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Abstract—Virtual pheromone trails that facilitate efficient
and adaptable coordination among foraging robot swarms are
vulnerable to threats that exploit stigmergic communication.
This study investigates the impact of a fake resource attack
on the performance of a pheromone-based foraging algorithm
and demonstrates the effectiveness of a “quarantine strategy”
in mitigating the attack. The study simulates the fake resources
and examines the swarm’s behavior as robots are attracted to
these fake resource locations. To prevent access to fake resources,
circular quarantine regions are deployed, and a distance-based
merging algorithm is implemented to reduce storage require-
ments. The experiments are conducted with varying numbers of
fake resources and simulation time using the ARGoS simulation
environment. The study illustrates the impact of pheromone trail
exploitation in pheromone-based foraging algorithms and an ef-
fective defense mechanism for such scenarios. The results show a
significant decrease in the foraging algorithm’s performance with
an increase in the number of fake resources. Additionally, the
study demonstrates the effectiveness of the quarantine strategies
in reducing the collection of fake resources. Overall, this research
highlights the fragility of pheromone-based foraging algorithms
and provides a defense mechanism to protect against attacks
exploiting these systems. The study’s findings can inform the
development of more robust and efficient foraging algorithms
that are resilient to attacks for swarm robotics systems in real-
world scenarios.

Index Terms—Swarm Robotics, Intrusion Detection, Foraging
Robot Swarms

I. INTRODUCTION

Inspired by self-organizing natural systems [1] such as ants,
termites, and birds, current swarm robotics research includes
self-organized aggregation [2], [3], cue-based aggregation [4],
[5], object sorting [6], [7], and foraging [8]–[13]. While
research has mostly focused on swarm intelligence and op-
timization in benign environments, the security, and reliability
of swarms need more attention [14].

Highlighting the gap in current research, this paper delves
into the less explored aspect of security in swarm robotics, par-
ticularly in the context of foraging algorithms. We underscore
the importance of addressing security vulnerabilities in these
systems to ensure their robustness in real-world applications.

*This work is supported by the GAANN program (P200A210144 - 22)
from the U.S. Department of Education. It is also partially supported by the
CREST MECIS program through NSF Award No. 2112650 and the SLA
program through DHS Award No. 21STSLA00009-01-00.

More specifically, this paper aims to identify and address
potential safety threats to pheromone-based foraging robot
swarms. While virtual pheromone trails facilitate efficient and
adaptive coordination among robots, these signals may be
vulnerable to exploitation through manipulation or exposure.
For instance, vulnerabilities such as the ant mill phenomenon
and intrusion attacks that use false pheromone trails to deceive
and trap foraging robots can occur [15]–[19].

Consider safety-critical applications such as search and
rescue or military operations, where the slightest dip in
performance can result in mission failure or catastrophic
loss. In these high-stakes environments, the robustness and
reliability of swarm robotics are paramount. Any vulnerability,
particularly in communication mechanisms like pheromone
trails, could lead to dire consequences, including the failure
of crucial missions and loss of life. Therefore, it is vital
to address these security vulnerabilities, ensuring that swarm
robotics systems can operate effectively even under adversarial
conditions. This underlines the urgency and significance of
our research in contributing to the development of secure and
resilient swarm robotics applications, where performance and
reliability are not just desirable but essential for success and
safety.

We investigate vulnerabilities in pheromone-based foraging
robot swarms and propose countermeasures to address poten-
tial safety threats. Specifically, we simulate a pheromone trail
exploit by introducing fake resources to hinder the foraging
process. We evaluate the impact of the attack on the foraging
algorithm and propose a defense mechanism using Quarantine
Zones (QZs) to prevent robots from retrieving resources from
designated locations, regardless of their authenticity. We ana-
lyze the effectiveness and limitations of this countermeasure
and introduce an enhanced version that utilizes a merging
algorithm for the QZs.

In Section II, we summarize past work on swarm robotics
and vulnerabilities in pheromone-based communication. In
Section III, we describe the background in the central place
foraging model. In Section IV, we describe the pheromone
trail-based communication, and our proposed countermeasures
along with their impact on the foraging algorithm. In Section
V, we present the experimental setup. In Section VI, we
evaluate the results of our experiments. Finally, we discuss



the results in Section VII and conclude in Section VIII with
a summary of our contributions and future work.

II. RELATED WORK

Insect colonies are known for their coordination mecha-
nisms based on pheromones, which enable effective com-
munication and cooperation among colony members [20]–
[22]. However, various organisms have evolved to exploit
this mechanism, leading to complex evolutionary arms races
between attackers and victims [23]–[26]. The “ant mill”, also
known as the army ant “death spiral”, or “army ant syndrome”,
is an emergent phenomenon where army ants get trapped in
a pheromone loop [15], [16]. The ants caught in this cycle
form a circular procession that can persist indefinitely, often
resulting in starvation and the eventual demise of both indi-
vidual ants and the entire colony. They have evolved defensive
pheromone-based strategies [27], [28]. However, they remain
vulnerable as they are not capable of learning to override
their instinctual response to pheromone trails [29]. Stigmergic
communication methods may inherently be vulnerable to the
fragilities associated with pheromone trails in natural systems.

In contrast to the natural world, robotic systems can be
designed to adapt and counteract these vulnerabilities. Existing
foraging algorithms using virtual pheromones demonstrate
efficiency and adaptability [8]–[13], but they also inherit
these inherent security risks. Comparative studies have shown
that while these algorithms excel in optimal conditions, their
performance can significantly degrade under adversarial or
manipulated conditions [30].

To address the ant mill problem in pheromone-based sys-
tems, a heuristic escape behavior is proposed when robots
detect high local robot density, preventing entrapment cycles
[17]. However, vulnerabilities persist against more sophisti-
cated threats, like malicious attacks. Pinciroli et al. describe an
attack where ”detractors” deceive robots with fake pheromone
trails, trapping them [18]. Similarly, other studies have pro-
posed attacks using indistinguishable fake trails, highlighting
the need for robust defenses in pheromone-based foraging
algorithms [19].

Swarm robotics research has mostly concentrated on apply-
ing cooperation mechanisms to scenarios where failures are
absent, and the impact on pheromone deposition is insignifi-
cant. Few studies have considered the fragility of pheromone
trails and their impact on swarm robotics systems. Thus,
this paper investigates how the attack can negatively affect
pheromone trails in foraging robot swarms and proposes
defense strategies to address this issue.

III. CENTRAL PLACE FORAGING

The central place foraging (CPF) is a canonical model [9]
in which a collection zone is placed in the center of the search
space. Robots depart from the center and return back to the
center. There are 4 major states a robot transitions through [9]
(see Fig. 1):

Fig. 1: Individual robot states in the CPF model

Departing: A robot will initially depart from the center (or
nest) and randomly search for resources in the first foraging
trip. In subsequent trips, the robot will exhibit site fidelity,
returning to its previously visited location where it found
resources on the last trip. Additionally, the robot may visit
the last search locations of other robots (known as pheromone
waypoints). Once the robot reaches its target location, it will
transition to the Searching state.

Searching: A robot can search for resources randomly, using
site fidelity or pheromone waypoints [31]. A robot that has
found a resource switch to the Surveying state. A robot that
has not yet found a resource has a probability pr of giving up
the search and returning to the center.

Surveying: A robot will detect the local resource density
within a radius rsearch (seen Table I) and record a count k of
resources within that area.

Returning: A robot travels to the center when it collected a
resource or gives up searching in a foraging trip. The robots
only take a single resource at a time. At the center, the
robot will report the density of resources (λl p) at the location
where it found resources. The center will decide to create a
pheromone waypoint based on the density. Then, the robot
transitions to the Departing state.

There are a total of 7 trainable parameters used to govern
the behavior of the foraging robots [9]. Two of the important
parameters are the rate of using site fidelity, λs f , and the rate
of laying a pheromone waypoint, λl p. They are governed by
a Poisson Cumulative Distribution Function (CDF) as defined
below [13].

POIS(k,λ ) = e−λ

[k]

∑
i=0

λ i

i!
(1)

where λ can be λs f or λl p. If the output exceeds a uni-
form random value, POIS(c,λs f )> U (0,1) or POIS(c,λl p)>
U (0,1), a decision is made in favor of the action defined
above.

Robots will select a pheromone waypoint based on their
strengths. Initially, the strength of all pheromone waypoints is
set to 1 and decreases exponentially over time. It is defined
by a decay function w = e−tλpd , where λpd is an evolved
parameter for controlling the decay rate and t is the time in
seconds. When the strength w < γ , the pheromone waypoint
will be removed, where γ is a specified threshold.

IV. METHODOLOGY

We simulate the pheromone-based attacks on the CPF [9],
whereby robots lay virtual pheromone trails connecting the
center to dense clusters of resources.



Fig. 2: 16 foraging robots, 5 fake and 3 real resource clusters,
and the illustration of quarantine zones with/without merging
strategy in ARGoS simulation

A. Attack

We consider an adversary whose objective is to impede
the performance of the foraging algorithm (FA). To achieve
this, the attacker distributes counterfeit resources into the
environment designed to fool the benign foraging robots. We
assume this attacker has detailed knowledge of the foraging
algorithm, specifically of pheromone trail creation/usage, and
the type of resources the swarm is targeting.

To simulate the attack, clusters of fake resources are intro-
duced and distributed in clusters as real resource clusters. As
the number of additional resources c increases, the probability
that POIS(c,λl p) increases to 1, resulting in a pheromone way-
point leading towards fake resources being created. Therefore,
we increase the density of fake resources by decreasing the
offset between each resource in the cluster by 1cm. The density
of fake resource clusters is 2.25 times higher than the density
of real resource clusters. The key objective of this attack is
ensuring that there is a high probability that a robot selects a
pheromone waypoint leading away from real resources, thus
impeding the performance of the algorithm.

Thus, we have an attack targeting the pheromone waypoint
in our foraging algorithm. We measure the impact on the
foraging performance by varying the parameters n f cl and T .
The parameters for each variation can be seen in Table I in
Section V. The collected data is the total collected fake and
real resources with respect to the aforementioned parameters
individually.

B. Defense

We propose a quarantine strategy, an approach to preventing
robots from foraging in otherwise dangerous or compromised
areas using Quarantine Zones (QZs). This strategy hinges on
the ability of the center to distinguish between genuine and
counterfeit resources. The foraging robots do not possess this
capability but are able to access QZ information when they
are in the vicinity of the center.

The main objective for our defense is to establish QZs
at targeted locations that prevent robots from collecting fake
resources within their boundaries. The targeted locations are
those where robots found a fake resource and were subse-
quently flagged by the center. The chosen radius rQZ of the
zones is aligned with the search radius of robots rsearch, rQZ =
rsearch, to maintain consistency with the robot’s operational
parameters. This decision ensures that the quarantine measures
are both practical and effectively integrated into the robots’
existing navigation and search protocols. QZs are stored as
objects in a list maintained by the center. Our defense model
relies on the capability of the center to distinguish between
real and counterfeit resources and is therefore tasked with the
creation and maintenance of the QZs. The center is also able
to prevent the creation of virtual pheromone waypoints by the
robots.

The foraging robots hold a list of QZ objects, which will be
updated by the center upon arrival. The robot also gathers and
stores the locations of local resources when Surveying. Upon
departure, the local resource locations are discarded. When a
robot samples a target location, it cross-checks it against the
QZ information stored in its memory. If the location is within a
QZ, a new location is sampled. The robot may only obtain the
most recent list of QZs when it returns to the center. Therefore,
a robot still has a chance of selecting a target location in a
new QZ that has not been updated. A robot may travel within
a known QZ, but it will prevent itself from picking up any
resources within it. Therefore, to prevent robots from wasting
time in dense areas of QZs, we set climit = 5, where climit is
the limit of quarantined resources that a robot can find.

C. Merging

We present a distance-based merging strategy (DB-Merge)
that can consolidate overlapping QZs and merge them into a
larger QZ (see Fig. 2). More specifically, the larger QZ will
be the smallest possible enclosing circle of the QZs. Without
the merging strategy, the number of QZs is correlated to the
number of collected fake resources.

The introduction of the DB-Merge strategy is to reduce the
time complexity and the storage required, especially consider-
ing the potential for numerous overlapping quarantine zones in
regions with high (fake) resource density. The merge criteria,
based on the Euclidean distance between the centers of the
QZs and their radii, are chosen to ensure a logical and efficient
consolidation of overlapping zones.

Two circular quarantine zones are merged when they over-
lap. We let the merged zone have a radius such that both zones
are contained exactly within the merged zone.

We analyze and test the performance impact on the al-
gorithm itself alongside the basic quarantine strategy. The
evaluation of the defense mechanisms is done jointly with the
attack, using the same metrics as described in Section IV-A.

V. EXPERIMENT SETUP

We conduct our experiments in the multi-robot simulator
ARGoS [32]. Table I provides a denotation of the parameters



TABLE I: Parameters for our experimental model

Symbol Value Description
Darena (10,10,1) Dimensions of the simulation

environment (x,y,z)
Dcluster (6,6) Cluster size (l,w)
n f b 16 # of foot-bots in simulation
nrcl 3 # of real resource clusters
n f cl 1,3,5,6,7,9,12,15 # of fake resource clusters
T 10,15,20,25,30 Simulation time (minutes)
rcenter 0.25 Radius of the center
rresource 0.05 Radius of resource
rsearch 4∗ rresource Foot-bot search radius
rQZ rsearch Quarantine zone radius
climit 5 A limit on quarantined resources

a robot can detect
λrpd 0.063119 Decay rate of pheromone trails

to real resources (pre-trained)
λ f pd 0 Decay rate of pheromone trails

to fake resources
γrp 1 Initial weight of pheromone trails

to real resources
γ f p 10 Initial weight of pheromone trails

to fake resources

TABLE II: Common configuration in all experiments

Arena size (m) Real resource clusters # of real resources Robots Runs
10×10 3 108 16 60

for our experiments. The two parameters that vary within
the experiments are n f cl , and T . We observe the change in
resource collection with respect to these parameters to draw
conclusions on the efficacy of the attack and defense strategies.
The remainder of the parameters is set statically throughout
all of the experimentation.

We have the same configuration of arena size, real resource
clusters, the number of resources, and the number of robots
in all experiments (see Table II). The first parameter in
Experiment 1, is the number of fake resource clusters in the en-
vironment n f cl . The second in Experiment 2, is the simulation
time T . In Experiment 3, we evaluate the performance of the
DB-Merge strategy when we vary the number of fake resource
clusters up to a large number of 15. In real-world scenarios,
adversaries may not have access to a significant amount of
resources to carry out their attacks. However, we simulated
numerous fake resource clusters to assess the effectiveness of
our merging strategy in Experiment 3. Their values are listed
in Table III.

The metrics used in our evaluation are the collection
amounts for both real and fake resources. The foraging robots
will search for resources and transport them to the center,
where they will be examined and counted as either real or
fake resources separately. We compare the set of foraging
algorithms: FAR, FARF , FAQZ , and FAQZM . In FAR, there is
no fake resource attack and only real resources are available.
In FARF , both real and fake resources are available, but there
are no defense strategies.

In FAQZ and FAQZ M , both real and fake resources are avail-

TABLE III: Configuration in Experiment 1, 2, and 3

Exp. Foraging algorithm Fake resource cluster Simulation time (mins)

1 FAR 0 15
FARF , FAQZ , FAQZ M 1,3,5,7,9

2 FAR 0 10,15,20,25,30
FARF , FAQZ , FAQZ M 3

3 FAQZ , FAQZ M 3,6,9,12,15 15

able, and the quarantine strategies involve. FAQZ M integrates
the merging algorithm, DB-Merge, as compared to the basic
defense strategy in FAQZ . For each experiment, we have data
on the mean and standard deviation of real resource collections
and fake resource collections for the aforementioned evalua-
tion parameters. The video of the simulation is available on
YouTube1.

VI. RESULTS

In Fig. 3, we observe a significant impact on foraging
performance under the fake resource attack. As the number
of fake resource clusters increases, the foraging efficiency of
FARF decreases notably from 89% to 51%. There is a 42.45%
decrease in the number of collected real resources in total. As
we increase the number of fake resource clusters, the average
decrease in the number of collected real resources is 10.6%
and the average increase in the collected fake resource is
64.45%. Both quarantine strategies, with and without merg-
ing, demonstrate similar performance and successfully restore
foraging capabilities. However, as the number of fake resource
clusters increases, there is a slight decline in their performance.

In Fig. 4, as the simulation time increases, the numbers
of collected real and fake resources increase. However, the
increase rate becomes slower as time increases. The quarantine
zones FAQZ strategy results in an increase of 36% in total
and an average increase of 9% in the collected real resources.
The decrease of 68.4% in total and an average decrease of
17.1% in the collected fake resources as opposed to FARF .
The quarantine strategy with DB-Merge FAQZ M results in a
decrease in the collection of both real and fake resources in
comparison to the basic quarantine strategy FAQZ . However,
on average, there is only a 0.97% decrease in the collection
of real resources, but a 7.07% decrease in fake resources, a
notable difference.

Fig. 5 illustrates the operational efficiency of the the DB-
Merge strategy (from 62% to 76%) in the storage space
compared to the quarantine strategy without merging FAQZ .
Moreover, the standard deviation of the quarantine strategy
with the DB-Merge is much smaller than that without merging,
suggesting that the merge strategy can stabilize the perfor-
mance of the defense method. These findings are crucial
in scenarios where storage and computational resources are
limited, suggesting that our merging strategy can significantly
enhance the swarm’s operational efficiency.

Fig. 6 offers a visual comparison of the quarantine strate-
gies’ effectiveness. Both figures show the ability of the
quarantine strategies to effectively isolate regions of fake

1https://youtu.be/xXAWXzjJAGc



Fig. 3: Collected real and fake resources when varying the
number of fake resource clusters for 60 runs in Exp. 1

Fig. 4: Collected real and fake resources when varying the
simulation time for 60 runs in Exp. 2

resources. Fig. 6a shows a large number of standard-sized
QZs, some of which are overlapped and not merged. Fig.
6b shows an obvious reduction in the number of QZs, some
of which vary in size. This illustrates the superior ability of
the merging strategy to isolate regions of fake resources more
effectively, reducing the number of QZs and variably sizing
them to encompass entire fake resource clusters. This visual
evidence further supports the quantitative findings, illustrating
the practical implications of our strategies in real-world swarm
robotics applications.

VII. DISCUSSION

Our results indicate that the fake resource clusters not only
increase the collection of fake resources but also significantly
decrease the collection of real resources as the number of fake
resource clusters increases (refer to Fig. 3). Furthermore, we
note a significant decrease in the collection of real resources
when the number of fake resource clusters surpasses the
number of real resource clusters. The effectiveness of the
fake resource attack in distracting the foraging robots is
obvious, as their performance decreases with an increase in
the number of fake resource clusters. However, the decline

Fig. 5: The number of QZs with/without DB-Merge strategy
as the number of fake resources clusters increases in Exp. 3

(a) No merging (b) DB-Merging

Fig. 6: An illustration of the quarantine strategy with/without
merging of QZs. (a) without a merging strategy, there are 23
quarantine zones. (b) with the DB-Merge strategy, the number
of quarantine zones decreases to 11.

in the performance of the two quarantine strategies when the
number of fake resource clusters reaches nine is attributed to
the simulation time constraint.

In search and rescue operations, malfunctioning object
detection and recognition systems could lead to misguided res-
cues, jeopardizing both rescuers and victims. This underlines
the real-world significance of our research in enhancing the re-
liability and security of swarm robotics systems. Additionally,
our study demonstrates that the quarantine strategy is a highly
effective countermeasure against the fake resource attack. As
shown in Fig. 4, the foraging robots were more successful
in collecting real resources when the quarantine zones were
implemented. We also observed a significant reduction in
the collection of fake resources. The DB-Merge algorithm
further enhances the effectiveness of the quarantine strategy
by improving space utilization. Although it does not result
in significant improvements in resource collection, it shows
that both defensive strategies are effective in stabilizing the
performance of the foraging algorithm, with DB-Merge being
slightly superior as it limits the number of quarantine zones
to the size of the search space.

In Fig. 6, we present a simulation for Exp. 3 to illustrate



the difference between the quarantine strategies. From the
visualization, we can observe that the number of QZs is
directly proportional to the number of collected fake resources.
Therefore, without merging, the upper bound on the number of
QZs is equal to the total number of fake resources in the worst-
case scenario. However, Fig. 6b shows a substantial reduction
in the number of QZs. Moreover, Fig. 5 indicates that DB-
Merge has a tighter standard deviation, indicating consistent
improvement in limiting the storage requirements for QZs.

VIII. CONCLUSION

Our analysis of the simulation time demonstrates that for-
aging robots are more efficient at collecting resources in the
earlier stages of the simulation. Additionally, our findings also
suggest that the presence of fake resource clusters increases
the variability in the collection amounts, which underscores
the effectiveness of our defensive strategies in stabilizing the
performance of the foraging algorithm. Overall, our study
provides valuable insights into the impact of attacks exploiting
the fragilities of pheromone trails as well as an effective
defensive strategy for the performance of pheromone-based
foraging robots.

Our approach is dictated by the stigmergic communica-
tion method employed, which is limited to pheromone trails.
This form of communication inherently guides the design
towards a centralized system. Future work could explore
a semi-decentralized approach, where the central server fa-
cilitates necessary communications for collective decision-
making. This could potentially enhance the system’s resilience
against failures and attacks, moving towards a more robust,
decentralized swarm robotics system.
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