
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Computer Science Faculty Publications and 
Presentations College of Engineering and Computer Science 

7-26-2024 

Tuning PID Controller for Quadrotor Using Particle Swarm Tuning PID Controller for Quadrotor Using Particle Swarm 

Optimization Optimization 

Eric X. Rodriguez 
The University of Texas Rio Grande Valley 

Qi Lu 
The University of Texas Rio Grande Valley, qi.lu@utrgv.edu 

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
E. X. Rodriguez and Q. Lu, "Tuning PID Controller for Quadrotor Using Particle Swarm Optimization," 2024 
21st International Conference on Ubiquitous Robots (UR), New York, NY, USA, 2024, pp. 168-175, 
https://doi.org/10.1109/UR61395.2024.10597517 

This Conference Proceeding is brought to you for free and open access by the College of Engineering and 
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty 
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, 
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


Tuning PID Controller for Quadrotor Using Particle Swarm
Optimization

Eric X. Rodriguez1 and Qi Lu2

Abstract— Energy expenditure for quadrotor control has a
likelihood of being costly given parameter-dependent controllers
that are less than optimal. The cost can grow proportionally
when applied to multiple quadrotors for tracking and collab-
orative navigation tasks. This research aims to establish a ba-
sic approach to tuning PID (Proportional-Integral-Derivative)
parameters for a simulated quadrotor drone. A PID controller
for autonomy provides a straightforward method for correcting
robotic movement based on its current state. However, applying
a PID system to a flight controller poses challenges with an
inherently under-actuated system, which includes the likelihood
of large overshoots and lengthy adjustment times. To address
this, we utilize PSO (Particle Swarm Optimization) for opti-
mizing PID parameters in a simulated quadrotor. The PSO
is employed to find optimal PID values for thrust, yaw, and
translational movement on x- and y-positions by identifying
converging values across randomly created particles. We con-
ducted a set of experiments and compared it to the default PID
controller. The experiments demonstrate converging properties
for particles that achieve minimal fitness scores, particularly
in reducing overshoot. The results indicate that the optimized
PID controller outperforms the default PID controller without
optimization. Using optimized PID controllers can decrease the
amount of positional error during flight and when adjusting
position with collaborative navigation and collision avoidance
algorithms.

The PID controller is a simple and effective method
employed for system monitoring and control [1]. However,
a notable drawback of the PID control scheme is utiliz-
ing disproportional gains that can lead to system failure.
For example, the goal of a PID controller is to minimize
overshooting a desired setpoint while reducing adjustment
time. A common approach to addressing this is manually
tuning each PID parameter for every assigned response
system. Unfortunately, this method can be time-consuming
and may still leave the system vulnerable to inadequate flight
responses. To overcome this, we propose the use of Particle
Swarm Optimization (PSO) to optimally tune PID parameters
for a simulated quadrotor.

PSO demonstrates rapid convergence speed in obtaining
optimal parameters, requiring adjustment of only a few
setting parameters for convergence, and exhibits high calcu-
lation efficiency [2]. Moreover, it often achieves high-quality
solutions in a shorter time compared to other stochastic
methods [3]. This article aims to identify optimal PID
parameters for a simulated DJI Mavic2Pro in the Webots
robot simulator using PSO. We evaluate the efficiency of

1Eric X. Rodriguez is with the Department of Computer Sci-
ence, The University of Texas at Rio Grande Valley, Edinburg, USA
eric.rodriguez09@utrgv.edu

2Qi Lu is with the Department of Computer Science, The University of
Texas at Rio Grande Valley, Edinburg, TX, USA qi.lu@utrgv.edu

the tuned PID against the PID with default parameters,
analyzing performance by comparing flight trajectories with
a reference trajectory over predetermined waypoints. The
results indicate that the PID parameters tuned by PSO
outperform those with default settings. With our findings, we
intend to apply an equivalent PSO tuning implementation
for a similar simulated quadrotor and transfer found PID
gains to a physical quadrotor controller. We believe that
validating tuning parameters for a physical quadrotor can be
replicated in multiple physical drones. To caveat, we hope
this will assist with future efforts in exploring collaborative
navigation. This paper is organized with Section I exploring
related works. Section II will provide a detailed background
in the PID control scheme and PSO. Section III will describe
the experimental setup with results depicted in Section IV.
Finally, Section V will provide the conclusion.

I. RELATED WORK

Numerous studies have explored the stability and control
performance of quadcopter systems, often employing the lin-
ear PD control method. In a notable example [4], researchers
developed a control strategy for quadrotor-type aerial robots
using the PD loop to stabilize and control the quadrotor’s
position during disturbances. Another study [5] focused on
elucidating the dynamical model of a quadrotor, implement-
ing the PD control algorithm to regulate orientation and
trajectory tracking at slow speeds.

Additionally, an innovative approach was taken in [6],
where an extended Kalman filter (EKF)-based smart self-
tuning fuzzy-PID (SSTF-PID) controller was introduced for
posture control of the quadcopter. Authors in [7] imple-
mented an adaptive pole placement using a self-tuning-
PID (ST-PID) controller to stabilize the Euler angle of the
quadcopter. To enhance stability and tune PID parameters,
researchers applied a gain-scheduled PID controller and a
fuzzy logic control (FLC) in [8]. The study also included a
comparison between the behaviors of conventional PID and
gain-scheduled PID controllers.

The application of Particle Swarm Optimization (PSO)
for tuning PID parameters is a widely employed technique,
often compared with other optimization methods. In a study
by [9], the PSO search algorithm was modified, introducing
a new algorithm called modified-PSO for the twin-rotor
system. Abdelghany et al. conducted a comprehensive in-
vestigation [10], benchmarking quadrotor stabilization using
a nonlinear quadrotor model. They compared three control
techniques, including a PD controller tuned based on two
heuristic algorithms: a genetic algorithm (GA) and PSO.



Notably, GA proved to be the better algorithm, with slight
contrasts observed in comparison to their modified PSO
implementation.

Another article delves into an alternative cost function,
assessing adjustment time and overshoots concerning the
desired pitch angle within a cascading PI PID control
scheme [2]. The study concluded that the PSO algorithm
is suitable for performing preliminary tuning on parameters
for their cascade-designed controller. Lastly, the article [11]
applies a PD system for trajectory control and a PID system
for attitude control. The authors utilized PSO for tuning both
systems and compared the performance between tradition-
ally, ”hand-tuned” gains with PSO-tuned gains. Their method
of comparing parameters involved collecting a mean-square
error (MSE) flight performance which resulted in tuned
PSO parameters having the least error between performance
and reference trajectories. We used a similar approach for
testing parameter gains in this research. Specifically, our
first experiment aims to collect PSO parameters and verify
them with basic flight movements that will be used in our
second experiment, a comprehensive error observation over
predetermined paths.

This project aims to apply PSO to tune PID gains for
simulated quadrotor flight controllers and prove that optimal
gain parameters can be found with PSO using combined
fitness functions. Many of the articles mentioned above did
not make use of combined fitness functions to tune PID
parameters, but we included this within our experiments.

II. BACKGROUND

A. PID Control Scheme

The PID control scheme relies on proportional gains
Kp, Ki, and Kd to generate corrective responses for the
system. The error state, denoted as e(t), represents the
disparity between the measured state and the system’s desired
setpoint and is comprised of three components: the current
instantaneous-time error state, the integrated error state ac-
cumulated over a sample of time, and the differentiated error
state from a previous instantaneous time to the current. These
terms are summed to produce a desired error correction
response value, u(t), portrayed in Equation 1 below and
explained in [12]. The PID control scheme block diagram
is illustrated in Figure 1 and features the output response
feedback.

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
(1)

Fig. 1: PID Control Scheme and output response feedback
loop.

To address potential drawbacks, we have opted for PSO
to fine-tune our parameters. Our goal is to showcase the
efficacy of this optimization technique by conducting a
performance score comparison. This involves evaluating a
simulated quadrotor’s flight trajectory against a given refer-
ence trajectory within a virtual robot simulator.

B. Particle Swarm Optimization (PSO)

PSO is an efficient optimization technique that stems from
the biological phenomena of a flock of birds [13], [14]. The
formation represents quality opportunities for the flock to
find food, roosting areas, best flight patterns, etc. PSO works
in this way and, in a sense, is a stochastic algorithm like
gradient descent [15].

PSO uses M-dimensional features with N-particles, where
N can be considered the size of the swarm population. Each
particle, i = 1, . . . , N in PSO is correlated to a position
x = (xi,1, xi,2, . . ., xi,m) in the search space. Along with
the position of the particle, the current state of the particle is
influenced by the given velocity-v of the particle (vi,1, vi,2,
. . ., vi,m). The xth – position and the vth – velocity updates
are dependent on the best-position (pi,1, pi,2, . . ., pi,m) found
in the search space by the particle so far, including the overall
best position (pg,1, pg,2, . . ., pg,m) across the entire swarm.

The position for N-particles is randomized across a preset
range of search values at the initial state of PSO. In our
case, we will use a set of parameters from one of the
assigned PIDs to control either attitude, altitude, or forward
translational movement. For example, Equation 2 exhibits
what we would consider a particle position for a single set of
parameters. Due to the design of our experiment, we explore
PSO convergence with particle parameters by sequentially
tuning for Thrust, ψ, and translational (x, y) positions PID
parameters.

X(t) = {Kp,Ki,Kd} (2)

Velocity, notated in Equation 3, is applied in the particle’s
position update term in Equation 4 and is also initially
random. The velocity update includes dependencies on fit-
ness scores of the individual particle itself (pi,m) and the
overall best fitness from the group (pg,m). The weighted
factor (w) is considered as the inertial weight of the current
velocity. In relation, the local-cognition weight (c1) and
the social-cognition weight (c2) are respective terms for
the influence with either cognition computation. The local-
cognition weight relates to the individual particle’s param-
eters associated with the best fitness documented through
iterations of the PSO algorithm and is also known as pbest.
The social-cognition weight is related to the best fitness score
observed throughout the entirety of the swarm population and
is also known as gbest. Lastly, randomized values r1 and r2
are used to provide additional randomness to the update of
a particle’s velocity but were not considered during tuning.

vi,m(t+ 1) = w ∗ vi,m(t) + c1 ∗ r1(pi,m − xi,m(t))

+ c2 ∗ r2 ∗ (pg,m − xi,d(t))
(3)



xi,m(t+ 1) = xi,m(t) + vi,m(t+ 1) (4)

After updating particle positions for the next iteration,
PSO proceeds to gather the fitness score for the nth particle.
The obtained fitness score is then utilized to update pbest
and gbest variables in Equation 3, leading to adjustments
in particle parameter values for the upcoming iteration.
Throughout the loop, PSO continuously compares individual
and group fitness scores until a predefined minimum thresh-
old is met. The optimization loop persists until a desired
fitness threshold is attained, and the PID parameters converge
within a range noticeably smaller than the standard deviation
from the initially randomized particles.

III. EXPERIMENTAL SETUP AND DESIGN

A. Proposed Experimental PID-Controller

We used two experiments in this research. Our first
experiment is to identify optimal parameters for a flight
controller and test for performance. Here, we will use log10-
SSE to measure for error with tuned parameters across a
predetermined waypoint course. The initial experiment seeks
to identify optimal PID parameters for controlling the thrust,
yaw, and translational(x, y) position of a simulated drone in
Webots. We proposed tuning these parameters consecutively
starting with thrust, or what we are labeling as throttlePID.
Figure 2 portrays the state diagram of the quadrotor for this
experiment.

Fig. 2: The quadrotor state diagram visualizes transitions
between states and their respective conditionals. This also
shows the determined method by which PID systems were
tuned sequentially

The drone begins in grounded state and has a starting
location at a global waypoint [0, 0, 0.1]. Upon receiving a
target altitude exceeding 0.5m, the drone transitions into a
takeoff state. Once the quadrotor reaches the target altitude, it
enters hover state. The time interval from grounded to hover
serves as the period during which we observe flight behavior,
capturing overshoot (θ) and adjustment time (ts) for thrust.

These measurements are used to collect the fitness score,
as employed in [11]. In our context, fitness is computed
by summing two log10 functions, applied to the ratio of
overshoot and expected overshoot (θexp), along with the ratio
of adjustment time and expected adjustment time (texp).

The same fitness collection method was employed when
the drone transitioned into change-yaw state, changing the
orientation of its initial heading towards a target heading.
This ensures the drone progresses forward in the direction
of the waypoint. The PID control system responsible for
change-yaw is labeled as Y awPID. The quadrotor moves
into the change-pitch state when both the drone’s heading
aligns with the target heading.

While in change-pitch, the fitness for PSO tuning is
represented as the log10 of the sum of square errors (SSE)
between the performed flight and reference trajectories. This
fitness score is calculated by collecting the error between
trajectories from the takeoff position to the target point.
Tuning parameters for translational (x, y) position control
is then performed, labeled as XposPID and Y posPID,
respectively.

We applied PID control systems for φ and θ without
tuning, maintaining parameters at their default values. While
these parameters influence motor inputs for the quadrotor,
we labeled them as rollPID and pitchPID. The second
experiment involved comparing the natural logarithm of the
sum of square errors (SSE) between flight trajectories of two
PID controllers: one with default manually tuned parameters
and another with PSO-tuned parameters.

B. Quadcopter Modeling and Simulation

As many of the articles discussed in Section I model
their quadcopters in MATLAB, we decided to avoid building
similar complex models. Instead, we were more determined
to focus on a quadrotor model that was simple to implement
and fault-deterrent with our exploration into PSO using
Python.

Another reason why Webots was a primary choice for
our experiments was the straightforward interface and class
hierarchy. Webots offers a Supervisor class that facilitates
direct interaction with the simulation, commonly utilized
for optimization techniques such as PSO. The quadrotor
model and the experimental environment are demonstrated
in Figure 3, along with local and global reference frames.
For this expermient we utilzied a ENU global refernece and
mapped an XYZ local system for the quadrotor.

For this experiment, we assigned 6 PID control schemes
for attitude control and positional control. For attitude con-
trol, we assigned PID systems to control roll (φ), pitch (θ),
and yaw (ψ). For positional control, we assigned one set
of PID parameters to control thrust and two sets of PID
parameters to control the x- and y-position of the quadrotor.
In total, we used 18 different parameters to control our
quadrotor system. We adopted this approach from [11] which
utilized classical PD and PID approaches for trajectory,
attitude, and altitude control for a cross-shaped quadrotor.



(a) (b)

Fig. 3: Illustrations of a simulated DJI Mavic2Pro quadrotor
and the experimental environment in Webots. (a) The DJI
Mavic2Pro quadrotor; (b) The experimental environment for
the quadrotor and a circular trajectory. The trajectory is
illustrated by a set of balls in yellow. The quadrotor is located
on a squared plane in the center.

The advantage of using a simulated quadrotor provides us
the opportunity to explore a performance mapping between
PID responses and motor inputs. Using this inertial sensor
provides a representation of the quadrotor’s attitude in both
local and global reference frames. This also provided a
scheme to relate the quadrotor’s position using a rotational
matrix influenced by the local yaw rotation as expressed in
Equation 5. We then used this rotational matrix to translate
the quadrotor’s position over the global reference frame as
expressed in Equation 6 where we use the rotational matrix
to translate the local position with the global target position.

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (5)

xGyG
zG

 = R(ψ)

xLyL
zL

 (6)

We also incorporated a GPS sensor which returns the
quadrotor position in the global reference frame. To clarify,
this provides less intra-system calculations and in general,
removes the probability of accounting for accumulated error.
Instead, we proposed to use global-oriented sensor data as
input into our PID control systems and for PSO fitness.

C. Modeling PID-Controller for Quadcopter

We labeled attitude stability influenced inputs as vertical
u1, yaw u2, pitch u3, and roll u4. These are used in combina-
tion as input into setting the motor’s rotational velocity. u1 is
influenced by the error between the current altitude and target
altitude, and u2 is influenced by the current heading and a
desired target heading provided by the next target waypoint.

The pitch u3 and roll u4 inputs are influenced by collected
response outputs from their respective PID control systems
and also influenced by two translational PIDs which include
assigned PID control systems for the x and y positions. We
set the desired pitch and roll angles to be set with the initial
waypoint. Given the first target waypoint of our experiment

as [0, 0, 3], there is no translational adjustment in the (x, y)
directions. This keeps the desired angle for pitch and rolls
relatively small.

The incorporated translational PID control systems are the
mechanisms that influence the quadrotor to adjust its roll and
pitch angle to achieve forward flight towards a target point.
This is when we applied the rotational matrix described in
Equation 5 to transform the GPS received global coordinates
into a directional movement to global target waypoints. We
utilized this approach for trajectory control and re-interpreted
our attitude and altitude control inputs with the equations
described in Equations 7, 8, 9, and 10. The equations below
describe the individual inputs that affect drone flight. Kφ

and Kθ are separate proportional constants, unrelated to our
PID parameters, that ensure the adequate input response for
φ and θ.

u1 = ThrottlePID(zG) (7)

u2 = Y awPID(ψL) (8)

u3 = Kθ ∗ clamp(θL,−1, 1) + θ̇L + pitchPID(θL)

+clamp(mod−XposPID(xG),−1, 1)
(9)

u4 = Kφ ∗ clamp(φL,−1, 1) + φ̇L + rollPID(φL)

+clamp(mod− Y posPID(yG),−1, 1)
(10)

mod − XposPID and mod − Y posPID are values
retrieved from the cross-product of our rotation matrix in
Equation 6 with given yaw values from the onboard IMU,
which provides pitch and roll influences to move the drone
from one waypoint to another. This is described below in
Equation 11.

[
mod−XposPID
mod− Y posPID

]
= R(ψ)

[
XposPID(xG)
Y posPID(yG)

]
(11)

The attitude and altitude inputs are finally included in
the motor inputs where their respective sums are values
to set for the motor’s rotational velocity, as seen in Equa-
tions 12, 13, 14, and 15. Like the preset proportional con-
stants used in pitch and roll control, the KT proportional
thrust constant is a preset variable used in the foundational
controller. With the PIDs recognized within motor inputs,
the next part of this research explored constructing our PSO
implementation.

m1 = KT + u1 − u2 + u3 − u4 (12)

m2 = KT + u1 + u2 + u3 + u4 (13)

m3 = KT + u1 + u2 − u3 − u4 (14)

m4 = KT + u1 − u2 − u3 + u4 (15)



We set to tune for twelve separate PID parameters con-
secutively starting with ThrottlePID’s Kp, Ki, and Kd,
then moving to tune for Y awPID’s parameters, and fi-
nally tuning for forward-travel with tuning XposPID’s
and Y posPID’s parameters. In total, this research explores
tuning a total of 12 different parameters across four assigned
PIDs, not including rollPID and pitchPID. These control
systems were kept as default for the second experiment as
well.

IV. EXPERIMENTAL RESULTS

We present training results of tuned parameters for throttle,
yaw, forward, and translational movements. All parameters
were tuned for 70 iterations with the average fitness across
three experimental trials used as the measured fitness score
for the particle.

A. Tuned Throttle PID Parameters

Figures 4, 5, and 6 demonstrate the behavior of PSO as it
explores all three parameters for ThrottlePID. The fitness
used here will equate how well the quadrotor achieved hover
state with a target altitude of 3m. Figures 4 and 6 display
convergence properties between iterations 20 and 30 while
Figure 5 shows the parameter does not have a significant
difference through all iterations.

B. Tuned Yaw PID Parameters

The same fitness function was used for tuning yawPID
parameters. Once the quadrotor reaches the desired target
altitude, its state will then switch to yaw-change, at which
point it will change its heading towards the first target
waypoint. Tuned results are shown in Figures 7, 8, and 9.
From this exploration, we found similar convergence patterns
as we observed for ThrottlePID. Figures 7 and 9 show
convergence early in the exploration and trend towards values
with common respective fitness.

C. Tuned Positional and Translational Parameters

Once the quadrotor’s heading aligns with the target head-
ing, it will begin traveling forward from its current pose
and toward the target waypoint. To find the optimal pa-
rameters for forward travel, we decided to tune parameters
for xposPID and yposPID. To equate the fitness for
both control systems, we utilized two fitness functions and
measured the overshoot and adjustment to the waypoint
including the error with flight and reference trajectories.

Figures 10, 11, and 12 portray the tuning results for
xposPID. Figures 10 and 12 display a convergence for both
Kp and Kd gains at around 20-30 iterations. Figure 11 shows
that the algorithm begins to explore the search space, but
after iteration 30 returns the swarm to values closer to the
initial.

Figures 13, 14, and 15 demonstrate the particle position
average across 70 iterations for yposPID. Particle Kp,
in Figure 13, has a small converging range shortly before
reaching 70 iterations, which we used for our tuned pa-
rameters. Parameter Kd, in Figure 14, shows convergence

TABLE I: Final Particle Disparity for applied PID controls

Tuned-avg Global-Best Default
ThrottlePID-Kp 1.52 +/-0.13 1.789 1.2
ThrottlePID-Ki 0.22 +/-0.06 0.256 0.1
ThrottlePID-Kd 0.57 +/-0.14 0.754 0.5
YawPID-Kp 0.84 +/-0.17 1.148 0.232
YawPID-Ki 0.13 +/-0.05 0.062 0.1
YawPID-Kd 0.28 +/-0.18 0.465 0.3722
xposPID-Kp 0.88 +/-0.22 1.238 0.232
xposPID-Ki 0.02 +/-0.03 0.001 0.01
xposPID-Kd 0.83 +/-0.38 0.857 0.6756
yposPID-Kp 0.75 +/-0.02 1.275 0.232
yposPID-Ki 0.02 +/-0.02 0.001 0.01
yposPID-Kd 0.99 +/-0.38 0.757 0.6756

shortly after 20 iterations. The algorithm continues to find
a relative converging area through remaining iterations for
gain Kd. Lastly, a similar converging behavior is displayed in
Figure 14 for the Ki parameter as was displayed in Figure 11
with xposPID’s Ki parameter.

D. Final PSO-tuned PID parameters

Table I displays the average parameter value over the
entire swarm at the final tuning iteration. We labeled these
as ”tuned” parameters throughout. The last column of the
table also provides the global best parameters based on the
best-measured fitness score across the swarm through all
iterations.

E. Comparison with MSE from Reference Trajectory Course

After acquiring tuned parameters for our assigned PID
controls, we observed overshoot and adjustment time from
grounded state to hover state at which point the quadrotor
hovers at 3m. This provided us with a visualization for
comparing default, tuned, and global-best parameters and
how well each performed with transitioning the quadrotor to
hover state. Figure 16 displays a comparative visual for thrust
applied by default, tuned, and global-best parameters. The
figure shows evidence that global-best parameters provided
the least amount of overshoot and adjustment time compared
to our tuned and default parameters.

The next comparison involved measuring performance for
default, tuned, and global-best parameters for Y awPID.
We compiled this by visualizing overshoot and adjustment
from the initial hover heading and the change over to the
target heading in Figure 17. Again, the best performers are
global-best found parameters with tuned parameters having
exceptional performance over default.

Our last comparison between our tested parameters con-
sists of visualizing the quadrotor’s position as it travels from
the initial ”takeoff” state waypoint to the target waypoint
at [7.6, -2.5, 3]. Figures 18 and 19 portray the results of
the quadrotor’s movement with a given set of parameters.
Once again, the best performers were tuned and global-
best parameters. With default parameters, the quadrotor took
much longer to get into the state where it could travel to
the target waypoint. It also demonstrated a large amount of
overshoot and little improvement with adjustment time.



Fig. 4: Gain for throttle PID Kp
Fig. 5: Gain for throttle PID Ki Fig. 6: Gain for throttle PID Kd

Fig. 7: Gain for yaw PID Kp Fig. 8: Gain for yaw PID Ki Fig. 9: Gain for yaw PID Kd

Fig. 10: Gain for x position PID Kp Fig. 11: Gain for x position PID Ki Fig. 12: Gain for x position PID Kd

Fig. 13: Gain for y position PID Kp Fig. 14: Gain for y position PID Ki Fig. 15: Gain for y position PID Kd



Fig. 16: The performance of throttle
parameter

Fig. 17: The performance of Yaw pa-
rameter

Fig. 18: The performance of XposPID
parameter

Fig. 19: The performance of YposPID parameter

To assess the quality of performance with our tuned pa-
rameters we created a second experiment involving collecting
errors between flight and reference trajectories across three
different paths: a 20-waypoint ”Pac-Man” course, a 28-
waypoint ”infinity-loop” course, and an 8-waypoint ”trian-
gle” course. All courses are conducted at an altitude of 3m.

Each course has its respective purpose for testing the
parameter’s performance. The ”PacMan” course is designed
to validate continuous flight with found parameters. The
”infinity-loop” is designed to test performance as the quadro-
tor rotates yaw clockwise and counter-clockwise while trav-
eling. The final test course involves traversing two equilateral
triangle paths, both with different distances at 4m and 12m.
We used this course to test how well it performs when
traversing short distances and long distances.

Figures 20, 21 and 22 display performance trajectories
between all three parameter sets for each course. In addition,
Tables II, III and IV provide supplemental respective results
that include log10SSE measurements. Not only do global-
best parameters allow the quadrotor to finish each course in
record time but it also obtained the least error. Once again,
the best-performing set of tuned gains can be found with
global parameters.

Figure 20 demonstrates that there is little to no major
error correction when traversing the course. This can be
seen with the noted overshooting trajectories from default
parameters and tuned parameters. The same can be said
for Figure 21 where default and tuned parameters spend
more time adjusting to waypoints than compared global-best
parameters. Figure 22 has noticeable trajectory error with

traveling greater distances, including global-best parameters
having the least error. Overall, we believe that using PSO
to find optimal gains for a PID controller is a sufficient
and encouraged approach to achieving flawless autonomous
flight.

Fig. 20: First Trajectory Comparison

Fig. 21: Second Trajectory Comparison

V. CONCLUSION

This research sheds light on the advantages of utilizing
Particle Swarm Optimization (PSO) for tuning PID param-
eters in a quadrotor’s flight controller. In our first exper-
iment, we demonstrated that applying PSO could identify
optimal PID parameters, resulting in minimal overshoot
and adjustment time. PSO not only found parameters that
surpassed default PID settings but also achieved the global



Fig. 22: Third Trajectory Comparison

TABLE II: log10SSE comparison between parameter sets
for ”Pac-Man” course

Course-Error Course Times
Default 5.2249 9m 55s
PSO-Tuned 4.4850 3m 50s
PSO-Global-Best 4.3598 2m 33s

best parameters, offering optimal overall performance. This
was further validated in our second experiment, where a
comparison of flight trajectories revealed that the global best
parameters were the most efficient, completing the course
four times faster than default parameters. Although PSO-
tuned parameters exhibited more accumulated error over
the trajectory, they still outperformed default parameters in
completion time. Additionally, we confirmed that employing
combined fitness functions for tuning PID parameters can
serve as a supplementary method to validate fitness scores.
We utilized one fitness function to measure overshoot and
adjustment time, while another measured log10SSE between
flight and reference trajectories for tuning translational PID
control systems.

VI. FUTURE WORKS

This research aims to stimulate further exploration into
applying this tuning method to multiple quadrotors using
a tuned PID control system in support of collaborative
navigation. We believe using tuned PID control systems
can decrease the amount of positional-error during flight

TABLE III: log10SSE comparison between parameter sets
for ”Infinity-Loop” course

Course-Error Course Times
Default 6.8215 16m 46s
PSO-Tuned 6.7335 14m 07s
PSO-Global-Best 6.2770 5m 22s

TABLE IV: log10SSE comparison between parameter sets
for ”Triangle” course

Course-Error Course Times
Default 5.8365 4m 42s
PSO-Tuned 5.7286 3m 38s
PSO-Global-Best 4.9862 1m 23s

and when adjusting position with collaborative navigation
and collision avoidance algorithms. Additionally, we desire
to explore comparisons between tuned PID controllers and
other controllers that provide predictive position without
relying on GPS and IMU sensors in Webots; and instead,
utilize local measurement sensors such as accelerometers and
gyroscopes.

ACKNOWLEDGMENT

This work is supported by the SLA (Scientific Leadership
Award) program through DHS (Department of Homeland
Security) Award No. 21STSLA00009-01-00. The authors
also acknowledge the partial funding provided by the CREST
MECIS program through NSF (National Science Foundation)
Award No. 2112650 and the MSI program through NSF
Award No. 2318682.

REFERENCES

[1] N. Minorsky, “Directional stability of automatically steered bodies,”
Journal of the American Society for Naval Engineers, vol. 34, no. 2,
p. 280–309, 1922.

[2] X. D. Jing and X. F. Wang, “PSO algorithm tuning PI PID controller
parameters of quad-rotor UAV,” in Journal of Physics Conference
Series, vol. 2228, Mar. 2022, pp. 12–17.

[3] J. A. Cárdenas, U. E. Carrero, E. C. Camacho, and J. M. Calderón,
“Optimal pid ø axis control for uav quadrotor based on multi-objective
pso,” 11th IFAC Symposium on Intelligent Autonomous Vehicles IAV,
vol. 55, no. 14, pp. 101–106, 2022.

[4] N. S. Özbek, M. Önkol, and M. Önder Efe, “Feedback control
strategies for quadrotor-type aerial robots: a survey,” Transactions of
the Institute of Measurement and Control, vol. 38, no. 5, pp. 529–554,
2016.

[5] J. Li and Y. Li, “Dynamic analysis and pid control for a quadrotor,”
in 2011 IEEE International Conference on Mechatronics and Automa-
tion, 2011, pp. 573–578.

[6] D. Gautam and C. Ha, “Control of a quadrotor using a smart
self-tuning fuzzy pid controller,” International Journal of Advanced
Robotic Systems, vol. 10, no. 11, p. 380, 2013.

[7] J. Yang, Z. Cai, Q. Lin, and Y. Wang, “Self-tuning pid control design
for quadrotor uav based on adaptive pole placement control,” in 2013
Chinese Automation Congress, 2013, pp. 233–237.

[8] M. H. Amoozgar, A. Chamseddine, and Y. Zhang, “Fault-tolerant
fuzzy gain-scheduled pid for a quadrotor helicopter testbed in the
presence of actuator faults,” IFAC Proceedings Volumes, vol. 45,
no. 3, pp. 282–287, 2012, 2nd IFAC Conference on Advances in PID
Control.

[9] M. Moness and A. M. Moustafa, “Tuning a digital multivariable
controller for a lab-scale helicopter system via simulated annealing and
evolutionary algorithms,” Transactions of the Institute of Measurement
and Control, vol. 37, no. 10, pp. 1254–1273, 2015.

[10] M. B. Abdelghany, A. M. Moustafa, and M. Moness, “Benchmarking
tracking autopilots for quadrotor aerial robotic system using heuristic
nonlinear controllers,” Drones, vol. 6, no. 12, pp. 1–29, 2022.

[11] S. Madruga, A. De Holanda Barreto Martins Tavares, G. Basso,
D. Nascimento, T. P., and A. Brito, “A pso-based tuning algorithm
for quadcopter controllers,” in Proceedings XXII Congresso Brasileiro
de Automática, vol. 1, no. 1, 2018.

[12] M. S. Hasanoglu and M. Dolen, “Multi-objective feasibility enhanced
particle swarm optimization,” Engineering Optimization, vol. 50,
no. 12, pp. 2013–2037, 2018.

[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95 - International Conference on Neural Networks,
vol. 4, 1995, pp. 1942–1948 vol.4.

[14] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
1998 IEEE International Conference on Evolutionary Computation
Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360), 1998, pp. 69–73.

[15] C.-F. Wang and K. Liu, “A novel particle swarm optimization algo-
rithm for global optimization,” Intell. Neuroscience, vol. 2016, jan
2016.


	Tuning PID Controller for Quadrotor Using Particle Swarm Optimization
	Recommended Citation

	tmp.1730843280.pdf.0sM4X

