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The PI3K pathway impacts stem gene expression in a set of 
glioblastoma cell lines

Eduardo Martinez1, Neftali Vazquez1, Alma Lopez1, Victor Fanniel1, Lilia Sanchez1, 
Rebecca Marks1, Leetoria Hinojosa1, Victoria Cuello1, Marisa Cuevas1, Angelica 
Rodriguez1, Cerin Tomson1, Andrea Salinas1, Mark Abad1, Martin Holguin1, Noel Garza1, 
Abraham Arenas1, Kevin Abraham1, Luis Maldonado1, Vivian Rojas1, Alex Basdeo1, Erin 
Schuenzel1, Michael Persans1, Wendy Innis-Whitehouse2, Megan Keniry1

1Department of Biology, University of Texas-Rio Grande Valley, 1201 W. University Dr., Room: 
ESCNE 4.633, Edinburg, TX 78539, USA

2School of Medicine, University of Texas-Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 
78539, USA

Abstract

Background—The PI3K pathway controls diverse cellular processes including growth, survival, 

metabolism, and apoptosis. Nuclear FOXO factors were observed in cancers that harbor 

constitutively active PI3K pathway output and stem signatures. FOXO1 and FOXO3 were 

previously published to induce stem genes such as OCT4 in embryonic stem cells. Here, we 

investigated FOXO-driven stem gene expression in U87MG glioblastoma cells.

Methods—PI3K-activated cancer cell lines were investigated for changes in gene expression, 

signal transduction, and clonogenicity under conditions with FOXO3 disruption or exogenous 

expression. The impact of PI3K pathway inhibition on stem gene expression was examined in a set 

of glioblastoma cell lines.

Results—We found that CRISPR-Cas9-mediated FOXO3 disruption in U87MG cells caused 

decreased OCT4 and SOX2 gene expression, STAT3 phosphorylation on tyrosine 705 and 
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clonogenicity. FOXO3 over expression led to increased OCT4 in numerous glioblastoma cancer 

cell lines. Strikingly, treatment of glioblastoma cells with NVP-BEZ235 (a dual inhibitor of PI3K 

and mTOR), which activates FOXO factors, led to robust increases OCT4 gene expression. Direct 

FOXO factor recruitment to the OCT4 promoter was detected by chromatin immunoprecipitation 

analyses using U87MG extracts.

Discussion—We show for the first time that FOXO transcription factors promote stem gene 

expression glioblastoma cells. Treatment with PI3K inhibitor NVP-BEZ235 led to dramatic 

increases in stem genes in a set of glioblastoma cell lines.

Conclusion—Given that, PI3K inhibitors are actively investigated as targeted cancer therapies, 

the FOXO-mediated induction of stem genes observed in this study highlights a potential hazard to 

PI3K inhibition. Understanding the molecular underpinnings of stem signatures in cancer will 

allow refinements to therapeutic strategies. Targeting FOXO factors to reduce stem cell 

characteristics in concert with PI3K inhibition may prove therapeutically efficacious.

Keywords

FOXO transcription factors; Stem genes; OCT4; PI3K inhibition; Glioblastoma

Introduction

The Phosphatidylinositol-3 Kinase (PI3K) pathway is evolutionarily conserved and plays 

crucial roles in survival, growth, cell cycle, and metabolism (Luo et al. 2003; Manning and 

Cantley 2007; Nakae et al. 2001; Okkenhaug and Vanhaesebroeck 2003). PI3K 

phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) producing phosphatidylinositol 

3,4,5-trisphosphate (PIP3), which binds to and activates targets such as serine threonine 

kinase AKT (Bellacosa et al. 1998; Manning and Cantley 2007). AKT has over 20 identified 

substrates including the transcription factors Forkhead Box subfamily O members (FOXO-1, 

−3, and −4) (Brunet et al. 1999; Luo et al. 2003; Manning and Cantley 2007). 

Phosphorylation of FOXO factors by AKT leads to their cytoplasmic sequestration/

inactivation (Brunet et al. 1999).

The PI3K pathway is almost universally activated in cancer to promote growth and survival, 

commonly by gain-of-function PIK3CA mutants (encoding PI3K catalytic subunit) or loss-

of-function PTEN (Phosphatase and Tensin homolog deleted on chromosome ten) mutations 

(Li et al. 1997; Saal et al. 2005, 2007, 2008). Aberrant activation of the PI3K Pathway leads 

to inactivation of FOXO transcription factors (Brunet et al. 1999). However, several studies 

have shown exceptions to this canonical PI3K Pathway circuitry in certain advanced poor 

prognosis cancers, human embryonic stem (ES) cells, and naïve T cells (Bigarella et al. 

2017; Keniry et al. 2013; Oh et al. 2012; Trinh et al. 2013). In these settings, PI3K 

expression is high, but a portion of the FOXO proteins is found in the nucleus (Keniry et al. 

2013; Liang et al. 2016; Oh et al. 2012; Zhang et al. 2011). FOXO1 and FOXO3 are 

required for the maintenance of hematopoietic, embryonic, and neural stem cells (Miyamoto 

et al. 2007; Renault et al. 2009; Tothova and Gilliland 2007; Tothova et al. 2007; Yu et al. 

2018; Zhang et al. 2011). In ES cells, FOXO1 directly associated with the promoters and 

regulated Octamer-binding Transcription factor 4 (OCT4) and Sex determining region Y-box 
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2 (SOX2), thereby promoting pluripotency and preventing differentiation (Zhang et al. 

2011). Given that FOXO factors regulate OCT4 in stem cells, we examined whether these 

factors had a similar function in certain cancers (Ben-Porath et al. 2008; Ghaffari et al. 

2010).

Forkhead Box O (FOXO-1, −3, and −4) transcription factors regulate cellular processes in a 

context-dependent manner and are partially redundant with each other (Paik et al. 2007; 

Tothova et al. 2007). FOXO6 is mainly expressed in the brain and regulated by distinct 

mechanisms (Jacobs et al. 2003; van der Heide et al. 2005). FOXO-1, −3, and −4 are 

excluded from the nucleus in settings with high PI3K output (via an AKT-mediated 

mechanism) (Brunet et al. 1999). There are a number of settings in which FOXO factors at 

least partially bypass AKT regulation, leading to nuclear localization (Keniry et al. 2013; 

Liang et al. 2016). First, FOXO1 was found mutated in 9% of diffuse large B-cell lymphoma 

(DLBCL) leading to constitutive nuclear localization; these mutations were associated with 

poor prognosis (Trinh et al. 2013). Nuclear FOXO factors were also found in basal breast 

cancer (BBC) cell lines such as BT549 as well as primary samples that harbored active PI3K 

Pathway output (Hagenbuchner et al. 2016; Keniry et al. 2013; Zhang et al. 2011). However, 

the function of nuclear FOXO factors in these aggressive cancers with active PI3K pathway 

output remained elusive.

To gain insight into novel roles for FOXO factors in aggressive poor prognosis cancers, we 

built genetic models using CRISPR Cas9 genome editing technology (Vazquez et al. 2018). 

We specifically disrupted the FOXO3 gene with a neomycin resistance cassette (NPTII) 
producing a truncation mutant in glioblastoma (GBM) U87MG cells (Vazquez et al. 2018). 

Using this genetic model, we examined known FOXO target genes (identified in ES cells) 

for differential expression. We found significantly decreased expression of stem genes such 

as OCT4 and SOX2 in the foxo3 mutant U87MG cells compared to parental U87MG control 

cells (Figs. 1, 2). Subsequent experiments revealed that FOXO3 more broadly promoted 

stem gene expression and signal transduction (Figs. 2, 3). Inhibition of the PI3K pathway 

with NVP-BEZ235 led to dramatically increased expression of stem markers OCT4 and 

ALPP (encoding alkaline phosphatase), at least in part, via an FOXO-dependent mechanism. 

These results suggest a potential hazard for clinical use of PI3K inhibition as a therapeutic 

(especially in cancers that harbor stem signatures), (Figs. 3, 4). Taken together, our findings 

highlight a novel role for FOXO factors in cancer, which is to promote stem programs that 

likely contribute to aggressiveness.

Results

CRISPR Cas9-mediated FOXO3 disruption reduced OCT4 gene expression in U87MG cells

Poor-prognosis cancers such as GBM and BBC harbor stem cell signatures, including 

expression of genes OCT4 and SOX2, but the mechanisms that induce these programs 

remain to be fully elucidated (Ben-Porath et al. 2008). Given that FOXO factors induce 

OCT4 and SOX2 genes in human and mouse ES cells, we examined the expression of these 

putative targets in GBM cells that harbor nuclear FOXO (Zhang et al. 2011). In our previous 

work, we built genetic models using CRISPR Cas9 genome editing to disrupt the FOXO3 
gene in U87MG GBM cells with a neomycin resistance cassette (Vazquez et al. 2018). The 
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foxo3 truncation mutant protein retained the DNA-binding domain, but lacked the trans-

activation domain and was approximately 45 kDa compared to the 80 kDa full-length 

protein (Figs. 1a, b) (Vazquez et al. 2018). To assess transcriptional consequences of FOXO3 
disruption in U87MG cells, we performed qRT-PCR analyses with log-phase cells grown in 

rich media and found significantly less OCT4 gene expression in the mutant cells compared 

to control cells (Fig. 1c). Importantly, exogenous expression of FOXO3 restored OCT4 gene 

expression in the disruption mutants (Fig. 1c). Exogenous FOXO3 also induced OCT4 

protein expression in U87MG cells (Fig. 1d). These results show for the first time that 

FOXO3 promotes the expression of the stem master regulator OCT4 in aggressive U87MG 

cells.

Loss-of-function foxo3 mutants have reduced stem signal transduction and evidence of 
differentiation

To further assess the impact of FOXO3 disruption on stem characteristics in U87MG cells, 

we examined expression of SOX2, which was shown to be impacted by FOXO factors in ES 

cells (Zhang et al. 2011). We found that SOX2 gene expression was reduced in foxo3 
mutants (Fig. 2a). Interestingly, we observed an increase in TUBB3 (Tubulin Beta 3 class 
III) expression in the disruption mutants, suggesting that these cells may have adopted a 

neuronal-like fate (Fig. 2a) (Poirier et al. 2010).

To investigate the impact of FOXO3 disruption on stem signaling pathways in cancer, we 

examined activation of the STAT3 (signal transducer and activator of transcription 3) 

transcription factor. STAT3 promotes stem cell fate in part by inhibiting cellular 

differentiation (Raz et al. 1999). Upon IL6 or LIF ligand binding to cognate receptors, the 

associated Janus Kinase 2 (JAK2) phosphorylates STAT3 on tyrosine 705 thereby promoting 

stem gene expression (Galoczova et al. 2018; Marotta et al. 2011). We found that STAT3 

Y705 phosphorylation was reduced in foxo3 disruption mutants compared to control cells, 

while there was no change in total STAT3 in foxo3 mutant cells (Fig. 2b). There was no 

change in AKT activation as evidenced by phosphorylation of AKT on serine 473 in the 

foxo3 disruption mutants suggesting a specific impact on stem-related signal transduction by 

FOXO3 in this context. Therefore, FOXO3 disruption specifically impacted STAT3 

activation in U87MG cells, consistent with the idea that FOXO factors impact stem 

characteristics in this setting.

Clonogenicity was reduced in foxo3 disruption mutant U87MG cells

Disruption of the FOXO3 gene in the U87MG background gave rise to cells that appeared to 

have a growth defect. Clonogenicity assays were performed with foxo3 mutants and U87MG 

parental controls to assess the impact of FOXO3 disruption on colony formation. We found 

that disruption of FOXO3 led to a significant decline in the number of colonies obtained 

(Fig. 2c), highlighting a positive role for this factor in the growth and/or survival of U87MG 

cells.

Exogenous FOXO3 induced OCT4 in a set of glioblastoma cell lines

To gain insight into the impact of FOXO3 on stem gene expression in a set of glioblastoma 

cell lines, we exogenously expressed this factor (by transfection) and examined OCT4 gene 
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expression by qRT-PCR. We found that exogenous FOXO3 led to increased OCT4 gene 

expression in four glioblastoma cell lines: U87MG, U118MG, DBTRG, and A172 as well as 

human embryonic kidney cells (HEK 293) and basal breast cancer cells (BT549), Figs. 3a 

and S1A. Exogenous FOXO1 also induced OCT4 in these settings (data not shown). The 

ability of FOXO factors to induce the stem master regulator OCT4 suggested that they 

should broadly impact stem gene expression and signal transduction. Therefore, we 

examined the ability of exogenous FOXO3 to regulate additional genes encoding 

transcription factors ascribed to promote stem signatures as well as ligands that induce stem 

programs (Fig. 3b) (Galoczova et al. 2018; Loh et al. 2006; Molyneaux et al. 2003; 

O’Connor et al. 2008). The positive control RICTOR was induced by exogenous FOXO3 
whereas the negative control ACTIN (ACTB) was not. We found that stem transcription 

factors were strongly induced by exogenous FOXO3: SOX2 and NANOG (Nanog 
homeobox) (Fig. 3b). Furthermore, exogenous FOXO3 significantly induced the expression 

of stem pathway ligands LIF (Leukemia Inhibitory Factor), IL6 (Interleukin 6), and TGFB1 
(Transforming Growth Factor beta1) whereas EGF (Epidermal Growth Factor) was not 

induced (Fig. 3b). These data indicate that FOXO3 broadly promoted a stem program in 

U87MG cancer cells potentially via the induction of the master regulator OCT4 (Zhang et al. 

2011).

Treatment with PI3K pathway inhibitor NVP-BEZ235 induced OCT4 in glioblastoma cells

PI3K pathway activation is a hallmark of cancer and is required for the growth and survival 

of cancer cells (Keniry and Parsons 2008; Luo et al. 2003). In line with this, PI3K pathway 

inhibitors are actively explored as potential chemotherapeutics for cancer (Lin et al. 2012; 

Matsushima et al. 2015). To examine the impact of PI3K inhibition in cancer cells that 

harbor stem signatures, we treated six glioblastoma cell lines with the dual PI3K inhibitor 

NVP-BEZ235 (which inhibits both PI3K and mTOR) for 5 days and then examined changes 

in gene expression by qRT-PCR. Strikingly, we found that OCT4 gene expression was 

robustly induced by NVP-BEZ235 treatment (Fig. 3c). Of note, LN229 cells required a 

higher dose of NVP-BEZ235 to observe this induction (1μM compared to 50 nM). NVP-

BEZ235 treatment also increased OCT4 expression in HEK 293 and BT549 cells, 

demonstrating that the impact of FOXO factors on stem genes is not limited to glioblastoma 

cells (Fig. S1B). We also examined the gene expression of the stem marker alkaline 

phosphatase (encoded by ALPP) by qRT-PCR in NVP-BEZ235-treated samples (O’Connor 

et al. 2008; Yu et al. 2015, 2018). We found that PI3K inhibition led to induction of ALPP 
gene expression in U87MG, LN229, A172, and BT549 cells (Fig. S1C). Therefore, these 

data suggest that PI3K inhibition leads to increased stem gene expression in a set of 

glioblastoma cell lines. To test whether NVP-BEZ235-mediated OCT4 induction was 

FOXO-dependent, we treated control and foxo3 disruption mutants with the drug for 48 h. 

We found that NVP-BEZ235 only induced OCT4 in the control U87MG cells. Cells that 

harbored a foxo3 disruption mutant lacked induction of OCT4 (Fig. 3d).

Given that the PI3K pathway is known to regulate FOXO nuclear localization, we checked 

whether treatment with the dual PI3K inhibitor NVP-BEZ235 impacted the localization of 

wild-type and/or mutant FOXO3 protein. We found that PI3K inhibition with NVP-BEZ235 

alone led to less overall protein in extracts, but had no impact on FOXO3 localization in 
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U87MG cells, consistent with findings by Zhang et al., in stem cell contexts such as ES and 

HSCs (Fig. S2) (Ghaffari et al. 2010; Liang et al. 2016). This is also in agreement with 

Sunayama et al. who found that the regulation of FOXO factor localization is complex in the 

glioblastoma setting of A172 cells and that inhibition with NVP-BEZ235 alone was not 

sufficient to direct FOXO3 to the nucleus (Sunayama et al. 2011).

Sunayama et al. found that dual inhibition of the Ras and PI3K pathways with MEK 

inhibitor UO126 and NVP-BEZ235, respectively, led to differentiation of glioblastoma cells 

A172 as evidenced by neuronal marker TUBB3 expression. In agreement with Sunayama et 

al., we found induction of the neuronal differentiation marker TUBB3 upon inhibition of 

MEK and PI3K (Figs. S3A–B) (Sunayama et al. 2011). We also found induction of TUBB3 
with NVP-BEZ235 treatment alone in U87MG cells and concomitant induction of OCT4 
(Figs. S3A–B). Of note, the dual treatment of U87MG cells (with UO126 and NVP-

BEZ235) led to significantly higher inductions of OCT4 and TUBB3 compared to NVP-

BEZ235 treatment alone (Fig. S3A), in support of the notion that Ras and PI3K coordinately 

impact differentiation. All of these data highlight the dual contributions of FOXO factors 

and PI3K to stem cell characteristics. Loss of either FOXO (Fig. 1c) or PI3K (Figs. S3A–B) 

can lead to stem cell differentiation, consistent with prior reports (Daniele et al. 2015; 

Ghaffari et al. 2010; Ikeda and Toyoshima 2017; Jones et al. 2016; Kumazoe et al. 2017; 

Liang et al. 2016; Renault et al. 2009; Rivas et al. 2018).

FOXO1 contributes to OCT4 expression in U87MG cells

We sought to determine which of the FOXO factors contributed to OCT4 expression in 

U87MG cells. RNAi to FOXO1 or FOXO3 led to reduced expression of OCT4 in ES cells; 

both of these factors directly associated with the OCT4 promoter in ES cells based on 

chromatin immunoprecipitation and EMSA experiments in prior studies (Zhang et al. 2011). 

To examine the contributions of FOXO1 or FOXO3 on OCT4 gene expression in U87MG 

cells, we transfected cells with esiRNA to target each factor independently. We found that 

esiRNA-mediated reduction of FOXO1 was associated with less basal OCT4 gene 

expression (Fig. 4a); NVP-BEZ235-induced OCT4 gene expression was not significantly 

changed by FOXO1 esiRNA (data not shown). Reduced FOXO3 (via esiRNA) did not have 

a significant impact on OCT4 gene expression (Fig. 4b). We also examined the ability of 

FOXO1 to impact OCT4 gene expression by utilizing an FOXO1 inhibitor. Treatment of 

U87MG cells with FOXO1 inhibitor AS1842856 led to decreased basal and NVP-BEZ235-

induced OCT4 gene expression (Fig. 4c). Given that both FOXO1 and FOXO3 were shown 

to directly associate with the OCT4 promoter in ES cells, we examined their ability to bind 

this promoter in extracts prepared from U87MG cells. We detected FOXO1 association with 

the OCT4 promoter by quantitative chromatin immunoprecipitation analyses (Fig. 4d). 

Therefore, our results indicate that FOXO1 directly binds to the OCT4 promoter and 

contributes to OCT4 gene expression in U87MG cells.

Discussion

FOXO transcription factors are best known as partially redundant tumor suppressors that can 

induce apoptosis and halt the cell cycle (Brunet et al. 1999; Calnan and Brunet 2008). 
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However, recent studies challenge this paradigm and point to roles for these factors in 

promoting cancer. FOXO1 was found mutated to produce a constitutively nuclear protein in 

DLBCL, which was associated with poor prognosis (Trinh et al. 2013). Hints of pro-

oncogenic roles for FOXO factors were found in additional cancers such as AML (where 

40% of AML patient samples had active FOXO regardless of genetic subtype) (Sykes et al. 

2011). FOXO factors hindered differentiation and apoptosis in AML cell lines and mouse 

models (Sykes et al. 2011). FOXO3 was shown to promote TMZ resistance in glioblastoma 

cells (Xu et al. 2017). Other work indicated that FOXO transcription factors were at least in 

part localized to the nucleus in certain PI3K-activated cancers such as BBC BT549 cells, but 

the function of FOXO factors in these cancers was not identified (Keniry et al. 2013). Here, 

we took a genetic approach to investigate the role of FOXO factors in GBM cells and found 

that these factors contribute to the expression of stem genes such as OCT4, likely 

contributing to the aggressiveness of these cancers (Figs. 1, 2, 3, 4).

FOXO1 and at least in part FOXO3 directly bind to and induce stem cell genes such as 

OCT4 in ES cells (Zhang et al. 2011). Intriguingly, BBC and GBM commonly harbor stem 

cell gene expression signatures (Ben-Porath et al. 2008). We hypothesized that FOXO 

factors may drive stem cell signatures aggressive BBC and GBM cancer cells. In line with 

this notion, our results indicated that FOXO3 disruption led to significantly reduced gene 

expression of OCT4 and SOX2 in U87MG cells, (Figs. 1, 2) and exogenous expression 

induced these genes in glioblastoma cell lines (Fig. 3a). Therefore, FOXO transcription 

factors regulate OCT4 gene expression in glioblastoma cells (Figs. 1c–d, 2a, 3a).

OCT4 is a potent transcriptional master regulator of pluripotency. Exogenous expression of 

this factor is enough to instill stem-like properties to fibroblasts (Li et al. 2011). The broad 

impacts that FOXO3 had on stem gene expression and signal transduction underscored a 

novel and exciting role for these factors in aggressive GBM (Figs. 1, 2, 3, 4). Given that 

FOXO factors (−1, −3, and −4) are commonly redundant, it is likely that a combination of 

these factors contributes to stem gene expression in U87MG cells and similar cancer 

settings.

Insights into FOXO3 subcellular localization and function in the setting of glioblastoma 

were previously described by Sunayama et al. (2011). In Sunayama et al., FOXO3 

contributed to differentiation upon PI3K and Ras inhibition in glioblastoma cells. We 

performed similar experiments and found increased expression of TUBB3 in PI3K/Ras 

inhibited U87MG cells, in agreement with Sunayama et al. (Fig. S3A–B). Of note, we found 

increased TUBB3 gene expression in U87MG cells that were only treated with NVP-

BEZ235 (Fig. S3A–B). One possibility is that Ras might not have been as activated in 

U87MG cells; therefore, inhibition of NVP-BEZ235 alone may have been enough to induce 

differentiation. We detected induction of both differentiation and stem genes under NVP-

BEZ235 treatment in U87MG cells (Figs. S3A–B). Intriguingly, we do not know yet 

whether the same cells express stem and differentiation genes, or distinct populations 

express these genes.

There was one slight difference between our work and Sunayama et al.; we found that 

FOXO3 disruption led to increased TUBB3 (Fig. 2a), whereas Sunayama et al. found that 
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cells with decreased FOXO3 by siRNA had reduced TUBB3 gene expression. One possible 

explanation for this discrepancy is that FOXO3 disruption led to a loss in stem 

characteristics and differentiation (including TUBB3 induction) over a period of weeks in 

our experiments compared to three days for Sunayama et al. (2011). It is noteworthy that 

although FOXO3 protein was nearly undetectable after RNAi targeting in work by 

Sunayama et al., TUBB3 was still induced, albeit at a reduced level. This suggests that other 

FOXO factors may have contributed to TUBB3 expression in these experiments. Similarly, 

in our experiments, other factors may have promoted TUBB3 induction (such as FOXO1) 

when FOXO3 was disrupted.

Our results from subcellular localization experiments for FOXO factors matched Sunayama 

et al. (2011). Treatment with NVP-BEZ235 alone did not appreciably change FOXO3 (wild-

type or disruption mutant) subcellular localization, refining conventional paradigms for this 

pathway (Fig. S2). FOXO1 and FOXO4 localization was not impacted by NVP-BEZ235 

treatment of U87MG cells (data not shown). Even though the localization of FOXO factors 

were unchanged by NVP-BEZ235 treatment, it appeared that target genes were induced 

(Figs. 3c and S2A).

Other studies have highlighted the ability of NVP-BEZ235 to induce FOXO output in cancer 

cells. Lin et al. examined feedback responses under low-dose NVP-BEZ235 conditions (Lin 

et al. 2014). One key point from Lin et al. was that the FOXO-dependent resurgence of PI3K 

activity was only observed at a relatively low dose of NVP-BEZ235 (Lin et al. 2014). Lin et 

al. specifically chose to use a low dose of NVP-BEZ235, because higher dosages would 

likely be toxic to cancer patients. Our work built on the work by Lin et al. In addition to 

deleterious effects mediated by FOXO that led to PI3K pathway reactivation (RICTOR 
induction, Fig. 3b), NVP-BEZ235 treatment had additional deleterious effects that could 

greatly impact drug efficacy as a chemotherapeutic. We found that stem genes were induced 

upon NVP-BEZ235 treatment (Figs. 3c and S1B–C). Our experiments mostly employed low 

dosage NVP-BEZ235 (similar to experiments performed by Lin et al.). Two sets of our 

experiments utilized higher doses of NVP-BEZ235. We needed to use a higher dose of 

NVP-BEZ235 to observe stem gene induction in the glioblastoma cell line LN229 (1 μM 

compared to 50 nM for other cell lines, Fig. 3c). Perhaps, the PI3K pathway is more active 

in LN229 cells. We also utilized a higher NVP-BEZ235 dose (1 μM) when examining 

subcellular localization to compare our work to Sunayama et al. (who utilized 1 μM) as well 

as to examine changes in gene expression with combined MEK and PI3K inhibition (Lin et 

al. 2014; Sunayama et al. 2011).

Targeting PI3K as a chemotherapeutic for cancer requires consideration of homeostatic 

feedback mechanisms and possible unwanted activation of pathways that may promote 

cancer aggressiveness. The efficacy of PI3K targeted therapy for advanced solid tumors was 

limited and did not significantly increase overall survival or objective response rate across 

46 randomized-controlled clinical trials (Li et al. 2018). Work by Caino et al., demonstrated 

that PI3K pathway inhibition led to increased cellular motility in prostate cancer cells as 

well as reactivation of PI3K signal transduction (Caino et al. 2015). Hopkins et al. mitigated 

the homeostatic feedback mechanisms induced by PI3K inhibition by utilizing a ketogenic 

diet in a murine pancreatic cancer model, highlighting novel avenues that show promise for 
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future therapeutic protocols (Hopkins et al. 2018). Our work has novel implications for 

transcriptional changes that arise upon PI3K inhibition. We found PI3K inhibition by NVP-

BEZ235 led to the robust induction of stem genes such as OCT4 in a set of glioblastoma cell 

lines and BT549 cells. It remains unclear if PI3K inhibition will broadly induce stem 

programs across varied subtypes of cancer or if it will only be pertinent to the most 

aggressive cancers that already harbor stem signatures such as glioblastoma cells and 

BT549.

Conclusions

FOXO transcription factors function in a context-dependent manner (Paik et al. 2007). In 

some cancers, FOXO factors cause apoptosis (Calnan and Brunet 2008). We found that 

FOXO factors promote stem gene expression in GBM cells (Figs. 1, 2, 3, 4). Treatment with 

the dual PI3K inhibitor NVP-BEZ235 induced stem gene expression in glioblastoma cell 

lines and BT549 cells (Fig. 2c, d), having important implications for the efficacy of PI3K 

inhibition as a chemotherapeutic option. Importantly, expression of stem programs is 

strongly associated with poor prognosis, suggesting that PI3K inhibition may make some 

susceptible cancers more aggressive (Iwadate et al. 2017). Perhaps combined PI3K pathway 

and FOXO inhibition would be more efficacious as a cancer therapy, because it would target 

proliferation and residual stem cells.

Methods

Cell culture and drug treatments

Cell lines were obtained from ATCC (American Type Culture Collection, Manassas, VA) 

and grown under standard conditions (5% CO2, 10% FBS (fetal bovine serum), with 5% 

antifungal/antibacterial). Cell lines were tested for Mycoplasma using the MycoAlert 

Mycoplasma Detection Kit (Lonza, Basel Switzerland, cat: LT07–218); all experiments were 

done with mycoplasma negative cells. U87MG cells were propagated in MEM (Minimal 

Essential Medium). BT549 and DBTRG cells were propagated in RPMI (Roswell Park 

Memorial Institute 1640 Medium). HEK 293, LN18, U118MG, A172, and LN229 cells were 

propagated in DMEM (Dulbecco’s Modified Eagle Medium). NVP-BEZ235 was purchased 

from Sigma (Saint Louis, MO), and utilized at a final concentration of 50 nM in indicated 

experiments. Two sets of experiments utilized a higher dose of NVP-BEZ235. LN229 cells 

were treated with 1 μM NVP-BEZ235 and data from Figs. S3A–B were generated using 1 

μM NVP-BEZ235 treatment. UO126 was purchased from Selleck Chemicals (Houston, TX) 

and used at 10 μM final concentration. Cells were plated at a density of 2700 cells per ml 

and were treated for 5 days with NVP-BEZ235 (unless otherwise stated). AS1842856 was 

purchased from Calbiochem (Danvers, MA) and utilized at 200 nM final concentration.

Transfection

Cells were grown under standard propagating conditions (37 °C with 5% CO2 in media 

containing 10% FBS and 5% pen/strep) and harvested by trypsin treatment, while the cells 

were in the log growth phase. One million cells were transfected using Lonza Nucleofection 

kit V (Lonza, Basel Switzerland), program P-20 (U87MG, A172, LN229, LN18, U118, 
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DBTRG, and BT549) or X-001 (HEK 293) and allowed to recover for 24 h in 10 cm culture 

dishes. The foxo3 disruption mutants and controls were electroporated using program T-020 

with Lonza Nucleofection kit V and 1 million cells. One microgram of indicated plasmid 

was utilized in each transfection. Plasmids were described previously (Keniry et al. 2013). 

FOXO3-CMV5 was obtained from D. Accili (Nakae et al. 2001). Vectors prepared for 

CRISPR Cas9 mutagenesis were previously described (Vazquez et al. 2018). The CRISPR 

donor vector was prepared using a pCDNA3 backbone with chromosomal FOXO3 
sequences to enable integration into FOXO3 loci to disrupt FOXO3 with a NPTII neomycin 

resistance cassette. Isolates were previously confirmed by sequencing and western blot 

(Vazquez et al. 2018). RNAi experiments utilized Lonza Nucleofection kit V and 1 million 

cells with 600 ng of indicated esiRNAs from Sigma per transfection (eGFP: EHUE-GFP), 

(FOXO1: EHU156591) and (FOXO3: EHU113611). RNAi lysates were collected 48 h post-

transfection.

Western blot

Total protein was obtained from indicated cells by rinsing cells with 1XPBS (phosphate-

buffered saline) followed by directed lysis in 2 × sample buffer (125 mM Tris–HCL at pH 

6.8, 2% sodium dodecyl sulfate (SDS), 10% 2-mercaptoethanol, 20% glycerol, 0.05% 

bromophenol blue, 8 M urea); 2 × sample buffer was added to each well and cells scraped 

with a cell scraper. The lysate was collected from each well, placed into 1.5 ml 

microcentrifuge tubes, and heated for 10 min at 95 °C in a dry-bath heat block. Protein 

lysates were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-

PAGE) at 100 V for 1 h. Resolved proteins were then transferred onto a polyvinylidene 

fluoride (PVDF) membrane for an hour and 30 min then blocked in a 5% milk solution 

(Carnation powdered milk, 1X Tris-buffered saline with Tween 20 (TBST) for an hour. 

Membranes were incubated with indicated primary antibody overnight at 4 °C then washed 

for 20 min with TBST in 5-min intervals. The blot was then incubated with secondary 

antibody for 1.5 h. Membranes were washed for 20 min in 5-min intervals and allowed to 

develop using SuperSignal West Dura Extended Duration Substrate luminol solution (Pierce 

Biotechnology, Waltham, MA) for 5 min. A Bio Rad ChemDoc XRS + Molecular Imager 

was utilized for protein detection (Bio Rad Hercules, CA). Data were analyzed with NIH 

Image J. Antibodies were obtained from Cell Signaling Technologies (Danvers, MA): 

FOXO3 (75D8), FOXO1 (C29H4), FOXO4 (9472S), OCT4 (2750S), total STAT3 (9139 T), 

phospho STAT3 tyrosine 705 (9145 T), and Phospho-p44/42 MAPK (Erk1/2) (Thr202/

Tyr204) (D13.14.4E) XP® Rabbit mAb catalog: 4370), Histone H3 (96C10, catalog: 3638), 

and phospho AKT serine 473 (9271S). Antibodies obtained from Cell Signaling 

Technologies were diluted 1:1000 in TBST containing 5% BSA and were incubated with 

blots overnight at 4 °C. GAPDH (G-9) was obtained from Santa Cruz Biotechnology Inc. 

(Dallas, TX) and utilized at a 1:2000 dilution in TBST with 5% non-fat dried milk. Beta-

Actin antibody (clone AC-74, cat: A2228) was obtained from Sigma and utilized at a 1:2000 

dilution in TBST with 5% non-fat dried milk.

Quantitative real-time PCR

Total RNA was prepared using the Qiagen RNeasy kit (Hilden, Germany), which was then 

used to generate cDNA using Superscript Reverse Transcriptase II (Invitrogen, Carlsbad, 
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CA). Samples (cDNAs) were analyzed using (Power SYBR Green Master Mix, Applied 

Biosystems, Foster City, CA) and the Illumina Eco Real-time system (San Diego, CA). 

Expression levels were normalized to GAPDH in gene expression experiments and 

calculated using 2−ΔΔCT method (Livak and Schmittgen 2001). Primer sequences are 

detailed in supplemental Table S1.

Clonogenicity assays

Indicated cells were treated with trypsin and counted using a Millipore Scepter automated 

cell counter (Millipore, Burlington, MA). Cells were diluted into media at a final 

concentration of 180 cells per ml. 2 ml of cells were plated per well of a 6-well plate and 

were grown for 2 weeks. Colonies were stained with 0.5% crystal violet in buffered formalin 

and washed with PBS. All visible colonies were counted for each sample irrespective of the 

cell number. Experiments were performed several times in quadruplicate.

ChIP analyses

Data presented were from U87MG cells treated with 50 nM NVP-BEZ235 for 5 days. 

Chromatin immunoprecipitation (ChIP) analyses were performed as previously described 

(Niu et al. 2003), except an additional micrococcal nuclease step was added to shear 

chromatin. 10 million U87MG cells grown in 15 cm dishes were cross-linked by adding 

formaldehyde to final concentration of 1% and incubated in room temperature for 10 min; 

after, 125 mM glycine was added and samples were incubated for an additional 5 min at 

room temperature. Cells were washed twice with PBS and scraped into ice-cold PBS, and 

then collected by centrifugation at 200×g. Cells were washed with PBS and resuspended in 

ChIP lysis buffer (1% SDS, 1 mM EDTA, 50 mM Tris–HCl pH 7.5.0) Cells were lysed for 

10 min on ice, sonicated on a Branson 250 Sonicator at 20% power for 30 s 4 times. After 

this, 18 μl of micrococcal nuclease solution (Thermo-Fisher Waltham MA, catalog: 88216) 

and 430 μl of 10 mM CaCl2 were added to 10 ml chromatin mixture and incubated for 10 

min. The reaction was stopped by adding 100 μl of 0.5 M EDTA. Next, chromatin preps 

were diluted 1–10 with dilution buffer (20 mM Tris–HCl pH 8.0, 1 mM EDTA, 0.1% 

sodium deoxycholate, 140 mM NaCl, 0.01% SDS, and 1% NP40). Chromatin was pre-

cleared with 80 μl of magnetic protein A/G beads (Pierce Biotechnology, Waltham, MA, 

catalog: 78609) for 1 h at 4 °C. Pre-cleared chromatin preparations (prepared from 1 million 

cells) were incubated overnight with 7 μg of normal rabbit IgG (Santa Cruz Biotechnology 

Inc., Dallas, TX, catalog: SC2017) or FOXO1 antibody (C29H4) at 4 °C. Samples were next 

incubated with 80 μl of Protein A/G agarose for 1 h and then washed for 5 min with each 

buffer: Low Salt Buffer (20 mM Tris pH 8.0, 2 mM EDTA, 0.1% SDS, 1% Triton X100, and 

150 mM NaCl), High Salt Buffer (20 mM Tris pH 8.0, 2 mM EDTA, 0.1% SDS, 1% Triton 

X100, and 500 mM NaCl), and LiCl Buffer (20mMTris pH 8.0, 2 mM EDTA, 0.5% sodium 

deoxycholate, 0.1% NP40, and 250 mM LiCl). After washes, DNA was eluted by incubating 

beads with Elution buffer (1% SDS, 0.1 M NaHCO3) at 37 °C for 15 min (step performed 

twice). Crosslinks were reversed by adding 40 μl 2.5 M NaCl to the combined eluates (500 

μl) and heating at 65 °C overnight. DNA was purified using phenol:chloroform extraction 

and sodium acetate/ethanol precipitation. The purified DNA was subjected to quantitative 

real-time PCR. OCT4 promoter sequence O2 association levels (mapped by Zhang et al.) 

were normalized to OCT4 control sequence (utilized by Zhang et al.) in ChIP experiments 
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and calculated using 2−ΔΔCT method (Livak and Schmittgen 2001; Zhang et al. 2011). 

Primer sequences utilized for ChIP quantitative PCR are detailed in supplemental Table S2.

Subcellular fractionations

Subcellular fractionations were prepared as described previously (Keniry et al. 2013). 10 

million log-phase cells were scraped from 15 cm plates into ice-cold PBS. Cells were 

washed once with ice-cold PBS (containing 1 × PI). Cells were incubated in Buffer A (10 

mM Hepes pH 7.4, 10 mM KCL, 100 μM EDTA, 1 X PI) for 15 min on ice. After this, 10% 

NP-40 was added to the Buffer A mixture at a 1:20 dilution. Samples were vortexed and 

incubated on ice for 2 min with mixing by inversion every 30 s. Next, samples were 

centrifuged at 1000×g for 5 min. The cytoplasmic fractions were collected from the 

supernatant and mixed one to one with 2 × sample buffer (125 mM Tris–HCL at pH 6.8, 2% 

sodium dodecyl sulfate (SDS), 10% 2-mercaptoethanol, 20% glycerol, 0.05% bromophenol 

blue, and 8 M urea). Cytoplasmic fractions (mixed with 2 × sample buffer) were heated for 

10 min at 95 °C in a dry-bath heat block. The nuclear pellets (from the 1000×g 
centrifugation step) were washed with Buffer A and then washed with Buffer C (20 mM 

Hepes pH 7.4, 400 mM NaCl, 1 mM EDTA, 1 X PI). The washed nuclear pellets were lysed 

in 2 × sample buffer and heated for 10 min at 95 °C in a dry-bath heat block. Samples were 

analyzed by western blot analyses. 25% of each nuclear fraction was resolved in each well 

for western blot analyses. 1% of each cytoplasmic fraction was resolved in each well for 

western blot analyses. Experiments were repeated several times with similar results.
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Abbreviations

PI3K Phosphatidylinositol 3 Kinase

PIP2 Phosphatidylinositol 4,5-bisphosphate

PIP3 Phosphatidylinositol 3,4,5-trisphosphate
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AKT Protein Kinase B

PTEN Phosphatase and Tensin homolog deleted on chromosome ten

FOXO Forkhead box subfamily O

ES Embryonic stem GBM Glioblastoma multiforme

BBC Basal breast cancer

OCT4 Octamer-binding Transcription factor 4

SOX2 Sex determining region Y-box 2

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

Cas9 CRISPR-associated sequence 9

NPTII Neomycin resistance cassette (Neomycin phosphotransferase)

ATCC American Type Culture Collection

MEM Minimal essential media

DMEM Dulbecco’s Modified Eagle Medium

RPMI Roswell Park Memorial Institute (RPMI) 1640 Medium

FBS Fetal bovine serum

PBS Phosphate-buffered saline

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

PVDF Polyvinylidene fluoride

TBST 1X Tris-buffered saline with Tween 20

kDa Kilo Dalton

ACTB Beta actin

LIF Leukemia Inhibitory Factor

IL6 Interleukin 6

NANOG Nanog homeobox

SHH Sonic Hedge Hog

TGFB1 Transforming Growth Factor beta1

EGF Epidermal Growth Factor

ALPP Alkaline Phosphatase Placental

TUBB3 Tubulin Beta 3 class III
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STAT3 Signal transducer and activator of transcription 3

JAK2 Janus Kinase 2

IBC Institutional Biosafety Committee

Cyt Cytoplasm

Nuc Nucleus
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Fig. 1. 
FOXO3 impacts OCT4 Gene Expression. a Schematic of foxo3 disruption mutant protein 

(DNABD = DNA Binding Domain) and AD = transcriptional activation domain). b Total 

protein lysates prepared from foxo3 mutant containing U87MG cells and control cells were 

examined by western blot analysis; antibodies used for western blotting are indicated. Wild-

type FOXO3 was approximately 80 kDa, whereas mutant foxo3 protein was approximately 

45 kDa. c Gene expression (determined by qRT-PCR) of OCT4 in foxo3 disruption mutants 

with or without exogenous FOXO3. d Western blot of U87MG cells with exogenous 

FOXO3. A significant difference was indicated by Student’s t test compared to control 

U87MG cells (*) or cognate foxo3 mutant cell line (**)
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Fig. 2. 
FOXO3 disruption mutants had reduced stem characteristics in U87MG cells. a Gene 

expression (for SOX2 and TUBB3, encoding a neuronal marker) was determined by qRT-

PCR in foxo3 disruption mutants. Mutants had reduced SOX2 and increased TUBB3 
expression. b Lysates from foxo3 mutants and control U87MG cells were investigated by 

western blot analysis. Mutants had reduced STAT3 Y705 phosphorylation. c Indicated 

cancer cell lines were plated at a density of 180 cells per ml and grown for 2 weeks. 

Colonies were stained with crystal violet and counted. *Significant difference indicated by 

Students T test
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Fig. 3. 
Exogenous FOXO3 and Dual PI3K Inhibitor NVP-BEZ235 Induce OCT4. a OCT4 gene 

expression (determined by qRT-PCR) in four glioblastoma cell lines: U87MG, U118MG, 

DBTRG, and A172. b Expression of stem genes from samples with exogenous FOXO3 
measured by qRT-PCR. The fold induction was relative to the control samples (CMV5 

vector alone). FOXO3 and RICTOR were positive controls, whereas ACTIN (ACTB) was a 

negative control. The Benjamini–Hochberg Procedure was employed to correct for multiple 

hypothesis testing using an FDR < 0.05. c Indicated glioblastoma cell lines were treated for 

5 days with NVP-BEZ235 and analyzed by qRT-PCR for OCT4 gene expression. All cell 

lines were treated with 50 nM NVP-BEZ235, except LN229, which was treated with 1 μM 

NVP-BEZ235. d U87MG and foxo3-disrupted U87MG cells were treated with 50 nM NVP-

BEZ235 for 48 h. The Tukey method was utilized for multiple comparison testing with P < 

0.05 denoted with *. The ** denotes P < 0.05 based on Tukey method between U87MG 

NVP control cells and foxo3 mutant treated with NVP. *Significant difference indicated by 

Student’s T test in panels a–c
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Fig. 4. 
FOXO1 contributes to OCT4 gene expression in U87MG Cells. a, b Gene expression of 

OCT4 or indicated FOXO factor was determined by qRT-PCR in cells with indicated 

esiRNA (48 h posttransfection). FOXO1 esiRNA-treated cells had decreased OCT4 gene 

expression. c Cells were treated with DMSO, FOXO1 inhibitor (F1i, AS1842856 200 nM), 

and/or NVP-BEZ235 (50 nM) for 48 h and examined by q-RT-PCR. FOXO1 inhibition led 

to reduced OCT4 gene expression based on Tukey Test (P < 0.05), denoted by * in this 

panel. d ChIP was performed using extracts prepared from NVP-BEZ235 treated U87MG 

cells to investigate association of FOXO1 with previously mapped OCT4 Promoter Region 

O2 relative to a negative control conserved upstream region of human OCT4 (NEG Seq O). 

FOXO1 associated with the OCT4 O2 promoter sequence. e A model is depicted in which 

FOXO factors directly regulate OCT4 transcription in certain cancer cells such as U87MG 

GBM. *Significant difference indicated by Student’s T test in a, b, d
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