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ABSTRACT

Quiroz, Adriana, Mathematical Modeling of MERS-CoV Nosocomial Epidemic. Master of Sci-

ence (MS), May, 2017, 75 pp., 8 tables, 15 figures, 100 references, 10 titles.

This thesis concerns about the analysis and modeling of spread of an infectious disease

inside a hospital. We begin from the basic knowledge of the simple models: SIR and SEIR, to

show an appropriate understanding of the epidemic dynamic process. We consider the Middle

East Respiratory Syndrome Corona Virus (MERS-CoV), in Saudi Arabia, to introduce MERS-

CoV SEIR ward model by developing different systems of equations in each ward (unit). We use

the Next Generation Matrix method to calculate the basic reproduction number R0. Simulations

of different scenarios are done using different combination of parameters.

To model MERS-CoV we established a system of equations from sketch of wards model

of a hospital. We divide it into five wards where individuals can travel from one unit to the other

and interact with the environment. We consider the following units: Waiting room/Reception

(WR), Intensive Care Unit (ICU), Hemodialysis (HD), and Hospital Wards. Each ward has its

own carrying capacity which represents the maximum number of patients that can be admitted.

We have three kinds of agents: Patients (P), Health Care Workers (HCW), and Mobile HCW.

Here, we study the disease free equilibrium and calculate their values by using Matlab

codes to obtain the basic reproduction number.
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CHAPTER I

INTRODUCTION

1.1 Background of Mathematical Modeling

The study of mathematical epidemiology helps to understand the behavior of disease

epidemics and to assess the effectiveness of surveillance and control measures to stop the spread

of infection. In other words, it is a risk assessment tool using the language of mathematics by

providing insights about an infections process. Diseases have different classifications. They can

be either infectious or noninfectious and differ in their natural history.

Definition 1.1.1 An infectious disease is caused by a microorganism such as a virus that

enters the body of another organism [8]. The disease can be passed down between individual

organisms [8]. There are two modes of transmission. Direct and indirect. Direct transmission

is passed by having close contact with an infectious individual. Indirect transmission is passed

between hosts via the environment [8].

It all started in the eighteenth century when epidemiologists feel the need to study the

behavior of diseases in a deeper way. This was done by constructing mathematical models and

offering a prediction of changes of disease courses. Up to now, there has been many scientific

papers that use the knowledge that provides us with a wide information of how those can be

applied. We will start by formulating the model based on the famous Kermack and McKendrick

systems of equations [8].

1.2 SIR Model

The model is divided into three compartments where individuals can be transferred from

one compartment to another at certain rates. The first compartment that is represented by the

1



letter S stands for Susceptible compartnent. The second one, I, is for Infected. At this point the

person has the neccesary viral load to transmit the disease to another person. Lastly, the third

compartment, R, stands for Removed. In R, the individual is free from the disease and no longer

infectious or dead. We assume the model is under a closed population without demographics

[8]. This means that the population is constant and there is no immigration/emigration. There

are two types of transitions; one transition is from S to I and the second is from I to R. For the

first transition, from S to I: a susceptible person moves into the infected compartment at a disease

transmission rate β and it can be written as β = λ p where λ is the force of infection and p is the

probability of transmission upon contact. Secondly, from I to R, an infected individual moves

into the recovered compartment with another recovery rate γ . Moving from I to R at a rate of γ

can be determined by how long on an average a person can stay in the I compartment. Its recipro-

cal of the recovery parameter
1
γ

gives the average infectious period. The following descriptions

are expressed in Figure 1.1

Figure 1.1: SIR Transfer Diagram.

The SIR flow can be depicted by the following system of differential equations,

dS
dt

=−βSI

dI
dt

= βSI− γI (1.1)

dR
dt

= γI

Where the likelihood of the transition βSI happening is proportional to number of S and number

2



of I. By adding the three variables we have S+ I +R = 1. If we take the derivative with respect to

time to the sum of the sizes of the compartments we obtain the following identity S′+ I′+R′ = 0.

This makes the third equation of R′ redundant. This system of equations have initial conditions:

S(0) which is the initial proportion of susceptible population and I(0) is the initial proportion of

infectious population. Then, S(0)> 0, I(0)> 0, and R(0) = 0.

One of the most important feature in the process of modeling diseases is the reproduction

number R0.

Definition 1.3.3.1 The basic reproductive ratio is the average number of secondary

cases arising from an average primary case in an entirely susceptible population [8].

This, will determine if the disease will turn out to be epidemic or not. If R0 < 1 the disease

will not spread into a large population. Otherwise, if R0 > 1, an outbreak of the disease will

become epidemic.

1.2.1 SIR Simulations

In this section, the SIR model is solved numerically using ode45 in Matlab (see code in

Appendix 1). We give values assigned to the parameters in Table 1.1. The numerical solutions are

illustrated in Figure 1.2

Table 1.1: SIR Parameters.

Parameter Description Base Values Reference
β Transmission rate 1.42 [8]
γ Recovery rate 0.1428 [8]

The model simulated at the values given in Table 1.1 suggests that susceptible individu-

als will decrease while the infected and recovered individuals will increase. At some point the

epidemic will reach a peak and then decreases while R continues. This means that, from S, indi-

viduals will move to I and R at some time. Individuals in compartment R will not go back to S

and I. In this model we assume, an average number of 520 contacts per year which means, the

daily average is 520/365. We also assume probability 1 for transmission upon contact. For the

mean infectious period we use 1/7 days−1 [8].

3
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Figure 1.2: SIR Model simulation.

Since S+ I +R = 1 to change this into a disease free equilibrium we are going to add

them so it can gives us 1. By adding them it should gives us 1 and not zero. Now, the disease free

equilibrium (DFE) is (S∗+ I∗+R∗) = (1,0,0) where S∗ = 1, I = 0, R = 0. To find the points, we

need to look at
dI
dt

= βSI− γI so we can do the following,

dI
dt

= βSI− γI

I′ = βSI− γI

0 = βS∗I∗− γI∗

0 = (βS∗− γ)I∗

0 = βS∗− γ

γ = βS∗

γ

β
= S∗

4



To find I∗ we do the following,

dS
dt

= βSI

S′ = βS∗I∗

0 = β (
γ

β
)I∗

0 =−γI∗

0 = I∗

And to find R∗ we can do the following,

S′+ I′+R′ = 1
γ

β
+0+R′ = 1

R′ = 1− γ

β

R′ =
β − γ

β

If the ratio of the parameters β and γ is bigger than one, we expect the number of infected

individuals to be large eventually and an epidemic to grow. If S(0)<
γ

β
then I′ < 0. This means

the disease dies out [8]. Additionally,
γ

β
is called the relative removal rate [8] and the inverse is

the basic reproduction number which is R0 =
β

γ
and is solved in chapter 1.4.4 [8].

SIR models are useful to show the behavior of certain type of diseases such as, influenza,

smallpox, and rubella (childhood infectious diseases). These diseases acts so fast that demog-

raphy is ignored. However, this is not the only concern we have about SIR models. We may

encounter a person who catches the disease, becomes infected but is not infectious. The person,

in this case, is exposed and is better represented in the SEIR model.

1.3 SEIR Model

Many infectious diseases have an exposed period, also called the latent period, where

the individual carries the disease, but is not yet infectious [8]. At this stage, the disease is barely

growing over time and there are no visible symptoms. In this case, the viral load is so low that it

5



cannot be transmitted to another person. This means the person becomes exposed and goes from

the Susceptible to the Exposed compartment and which is represented by the letter E.

To develop the model we consider four compartments S, E, I, and R. We will assume the

model is closed (demography is neglected) and recovered individuals are not relapsing. We may

consider the following figure 1.3 for a better graphic view.

Figure 1.3: SEIR Transfer Diagram.

The SEIR system can be depicted by the following system of differential equations,

dS
dt

=−βSI−µS+µ

dE
dt

= βSI−σE−µE (1.2)

dI
dt

= σE− γI−µI

dR
dt

= γI−µR

where the parameter σ stands for the rate of becoming infectious and µ is the natural death rate.

Thus, the mean latent period is
1
σ

days−1. Since we assume S+E + I +R = 1 we may omit the

last equation since R
′
=−S

′−E
′− I

′
and is given by

6



dS
dt

=−βSI−µS+µ

dE
dt

= βSI−σE−µE (1.3)

dI
dt

= σE− γI−µI

1.3.1 SEIR Simulations

In this section, SEIR model is solved numerically using ode45 in Matlab (see code in

Appendix II). We give values assigned in Table 1.2 and the numerical simulations are illustrated

in Figure 1.4

Table 1.2: SEIR Parameters.

Parameter Description Base Values References

β Transmission rate 1.42 [8]

σ Infectious rate 0.07142 [8]

γ Recovery rate 0.1428 [8]

µ Natural death rate 1/50 [8]

7



0 .5 1

Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n

S
E
I
R

Figure 1.4: SEIR Model Simulation.

In Figure 1.4 the susceptible population will start decreasing at some point of time and

will finally be stable. On the other hand, the recovered population will increase and will be stable

after some point. Now, for the exposed and infected populations, they will first increase but for

not too long and then will decrease to zero.

1.3.2 SEIR Stability Analysis of DFE

We may also consider how to determine if the infectious disease will be endemic or not.

That is, we will study stability of the disease-free equilibrium where the number of infected is

zero. Setting the SEIR model equal to zero and solving the equations we will be able to deter-

mine the disease-free equilibrium.

The disease free equilibrium (DFE) is (1,0,0,0) where S=1, E=0, I=0 R=0. If we let S = S∗

and 0 ≤ S∗ ≤ 1, then, we will obtain a situation where there will be no infection where one part

of the population will be susceptible and the rest is recovered. It follows to have the disease free

equilibrium point as (S∗,0,0,0). We will determine the stability of the DFE using the Jacobian

matrix of the SEIR equation. Recall the SEIR model in (1.3) after omitting R′ is,

8



dS
dt

=−βSI−µS+µ =: f1(S,E, I)

dE
dt

= βSI−σE−µE =: f2(S,E, I)

dI
dt

= σE− γI−µI =: f3(S,E, I)

Then, the Jacobian matrix of the system is given by,

J =


∂ f1

∂S
∂ f1

∂E
∂ f1

∂ I
∂ f2

∂S
∂ f2

∂E
∂ f2

∂ I
∂ f3

∂S
∂ f3

∂E
∂ f3

∂ I

=


−β I−µ 0 −βS

β I −σ −µ βS

0 σ −γ−µ


By applying the disease free equilibrium (1,0,0,0) were S∗ = 1, and E∗ = I∗ = 0, to the Jacobian

matrix we have,

J =


−µ 0 −β

0 −σ −µ β

0 σ −γ−µ


The eigenvalues are found by solving det(J−λ I) = 0 where,

det(J−λ I) = det



−µ 0 −β

0 −σ −µ β

0 σ −γ−µ

−


λ 0 0

0 λ 0

0 0 λ




= det



−µ−λ 0 −β

0 −σ −µ−λ β

0 σ −γ−µ−λ




then,

det(J−λ I) = (−µ−λ )[(−σ −µ−λ )(−γ−µ−λ )−βσ ]

= (−µ−λ )[λ 2 +λ (σ + γ +2µ)+σ(γ +µ−β )+µ(γ +µ)]
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Thus, the eigenvalues are the zeros of,

λ1 =−µ < 0

Solving the quadratic equation we have,

λ2,3 =
−(σ + γ +2µ)±

√
(σ + γ +2µ)2−4(σ(γ +µ−β )+µ(γ +µ))

2
.

λ2 > 0, λ3 < 0

The eigenvalues determine if the system has asymptotic stability or not and we take a

decision, whether it is stable or not, based on their signs [3]. The properties of the eigenvalues are

as follows, [3].

• Stable: If both eigenvalues have negative real part [3].

• Unstable: If at least one eigenvalue has a positive real part is unstable [3].

In this case, λ2 and λ3 are negative and λ1 is a positive root. Since at least one eigenvalue

has a positive real part [3] then the system is unstable. Substituting the values to the parameters

we get, λ1 =−.0000391389, λ2 = .213326, and λ3 =−.427624. The disease free equilibrium is

unstable and there will be an epidemic in the population. If λ2 < 0 then R0 < 1 and no outbreak of

the epidemic. Then, the next generation matrix will lead us to determine what is R0. See Example

2 in section 1.4.1.

1.4 Next Generation Matrix and Examples

The Next Generation Matrix calculates and give the basic reproduction number R0. In

general, let us have a matrix with entries (i, j) where i is the secondary infection caused in the

compartment by the infected individual in compartment j [2]. Then, if we let x ∈ Rn and y ∈

Rm to be the sub population in each respective compartment where n is the number of disease

compartment and m the number of non-disease compartments. Moreover, denoting Fi to be the

rate at which secondary infectious increase the i− th compartment [2] and Vi is the rate at which

disease progression decreases the ith compartment, [2]. We can denote a compartment model in
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the form of [2]

x′i = Fi(x,y)−Vi(x,y) i = 1, ...,n, [2] (1.4)

y′j = p j(x,y) j = 1, ...,m [2]

Now, in order to obtain equilibrium from the susceptible population we need to assume

two things,

I. Let Fi(0,y) = Vi(0,y) = 0 for all y≥ 0 [2]

In this assumption, we have all new infections to be secondary infections arising from an

infected host [2]. At this point, there should not be any immigration of people into the

compartment. It ensures that the disease free set consisting of all points of the form (0,y) is

invariant [2].

II. The disease free system y′j = p j(x,y) has a unique equilibrium, that is asymptotically stable.

Where the solutions with initial conditions of the form (0,y) will approach a point (0,y0)

as t → ∞ [2]. This assumption helps us to ensure that the disease-free equilibrium is an

equilibrium [2]. The point (0,y0) is the disease free equilibrium of the full system [2].

Secondly, let assume that

I. The matrix Fi(x,y)≥ 0 for nonnegative x and y; i = 1, ...,n [2]

We denote F to be new infections and nonnegative [2].

II. The matrix Vi(x,y)≥ 0 xi = 0, i = 1, ...,n [2]

Vi is denoted to be the net outflow from compartment i and negative, whenever the compart-

ment is empty [2].

III. For all nonnegative x and y we have
n

∑
i=1

Vi(x,y)≥ 0 [2]

This sum has the representation of the total outflow from all infected compartments [2]
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By all of this assumptions we can start deriving the Next Generation Matrix. First, as an

example, if one individual is introduced to the hospital free of any disease [2], the initial ability to

spread through the population is determined by the linearization of equations(1.4) at initial point

(0,y0) (the disease equilibrium) [2]. Then we have,
∂Fi

∂y j
(0,y0) = 0,

∂Vi

∂y j
(0,y0) = 0 for every (i, j) [2]

where this linearized equations for the disease compartments, x, are departed from the remaining

equations and it follows to be written as [2].

x′ = (F−V )x [2] (1.5)

Where F and V are n×n matrices with the following entries:

F =
∂Fi

∂x j
(0,y0), V =

∂Vi

∂x j
(0,y0) [2]

Definition 1.4.1.1 Endemic is revalent in a particular locality, region, or population [6].

An endemic equilibrium is (locally) asymptotically stable if and only if it corresponds to a point

on the bifurcation curve at which the curve is increasing..[2]. Epidemic, is affecting many per-

sons at the same time, and spreading from person to person in a locality where the disease is not

permanently prevalent [6].

Because it is a disease -free system, y
′
= p(0,y) that has a unique asymptotically stable

equilibrium then (2.1) can be determined by the matirx (F−V ) in (1.5) [2]

If, we have a number of secondary infections produced by one individual that is infected

then, we can denote it as the product of expected duration of the infections period and the rate

of secondary infections occurred [2]. Moreover, we can define the expected time that is spent in

each compartment by the following integral [2],∫
∞

0
tθ(t,x0)dt [2]

where θ(t,x0) is the solution of (1.5)and by letting F = 0 and x0 to be a nonnegative initial condi-
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tion, we can represent an infected index case as [2]

x′ =−V x, x(0) = x0 (1.6)

where we can solve it by using the integrating factor

x′+V x = 0 with µ(t) = e
∫

V dt = eVt

eVtx′+ eVtV x = 0

(xeVt)′ = 0

xeVt = c

x =
c

eVt =⇒ x = ce−Vt

and by using the initial conditions we have x(0) = ce−V 0 =⇒ x0 = c.

Thus, θ(t,x0) = x0e−Vt is the solution to (1.6) where it shows the path of an individual

through a disease compartment from initial exposure through to recovery. Then, we can let the

exponential of the solution (1.6) a matrix to be defined by the Taylor series,

eM = I +M+
M2

2
+ ...+

Mk

k!
+ ... [2].

Then, x0

∫
∞

0
te−Vtdt = x0V−1 where x ≥ 0 [2] where (i, j)th entries of the matrix

V−1 is the expected time an individual is initially introduced to comparment j and spends time in

compartment i [2] and by introducing matrix F we have the following,

x0

∫
∞

0
Fe−Vtdt = FV−1x0 where x≥ 0 [2]

where (i, j)th entries of the matrix F is the rate of secondary infections produced in compartment

i by an index case in compartment j, [2]. Thus, we have the next generation matrix denoted by

KL = FV−1 at disease free equilibrium, [2]. Up to now, let us define some properties of KL.

It is is nonnengative and has nonnegative eigenvalues R0 = ρ(FV−1) that is, there is no

other eigenvalue of KL with modulus greater than R0, [2] and there is a nonnegative eigenvector
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ϕ associated with the reproduction number R0, [2]. The eigenvector is the distribution of infected

individuals which causes R0 to be the greatest number of secondary infections per generation, [2].

Then, the reproduction number and the eigenvector ϕ , and R0 can be to be the spectral radius of

KL, [2]. We will call the notation of the spectral radius as ρ(KL) which is the maximum moduli of

the eigenvalues of the matrix KL, [2].

We have two cases for KL. The first one is when the matrix is irreducible. This means

that R0 is just an eigenvalue of KL and has to be larger in modulus than all of the rest of the eigen-

values, [2]. In the second case, when the matrix is reducible, will have more positive real eigen-

vectors that correspond to R0 for each strain of the disease, [2]. This applies mostly to the cases

when we have a disease with multiple strains, [2].

Next, we need to consider some lemmas and theorems to interpret the reproduction num-

ber (R0). This is important because R0 = ρ(FV−1) follows that disease-free equilibrium is asymp-

totically stable if R0 < 1 or unstable if R0 > 1, [2].

In addition, we need to know what is the spectral bound of a matrix. If we let D to be a

matrix, then the spectral bound of D will be the maximum real part of all of the eigenvalues of D,

[2]. Then, if a matrix W has all nonnegative entries, we write W ≥ 0 and say it is a nonnegative

matrix. If D = sI−B with B≥ 0, we have a Z sign pattern whose off-diagonal entries are negative

or zero, if s≥ ρ(B) then D is an M-matrix, [2]. I stands for the identity matrix.

Lemma 2.1 [2] If D has the Z sign pattern, then D−1 ≥ 0 if and only if D is a nonsingu-

lar M-matrix .

Because of the assumptions we have stated before, we know that F is nonnegative and the off-

diagonal entries of the matrix V are negative or zero. Then, V has the Z sign pattern where the

total column sums of V are positive or zero. This implies that V is a possibly singular M-matrix

[2]. Since we assume that V is nonsingular, then V−1 ≥ 0. Thus, KL = FV−1 is nonnegative and

KL is called the next generation matrix with large domain.

Lemma 2.2 [2] If F is a nonnegative matrix and V is a nonsingular M-matrix, then

R0 = ρ(FV−1)< 1 if and only if all eigenvalues of (F−V ) have negative real parts .
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Proof: We know that F is a nonnegative matrix (F ≥ 0 ) and V is a nonsingular M-matrix.

By lemma 2.1 V−1 ≥ 0. Then, we let (I−FV−1) have the Z sign pattern and by 2.1 this implies

that (I−FV−1)≥ 0 if and only if ρ(FV−1)< 1. Then,

(V −F)−1 =V−1(I−FV−1)−1

V (V −F)−1 = (I−FV−1)−1

= I +F(V −F)−1

It follows that (V −F)−1 ≥ 0 if and only if (I−FV−1)−1 ≥ 0. Thus, we have that (V −F)

has the Z sign pattern [2] and that (V −F)−1 ≥ 0 if and only if (V −F) is not a singular M-matrix.

Hence, the eigenvalues of all of the nonsingular M-matrix have positive real parts [2].

Theorem 2.3 [2] Consider the following disease transmission model,

x′i = Fi(x,y)−Vi(x,y) i = 1, ...,n,

y′j = p j(x,y) j = 1, ...,m

Then, the disease free-equilibrium is locally asymptotically stable if R0 < 1, otherwise unstable if

R0 > 1 .

Proof: Let F be a nonnegative matrix and V be a nonsingular M-matrix. Let J2,1 and

J2,2 be matrices of partial derivatives of p with respect to x and y evaluated at the disease free-

equilibrium [2]. Then, the Jacobian matrix has the following block structure,

J =

(F−V ) 0

J2,1 J2,2


When R0 < 1 we say that the disease free-equilibrium is locally asymptotically stable if all of the

eigenvalues of the Jacobian matrix (F−V ) and J2,2 have negative real parts. By the assumption

that F is nonnegative and V is a nonsigular M-matrix and by lemma 2.2 the eigenvalues of (F−V )

have negative real parts if and only if ρ(FV−1)< 1 [3]. Thus, the disease free-equilibrium is stable

if R0 = ρ(FV−1)< 1 [2].

When R0 > 1 we say that the disease free-equilibrium is locally asymptotically unstable.

Let R0 ≤ 1 for any ε > 0, then ((1+ ε)I−FV−1) is a nonsingular M-matrix and by applying
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lemma 2.1 we know that ((1+ ε)I−FV−1)−1 ≥ 0. Also, all of the eigenvalues of ((1+ ε)V −F)

will have positive real parts by the proof of lemma 2.2 [2]. Because ε > 0 is arbitrary and the

eigenvalues are continuous functions of the entries of the matrix, it follows that (V −F) will have

nonnegative real parts [2].

Going backward, suppose the eigenvalues of (V −F) have nonnegative real parts, then for

any positive ε , (V + εI−F) has to be a nonsingular M-matrix and by applying the proof of lemma

2.2 ρ(F(V + εI)−1)< 1 [2]. Because ε > 0, we have ρ(FV−1)≤ 1. Hence, (F−V ) has at least

one eigenvalue with positive real part if and only if ρ(FV−1)> 1 and will be unstable whenever

R0 > 1 [2].

1.4.1 SEIR Basic Reproduction Number

Example 1. Consider the SEIR model that has infectivity in the exposed stage or compart-

ment.

S′ =−βS(I + εE)

E ′ = βS(I + εE)−σE

I′ = σE− γI

R′ = γI

Focusing in E, we know that we have βS(I+ εE) coming in and −σE coming out. The same thing

for I, we have σE coming in and −γI coming out. Now let us consider F to be the inputs due to

infection then, we have the following

F =

βS(I + εE)

0


Next, we consider V to be the outputs or movements of individuals so that, we have the

following

16



V =

 σE 0

−σE γI


Now, taking their respective partial derivatives we have,

F = ∂F
∂ (E,I) |DFE =

εβ β

0 0

, V = ∂V
∂ (E,I) |DFE =

 σ 0

−σ γ


By taking the inverse of V, we have the following

V−1 =
1

σγ

γ 0

σ σ

=

 1
σ

0
1
γ

1
γ


Now, we can calculate the next generation matrix with large domain for this system of

equations at the disease-free equilibrium,

KL = FV−1 =


(

εβ

σ
+

β

γ

) (
β

γ

)
0 0


The matrix FV−1 has rank 1 and has only one nonzero eigenvalue (ρ) and the trace of

FV−1 is the sum of eigenvalues. Then, we can calculate R0

R0 =
εβ

σ
+

β

γ

Since the new infections are in one compartment as in this case, the reproduction number

R0 is the trace of the matrix.

Example 2. To calculate basic reproduction number for thw SEIR model (1.3) we have to

consider equation (1.4)[2], where Fi is the rate at which secondary infections increase the i− th

ward [2] and Vi is the rate at which disease decreases in the i− th disease ward [2]. Then, we can

construct F and V as follows

F =

βSI

0

, V =

σE +µE 0

−σE γI +µI


Now, taking their respective partial derivatives at the steady point DFE = (1,0,0) (equilib-

rium point) we have,
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F = ∂F
∂ (E,I) |DFE =

β

0

, V = ∂V
∂ (E,I) |DFE =

σ +µ 0

−σ γ +µ


By taking the inverse of V, we have the following

V−1 =
1

(σ +µ)(γ +µ)

γ +µ 0

σ σ +µ

=


1

σ +µ
0

σ

(σ +µ)(γ +µ)

1
γ +µ


Now we can calculate R0 as follows

KL = FV−1 =

 βσ

(σ +µ)(γ +µ)

β

γ +µ

0 0


Thus, the eigenvalues are λ1 = 0 and λ2 =

βσ

(σ +µ)(γ +µ)
and the spectral radius is the

trace of FV−1 then, R0 = ρ(FV−1) =
βσ

(σ +µ)(γ +µ)
.

Thus, the basic reproduction in (1.3) is R0 = 9.94.
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CHAPTER II

NOSOCOMIAL EPIDEMIC

2.1 Nosocomial Epidemic and MERS-CoV Disease

The active research of mathematical models of outbreaks of infectious diseases have gen-

erated an important impact over the world. There have been suitable models for different types

of transmission of infectious diseases. There are two distinguished transmissions, one is called

zoonotic cases and the other is secondary cases. For zoonotic case, the transmission involves

interactions between animals and humans. For secondary case, it involves human-to-human trans-

mission which could happen in the community or inside a hospital. The transmission of a disease

inside a hospital is called hospital acquired infection or commonly known as a nosocomial infec-

tion.

Definition 1.4.1 A nosocomial infection, is an infectious disease acquired in a health

care facility [6].

In [4], the researchers introduce a model that considers two transmission cases: zoonotic

and secondary. They also consider symptomatic and asymptomatic individuals. They had 57%

were secondary symptomatic cases [4]. For the community model they estimated R0 to be around

.45. For the index case (animal-to-human transmission), R0 was estimated to be .84 [4]. They

developed a stochastic transmission model where they differentiated the two cases. They used

April-October 2013 data for a hospital in Saudi Arabia. In my research, I use a SEIR compart-

mental transmission model for human-to-human transmission in the hospital.

The people in hospital are divided into five compartments and in a separately manner, we

have mobile health care workers. For susceptible individuals we have Si where i = 1,2,3,4,m. In

this situation, 1 refers to reception, 2 for Intensive Care Unit (ICU) , 3 for Hemodialysis, 4 stands
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for Hospital, and m refers to mobile health care workers. Accordingly, we use Ei, Ii, Vi, HSi, HEi,

and HIi and for quarantine Q we have HQ and Qm.

In [9], researchers consider health care workers that move around and have the potential

to transmit the disease in an intensive care unit. We use this idea to produce the MERS-CoV

SEIR ward model and that every ward has its own capacity to hold patients.

In [5], authors use modeling based on the interactions in a hospital setting including the

environmental load parameter and isolation patients. We use and apply this ward model technique

as well as, the disease-free equilibrium in our model for this study.

We will use parameter values from previous studies to produce R0 and to simulate by

using different estimates for the behavior of MERS-CoV. In my research, we considered transi-

tion between wards, the rate of shedding the virus into the environment, cleaning rate, carrying

capacity, and quarantine parameters.

Table 2.1: Cosidered Parameters of MERS-CoV.

Parameter Description

ρ Rate of shedding virus into environment
bi Cleaning/removal rate for i = 1,2,3,4
κi Carrying capacity for i = 1,2,3,4 is for units
κ ′i Carrying capacity (occupancy) of HCW for i = 1,2,3,4,m is for units

2.1.1 MERS-CoV Disease

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a viral illness and the

first outbreak was reported in Jeddah, Saudi Arabia in 2012 [4]. MERS-CoV has become one of

the important nosocomial infections. It is a major health care problem in certain countries such

as South Korea [10] and Saudi Arabia [4] and [10]. In this study we are going to focus on Saudi

Arabia.

In the literature of MERS-CoV [4], data shows that hospitals are to be a major contributor

of transmission of MERS-CoV across patients, nurses, visitors, janitors and many others occur-

ring in different units. MERS-CoV infections occur mainly in the Intensive Care Unit (ICU) and

Hemodialysis (HD) units but minimal in other wards in the hospital. Spread of MERS-CoV is
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preventable via surface cleaning, hygiene (gloves, masks, etc.), machinery, ventilation, etc. Our

primary concern is on the time until diagnosis and its direction, namely, the decrease or increase

of the epidemic size.

2.2 Hypothesis MERS-CoV Modeling

Analyzing previous studies of MERS-CoV there is a general situation where health care

workers play an important role in the spread of the disease inside a hospital and, intensive care

units have the most cases. The development of control measures and active surveillance should

be implemented since they are critically needed. The objective will be the study of the spread of

this disease inside a hospital.

We introduce SEIR Ward model equilibrium where people such as Health Care Workers

(HCW) and mobile HW, who travel between wards (units), are considered to be part of the spread.

The model will be used to understand the behavior of the disease by the calculation of R0 and to

study the factors that contribute to the propagation of this disease.

2.2.1 Hospital Ward Models

We divide the hospital into a number of units or wards. In these wards the individuals in-

teract with the environment. The first unit is the Waiting room (W) where there is an in-flow and

out-flow of individuals. Patients are admitted to one of three different units: the Intensive Care

Unit (ICU), the Hemodialysis unit (HD) or the Hospital (H) which is made of several wards. The

units W, ICU, HD, and H have carrying capacities κi with i = 1,2,3,4, respectively, representing

the maximum number of patients admissible to them. We also consider a Quarantine unit (Q) that

is well isolated.

For this model, when patients (P), and health-care workers (HCW) come in contact with

the disease inside the hospital they become symptomatic. We considered two types of health-care

workers (HCW). The first type is the local HCW who do not have much contact with patients and

the mobile HCW who have more contact with patients and move around inside the hospital.

For the waiting room we consider that individuals can get infected during the time they
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stayed in the health care facilities or due to other patients around them. Also, the visitors can get

infected due to visiting patients or a health care facility.

Figure 2.1: Hospital Wards Model.
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Every ward has its own environment where cleaning plays an important factor in decon-

taminating the environment and spreading the disease. We consider human and natural overall

contaminations where dust-mops and other cleaning procedures are counted as a vector. Further-

more, the following assumptions are used to create our SEIR system of equations,

1. A 100% staffing all the time (same number of HCWs).

2. A 100% occupancy (no empty beds).

3. When a Health Care Worker goes into the infected compartment and they are not active

they can go into quarantine.

4. No vaccination.

5. 100 % efficacy of testing of the disease exists

6. Disease free system: An infected individual introduced into the population free of the

disease [2].

2.2.2 MERS-CoV Parameters

Although data is always given to estimate parameters, we have encountered a situation

where more than half of them are clueless and therefore generalized some values from [7]. The

incubation period is
1
σ

= 1. The rest of the parameter values are given in Tables 2.2, 2.3, 2.4, and

2.5.
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Hospital Parameters

Table 2.2: Hospital Parameters, Description and Base Values.

Parameter Description Base values References

α0,1 Transition rate from the community 0 to inside unit 1 .0097 assumed
α1,0 Transition rate from unit 1 to outside community 0 .0097 assumed
α1,2 Transition rate between the unit 1 to unit 2 .0097 assumed
α1,3 Transition rate between the unit 1 to unit 3 .0097 assumed
α1,4 Transition rate between the unit 1 to unit 4 .0097 assumed
α1,5 Transition rate between the unit 1 to unit 5 .0416 assumed
α2,0 Transition rate from unit 2 to outside community 0 .0097 assumed
α2,3 Transition rate from unit 2 to unit 3 .0097 assumed
α2,4 Transition rate from unit 2 to unit 4 .0097 assumed
α2,5 Transition rate from unit 2 to unit 5 .0416 assumed
α3,0 Transition rate from unit 3 to outside community 0 .0097 assumed
α3,2 Transition rate from unit 3 to unit 2 .0097 assumed
α3,4 Transition rate from unit 3 to unit 4 .0097 assumed
α3,5 Transition rate from unit 3 to unit 5 .0416 assumed
α4,0 Transition rate from unit 4 to outside community 0 .0097 assumed
α4,2 Transition rate from unit 4 to unit 2 .0097 assumed
α4,3 Transition rate from unit 4 to unit 3 .0097 assumed
α4,5 Transition rate from unit 4 to unit 3 .0416 assumed
αm,5 Transition rate from mobile HCW to unit 5 .0833 assumed
κ1 Carrying capacity (occupancy) for unit 1 Matlab assumed
κ2 Carrying capacity (occupancy) for unit 2 Matlab assumed
κ3 Carrying capacity (occupancy) for unit 3 Matlab assumed
κ4 Carrying capacity (occupancy) for unit 4 Matlab assumed
κ ′1 Carrying capacity (occupancy) of HCW for unit 1 24 assumed
κ ′2 Carrying capacity (occupancy) of HCW for unit 2 24 assumed
κ ′3 Carrying capacity (occupancy) of HCW for unit 3 24 assumed
κ ′4 Carrying capacity (occupancy) of HCW for unit 4 24 assumed
κ ′m Carrying capacity (occupancy) of mobile HCW 100 assumed
b1 Cleaning/removal rate for unit 1 .1666 assumed
b2 Cleaning/removal rate for unit 2 .1666 assumed
b3 Cleaning/removal rate for unit 3 .1666 assumed
b4 Cleaning/removal rate for unit 4 .1666 assumed
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Disease Parameters

Table 2.3: Disease Parameters, Description and Base Values.

Parameter Description Base values References

β1 Human to human transmission rate from unit 1 .0022 assumed
β2 Human to human transmission rate from unit 2 .0022 assumed
β3 Human to human transmission rate from unit 3 .0022 assumed
β4 Human to human transmission rate from unit 4 .0022 assumed
β ′1 Environment to human transmission rate from unit 1 .0024 assumed
β ′2 Environment to human transmission rate from unit 2 .0022 assumed
β ′3 Environment to human transmission rate from unit 3 .0022 assumed
β ′4 Environment to human transmission rate from unit 4 .0022 assumed
σ Rate of becoming infectious .0059 assumed
ρ Rate of shedding virus into the environment 1 assumed
ε Modulation of HCW for shedding into the environment 1 assumed
ξ Modulation of mobile HCW for shedding into the environment 1 assumed
δ Natural removal rate 1 assumed
c Reduction factor for exposed 1 assumed

Community Parameters

Table 2.4: Community Parameters, Description and Dase Values.

Parameter Description Base values References

PE Probability that admitted person is exposed 0 assumed
PI Probability that admitted person is infected .001 assumed
N Number of people in community 1,000,000 assumed
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HCW (disease) Parameters

Table 2.5: HCW (disease) Parameters, Description and Base Values.

Parameter Description Base values References

β2,H Human to Human transmission rate from unit 2 to a HCW .0138 assumed
β3,H Human to Human transmission rate from unit 3 to a HCW .0138 assumed
β4,H Human to Human transmission rate from unit 4 to a HCW .0138 assumed
βm Human to Human transmission rate to a mobile HCW .0416 assumed

β ′2,H Environment to human transmission rate from unit 2 to a HCW .0370 assumed
β ′3,H Environment to human transmission rate from unit 3 to a HCW .0370 assumed
β ′4,H Environment to human transmission rate from unit 4 to a HCW .0370 assumed
β ′m Environment to human transmission rate to a mobile HCW .0250 assumed

2.2.3 Ward SEIR Transmission Model

To understand the spread of the nosocomial disease, we consider the following SEIR-

Ward Model, where S is the number of susceptible, E is the number of exposed, I is the number

of infected, R is the number of recovered, and V the viral load in the environment, with all of

those quantities indexed by the unit. The system of equations is at equilibrium and S′+E ′+ I′ = 0

and HS′ + HE ′ + HI′ = 0. For health-care workers, HS is the number of susceptible, HE is

the number of exposed, HI is the number of infected. We only consider mobility in ICU, HD,

and hospitals wards, since for waiting room, we assumed to have no transfer rate of HCW. (See

Appendix C for SEIR Ward Model Transition Diagram).

1) Reception/Waiting room

dS1

dt
=−β1S1(cE1 + I1)−β ′1S1V1 +α0,1(1−PE −PI)N− (α1,0 +α1,2 +α1,3 +α1,4)S1

dE1

dt
= β1(κ1−E1− I1)(cE1 + I1)+β ′1(κ1−E1− I1)V1 +α0,1PEN− (α1,0 +α1,2 +α1,3 +

α1,4)E1

I1 is the number of super-spreader or community-acquired infectious individuals and is given by,
dI1

dt
= α0,1PIN− (α1,2 +α1,3 +α1,4)I1

dV1

dt
= ρ(cE1 + I1)− (b1 +δ )V1

Such that 0≤ S1 +E1 + I1 = κ1 (notice the waiting room is not always full but we assume 100%

occupancy)
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Where PE is the probability that admitted individual is exposed and PI is admitted individual is in-

fected. Due to have one index case, we assume that, PE = 0 and PI =
1

α0,1N
=

1
(α1,2 +α1,3 +α1,4)κ1

.

The previous probabilities depend on the levels of the disease in the population and where α0,1

means people coming from the community goes inside the hospital. We let α1,5 = 0 since there is

no testing right away in waiting room .

The unit capacity stability entails that:

α0,1N = (α1,2 +α1,3 +α1,4)κ1

where N is the target population and by solving for κ1 we have,

κ1 =
α0,1N

(α1,2 +α1,3 +α1,4)

It is preferable to estimate αi, j independently as it is independent of the disease.

Thus, S1 = κ1−E1− I1, which makes the equation for
dS1

dt
redundant.
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2) Intensive Care Unit (ICU)

dS2

dt
= −β2S2(c(E2 +HE2 + ξ HEm)+ I2)−β ′2S2V2 +α1,2S1 +α3,2S3 +α4,2S4− (α2,0 +

α2,3 +α2,4)S2

dE2

dt
= β2(κ2−E2− I2)(c(E2 +HE2 + ξ HEm) + I2) + β ′2(κ2−E2− I2)V2 +α1,2E1 +

α3,2E3 +α4,2E4− (α2,0 +α2,3 +α2,4)E2−σE2

dI2

dt
= σE2 +α1,2I1 +α3,2I3 +α4,2I4− (α2,3 +α2,4 +α2,5)I2

dHS2

dt
= σHE2−β2,HHS2(c(E2 +HE2 +ξ HEm)+ I2)−β ′2,HHS2V2

dHE2

dt
= β2,H(κ

′
2−HE2)(c(E2 +HE2 +ξ HEm)+ I2)+β ′2,H(κ

′
2−HE2)V2−σHE2

dHI2

dt
= σHE2−α2,5HI2

dV2

dt
= ρ(c(E2 + εHE2 +ξ HEm)+ I2)− (b2 +δ )V2

Such that 0≤ S2 +E2 + I2 = κ2 and 0≤ HS2 +HE2 = κ ′2

The unit capacity stability entails that:

α1,2κ1 +α3,2κ3 +α4,2κ4 = ᾱ2κ2 where ᾱ2 = α2,0 +α2,3 +α2,4

and by solving for κ2 we have,

κ2 =
κ1

α2,3
(ᾱ3 (z+ad)−α1,3−aα4,3)

a =

(
α1,4−

α2,4α1,3

α2,3
+ f z

)
/

(
ᾱ4 +

α2,4α4,3

α2,3
− f d

)
z = (ᾱ2α1,3 +α1,2α2,3)/(ᾱ2ᾱ3−α3,2α2,3)

d = (ᾱ2α4,3 +α4,2α2,3)/(ᾱ2ᾱ3−α3,2α2,3)

f = α3,4 +
α2,4ᾱ3

α2,3

Where, S2 = κ2−E2− I2
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3) Hemodialysis (HD)

dS3

dt
= −β3S3(c(E3 +HE3 + ξ HEm)+ I3)−β ′3S3V3 +α1,3S1 +α2,3S2 +α4,3S4− (α3,0 +

α3,2 +α3,4)S3

dE3

dt
= β3(κ3−E3− I3)(c(E3 +HE3 + ξ HEm) + I3) + β ′3(κ3−E3− I3)V3 +α1,3E1 +

α2,3E2 +α4,3E4− (α3,0 +α3,2 +α3,4)E3−σE3

dI3

dt
= σE3 +α1,3I1 +α2,3I2 +α4,3I4− (α3,2 +α3,4 +α3,5)I3

dHS3

dt
= σHE3−β3,HHS3(c(E3 +HE3 +ξ HEm)+ I3)−β ′3,HHS3V3

dHE3

dt
= β3,H(κ

′
3−HE3)(c(E3 +HE3 +ξ HEm)+ I3)+β ′3,H(κ

′
3−HE3)V3−σHE3

dHI3

dt
= σHE3−α3,5HI3

dV3

dt
= ρ(c(E3 + εHE3 +ξ HEm)+ I3)− (b3 +δ )V3

Such that 0≤ S3 +E3 + I3 = κ3 and 0≤ HS3 +HE3 = κ ′3

The unit capacity stability entails that:

α1,3κ1 +α2,3κ2 +α4,3κ4 = ᾱ3κ3

ᾱ3 = α3,0 +α3,2 +α3,4

and by solving for κ3 we have, κ3 = κ1 (z+ad) where, S3 = κ3−E3− I3
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4) Hospital (Wards)

dS4

dt
= −β4S4(c(E4 +HE4 + ξ HEm)+ I4)−β ′4S4V4 +α1,4S1 +α2,4S2 +α3,4S3− (α4,0 +

α4,2 +α4,3)S4

dE4

dt
= β4(κ4−E4− I4)(c(E4 +HE4 + ξ HEm) + I4) + β ′4(κ4−E4− I4)V4 +α1,4E1 +

α2,4E2 +α3,4E3− (α4,0 +α4,2 +α4,3)E4−σE4

dI4

dt
= σE4 +α1,4I1 +α2,4I2 +α3,4I3− (α4,2 +α4,3 +α4,5)I4

dHS4

dt
= σHE4−β4,HHS4(c(E4 +HE4 +ξ HEm)+ I4)−β ′4,HHS4V4

dHE4

dt
= β4,H(κ

′
4−HE4)(c(E4 +HE4 +ξ HEm)+ I4)+β ′4,H(κ

′
4−HE4)V4−σHE4

dHI4

dt
= σHE4−α4,5HI4

dV4

dt
= ρ(c(E4 + εHE4 +ξ HEm)+ I4)− (b4 +δ )V4

Such that 0≤ S4 +E4 + I4 = κ4 and 0≤ HS4 +HE4 = κ ′4

The unit capacity stability entails that:

α1,4κ1 +α2,4κ2 +α3,4κ3 = (α4,0 +α4,2 +α4,3)κ4

and by solving for κ4 we have, κ4 = aκ1 where, S4 = κ4−E4− I4
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5) Mobile HCW

dHSm

dt
= σHEm−βmHSm(c(E2 +E3 +E4 +HE2 +HE3 +HE4 +HEm)+ I2 + I3 + I4)−

β ′mHSm(V2 +V3 +V4)

dHEm

dt
= βm(κ

′
m−HEm)(c(E2 +E3 +E4 +HE2 +HE3 +HE4 +HEm)+ I2 + I3 + I4)+

β ′m(κ
′
m−HEm)(V2 +V3 +V4)−σHEm

dHIm

dt
= σHEm−αm,5HIm

Such that 0≤ HSm +HEm = κ ′m

6) Quarantine (isolation)

dQ
dt

= α1,5I1 +α2,5I2 +α3,5I3 +α4,5I4

dQH

dt
= α2,5HI2 +α3,5HI3 +α4,5HI4

dQm

dt
= αm,5HIm

2.3 NGMof MERS-CoV and Disease Free Equilibrium Point

Up to now, we can construct our matrices to do next generation matrix for MERS-CoV.

Let the disease free state be DFE ≡ (E∗1 , I
∗
1 ,V

∗
1 ,E

∗
2 , I
∗
2 ,HE∗2 ,HI∗2 ,V

∗
2 ,E

∗
3 , I
∗
3 ,HE∗3 ,HI∗3 ,V

∗
3

,E∗4 , I
∗
4 ,HE∗4 ,HI∗4 ,V

∗
4 ,HE∗m,HI∗m) = 0 which is an equilibrium point, and where 0 is a 20x1 zero

vector. (See Appendix A)
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F =



β1(κ1−E1− I1)(cE1 + I1)+β ′1(κ1−E1− I1)V1

0

0

β2(κ2−E2− I2)(c(E2 +HE2 +ξ HEm)+ I2)+β ′2(κ2−E2− I2)V2

0

β2,H(κ
′
2−HE2)(c(E2 +HE2 +ξ HEm)+ I2)+β ′2,H(κ

′
2−HE2)V2

0

0

β3(κ3−E3− I3)(c(E3 +HE3 +ξ HEm)+ I3)+β ′3(κ3−E3− I3)V3

0

β3,H(κ
′
3−HE3)(c(E3 +HE3 +ξ HEm)+ I3)+β ′3,H(κ

′
3−HE3)V3

0

0

β4(κ4−E4− I4)(c(E4 +HE4 +ξ HEm)+ I4)+β ′4(κ4−E4− I4)V4

0

β4,H(κ
′
4−HE4)(c(E4 +HE4 +ξ HEm)+ I4)+β ′4,H(κ

′
4−HE4)V4

0

0

βm(κ
′
m−HEm)(c(E2 +E3 +E4 +HE2 +HE3 +HE4 +HEm)+ I2 + I3 + I4)+β ′m(κ

′
m−HEm)(V2 +V3 +V4)

0


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V =



−α0,1PEN +(α1,0 +α1,2 +α1,3 +α1,4)E1

−α0,1PIN +(α1,2 +α1,3 +α1,4)I1

−ρ(cE1 + I1)+(b1 +δ )V1

−(α1,2E1 +α3,2E3 +α4,2E4)+(α2,0 +α2,3 +α2,4)E2 +σE2

−(σE2 +α1,2I1 +α3,2I3 +α4,2I4)+(α2,3 +α2,4 +α2,5)I2

σHE2

−σHE2 +α2,5HI2

−ρ(c(E2 + εHE2 +ξ HEm)+ I2)+(b2 +δ )V2

−(α1,3E1 +α2,3E2 +α4,3E4)+(α3,0 +α3,2 +α3,4)E3 +σE3

−(σE3 +α1,3I1 +α2,3I2 +α4,3I4)+(α3,2 +α3,4 +α3,5)I3

σHE3

−σHE3 +α3,5HI3

−ρ(c(E3 + εHE3 +ξ HEm)+ I3)+(b3 +δ )V3

−(α1,4E1 +α2,4E2 +α3,4E3)+(α4,0 +α4,2 +α4,3)E4 +σE4

−(σE4 +α1,4I1 +α2,4I2 +α3,4I3)+(α4,2 +α4,3 +α4,5)I4

σHE4

−σHE4 +α4,5HI4

−ρ(c(E4 + εHE4 +ξ HEm)+ I4)+(b4 +δ )V4

σHEm

−σHEm +αm,5HIm


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CHAPTER III

MODEL ANALYSIS AND VALIDATION

3.1 Simulations

Using the estimated parameters in Table 3.1, the equations of MERS-CoV model were

solved numerically using ode45 in Matlab (see code in Appendix B).

Table 3.1: Set 1 of β Values

Parameter Description Base Values
βi Human to human transmission rate where i = 1,2,3,4 (units) .0022
β ′i Environment to human transmission rate where i = 1,2,3,4 .0024

βi,H Human to human transmission rate from units i = 2,3,4 to a HCW .0138
β ′i,H Environment to human transmission rate from i = 2,3,4 to a HCW .0370
βm Human to human transmission rate to a mobile HCW .0416
β ′m Environment to human transmission rate .0250

3.1.1 Simulation of infected patients
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Figure 3.1: Infected Patients.
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In Figure 3.1 (a), the number of infected patients (I2 and I3) increases and I1 decreases

at the beginning of the transmission of the disease. By letting β1 = β2 = β3 = β4 = .0022 the

number of infected increases at the same time in wards 2, 3, and 4. This means that, in ICU, HD,

and other wards, there is a prevalence of the disease. After t = 0, I1 detaches from the rest of the

curves, since in ward 1 (reception or waiting room) have not HCW, we may assume there is no

high transmission disease. If we look closer to to I1, Figure 3.1 (b), it is seen that it does not go

stable. At the beginning, there are not many infected individuals.

3.1.2 Simulation of exposed patients
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Figure 3.2: Exposed Patients.

In Figure 3.2, the number of all exposed patients increases and slightly decreases after

t = 10. Number of exposed patients increases at the same time in wards 1, 2, and 3. Meaning

that almost all of the individuals have a higher exposure to the disease. After t = 0, E4 detaches

from the rest of the curves, where it decreases faster than the rest. We may conclude that in ward

4 (referring to E4) there are not many in/out flow of individuals as in other hospital wards.
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3.1.3 Simulation of exposed and infected patients
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Figure 3.3: Exposed and Infected Patients in Ward 1.
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Figure 3.4: E and I Patients in Ward 1.

The exposed variable (E1) in Figures 3.3 and 3.4 (a), will increase faster and after t = 0,

it will be stable. However, in Figure 3.4 (b) the infected variable (I1) will not be stable and it will

barely increase at a low rate with a certainty that almost zero patients will not be infected.
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Figure 3.5: Exposed and Infected Patients in Ward 2.
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Figure 3.6: E and I Patients in Ward 2.

The exposed variable (E2) in Figures 3.5 and 3.6 (a), will increase faster and after t = 0, it

will decrease but will not reach stability. However, in Figure 3.6 (b) the infected variable (I2) will

not be stable and it will barely increase at a low rate after the exposed one decreases.
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3.1.4 Simulation of infected HCW

Now, consider infected HCW with the same value of β1 = β2 = β3 = β4 = .0022.
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Figure 3.7: Infected HCW.

It is clear in Figure 3.7 (a) the number of infected HCW2, HCW3, and HCWM increase

more rapidly than HCW in ward 4 that has fewer infected individuals. We can assume that

HCW2,3,m are the ones that contribute to the propagation of the disease. Another way to see this

is that mobile HCW are moving more in those units than any other one. On the other hand, HI4

increases at a lower pace (Figure 3.7 (b).

3.1.5 Simulation for mobile HCW

The mobile HCW for exposed and infected are shown in following Figure 3.8.
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Figure 3.8: Exposed and Infected Mobile HCW.
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Figure 3.9: E and I Mobile HCW.

The number of exposed mobile HCW increases from the beginning of the transmission

of disease at a faster rate than infected mobile HCW (Figure 3.8). And at some point in time,

exposed mobile HCW will stabilize (Figure 3.9 (a)) which means that no more HCW will be

exposed. Instead, infected mobile HCW (Figure 3.9 (b)) seems to be stable at the beginning but,

in fact it is not so it keeps increasing at a slow pace.
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3.1.6 Simulation for quarantine patients

In the hospital there is only one ward to treat patients and HCW of MERS-CoV disease.

Those who get infected go immediately to quarantine and in a mathematical perspective it is

treated separately from the rest of the wards and equations.
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Figure 3.10: Quarantine Patients.

This figure represents that quarantine is cumulative which means there is no outflow of

individuals. The appropriate reason for this graph is that the number of discovered cases goes to

quarantine and stayed isolated.

Conclusion

Overall, the figures showed that exposed variables in any ward have higher number of pa-

tients than other. This indicates that people are carrying the disease and transmit it at some point

in time. The graphs tell us that number of infected individuals does not increase faster than for

the exposed ones. This could lead that the parameter β has a low value. The basic reproduction

number for this simulation were calculated by using ode45 in Matlab and came to be R0 = 2.9252.

This means that R0 > 1 and an outbreak of the disease will be epidemic.

Similar results were given by considering another value for parameter βi.
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CHAPTER IV

CONCLUSION

This thesis emphasizes the analysis of the behavior of MERS-CoV disease in a hospital

by using SEIR ward model. The next generation matrix and its properties were used to calculate

the basic reproduction number by using Matlab codes to develop different simulations.

For future work, we would like to have real data so that we can analyze MERS-CoV disease in a

deeper way and to hunt which factors contribute more to the propagation in a hospital by doing

sensitivity analysis. Some questions that would be for future work are given below,

• Why is it too contagious among humans?

• Does only Hemodialysis unit have a higher transmission risk? [1]

And our future goals are the following:

1. To find the carriers that probably contribute to a large spread inside hospitals

2. To implement certain control measures such as:

[a] Cohorting (Doctor are assigned to small and fixed number of patients)

[b] Hygiene practices

3. To find out if there is an effective

[a] Rapid Diagnostic Test (parameter α.,5)

[b] Active surveillance.

Also, to estimate quarantine variables: Q,QH ,Qm by using the method of non-linear least

squares would be beneficial after obtaining real data.
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F2,5 =


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0 0
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0 0

0 0



F3,5 =



β3κ3cξ −β3E3cξ −β3I3cξ 0

0 0
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0 0

0 0



F4,5 =
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0 0
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0 0


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βmκ ′mc−βmcHEm βmκ ′m−βmHEm βmκ ′mc−βmcHEm 0 βmκ ′m−βmHEm

0 0 0 0 0



F5,3 =

βmκ ′mc−βmcHEm βmκ ′m−βmHEm βmκ ′mc−βmcHEm 0 βmκ ′m−βmHEm

0 0 0 0 0



F5,4 =

βmκ ′mc−βmcHEm βmκ ′m−βmHEm βmκ ′mc−βmcHEm 0 βmκ ′m−βmHEm

0 0 0 0 0


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At the DFE F ′ is the matrix F given by

F = F ′|DFE =



F1,1 0 0 0 0

0 F2,2 0 0 F2,5

0 0 F3,3 0 F3,5

0 0 0 F4,4 F4,5

0 F5,2 F5,3 F5,4 F5,5


Where the block matrices are

F1,1 =


β1κ1c β1κ1 β ′1κ1

0 0 0

0 0 0



F2,2 =



β2κ2c β2κ2 β2κ2c 0 β ′2κ2

0 0 0 0 0

β2,Hκ ′2c β2,Hκ ′2 β2,Hκ ′2c 0 β ′2,Hκ ′2

0 0 0 0 0

0 0 0 0 0



F3,3 =



β3κ3c β3κ3 β3κ3c 0 β ′3κ3

0 0 0 0 0

β3,Hκ ′3c β3,Hκ ′3 β3,Hκ ′3c 0 β ′3,Hκ ′3

0 0 0 0 0

0 0 0 0 0


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F4,4 =



β4κ4c β4κ4 β4κ4c 0 β ′4κ4

0 0 0 0 0

β4,Hκ ′4c β4,Hκ ′4 β4,Hκ ′4c 0 β ′4,Hκ ′4

0 0 0 0 0

0 0 0 0 0


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

βmκ ′mc 0

0 0

0 0

0 0

0 0



F2,5 =



β2κ2cξ 0

0 0

β2,Hκ ′2cξ 0

0 0

0 0



F3,5 =



β3κ3cξ 0

0 0

β3,Hκ ′3cξ 0

0 0

0 0


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F4,5 =



β4κ4cξ 0

0 0

β4,Hκ ′4cξ 0

0 0

0 0



F5,2 =

βmκ ′mc βmκ ′m βmκ ′mc 0 βmκ ′m

0 0 0 0 0



F5,3 =

βmκ ′mc βmκ ′m βmκ ′mc 0 βmκ ′m

0 0 0 0 0



F5,4 =

βmκ ′mc βmκ ′m βmκ ′mc 0 βmκ ′m

0 0 0 0 0


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Matrix V

Plot Matrix for V which is equal to V ′ at the DFE

V = V ′ =



V1,1 0 0 0 0

V2,1 V2,2 V2,3 V2,4 V2,5

V3,1 V3,2 V3,3 V3,4 V3,5

V4,1 V4,2 V4,3 V4,4 V4,5

V5,1 V5,2 V5,3 V5,4 V5,5


(1.1)

Where the block matrices are

V1,1 =


α1,0 +α1,2 +α1,3 +α1,4 0 0

0 α1,2 +α1,3 +α1,4 0

−ρc −ρ b1 +δ



V2,1 =



−α1,2 0 0

0 −α1,2 0

0 0 0

0 0 0

0 0 0



V2,2 =



α2,0 +α2,3 +α2,4 +σ 0 0 0 0

−σ α2,3 +α2,4 +α2,5 0 0 0

0 0 σ 0 0

0 0 −σ α2,5 0

−ρc −ρ −ρcε 0 b2 +δ


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V2,3 =



−α3,2 0 0 0 0

0 −α3,2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V2,4 =



−α4,2 0 0 0 0

0 −α4,2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V2,5 =



0 0

0 0

0 0

0 0

−ρcξ 0



V3,1 =



−α1,3 0 0

0 −α1,3 0

0 0 0

0 0 0

0 0 0


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V3,2 =



−α2,3 0 0 0 0

0 −α2,3 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V3,3 =



α3,0 +α3,2 +α3,4 +σ 0 0 0 0

−σ α3,2 +α3,4 +α3,5 0 0 0

0 0 σ 0 0

0 0 −σ α3,5 0

−ρc −ρ −ρcε 0 b3 +δ



V3,4 =



−α4,3 0 0 0 0

0 −α4,3 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V3,5 =



0 0

0 0

0 0

0 0

−ρcξ 0


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V4,1 =



−α1,4 0 0

0 −α1,4 0

0 0 0

0 0 0

0 0 0



V4,2 =



−α2,4 0 0 0 0

0 −α2,4 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V4,3 =



−α3,4 0 0 0 0

0 −α3,4 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



V4,4 =



α4,0 +α4,2 +α4,3 +σ 0 0 0 0

−σ α4,2 +α4,3 +α4,5 0 0 0

0 0 σ 0 0

0 0 −σ α4,5 0

−ρc −ρ −ρcε 0 b4 +δ


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V4,5 =



0 0

0 0

0 0

0 0

−ρcξ 0



V5,1 =

0 0 0

0 0 0



V5,2 =

0 0 0 0 0

0 0 0 0 0


V5,3 =

0 0 0 0 0

0 0 0 0 0



V5,4 =

0 0 0 0 0

0 0 0 0 0



V5,5 =

 σ 0 0 0

−σ αm,5 0 0


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APPENDIX B

MATLAB CODE

%% This part runs the numerical solution

%%of the ODE using Runga-Kutta 4,5 and plots I

clear all

clc

y=100; tey=1000; te=tey*y;

xspan = linspace(0,y,1+te);

ynot = [1 0 zeros(1,21)];

beta=.0469;betap=.0024;betah=.0338;betahp=.0370;betam=.0816;betamp=.0250;

rho=1;

[X,Y] =

ode45(@odeseir_TORed,xspan,ynot,[],beta,betap,betah,betahp,betam,betamp,rho);

% List from the odeseir file

E1=Y(:,1)';

I1=Y(:,2)';

E2=Y(:,4)';

I2=Y(:,5)';

HE2=Y(:,6)';

HI2=Y(:,7)';

E3=Y(:,9)';
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I3=Y(:,10)';

HE3=Y(:,11)';

HI3=Y(:,12)';

E4=Y(:,14)';

I4=Y(:,15)';

HE4=Y(:,16)';

HI4=Y(:,17)';

HEM=Y(:,19)';

HIM=Y(:,20)';

Q=Y(:,21)';

QH=Y(:,22)';

Qm=Y(:,23)';

%This is the ODE SEIR function

function xprime = odeseir_TORed(t,x,beta,betap,betah,betahp,betam,betamp,rho)

%% List of variables

% 1) Reception/Waiting room

% x(1) = E1

% x(2) = I1 % super spreader

% x(3) = V1

% 2) ICU

% x(4) = E2

% x(5) = I2

% x(6) = HE2

% x(7) = HI2

% x(8) = V2

% 3) Hemodialysis

% x(9) = E3
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% x(10) = I3

% x(11) = HE3

% x(12) = HI3

% x(13) = V3

% 4) Hospital (Wards)

% x(14) = E4

% x(15) = I4

% x(16) = HE4

% x(17) = HI4

% x(18) = V4

% 5) Mobile for HCW

% x(19) = HEM

% x(20) = HIM

% 6) Quarantine (isolation)

% x(21) = Q

% x(22) = QH

% x(23) = Qm

% 7) Recovery and Death

% x(24) = R

% x(25) = D

%Parameters

%Alphas

alpha12= .0097;

alpha13= .0097;

alpha14= .0097;

alpha20= .0097;
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alpha23= .0097;

alpha24= .0097;

alpha30= .0097;

alpha32= .0097;

alpha34= .0097;

alpha40= .0097;

alpha42= .0097;

alpha43= .0097;

alphabar2= (alpha20+alpha23+alpha24);

alphabar3= (alpha30+alpha32+alpha34);

alphabar4= (alpha40+alpha42+alpha43);

% 1) Reception/Waiting

beta1=beta;

beta1p=betap;

alpha01in=.00001;

alpha10out=.001;

alpha15= .04166;

PE=0;

PI=.001;

b1=.1666;

% 2) ICU

beta2=beta;

beta2p=betap;

alpha25= .0416;

beta2h= betah;

beta2hp= betahp;

b2=.1666;
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% 3) Hemodialysis

beta3= beta;

beta3p= betap;

alpha35= .04166;

beta3h= betah;

beta3hp= betahp;

b3=.1666;

% 4) Hospital Wards

beta4= beta;

beta4p= betap;

alpha45= .0416;

beta4h= betah;

beta4hp= betahp;

b4= .1666;

%%%%%%% General

N=1000000;

sigma= .005952381;

c= 1;

epsilon= 1;

xi= 1;

delta= 1;

alpham5=.0833;

kappa2p=24;

kappa3p=24;
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kappa4p=24;

kappamp=100;

%% Auxiliary variables

f = alpha34 + (alpha24*alphabar3)/(alpha23);

z = ((alphabar2*alpha13)+(alpha12*alpha23))/

((alphabar2*alphabar3)-(alpha32*alpha23));

d = ((alphabar2*alpha43)+(alpha42*alpha23))/

((alphabar2*alphabar3)-(alpha32*alpha23));

a = (alpha14 - (alpha24*alpha13)/

(alpha23) + f*z)/(alphabar4 + (alpha24*alpha43)/(alpha23) - f*d);

%% Unit capacity stability

kappa1=(alpha01in*N)/(alpha12+alpha13+alpha14);

kappa2=(kappa1/alpha23)*(alphabar3*(z+d*a)-alpha13-alpha43*a);

kappa3=kappa1*(z+d*a);

kappa4=kappa1*a;

%% Reception/Waiting Room

xprime(1) = beta1*(kappa1-x(1)-x(2))*(c*x(1)+x(2))+
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beta1p*(kappa1-x(1)-x(2))*x(3)+alpha01in*PE*N-

(alpha10out+alpha12+alpha13+alpha14)*x(1);

xprime(2) = alpha01in*PI*N-(alpha12+alpha13+alpha14)*x(2);

% Environvemnt

xprime(3) = rho*(c*x(1)+x(2))-(b1+delta)*x(3);

%% ICU

xprime(4) = beta2*(kappa2-x(4)-x(5))*(c*(x(4)+ x(6)+ xi*x(19))+ x(5))+

beta2p*(kappa2-x(4)-x(5))*x(8)+alpha12*x(1)+alpha32*x(9)+alpha42*x(14)-

(alpha20+alpha23+alpha24)*x(4)-sigma*x(4);

xprime(5) = sigma*x(4)+alpha12*x(2)+alpha32*x(10)+alpha42*x(15)-

(alpha23+alpha24+alpha25)*x(5); %-mu*x(5);

%ICU HCW

xprime(6) = beta2h*(kappa2p-x(6))*(c*(x(4)+ x(6)+ xi*x(19))+x(5))+

beta2hp*(kappa2p-x(6))*x(8)-sigma*x(6);

xprime(7) = sigma*x(6)-alpha25*x(7);

% Environvemnt

xprime(8) = rho*(c*(x(4)+ epsilon*x(6)+ xi*x(19))+x(5))-(b2+delta)*x(8);

%% Hemodialysis

xprime(9) = beta3*(kappa3-x(9)-x(10))*(c*(x(9)+ x(11)+ xi*x(19))+ x(10))+

beta3p*(kappa3-x(9)-x(10))*x(13)+alpha13*x(1)+alpha23*x(4)+alpha43*x(14)-

(alpha30+alpha32+alpha34)*x(9)-sigma*x(9);

xprime(10) = sigma*x(9)+alpha13*x(2)+alpha23*x(5)+alpha43*x(15)-

(alpha32+alpha34+alpha35)*x(10); %-mu*x(10);

%Hemodialysis HCW

xprime(11) = beta3h*(kappa3p-x(11))*(c*(x(9)+ x(11)+ xi*x(19))+x(10))+

beta3hp*(kappa3p-x(11))*x(13)-sigma*x(11);

xprime(12) = sigma*x(11)-alpha35*x(12);
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% Environvemnt

xprime(13) = rho*(c*(x(9)+ epsilon*x(11)+ xi*x(19))

+x(10))-(b3+delta)*x(13);

%% Hospital Wards

xprime(14) = beta4*(kappa4-x(14)-x(15))*(c*(x(14)+ x(16)

+ xi*x(19))+ x(15))+ beta4p*(kappa4-x(14)-x(15))*x(18)+alpha14*x(1)

+alpha24*x(4)+alpha34*x(9)-

(alpha40+alpha42+alpha43)*x(14)-sigma*x(14);

xprime(15) = sigma*x(14)+alpha14*x(2)+alpha24*x(5)+alpha34*x(10)-

(alpha42+alpha43+alpha45)*x(15);

%Hemodialysis HCW

xprime(16) = beta4h*(kappa4p-x(16))*(c*(x(14)+ x(16)+ xi*x(19))+x(15))+

beta4hp*(kappa4p-x(16))*x(18)-sigma*x(16);

xprime(17) = sigma*x(16)-alpha45*x(17);

% Environvemnt

xprime(18) = rho*(c*(x(14)+ epsilon*x(16)

+ xi*x(19))+x(15))-(b4+delta)*x(18);

%% Mobile HCW

xprime(19) = betam*(kappamp-x(19))*(c*(x(4)+ x(9)+ x(14)+x(6)+x(11)

+x(16)+x(19))+x(5)+x(10)+x(15))

+betamp*(kappamp-x(19))*(x(8)+x(13)+x(18))-sigma*x(19);

xprime(20) = sigma*x(19)-alpham5*x(20);

%% Quarantine

xprime(21) = alpha15*x(2)+alpha25*x(5)+alpha35*x(10)+alpha45*x(15);

xprime(22) = alpha25*x(7)+alpha35*x(12)+alpha45*x(17);

% This ensures that the vector returned is a column vector

xprime = real(xprime(:));

function r0=R0(alpha12,alpha13,alpha14,alpha20,

alpha23,alpha24,alpha30,alpha32,alpha34,alpha40,...
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alpha42,alpha43,alphabar2,alphabar3,

alphabar4,beta1,beta1p,alpha01in,alpha10out,alpha15,...

b1,beta2,beta2p,alpha25,beta2h,beta2hp,b2,

beta3,beta3p,alpha35,beta3h,beta3hp,...

b3,beta4,beta4p,alpha45,beta4h,beta4hp,b4,

betam,N,sigma,c,epsilon,xi,...

rho,delta,alpham5,kappa2p,kappa3p,kappa4p,kappamp)

%% Auxiliary variables

f = alpha34 + (alpha24*alphabar3)/(alpha23);

z = ((alphabar2*alpha13)+(alpha12*alpha23))/

((alphabar2*alphabar3)-(alpha32*alpha23));

d = ((alphabar2*alpha43)+(alpha42*alpha23))/

((alphabar2*alphabar3)-(alpha32*alpha23));

a = (alpha14 - (alpha24*alpha13)/

(alpha23) + f*z)/(alphabar4 + (alpha24*alpha43)/(alpha23) - f*d);

%% Unit capacity stability

kappa1=(alpha01in*N)/(alpha12+alpha13+alpha14);

kappa2=(kappa1/alpha23)*(alphabar3*(z+d*a)-alpha13-alpha43*a);

kappa3=kappa1*(z+d*a);

kappa4=kappa1*a;
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%% Plots Matrices for F

F11 = [beta1*kappa1*c, beta1*kappa1, beta1p*kappa1; 0,0,0; 0,0,0];

F12 = zeros(3,5);

F13 = F12;

F14 = F12;

F15 = zeros(3,2);

%%

F21 = F12';

F22 = [beta2*kappa2*c, beta2*kappa2, beta2*kappa2*c,

0, beta2p*kappa2; 0,0,0,0,0;

beta2h*kappa2p*c, beta2h*kappa2p, beta2h*kappa2p*c,

0, beta2hp*kappa2p;0,0,0,0,0;

0,0,0,0,0];

F23 = zeros(5,5);

F24 = F23;

F25 = zeros(5,2);

F25(1,1) = beta2*kappa2*c*xi;

F25(3,1) = beta2h*kappa2p*c*xi;

%%

F31 = F12';
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F32 = F23;

F33 = [beta3*kappa3*c, beta3*kappa3, beta3*kappa3*c,

0, beta3p*kappa3; 0,0,0,0,0;

beta3h*kappa3p*c, beta3h*kappa3p, beta3h*kappa3p*c,

0, beta3hp*kappa3p; 0,0,0,0,0;

0,0,0,0,0];

F34 = F23;

F35 = zeros(5,2);

F35(1,1) = beta3*kappa3*c*xi;

F35(3,1) = beta3h*kappa3p*c*xi;

%%

F41 = F12';

F42 = F23;

F43 = F23;

F44 = [beta4*kappa4*c, beta4*kappa4, beta4*kappa4*c,

0, beta4p*kappa4; 0,0,0,0,0;

beta4h*kappa4p*c, beta4h*kappa4p, beta4h*kappa4p*c,

0, beta4hp*kappa4p; 0,0,0,0,0;

0,0,0,0,0];

F45 = zeros(5,2);
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F45(1,1) = beta4*kappa4*c*xi;

F45(3,1) = beta4h*kappa4p*c*xi;

%%

F51 = zeros(2,3);

F52 = [betam*kappamp*c, betam*kappamp, betam*kappamp*c, 0,

betam*kappamp;zeros(1,5)];

F53 = F52;

F54 = F52;

F55 = zeros(2,2);

F55(1,1)= betam*kappamp*c;

%% Plot Matrices for V

V11 = [(alpha10out+alpha12+alpha13+alpha14), 0, 0; 0,

(alpha12+alpha13+alpha14), 0; -1*rho*c, -1*rho, (b1+delta)];

V12 = zeros(3,5);

V13 = V12;

V14 = V12;

V15 = zeros(3,2);

%%

V21 = zeros(5,3);
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V21(1,1) = -1*alpha12;

V21(2,2) = V21(1,1);

V22 = [(alpha20+alpha23+alpha24+sigma),0,0,0,0; -1*sigma,

(alpha23+alpha24+alpha25),0,0,0; 0,0,sigma,0,0; 0,0,-1*sigma,alpha25,0;

-1*rho*c,-1*rho,-1*rho*c*epsilon,0,(b2+delta)];

V23 = zeros(5,5);

V23(1,1) = -1*alpha32;

V23(2,2) = V23(1,1);

V24 = zeros(5,5);

V24(1,1) = -1*alpha42;

V24(2,2) = V24(1,1);

V25 = zeros(5,2);

V25(5,1) = -1*rho*c*xi;

%%

V31 = zeros(5,3);

V31(1,1) = -1*alpha13;

V31(2,2) = V31(1,1);
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V32 = zeros(5,5);

V32(1,1) = -1*alpha23;

V32(2,2) = V32(1,1);

V33 = [(alpha30+alpha32+alpha34+sigma),0,0,0,0; -1*sigma,

(alpha32+alpha34+alpha35),0,0,0; 0,0,sigma,0,0; 0,0,-1*sigma,alpha35,0;

-1*rho*c,-1*rho,-1*rho*c*epsilon,0,(b3+delta)];

V34 = zeros(5,5);

V34(1,1) = -1*alpha43;

V34(2,2) = V34(1,1);

V35 = zeros(5,2);

V35(5,1) = -1*rho*c*xi;

%%

V41 = zeros(5,3);

V41(1,1) = -1*alpha14;

V41(2,2) = V41(1,1);

V42 = zeros(5,5);

V42(1,1) = -1*alpha24;

V42(2,2) = V42(1,1);
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V43 = zeros(5,5);

V43(1,1) = -1*alpha34;

V43(2,2) = V43(1,1);

V44 = [(alpha40+alpha42+alpha43+sigma),0,0,0,0; -1*sigma,

(alpha42+alpha43+alpha45),0,0,0; 0,0,sigma,0,0; 0,0,-1*sigma,alpha45,0;

-1*rho*c,-1*rho,-1*rho*c*epsilon,0,(b4+delta)];

V45 = zeros(5,2);

V45(5,1) = -1*rho*c*xi;

%%

V51 = zeros(2,3);

V52 = zeros(2,5);

V53 = zeros(2,5);

V54 = zeros(2,5);

V55 = [sigma,0; -1*sigma,alpham5];

%%Matrix F

F = [F11,F12,F13,F14,F15; F21,F22,F23,F24,F25; F31,F32,F33,F34,F35;

F41,F42,F43,F44,F45; F51,F52,F53,F54,F55];

%%Matrix V

V = [V11,V12,V13,V14,V15; V21,V22,V23,V24,V25; V31,V32,V33,V34,V35;

V41,V42,V43,V44,V45; V51,V52,V53,V54,V55];
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r0=max(abs(eig(F*inv(V))));
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APPENDIX C
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APPENDIX C

SEIR WARD MODEL TRANSFER DIAGRAM

Figure 3.1: SEIR Ward Model Transfer Diagram.
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