by Fermat’s theorem

211−1 ≡ 1 (mod 11),

210 ≡ 1 (mod 11).

We now break down the exponent as quotient and remainder:

345 = 34 · 10 + 5,

therefore
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2345 = 234·10+5

= (210)34 · 25

≡ 134 · 25 (mod 11)

≡ 32 (mod 11)

≡ (22 + 10) (mod 11)

≡ 10 (mod 11).

�

Problem 3.3.5

Using only the modular multiplicative inverse and Wilson’s theorem, verify that 13 is a

prime number.

Solution: Recall Lemma 3.6 on Wilson’s theorem: A positive integer n is prime if and only if

(n− 1)! ≡ −1 (mod n). Recall also that the modular multiplicative inverse of an integer a

modulo m is an integer a−1 such that

aa−1 ≡ 1 (mod m).

Having recalled the above results, we need to prove that

(13− 1)! ≡ −1 (mod 13).

Here we have

(13− 1)! = 12!

= 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12,
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and the modulo 13 inverse of some of the numbers are:

2 · 7 ≡ 1 (mod 13)

3 · 9 ≡ 1 (mod 13)

4 · 10 ≡ 1 (mod 13)

5 · 8 ≡ 1 (mod 13)

6 · 11 ≡ 1 (mod 13).

Rearranging the numbers, we have

(13− 1)! ≡ 1 · (2 · 7) · (3 · 9) · (4 · 10) · (5 · 8) · (6 · 11) · 12 (mod 13)

≡ 1 · 1 · 1 · 1 · 1 · 1 · 12 (mod 13)

≡ 12 (mod 13)

≡ (12− 13) (mod 13)

≡ −1 (mod 13),

as desired.

�
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Problem 3.3.6

What is the remainder of 97! when it is divided by 101?

Solution: Here we need to apply Wilson’s theorem:

(101− 1)! ≡ −1 (mod 101)

100! ≡ −1 (mod 101)

97! · 98 · 99 · 100 ≡ −1 (mod 101)

97!(98− 101)(99− 101)(100− 101) ≡ −1 (mod 101)

97!(−3)(−2)(−1) ≡ −1 (mod 101)

97! · 6 ≡ 1 (mod 101).

We know that the modular inverse of 6 modulo 101 is 17:

17 · 6 ≡ 1 (mod 101),

therefore

97! · 17 · 6 ≡ 17 (mod 101)

97! · 1 ≡ 17 (mod 101)

97! ≡ 17 (mod 101).

Therefore, 97! has remainder of 17 when divided by 101.

�
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3.4 Quadratic Number Fields

Problem 3.4.1

If α, β ∈ Q[
√

2], prove the following properties of conjugation σ:

(a) σ(α + β) = σ(α) + σ(β),

(b) σ(α · β) = σ(α) · σ(β),

(c) σ(σ(α)) = α.

Solution: (a) Recall that Dr. Zieschang’s note defines

σ(x+ y
√
d) := x− y

√
d,

where the elements x+ y
√
d and x− y

√
d are called the conjugates.

Let’s assume the followings:

α = a1 + b1
√
d,

β = a2 + b2
√
d.

α + β = (a1 + a2) + (b1 + b2)
√
d.

Therefore

σ(α + β) = (a1 + a2)− (b1 + b2)
√
d

= (a1 − b1
√
d) + (a2 − b2

√
d)

= σ(α) + σ(β),

as desired.

(b) For multiplication of α and β, we have

αβ = (a1 + b1
√
d)(a2 + b2

√
d)

= (a1a2 + b1b2d) + (a1b2 + a2b1)
√
d,

and there
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σ(αβ) = (a1a2 + b1b2d)− (a1b2 + a2b1)
√
d

= a1a2 − a1b2
√
d− a2b1

√
d+ b1b2(

√
d)2

= (a1 − b1
√
d)(a2 − b2

√
d)

= σ(α)σ(β),

as desired.

(c) For conjugate of α:

σ(α) = a1 − b1
√
d

σ(σ(α)) = σ(a1 − b1
√
d)

= a1 + b1
√
d

= α,

as desired.

�

Problem 3.4.2

For any α ∈ Q[
√
d] and β ∈ Q[

√
d], show that trace τ is additive while norm ν is

multiplicative, that is:

τ(α + β) = τ(α) + τ(β)

but

ν(αβ) = ν(α)ν(β).

Solution: We recall that in Dr. Zieschang’s note, trace τ and norm ν are defined respectively as

τ(z) := z + σ(z)

ν(z) := zσ(z),

where σ(z) denotes the conjugate of z = (x+ y
√
d).
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Let’s assume, as in the previous exercise, that

α = a1 + b1
√
d,

β = a2 + b2
√
d,

(α + β) = (a1 + a2) + (b1 + b2)
√
d.

Therefore
τ(α) = a1 + b1

√
d+ a1 − b1

√
d

= 2a1,

τ(β) = a2 + b2
√
d+ a2 − b2

√
d

= 2a2,

σ(α + β) = (a1 + a2)− (b1 + b2)
√
d.

Consequently,

τ(α + β) = (a1 + a2) + (b1 + b2)
√
d+ (a1 + a2)− (b1 + b2)

√
d

= 2a1 + 2a2

= τ(α) + τ(β),

as desired.

For product of α and β, we have

αβ = (a1 + b1
√
d)(a2 + b2

√
d)

= (a1a2 + b1b2d) + (a1b2 + a2b1)
√
d,
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and
ν(α) = (a1 + b1

√
d)(a1 − b1

√
d)

= a21 − b21d,

ν(β) = (a2 + b2
√
d)(a2 − b2

√
d)

= a22 − b22d.

Consequently,

ν(αβ) =
[
(a1a2 + b1b2d) + (a1b2 + a2b1)

√
d
] [

(a1a2 + b1b2d)− (a1b2 + a2b1)
√
d
]

= (a1a2 + b1b2)
2 − (a1b2 + a2b1)

2d

= (a1a2)
2 + 2(a1a2b1b2) + (b1b2)

2 − (a1b2)
2d− 2(a1a2b1b2)d− (a2b1)

2d

= (a1a2)
2 − (a1b2)

2d− (a2b1)
2d+ (b1b2)

2

= (a21 − b21d)(a22 − b22d)

= ν(α)ν(β),

as desired.

�

Problem 3.4.3

Show that

z = (
73

2
+

3

2

√
109) ∈ Q[

√
109]

is integral over Z.

Solution: (a) Recall Dr. Zieschang’s theorem 4.5 (ii): If d ≡ 1 (mod 4), then

IQ[
√
d](Z) =

{v
2

+
w

2

√
d | v, w ∈ Z; v ≡ w (mod 2)

}
.

Here we have square-free d = 109 ≡ 1 (mod 4), with v = 73, w = 3 and 73 ≡ 3 (mod 2). Thus

theorem 4.8 (ii) guarantees that z is integral over Z.

Indeed,
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σ(z) =

(
73

2
− 3

2

√
109

)
,

τ(z) = z + 6z

=

(
73

2
+

3

2

√
109

)
+

(
73

2
− 3

2

√
109

)
= 73 ∈ Z,

and
ν(z) = zσ(z)

=

(
73

2
+

3

2

√
109)(

73

2
− 3

2

√
109

)
=

(
73

2

)2

−
(

3

2

√
109

)2

=
5329

4
− 981

4

= 1087 ∈ Z.

Here, since τ(z) and ν(z) are integral, Lemma 7.3 guarantees that Z is integral over Z.

�

Problem 3.4.4

Show that z, as defined below, is integral over Z:

z ∈

{
a+ b(

1 +
√
d

2
) | a, b ∈ Z; d ≡ 1 (mod 4)

}
.

Solution: To solve this problem, we will use Dr. Zieschang’s Lemma 4.7: An element z ∈ Q[
√
d]

is integral over Z if and only if τ(z) and ν(z) are integral.

Here we have

z =

(
a+ b(

1 +
√
d

2
)

)

=

(
(a+

b

2
) +

b

2

√
d

)
,
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and

σ(z) =

(
(a+

b

2
)− b

2

√
d

)
,

hence the trace of z:

τ(z) = z + σ(z)

=

[
(a+

b

2
) +

b

2

√
d

]
+

[
(a+

b

2
)− b

2

√
d

]
=

(
a+

b

2

)
+

(
a+

b

2

)
= (2a+ b) ∈ Z.

Additionally, we have the norm of z:

ν(z) = zσ(z)

=

[
(a+

b

2
) +

b

2

√
d

] [
(a+

b

2
)− b

2

√
d

]
=

(
a+

b

2

)2

− b2d

4

= a2 + ab+
b2

4
− b2d

4

= a2 + ab+
b2(1− d)

4
.

Since d ≡ 1 (mod 4), therefore 4 | (d− 1), hence 4 | b2(1− d) and also

ν(z) = a2 + ab+
b2(1− d)

4
∈ Z,

consequently z is integral over Z, as desired.

�

Problem 3.4.5

Show that the sum of z1 ∈ Q[
√
d] and z2 ∈ Q[

√
d], as defined below, with each of them
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integral over Z, is again integral over Z:

z1 =

(
a+ b

(
1 +
√
d

2

))
,

z2 =
(v

2
+
w

2

√
d)
)
,

where a, b, v, w, d ∈ Z, and d ≡ 1 (mod 4), v ≡ w (mod 2).

Solution: Again as in the previous solutions, we will take the advantage of Lemma 4.7:

z1 + z2 =

(
a+ b

(
1 +
√
d

2

))(v
2

+
w

2

√
d
)

=

(
a+

b

2
+
v

2

)
+

(
b

2
+
w

2

)√
d,

and

σ(z1 + z2) =

(
a+

b

2
+
v

2

)
−
(
b

2
+
w

2

)√
d.

First we need to find the trace of z1 + z2:

τ(z1 + z2) = (z1 + z2) + σ(z1 + z2)

= 2

(
a+

b

2
+
v

2

)
= 2a+ b+ v

∈ Z.

Next, we compute the norm of z1 + z2:

ν(z1 + z2) = (z1 + z2)σ(z1 + z2)

=

(
a+

b

2
+
v

2

)2

−
(

(
b

2
+
w

2
)
√
d

)2

=

(
a2 + b+ v +

(b+ v)2

4
− (b+ w)2d

4

)
=

(
a2 + b+ v +

(v2 − w2) + 2b(v − w)

4

)
.
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Since a2, b, v ∈ Z, we need only to prove that the last term from the above expression is integral,

more specifically we need to prove:

4 | (v2 − w2) + 2b(v − w).

Here we will take advantage of the fact given by the problem that v ≡ w (mod 2), implying that

2 | (v − w) and 2 | (v + w). Then we have

(v2 − w2) + 2b(v − w)

4
=

(v − w)(v + w) + 2b(v − w)

4
.

Since 2 | (v − w) and 2 | (v + w), therefore 4 | (v − w)(v + w). Since 2 | (v − w), therefor

4 | 2b(v − w). Hence σ(z1 + z2) ∈ Z. Consequently z1 + z2 is integral over Z since both its trace

and norm are integral, as desired.

�
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3.5 The Ring of the Gaussian Integers

Problem 3.5.1

Show that the equations

x2 + 4x− 22 = 0,

x2 + 2xy + y2 − 63 = 0

where x, y ∈ Z+, do not have integer solution.

Solution: Recall Dr. Zieschang’s Theorem 5.8 in his classnote: Let x be a positive integer. Then

x2 + 1 is not a cube.

(a) In the first equation, we have

x2 + 4x− 22 = 0

(x2 + 4x+ 4) + 1 = 27

(x+ 2)2 + 1 = 33,

which does not have positive integer solution according to Theorem 5.8. Indeed, let D be the

discriminant of the above quadratic equation, then

D = b2 − 4ac = 42 − (4)(1)(−22) = 104,

which is not a perfect square number, implying that the equation does not have integer solution.

(b) On the second equation, we have

x2 + 2xy + y2 − 63 = 0

(x2 + 2xy + y2) + 1 = 64

(x+ y)2 + 1 = 43,

which according to Theorem 5.8 does not have integer solution for x and y.

�
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Problem 3.5.2

Show that

x21 + x22 + x23 + x24 + x25 + x26 = 35

has integer solutions that are unique.

Solution: Recall Dr. Zieschang’s Corollary 5.6 on Fermat Theorem: Let p be an odd prime

number. Then p is the sum of two integer squares if and only if p ≡ 1 (mod 4).

We have 35 as the sum of three prime numbers:

35 = 5 + 13 + 17,

and each of the above primes is congruent to 1 modulo 4:

5 ≡ 1 (mod 4),

13 ≡ 1 (mod 4),

17 ≡ 1 (mod 4).

Therefore, Corollary 5.6 guarantees that these equations have integer solutions:

x21 + x22 = 5,

x23 + x24 = 13,

x25 + x26 = 17,

hence x21 + x22 + x23 + x24 + x25 + x26 = 35 has integer solution, as desired. Indeed,

(±1)2 + (±2)2 = 5,

(±2)2 + (±3)2 = 13,

(±1)2 + (±4)2 = 17.

Next, we need to show that the solutions are unique. Recall Lemma 5.7 in Dr. Zieschang’s note:
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Let p be a prime with p ≡ 1 (mod 4). Then there is only one way to write p as a sum of two

squares. Consequently, solutions to x1, x2, x3, x4, x5, and x6 are unique up to their parity.

�

Problem 3.5.3

Find out if the followings are Gaussian primes:

3 + 4i, 3− 4i, 5i, −11i, 13 + 2i.

Solution: Recall Dr. Zieschang’s Theorem 5.2, 5.3 and 5.4 which can be summarized as follows:

For z = (a+ bi) ∈ Z[i], then z is prime:

(i) if a 6= 0 and b = 0 and if |a| is prime number satisfying |a| ≡ 3 (mod 4). The

associates of z after multiplication by units ±1 are also prime.

(ii) if a = 0 and b 6= 0 and if |b| is prime number satisfying |b| ≡ 3 (mod 4). Its associates

after multiplication by units ±i are also prime.

(iii) if a 6= 0 and b 6= 0 and if the norm of z, N (a+ bi), is prime number.

(a) For 3 + 4i, we have

N (3 + 4i) = 9 + 16

= 25

= 52.

Since 25 is not real prime therefore 3 + 4i is not Gaussian prime. For the same reason, its

conjugate 3− 4i is also not prime.

(b) Next, for 5i, since

|5| 6≡ 3 (mod 4)

therefore 5i is not prime.

(c) For −11i, however, since

| − 11| ≡ 3 (mod 4),
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therefore −11i is prime. Its associates:

(−11i)(i) = 11,

(−11i)(−i) = −11

are also prime.

(d) Finally for 13 + 2i, since

N (13 + 2i) = 132 + 22

= 173,

which is real prime, therefore 13 + 2i is Gaussian prime.

�

Problem 3.5.4

Find out all Gaussian primes with norm N less than 30.

Solution: Here we need to recall again summary of Theorem 5.2, 5.3 and 5.4 from the previous

exercise.

For z = (a+ 0i), we have to find real prime a such that a ≡ 3 (mod 4) and a2 < 30. Here we

have

a = 4k + 3

where k ∈ Z+. Therefore we have

(4k + 3)2 < 30.

By observation, from k ∈ {0, 1} we get a ∈ {3, 7} together with their associates.

Using the same analysis, for z = (0 + bi) we get b ∈ {3i, 7i} together with their associates.

For z = (a+ bi), we have to find out a, b ∈ Z such that

N (a+ bi) = a2 + b2

= p

< 30,
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where p is prime number. Recall that by Corollary 5.6 of Fermat Theorem, p has to satisfy p ≡ 1

(mod 4) in order to be the sum of two square integrals.

Here we have

p = 4k + 1 :

(a) For k = 1, we get p = 5. Since 22 + 12 = 5 < 30, we have 1± 2i and 2± i and their

respective associates as solutions.

(b) For k = 2, we get p = 9 which is not prime number.

(c) For k = 3, we get p = 13 < 30, where 32 + 22 = 13. Therefore we have 3± 2i and

2± 3i and their respective associates as solutions.

(d) For k = 4, we get p = 17 < 30, where 42 + 12 = 17. Therefore we have 4± i and

1± 4i and their respective associates as solutions.

(e) For k = 5, we get p = 21 which is not prime.

(f) For k = 6, we get p = 25 which is not prime.

(g) For k = 7, we get p = 29 < 30 where 52 + 22 = 29, hence we have 5± 2i and 2± 5i

and their respective associates as solutions.

�
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3.6 Pythagorean Triples

Problem 3.6.1

Show that (3, 4, 5) is the only Pythagorean triple consisting of consecutive integers .

Solution: Assume that ((n− k), n, (n+ k)) is the consecutive Pythagorean triple, with n, k ∈ Z+.

Therefore we have
(n− k)2 + n2 = (n+ k)2

n2 − 2kn+ k2 + n2 = n2 + 2kn+ k2

n2 = 4kn

n = 4k.

Next, substituting the result from above to the triple, we then have

((4k − k), 4k, (4k + k)),

which simplifies into

(3k, 4k, 5k).

Finally, substituting the smallest value of k, that is k = 1, will give us the primitive (3, 4, 5).

Substituting with k > 1 will only give us k-multiple of the above primitive. Hence (3, 4, 5) is the

only Pythagorean triple consisting of consecutive integers.

�

Problem 3.6.2

Show that where (x, y, z) is a Pythagorean triple, then 12 | xy.

Solution: Recall from Dr. Zieschang’s Lemma 6.1, that the generators of Pythagorean triple are

x = b2 − a2,

y = 2ab,

z = b2 + a2,
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where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2).

First, we need to prove that 4 | xy, that is, the following is true:

4 | 2ab(b2 − a2).

Here, we see that if both a and b are even, or if either a or b is even, then we are done because

obviously 4 | 2ab. If, on the other hand, a and b are both odd, then suppose that

a = 2p+ 1, p ∈ Z,

b = 2q + 1, q ∈ Z.

These lead to
b2 − a2 = (2p+ 1)2 − (2q + 1)2

= (4p2 + 4p+ 1)− (4q2 + 4q + 1)

= 4(p2 + p− q2 − q),

consequently 4 | (b2 − a2), as desired.

Secondly we need to show that 3 | 2ab(b2 − a2). Here we will use the fact that for any z ∈ Z,

then it is either

z ≡ 0 (mod 3) =⇒ z = 3p, where p ∈ Z

or

z ≡ ±1 (mod 3) =⇒ z = 3p± 1.

Here we see that if both a and b are 0 modulo 3, or if either one of them is 0 modulo 3, then we

are done because then obviously 3 | 2ab.

If, on the other hand, a ≡ ±1 (mod 3) and also b ≡ ±1 (mod 3), then obviously 3 - 2ab. But
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looking at (b2 − a2), assuming that

a = 3p± 1, p ∈ Z,

b = 3q ± 1, q ∈ Z,

then we have
b2 − a2 = (3p± 1)2 − (3q ± 1)2

= 9p2 ± 6p+ 1− (9q2 ± 6q + 1)

= 9p2 ± 6p− 9q2 ± 6q

= 3(3p2 ± 2p− 3q2 ± 2q),

hence 3 | (b2 − a2), as desired.

Having proven that 4 | 2ab(b2 − a2) and 3 | 2ab(b2 − a2), then 12 | 2ab(b2 − a2), that is, 12 | xy,

as desired.

�

Problem 3.6.3

Prove that where (x, y, z) is Pythagorean triple, then 60 | xyz.

Solution: Recall the generators of Pythagorean triple from previous exercise:

x = b2 − a2,

y = 2ab,

z = b2 + a2,

where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2).

Recall also from the previous exercise, that we have shown that 12 | xy, therefore we need only to

prove that 5 | xyz. We will still be using Dr. Zieschang’s Lemma 6.1 referred to by the previous

exercise. As in the previous problem, here we will take advantage of the fact that for any z ∈ Z,

then z has to be one of the followings:
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z ≡ 0 (mod 5) =⇒ z = 5p, where p ∈ Z,

z ≡ ±1 (mod 5) =⇒ z = 5p± 1, or

z ≡ ±2 (mod 5) =⇒ z = 5p± 2.

We will present 4 possible cases as follows:

(a) The first case: Either a ≡ 0 (mod 5) or b ≡ 0 (mod 5), or both a ≡ 0 (mod 5) and b ≡ 0

(mod 5). Then we are done because this implies:

5 | 2ab =⇒ 5 | y =⇒ 60 | xyz,

as desired.

(b) The second case: Both a ≡ ±1 (mod 5) and b ≡ ±1 (mod 5), that is a = 5p± 1 and

b = 5q ± 1. Then we have

b2 − a2 = (5p± 1)2 − (5q ± 1)2

= 25p2 ± 10p+ 1− (25q2 ± 10q + 1)

= 25p2 ± 10p− 25q2 ± 10q

= 5(5p2 ± 2p− 5q2 ± 2q),

hence we conclude

5 | (b2 − a2) =⇒ 5 | x =⇒ 60 | xyz.

(c) The third case: Both a ≡ ±2 (mod 5) and b ≡ ±2 (mod 5), that is a = 5p± 2 and

b = 5q ± 2. If this is the case then the analysis will proceed similar to the second case above,

leading again to conclusion that

5 | (b2 − a2) =⇒ 5 | x =⇒ 60 | xyz.

(d) The final case: One of them is congruent to ±1 modulo 5 while the other is congruent to ±2
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modulo 5. Without loss of generality, let’s us assume that

a = 5p± 1,

b = 5q ± 2.

Then
z = b2 + a2

= (5q ± 2)2 + (5p± 1)2

= (25q2 ± 20q + 4) + (25p2 ± 10p+ 1)

= 5(5q2 ± 4q + 5p2 ± 2p+ 1),

implying that

5 | (b2 + a2) =⇒ 5 | z =⇒ 60 | xyz,

as desired.

�

Problem 3.6.4

Suppose that (x, y, z) is a set of Pythagorean triple. Show that y + z is always a perfect

square number.

Solution: Recall the generators of Pythagorean triple from previous exercise:

x = b2 − a2,

y = 2ab,

z = b2 + a2,

where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2). Then it’s easy to see that

y+ z = a2 + 2ab+ b2 = (a+ b)2. Hence the sum of y and z is always a perfect square number, as

desired.

�
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Problem 3.6.5

Suppose that 115 and 277 belong to a Pythagorean triple, find out the triple’s a and b integers.

Solution: Recall Dr. Zieschang’s Lemma 6.1: The triple

(
(b2 − a2), 2ab, (b2 + a2)

)
where a, b ∈ Z+, is the generator of a Pythagorean triple if and only if gcd(a, b) = 1 and b 6≡ a

(mod 2).

Here, since both 115 and 227 are odd, they can’t be generated from 2ab. Since 115 < 277,

therefore we have
a2 − b2 = 115

a2 + b2 = 277.

Adding up the two above equations, we obtain

2a2 = 392

a = 14,

and therefore

b = 9.

�

Problem 3.6.6

One of the value in a certain Pythagorean triple is 84, find all possible values of the other two.

Solution: Recall the generator of Pythagorean triple cited in the previous exercise. Since 84 is an

even number, it must be generated from 2ab. Therefore we have

2ab = 84

ab = 42,
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which can be factored into the following four possibilities:

(a) First, 42 = 2 · 21. Since gcd(2, 21) = 1 and 21 6≡ 2 (mod 2), therefore they are valid values

for a and b. Hence:
x = 212 − 22 = 437

y = 84

z = 212 + 22 = 445.

Verifying:

4372 + 842 = 198, 025

4452 = 198, 025.

(b) Secondly, 42 = 3 · 14. Since gcd(3, 14) = 1 and 14 6≡ 3 (mod 2), therefore:

x = 142 − 32 = 187

y = 84

z = 142 + 32 = 205.

Verifying:

1872 + 842 = 42, 025

2052 = 42, 025.

(c) Next, 42 = 6 · 7. Since gcd(6, 7) = 1 and 7 6≡ 6 (mod 2), therefore:

x = 72 − 62 = 13

y = 84

z = 72 + 62 = 85.

Verifying:

98



132 + 842 = 7, 225

852 = 7, 225.

(d) Finally, 42 = 42 · 1. Since gcd(42, 1) = 1 and 42 6≡ 1 (mod 2), therefore:

x = 422 − 12 = 1763

y = 84

z = 422 + 12 = 1765.

Verifying:

17632 + 842 = 3, 115, 225

17652 = 3, 115, 225.

�

Problem 3.6.7

Repeat the above exercise with 228.

Solution: We will repeat the same steps like above for 228:

2ab = 228

ab = 114,

which can be factored int the following four possibilities:

(a) First, 114 = 2 · 57. Since gcd(2, 57) = 1 and 57 6≡ 2 (mod 2), therefore they are valid values

for a and b. Hence:
x = 572 − 22 = 3, 245

y = 228

z = 572 + 22 = 3, 253.
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Verifying:

3, 2452 + 2282 = 10, 582, 009

3, 2532 = 10, 582, 009

.

(b) Secondly, 114 = 3 · 38. Since gcd(3, 38) = 1 and 38 6≡ 3 (mod 2), therefore:

x = 382 − 32 = 1, 435

y = 228

z = 382 + 32 = 1, 453.

Verifying:

1, 4352 + 2282 = 2, 111, 209

1, 4532 = 2, 111, 209.

(c) Next, 114 = 6 · 19. Since gcd(6, 19) = 1 and 19 6≡ 6 (mod 2), therefore:

x = 192 − 62 = 325

y = 228

z = 192 + 62 = 397.

Verifying:

3252 + 2282 = 157, 609

3972 = 157, 609.
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(d) Finally 114 = 114 · 1. Since gcd(114, 1) = 1 and 114 6≡ 1 (mod 2), therefore:

x = 1142 − 12 = 12, 995

y = 228

z = 1142 + 12 = 12, 997.

Verifying:

12, 9952 + 2282 = 168, 922, 009

12, 9972 = 168, 922, 009.

�

Problem 3.6.8

The middle value of a Pythagorean triple is 325, find out the other two values.

Solution: Since 325 is odd and a Pythagorean’s middle value, therefore it must be generated by

b2 − a2:

325 = b2 − a2

= (b− a)(b+ a).

Next, we factor 325 into three sets of pair of factors:

(a) First, 325 = 5 · 65. We set up a system of linear equations:

b− a = 5

b+ a = 65.

By elimination we have b = 35 and a = 30. However these are not valid values since

gcd(35, 30) 6= 1.
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(b) Secondly, 325 = 25 · 13. The system of equations is

b− a = 13

b+ a = 25,

from which we obtain b = 19 and a = 6. Since gcd(19, 6) = 1 and 19 6≡ 6 (mod 2), they are

valid values.

Therefore,

x = 325

y = 2 · 19 · 6 = 228

z = 192 + 62 = 397.

Verifying: 3252 + 2282 = 157, 609 = 3972.

3252 + 2282 = 157, 609

3972 = 157, 609.

(b) Finally, 325 = 325 · 1. The system of equations is

b− a = 1

b+ a = 325,

from which we obtain b = 163 and a = 162. Since gcd(163, 162) = 1 and 163 6≡ 162 (mod 2),

they are valid values.

Therefore,

x = 325

y = 2 · 163 · 162 = 52, 812

z = 1632 + 1622 = 52, 813.

Verifying: 3252 + 52, 8122 = 2, 789, 212, 969 = 512, 8132.

102



3252 + 52, 8122 = 2, 789, 212, 969

52, 8132 = 2, 789, 212, 969.

�

Problem 3.6.9

Repeat the same above exercise with 575.

Solution: Since 575 is odd and a Pythagorean’s middle value, therefore it must be generated by

b2 − a2:
575 = b2 − a2

= (b− a)(b+ a).

Next, we factor 325 into three sets of pair of factors:

(a) First, we have 575 = 5 · 115. We set up a system of linear equations:

b− a = 5

b+ a = 115.

By elimination we have b = 60 and a = 55. However these are not valid values since

gcd(60, 55) 6= 1.

(b) Secondly, we have 575 = 25 · 23. The system of equations is

b− a = 23

b+ a = 25,

from which we obtain b = 24 and a = 1. Since gcd(24, 1) = 1 and 24 6≡ 1 (mod 2), they are

valid values.
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Therefore,

x = 575

y = 2 · 24 · 1 = 48

z = 242 + 12 = 577.

Verifying:

5752 + 482 = 167, 281

5772 = 167, 281.

(b) Finally we have 575 = 575 · 1. The system of equations is

b− a = 1

b+ a = 575,

from which we obtain b = 288 and a = 287. Since gcd(288, 287) = 1 and 288 6≡ 287 (mod 2),

they are valid values.

Therefore,

x = 575

y = 2 · 288 · 287 = 165, 312

z = 2882 + 2872 = 165, 313.

Verifying:

5752 + 165, 3122 = 27, 328, 387, 970

165, 3132 = 27, 328, 387, 970.

�

Problem 3.6.10

The largest value in a Pythagorean triple is 409. Find the sets of the other two values.

Solution: Since 409 is the largest value in the triple, we have

a2 + b2 = 409,
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hence
b2 = 409− a2

b =
√

409− a2,

where a ∈ [1, 20]. By using a graphic calculator’s table function, we have these two sets of

solution:

(a) The first set is a = 3 and b = 20. Since b > a, gcd(20, 3) = 1 and 20 6≡ 3 (mod 2), the values

are valid. We therefore have
x = 202 − 32 = 391

y = 2 · 20 · 3 = 120

z = 409.

Verifying:

3912 + 1202 = 167, 281

4092 = 167, 281.

(b) The second set is a = 20 and b = 3. But since b < a therefore this set is not valid for

Pythagorean triple.

�

Problem 3.6.11

Repeat the same above exercise for 545.

Solution: Since 545 is the largest value in the triple, we have

a2 + b2 = 545,

hence
b2 = 545− a2

b =
√

545− a2,

where a ∈ [1, 23]. By using graphic calculator’s table function, we have four sets of solution:

(a) The first set is a = 4 and b = 23. Since b > a, gcd(23, 4) = 1 and 23 6≡ 4 (mod 2), these
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values are valid. We therefore have

x = 232 − 42 = 513

y = 2 · 4 · 23 = 124

z = 545.

Verifying:

5132 + 1842 = 297, 025

5452 = 297, 025.

(b) The second set is a = 16 and b = 17. Since b > a, gcd(17, 16) = 1 and 17 6≡ 16 (mod 2),

these values are valid. We therefore have

x = 172 − 162 = 33

y = 2 · 7 · 16 = 344

z = 545.

Verifying:

332 + 5442 = 297, 025

5452 = 297, 025.

(c) The third and fourth sets are respectively the interchanged values between a and b from the

first and second sets in paragraph (a) and (b), i.e., a = 23, b = 4 in the first set and

a = 17, b = 16 in the second set. They are not Pythagorean triple’s valid values since a > b.

�
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3.7 Fermat’s Theorem for Multiples of Four

Problem 3.7.1

Show that

x4 − 4y4 = z2

does not have solution in positive integers.

Solution: Recall Dr. Zieschang’s Lemma 6.1 on the generators of Pythagorean triple:

x = b2 − a2,

y = 2ab,

z = b2 + a2,

where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2).

Recall also Dr. Zieschang’s Proposition 7.2: There do not exist positive integers x, y and z

satisfying

x4 + y4 = z2.

Having recalled the above two results, here we have

x4 − 4y4 = z2

x4 = z2 + 4y4

(x2)2 = z2 + (2y2)2.

The last equation above implies that x2, z and 2y2 are Pythagorean triples, thus per Lemma 6.1

there must exisst a, b ∈ Z+, gcd(b, a) = 1 and b 6≡ a (mod 2) such that

z = b2 − a2,

2y2 = 2ab,

x2 = b2 + a2.
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But 2y2 = 2ab implies that there exist p, q ∈ Z such that

a = p2

b = q2.

By substitution,

x2 = b2 + a2

= (q2)2 + (p2)2

= q4 + p4,

which does not have positive integer solution per Proposition 7.1.

�

Problem 3.7.2

Using the method of infinite descent, prove that

x4 − y4 = z2

does not have positive integer solution.

Solution: Here we have

z2 + (y2)2 = (x2)2.

Since z, y2 and x2 are Pythagorean triple, therefore there exist p, q ∈ Z+, gcd(p, q) = 1 and p 6≡ q

(mod 2), such that

x2 = p2 + q2

y2 = p2 − q2, or y2 = 2pq

z = 2pq, or z = p2 − q2.

Here we chose a solution that minimize x2 + y2. Factoring the original equation x4 − y4 = z2, we

have

(x2 − y2)(x2 + y2) = z2.
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Case I: First we assume that y2 = p2 − q2. Therefore

x2y2 = (p2 + q2)(p2 − q2)

= p4 − q4.

Clearly

p2 + q2 = x2

< x2 + y2

= p2 + q2 + p2 − q2

= 2p2,

so we have found a solution that is smaller than the assumed nominal solution, contradicting the

hypothesis.

Case II: We assume therefore that y2 = 2pq instead. Now we have

x2 = p2 + q2

as Pythagorean triple. Therefore there exist a, b ∈ Z, gcd(a, b) = 1 and b 6≡ a (mod 2), such that

p = a2 − b2

q = 2ab

x = a2 + b2.

Then we have
ab(a2 − b2) =

1

2
qp

=
y2

4
,

which is perfect square. It follows that a, b and (a2− b2) are perfect squares. Therefore there must
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exist r, s, t ∈ Z+, such that

a = r2

b = s2

a2 − b2 = t2.

Next, we have

t2 = a2 − b2

= (r2)2 − (s2)2

= r4 − s4,

and
r2 + s2 = a+ b

< (a+ b)(ab)(a− b)

=
1

2
pq

=
y2

4

≤ y2

< x2 + y2.

Again we have thus found a smaller solution in positive integers, contradicting the hypothesis.

Thus we are forced to conclude that x4 − y4 = z2 does not have integer solution, as desired.

�

Problem 3.7.3

Show that a right triangle with Pythagorean triple sides can not have area that is a perfect

square integer.

Solution: Recall from the previous exercise that

x4 − y4 = z2

does not have positive integer solution.
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Recall again Lemma 6.1 on the generators of Pythagorean triple:

x = b2 − a2,

y = 2ab,

z = b2 + a2,

where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2).

For the area of a right triangle of Pythagorean triple, we have

A =
1

2
xy

=
1

2
(2ab)(b2 − a2)

= ab(b2 − a2).

Suppose that A is a perfect square integer. This implies that a, b and (b2 − a2) have to be perfect

square integers:

a = p2

b = q2

(b2 − a2) = r2

for certain p, q, r ∈ Z+. Thus, substituting b2 with (q2)2 and a2 with (p2)2, we have

A = ab(b2 − a2)

= p2q2(q4 − p4)

= p2q2r2.

But this is not possible since q4 − p4 = r2 does not have integer solution from the previous

problem.

�
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Problem 3.7.4

Show that

x4 + 4y4 = z2

does not have solution in positive integers.

Solution: Recall Lemma 6.1 on generators of Pythagorean triples and the result from previous

exercise 7.2 that

x4 − y4 = z2

does not have integer solution.

Here we have
x4 + 4y4 = z2

(x2)2 + (2y2)2 = z2.

Since x2, 2y2 and z are Pythagorean triple, therefore per Lemma 6.1 there must exist a, b ∈ Z,

gcd(a, b) = 1 and b 6≡ a (mod 2), such that

x2 = b2 − a2

2y2 = 2ab

z = b2 + a2.

Since 2y2 = 2ab, there must exist p, q ∈ Z,

a = p2

b = q2

such that 2y2 = 2p2q2.
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Substituting a = p2 and b = q2, we have

x2 = b2 − a2

= (p2)2 − (q2)2

= p4 − q4,

which according to problem 7.2 does not have integer solution. Therefore x4 + 4y4 = z2 does not

have integer solution, as desired.

�
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3.8 Fermat’s Theorem for Multiples of Three

Problem 3.8.1

Show that the equation

x3m + y3m = z3m

does not have any integer solution with xyz 6= 0.

Solution: Recall that the Fermat’s theorem for multiple of 3 that states

x3 + y3 = z3

does not have any integer solution with xyz 6= 0. Next, we transform the equation in this exercise

into

(xm)3 + (ym)3 = (zm)3.

Substituting xm = r, ym = s and zm = t, we then have

r3 + s3 = t3,

which does not have integer solution according to Fermat’s theorem.

�

Problem 3.8.2

Compute x and y for non-trivial integer solution from this equation:

(y2 + x2)3 = (2xy)3 + (y2 − x2)3.

Solution: Recall Fermat’s theorem on multiple of 3 cited in the previous exercise. Since the above

equation is one with exponent of multiple of 3, therefore there will be no integer solution unless

one of the term is zero. Since the first term, y2 + x2, will never be zero, hence we have only the

following two possibilities:
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Case I: 2xy = 0, which means, first, that x is zero and y is a free variable:

(x, y) = {(0, y) | y ∈ Z}.

Secondly, y = 0 and x is a free variable. But this (x, y) = {(x, 0) | x ∈ Z} is not possible since it

leads to x6 6= −x6.

Case II: y2 − x2 = 0, therefore

y2 = x2

y = x,

therefore the solution is

(x, y) = {(z, z) | z ∈ Z}.

Alternatively, we can also pursue this second case as follow: Since y2 − x2 = 0, therefore

(y2 + x2)3 = (2xy)3

y2 + x2 = 2xy

y2 − 2xy + x2 = 0

(y − x)2 = 0

y = x,

hence the same solution as before:

(x, y) = {(z, z) | z ∈ Z}.

�

Problem 3.8.3

Prove that the equation

x6 − y3 = z6
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does not have integer solution for xyz 6= 0.

Solution: Recall Fermat’s theorem on multiple of 3 cited in the previous exercise. Here, we can

transform the equation into one with exponent of multiple of 3:

x6 − y3 = z6

x6 = y3 + z6

(x2)3 = (y)3 + (z2)3,

which implies that it does not have integer solution.

�

Problem 3.8.4

Show that the equation

x6 + 4y6 = z18

does not have integer solution for xyz 6= 0.

Solution: Recall again the Fermat’s theorem for exponent of multiple of 3, and recall also Lemma

6.1 on the generator of Pythagorean triple:

x = b2 − a2,

y = 2ab,

z = b2 + a2,

where a, b ∈ Z+, gcd(a, b) = 1, and b 6≡ a (mod 2).

Here we have
x6 + 4y6 = z18

(x3)2 + (2y3)2 = (z9)2,

which is a set of Pythagorean triple. Hence there must exist a, b ∈ Z+, gcd(b, a) = 1 and b 6≡ a
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(mod 2), such that

x3 = b2 − a2

2y3 = 2ab

z9 = b2 + a2.

Since 2y3 = 2ab, therefore ab must be a perfect cube, which means that there must exist

p, q ∈ Z+, such that, whithout loss of generality:

a = p3

b = q3.

Substituting, we have

x3 = b2 − a2,

x3 = (q3)2 − (p3)2

= (q2)3 − (p2)3.

Since the equation is one with exponent of multiple of 3, therefore per Fermat’s theorem it does

not have integer solution. Using similar argument, we can also show that

(z3)3 = (p2)3 + (q2)3

does not have integer solution. Thus x6 + 4y6 = z18 does not have integer solution, as desired.

�

Problem 3.8.5

Solve for non-trivial integer solution of 2x3 + 6xy2 = z3.

Solution: Recall the sum and difference of cube:

(x+ y)3 = x3 + 3x2y + 3xy2 + y3,

(x− y)3 = x3 − 3x2y + 3xy2 − y3,
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Here we have
z3 = 2x3 + 6xy2

= (x3 + 3x2y + 3xy2 + y3) + (x3 − 3x2y + 3xy2 − y3)

= (x+ y)3 + (x− y)3.

Since this equation represents one with exponent of multiple of 3, therefore per Fermat’s theorem

it does not have integer solution, unless of the term is zero. Hence we have these three cases here.

(a) Case I: (x+ y)3 = 0. Here we have

(x+ y)3 = 0

x+ y = 0

x = −y,

and then we express z in term of y:

(x− y)3 = z3

x− y = z

−2y = z.

Consequently the solution in the first case is

(x, y, z) = {(−k, k,−2k) | k ∈ Z}.

(b) Case II: (x− y)3 = 0. Here we have

(x− y)3 = 0

x− y = 0

x = y,
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and we z we proceed as follow:

(x+ y)3 = z3

x+ y = z

2y = z.

Consequently the solution is

(x, y, z) = {(k, k, 2k) | k ∈ Z}.

(c) Case III: z3 = 0. Here we have z = 0. To solve for x and y, we set

(x+ y)3 + (x− y)3 = 0

(x+ y)3 = −(x− y)3

x+ y = −(x− y)

x+ y = −x+ y

x = 0.

Hence the integer solution is

(x, y, z) = {(0, k, 0) | k ∈ Z}.

�
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