
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Health & Biomedical Sciences Faculty 
Publications and Presentations College of Health Professions 

7-21-2021 

Crosstalk Between Dysfunctional Mitochondria and Inflammation Crosstalk Between Dysfunctional Mitochondria and Inflammation 

in Glaucomatous Neurodegeneration in Glaucomatous Neurodegeneration 

Assraa Hassan Jassim 
The University of Texas Rio Grande Valley, assraa.jassim@utrgv.edu 

Denise M. Inman 
University of North Texas Health Science Center 

Claire H. Mitchell 

Follow this and additional works at: https://scholarworks.utrgv.edu/hbs_fac 

 Part of the Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Jassim, A. H., Inman, D. M., & Mitchell, C. H. (2021). Crosstalk Between Dysfunctional Mitochondria and 
Inflammation in Glaucomatous Neurodegeneration. Frontiers in pharmacology, 12, 699623. 
https://doi.org/10.3389/fphar.2021.699623 

This Article is brought to you for free and open access by the College of Health Professions at ScholarWorks @ 
UTRGV. It has been accepted for inclusion in Health & Biomedical Sciences Faculty Publications and Presentations 
by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact 
justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/hbs_fac
https://scholarworks.utrgv.edu/hbs_fac
https://scholarworks.utrgv.edu/cohp
https://scholarworks.utrgv.edu/hbs_fac?utm_source=scholarworks.utrgv.edu%2Fhbs_fac%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=scholarworks.utrgv.edu%2Fhbs_fac%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


Crosstalk Between Dysfunctional
Mitochondria and Inflammation in
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Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce
pathology in age-dependent neurodegenerations. However, emerging evidence indicates
crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues
in chronic neurodegenerations. This review discusses evidence for the interaction between
mitochondrial damage and inflammation,with a focus on glaucomatous neurodegeneration, and
proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial
dysfunction exacerbates inflammatory signaling inmultipleways.Damagedmitochondrial DNA is
a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming
and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the
gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive
oxygen species induced by mitochondrial damage also activates inflammatory pathways, while
blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired
mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely
manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the
cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane
contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3
inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation,
the corollary also occurs, with inflammation reducingmitochondrial function andATPproduction;
the resulting downward spiral acceleratesdegeneration. Evidence fromseveral preclinicalmodels
including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to
patient data, implicates both mitochondrial damage and inflammation in glaucomatous
neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability
is associated with mitochondrial damage and IL-1β release. Links between mitochondrial
dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and
astrocytes. In summary, crosstalk between damaged mitochondria and increased
inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with
implications for other complex age-dependent neurodegenerations like Alzheimer’s and
Parkinson’s disease.
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GLAUCOMATOUSNEURODEGENERATION

Glaucoma is a neurodegenerative disease that can ultimately
lead to irreversible blindness (Tham et al., 2014). This
etiologically complex optic neuropathy is characterized by
progressive structural and functional loss of retinal ganglion
cells (RGCs). Pathology is found in RGC compartments; the
soma in the inner retina, the axons which form the core
component of the optic nerve head (ONH) and the optic
nerve (ON) relaying visual information to the brain. The
retina, ONH, ON, and brain regions respond differently in
glaucoma, giving rise to compartmentalized degeneration
(Tamm et al., 2017). Accordingly, RGCs can execute
autonomous degeneration to eliminate different parts of
themselves upon insult, including the dendrites and soma
within the retina itself, the axons passing through the ONH
and ON, and the synapses within the brain (Whitmore et al.,
2005).

Many forms of glaucoma are associated with elevated
intraocular pressure (IOP). While lowering IOP is currently
the primary therapy available to slow down glaucoma
pathology, it does not necessarily prevent blindness, and
glaucomatous neurodegeneration extends beyond IOP
elevation into complex cellular pathologies. The moderate
elevations in IOP associated with most common forms of
glaucoma, with IOP values 21–30 mmHg, are largely
asymptomatic, resulting in a delayed glaucoma diagnosis,
which in turn defers therapy initiation until after RGC
death has begun. Normal tension glaucoma (NTG) can
occur in individuals with IOP in the normal range of
15–20 mmHg; however, patients still benefit from lowering
IOP suggesting a differential pressure sensitivity to IOP among
individuals (Josef et al., 2002; Whitmore et al., 2005; Calkins,
2012). Regardless of IOP levels, glaucomatous
neurodegeneration involves a complex interaction between
multiple factions including age, genetics, mechanical strain,
hypoxia, neurochemical signaling, autophagy, cellular
energetics and immune signals. In this review, we will
discuss the crosstalk between mitochondrial dysfunction
and inflammation during glaucoma.

MODELS OF GLAUCOMATOUS
NEURODEGENERATION

Molecular mechanisms of glaucoma differ from person to person
and across animal models (Fernandes et al., 2015; De Moraes
et al., 2017; Pang and Clark, 2020). All models require certain
compromises, there is no “perfect” model of glaucoma and thus
comparing results from multiple models provides a better
understanding of glaucoma pathology. As rodent models
facilitate large-scale studies and genetic manipulations, they
offer convenience as model systems.

The DBA/2J (D2) mouse is a well-established model of
inherited glaucoma (Libby et al., 2005). IOP elevation is
secondary to excessive iris pigment dispersion, which
consequently blocks the trabecular meshwork and drives

aqueous humor accumulation, thereby causing IOP elevation.
This iris disease is linked to recessive mutations in tyrosinase-
related protein 1 (Tyrp1) and glycoprotein nonmetastatic
melanoma B (Gpnmb). These mutations induce melanogenesis
toxicity and a subsequent inflammatory response directed at the
iris, which forms structural melanosome abnormalities seen in
both humans and D2 mice. IOP elevation in D2 mice is
spontaneous and progressive, starting at 6 months
(14–18 mmHg) and leveling off by 11 months at a value of
about 28 mmHg (Mahesh et al., 2007).

Ocular hypertension (OHT) can also be induced in animal
models through a variety of surgical interventions to impede
aqueous outflow to some extent and hence elevate IOP. Transient
IOP elevations are produced by cannulating the anterior chamber
of the eye, while more sustained elevations in IOP can be
produced following hypertonic saline injection into the
episcleral vein, microbead injection into the anterior chamber
of the eye, translimbal laser photocoagulation, or cauterization of
episcleral veins. The microbead model offers advantages in the
mouse given its flexibility and consistency that allows relative ease
of use (Sappington et al., 2010; Samsel et al., 2011; Yang et al.,
2012), although the best choice is based on the specific
experimental questions being addressed. IOP can also be
elevated following steroid application (Whitlock et al., 2010;
Overby and Clark, 2015); systemic administration of
dexamethasone has been used to demonstrate the role of
dopamine and serotonin in IOP regulation (Bucolo et al.,
2012; Platania et al., 2013), and has even been used to raise
IOP in cows (Gerometta et al., 2004). The combined use of
multiple models to confirm a specific outcome is preferable given
the inherent compromises with each.

MITOCHONDRIAL DYSFUNCTION IN
GLAUCOMA

Mitochondrial dysfunction has been strongly implicated in
glaucomatous neurodegeneration in patients and multiple
models of glaucoma (Kong et al., 2009; Munemasa et al., 2010;
Lee et al., 2011; Kamel et al., 2017). Neurons are particularly
sensitive to mitochondrial challenge as they require high levels of
energy to maintain the electrochemical gradients necessary for
optimal signal transmission, and ATP is the primary source of
this energy. ATP is produced by mitochondria through oxidative
phosphorylation of the electron transport chain and glycolysis
(Frenzel et al., 2010). Neurons are particularly dependent on
mitochondrial ATP as they have reduced levels of 6-
phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3 activity
(Pfkfb3), resulting in the shunting of glucose into the pentose-
phosphate pathway at the expense of glycolysis (Herrero-Mendez
et al., 2009; Bolanos et al., 2010). Levels of ATP were reduced in
optic nerves of 6 month old D2 mice in proportion to IOP
elevation, and the ability of the compound action potential to
recover after oxygen-glucose deprivation was worse in mice with
higher IOP levels, suggesting the rate of ATP generation was
reduced in these mice to the level where it interfered with
transmission of the visual signal along the optic nerve (Baltan
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et al., 2010). This sensitivity occurred before changes in axon
structure (Inman et al., 2006) or anterograde transport were
detected (Dengler-Crish et al., 2014). Mitochondrial
remodeling was found early in humans with glaucoma
(Tribble et al., 2019) and the D2 glaucoma model (Cwerman-
Thibault et al., 2017). Rat RGCs showed a sustained decrease in
ATP production with IOP elevation that was maintained after
IOP levels returned to baseline (Wu et al., 2015). These
observations support the theory that mitochondrial
dysfunction and ATP reduction are among the first changes
that occur following IOP elevation and may be maintained.

In addition to reducing ATP levels, mitochondrial dysfunction
also leads to increased generation of reactive oxygen species
(ROS), and oxidative stress. Reduced cytochrome c oxidase
(Complex IV) activity generates dysfunctional mitochondria,
which in turn induces ROS production from the endoplasmic
reticulum (ER) (Leadsham et al., 2013; Murphy, 2013).
Consequently, the accumulation of dysfunctional mitochondria
induces non-physiological ROS production, and the resulting
oxidative stress can induce glaucomatous damage (Nita and
Grzybowski, 2016). Mitochondrial dysfunction also drives the
release of cytochrome c; while cytochrome c is normally involved
in the electron transport chain, it can initiate a caspase protease
cascade during apoptosis (Chandra et al., 2002; Calkins, 2012).
Although apoptosis contributes to RGC degeneration in
glaucoma, inhibition of apoptosis is not sufficient to prevent
optic neuropathy (Libby et al., 2005). Overall, mitochondrial
dysfunction contributes to glaucomatous neurodegeneration by
decreasing levels of ATP, increasing ROS generation through
reduced Complex IV generation, and defective pathogenesis.

HYPOXIA CONTRIBUTES TO
MITOCHONDRIAL DYSFUNCTION

IOP elevation exerts a mechanical stretch injury and strain to the
tissues of the ONH, pressing the central retinal artery as it passes
through the ONH; the subsequent impairment of ocular blood
flow reduces the oxygen supply to the retina and induces a
localized hypoxia (Josef et al., 2002; Dai et al., 2012; Stowell
et al., 2017). As oxidative phosphorylation is dependent on
oxygen, prolonged hypoxia results in decreased mitochondrial
ATP production. During intermittent hypoxia, the cell can switch
from oxidative phosphorylation to glycolysis until oxygen level
returns to normal; RGCs exposed to intermittent hypoxia are thus
protected from degeneration in ischemic preconditioning
(Gidday et al., 2015). In prolonged hypoxia, however,
glycolysis is insufficient to meet the high energy demand of
neurons. Hypoxia stimulates superoxide generation from
Complex III of the electron transport chain. Superoxide is
converted to H2O2 by superoxide dismutase, triggering
hypoxia-inducible factor 1α (HIF-1α) stabilization and
upregulation (Chandel et al., 1998; Chandel et al., 2000;
Hamanaka and Chandel, 2009). Under physiological
conditions, hypoxia is resolved by relief of oxidative stress, a
metabolic switch to glycolysis, and removal of damaged
mitochondria through mitophagy (Wu et al., 2016). However,

prolonged hypoxia during glaucoma introduces dysfunctional
feedback, impairing mitophagic induction and amplifying the
accumulation of dysfunctional mitochondria that result in
exacerbated oxidative stress and inflammation. Evidence exists
for hypoxia at early stages of glaucoma in the D2 and microbead
models (Jassim et al., 2021), and for oxidative stress (Jassim and
Inman, 2019), mitochondrial dysfunction and limited mitophagy
(Coughlin et al., 2015; Kleesattel et al., 2015) in glaucoma models.

Metabolic vulnerability also contributes to glaucomatous
degeneration (Inman and Harun-or-Rashid, 2017; Williams
et al., 2017; Harun-or-Rashid et al., 2018; Harun-or-Rashid
et al., 2020). Axons rely primarily on glycolysis during
glaucoma to compensate for mitochondrial dysfunction,
though glycolysis is ultimately insufficient to rescue metabolic
vulnerability associated with glaucoma (Jassim et al., 2021).
Interestingly, the increased oxidative phosphorylation
accompanying a ketogenic diet rescued RGC degeneration due,
at least in part, to a reduction in inflammation (Harun-or-Rashid
and Inman, 2018).

INFLAMMATION IN GLAUCOMA

Inflammation is now recognized as a key component of glaucoma
neurodegeneration, and increased inflammatory signaling is one
of the first changes detected in glaucoma. Activation of localized
innate inflammatory signaling is of particular relevance in
glaucoma, with involvement of cytokines and complement
pathways clearly demonstrated at multiple stages of disease
progression (Tezel, 2011; Rieck, 2013; Mac Nair and Nickells,
2015; Kamat et al., 2016; Russo et al., 2016; Bell et al., 2018). The
elevated IOP in neovascular glaucoma is associated with high
levels of vascular endothelial growth factor (VEGF), and anti-
VEGF compounds are used for treatment (Platania et al., 2015;
Slabaugh and Salim, 2017). Pro-inflammatory cytokine signaling
is also evident in the models; for example, signs of inflammation
are present throughout RGC compartments in D2 mice early,
change with age, and drive glaucoma in the absence of elevated
IOP (Wax et al., 2008; Bosco et al., 2011; Bosco et al., 2015;
Wilson et al., 2015). Blocking inflammatory responses has shown
promise in ameliorating glaucoma in models (Bosco et al., 2008;
Howell et al., 2011; Bosco et al., 2012; Yang et al., 2016; Panchal
et al., 2017; Harun-or-Rashid and Inman, 2018), emphasizing the
negative impact of inflammation. Induced models of ocular
hypertension and optic nerve crush models have also
demonstrated inflammation (Morzaev et al., 2015), while
inflammation was reported within 4–6 h in the retina after
transient IOP elevation (Albalawi et al., 2017; Pronin et al.,
2019). RGCs showed mechanosensitive release of multiple
cytokines (Lim et al., 2016), while optic nerve head astrocytes
showed rapid upregulation and release of IL-6 in response to IOP
elevation (Lu et al., 2017). Glaucomatous human eyes and
aqueous humor had increased markers for inflammatory
cytokines and TNFα (Yang et al., 2011; Takai et al., 2012;
Wang et al., 2018).

The NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3) inflammasome is particularly important to
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inflammatory signaling in glaucoma (Yerramothu et al., 2018).
Inflammasomes are multiprotein complexes that can release pro-
inflammatory cytokines and are members of Nod-Like Receptor
(NLR) or pyrin and HIN domain-containing families (Guo et al.,
2015). NLRs are encoded by 23 genes, but only NLRP1, NLRP2,
NLRP3, NLRP6, NLRP12, and NLRC4 are capable of forming
oligomeric complexes that can activate caspase-1 (CASP1)
(Zheng et al., 2020). Inflammasome complexes are composed
of cytosolic pattern recognition receptors (PRRs), CASP1, NLRP,
and the adaptor protein apoptosis-associated speck-like protein
containing a caspase activation and recruitment domain (ASP)
(Swanson et al., 2019). The NLRP3 inflammasome is the most
widely studied within a glaucoma context, and involvement
involves both priming and activation steps. Inflammasome
priming occurs through the activation of NFκB signaling (Jo
et al., 2016); expression of inflammasome components is low
under baseline conditions, and priming to increase expression is
necessary for a response. The second step involving assembly and
activation of the complex occurs in response to a stressful event;
ASC fibrils are recruited and activate CASP1; the accumulation of
detectable ASC clusters is a marker for inflammasome activation
(Venegas et al., 2017). Activated CASP1 mediates the cleavage of
IL-1β and IL-18 into releaseable forms that exit cells through
gasdermin D (GSDMD), and in some cases triggering
inflammatory cell death through pyroptosis (Liu et al., 2016).

Damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) are common
triggers of inflammasome activation (Jo et al., 2016) and DAMPs,
such as extracellular ATP and ROS can be released following cell
damage (Yin et al., 2016). Extracellular ATP is a widespread
mechanism to activate the NLRP3 inflammasome (Couillin et al.,
2013), and ATP release is frequently triggered by
mechanosensitive changes in tissues, thus providing a potential
link between mechanical strain and inflammation (Ventura et al.,
2019). This has particular relevance for glaucoma as ATP was
elevated in the aqueous humor of humans with acute (Zhang
et al., 2007) and chronic angle-closure glaucoma (Li et al., 2011).
Increased levels of extracellular ATP accompanied the sustained
elevation of IOP in rats following injection of hypertonic saline
into episcleral veins, the Tg-MYOCY437H transgenic mouse
model, and primates subjected to the laser photocoagulation of
the trabecular meshwork (Lu et al., 2015). ATP release was
induced from bovine retinal eyecups by elevated pressure
(Reigada et al., 2008), and from ONH astrocytes subjected to
moderate cyclic strain (Beckel et al., 2014). Under normal
conditions, extracellular ATP is rapidly degraded by the
ectonucleotidases (Reigada et al., 2005; Allard et al., 2017), but
the involvement of ATP in glaucomatous RGC loss suggests that
release levels can overwhelm this degradation in some cases
(Sanderson et al., 2014).

A role for NLRP3 inflammasome involvement in the loss of
RGCs associated with elevated IOP has been demonstrated by
multiple groups. Intravitreal injection of ATP triggered
significant IL-1β release and ASC speck induction in RGCs
and astrocytes, supporting the detrimental effects of
extracellular ATP in inflammasome activation (Pronin et al.,
2019). Acute activation of NLRP1/NLRP3, CASP1, and IL-1β

in mouse RGCs, astrocytes, and Müller glia was detected within
6 h of transient elevation IOP to 120 mmHg, with activation
peaking after 12–24 h. Simultaneously, the pyroptotic pore was
induced in the ganglion cell layer (GCL) and inner nuclear layer
(INL) (Pronin et al., 2019). RGC degeneration was reduced in
CASP1/CASP4 knockout (KO) and Panx1 KO mice, and by
inhibition of pannexin, suggesting Panx1 activates the
inflammasome following ATP release from ischemically or
mechanically stressed cells. In a separate study, production of
IL-1β following IOP elevation to 110 mmHg for 60 min was
attributed to CASP 8 and the NLRP1/NLRP3 inflammasome
(Chi et al., 2014). ASC, CASP1, and IL-1β rose in the retina
following partial optic nerve crush, while RGC survival was
greater when crush was performed in NLRP3 KO mice as
compared to control (Puyang et al., 2016). ASC specks were
increased in capillaries of contralateral normotensive eyes
(Pronin et al., 2019) in addition to the hypertensive eyes; this
may relate activated microglia in contralateral normotensive eyes
(Rojas et al., 2014).

GLIA CONTRIBUTE TO INFLAMMATORY
RESPONSES IN GLAUCOMA

Astrocytes, microglia, and Mul̈ler cells are the three major types
of retinal glial cells, with the contribution by astrocytes and
microglia particularly relevant to inflammation found with
glaucoma (Wei et al., 2019; García-Bermúdez et al., 2021).
Microglia are innate immune cells residing throughout the
retina, ON, and brain. Microglia act as sensors and are one of
the first responders following CNS injury, undergoing rapid
morphologic and molecular changes as they become
“activated” (Lannes et al., 2017). Some forms of activated
microglia have beneficial actions, such as increased
phagocytosis of toxic debris and release of anti-inflammatory
signals (Chen and Trapp, 2016). However, microglia are a key
source of inflammatory signals, with prolonged injury leading to
excess production of pro-inflammatory cytokines and neurotoxic
factors such as IL-6, Tumor necrotic factor-alpha (TNFα), NO,
and superoxide (Rodríguez-Gómez et al., 2020). The microglia
pro-inflammatory response is coupled with a decrease of the anti-
inflammatory cytokine IL-10 during neurodegeneration that
aggravates inflammation (Hickman et al., 2008; Heneka et al.,
2013).

Reactive microglia have been localized to the retina and ON in
multiple glaucoma models, and in human glaucoma (Yuan and
Neufeld, 2001; Bosco et al., 2008). Microglial activation is
detected in 3 month old D2 mice (Bosco et al., 2011; Bosco
et al., 2012), and is predictive of subsequent
neurodegeneration (Bosco et al., 2015). Early astrocyte
reactivity and microglia activation were shown in the ON of
D2 mice, and in rats with OHT following Translimbal Laser
Photocoagulation (Son et al., 2010). Early microglial activation,
NF-κB signaling, and neuroinflammation in the ONH were also
reported in a cat genetic glaucoma model (Oikawa et al., 2020).
Minocycline treatment and irradiation inhibited microglial
activation and reduced RGC death in D2 mice (Bosco et al.,
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2008; Bosco et al., 2012), supporting a negative impact of
activated microglia on glaucoma progression. Recently,
activated microglia were shown to induce reactive neurotoxic
astrocytes by the release of interleukin-1 alpha (IL-1α), TNFα,
and the classical complement component (C1q), and
consequently drive RGC degeneration in the microbead
glaucoma model (Liddelow et al., 2017; Guttenplan et al.,
2020). Collectively, these studies provide strong evidence of
the detrimental impact of activated microglia in glaucoma.

Glia-neuron interaction is emerging as a critical factor in
neurodegeneration, and the pivotal role of ATP and purinergic
signaling links cellular energetics to this interaction. Microglia
constantly regulate and influence neurons via specialized somatic
junctions (Madry et al., 2018; Cserep et al., 2020). ATP leakage
from injured cells, through mechanosensitive channels, or from
neuronal mitochondria through vesicular nucleotide transporter
(vNUT) channels enriched at microglia-neuron contact sites is
sensed by P2Y12 receptors on microglia, triggering process
extension and migration toward the injured sites (Koizumi
et al., 2013; Cserep et al., 2020). Whether P2Y12 receptors
play a direct role in microglial surveillance, or potentiate the
activity of THIK-1 potassium channels as recently suggested
(Madry et al., 2018), P2Y12 receptor stimulation by ATP
clearly contributes to surveillance. Stimulation of the P2X7
receptor has also been implicated in microglial phagocytosis
and degradation (Campagno and Mitchell, 2021), an effect
which may have particular impact in aging cells. Inhibition of
the P2X7 receptor was shown to reduce microglia activation in
D2 mice (Romano et al., 2020), suggesting a key role for the
receptor in the inflammatory response in glaucoma. The P2X7
receptor also induces a rise in ROS (Bartlett et al., 2013; Munoz
et al., 2017); whether this provides a pathway to link
mitochondria with inflammation in glaucoma remains to be
determined.

Optic nerve head astrocytes are also implicated in the link
between mechanical strain and inflammation. Stretch and
swelling of ONH astrocytes led to the release of ATP
through pannexin hemichannels (Beckel et al., 2014).
Stimulation of this released ATP through pannexins was
implicated in the priming of the NLRP3 inflammasome,
with increased expression of IL-1β, NLRP3 and caspase1
(Albalawi et al., 2017). Transient elevation of IOP led to a
similar priming and release of IL-6 from optic nerve head
astrocytes as well as ganglion cells (Lu et al., 2017).

Signaling from neurons back to glia also contributes to the link
between mitochondrial dysfunction and inflammation in
glaucoma. For example, fragmented and damaged
mitochondria are found in activated microglia as a result of
increased mitochondrial fission (Joshi et al., 2019). These
damaged mitochondria are released into extracellular space,
inducing an innate immune response by targeting adjacent
astrocytes can also release dysfunctional mitochondria (Joshi
et al., 2019). The resulting positive feedback can accelerate
neuroinflammation. Inhibiting mitochondrial fission with
heptapeptide P110, which inhibits binding of Drp1 to the
mitochondrial receptor Fis1, reduced fragmentation and
mitochondrial release from microglia, lessened astrocyte

activation, and protected neurons from innate immune attack.
Extracellular mitochondria can also signal between glia and
neurons; functional mitochondria were found to be
protective, while damaged mitochondria communicated
pathology following stroke (Hayakawa et al., 2016). This
suggests that the health of released mitochondrial may
influence pathology in glaucoma.

Astrocytes are generally considered to protect neurons from
oxidative stress, specifically via glutathione precursor synthesis, as
they have strong antioxidant defenses regulated by the
transcription factor Nrf2, a master regulator of redox
homeostasis (Shih et al., 2003; Himori et al., 2013; Ghosh
et al., 2020). However, reactive astrocytes contribute to
neuronal degeneration in mice with sustained IOP elevation
and reduction of their activated status rescued neuronal
function (Guttenplan et al., 2020; Sterling et al., 2020). The
decline in astrocytic antioxidant defense mechanisms and the
increase in astrocytic reactivity during glaucoma occur
simultaneously with mitochondria dysfunction, contributing to
ROS accumulation and oxidative stress that enhance glaucoma
progression (Tezel, 2006; Jassim and Inman, 2019). Intravitreal
injection of neurotoxic astrocytes did not induce RGC
neurodegeneration in the absence of neuronal injury,
suggesting that injury and glial activation are required for
neurodegeneration (Guttenplan et al., 2020).

CROSSTALK BETWEEN MITOCHONDRIAL
DYSFUNCTION AND INFLAMMATION

Glaucoma is a complicated and progressive neurodegenerative
disease where multiple pathways contribute to pathogenesis.
Given that mitochondrial dysfunction and inflammation are
two of the most potent influences, emerging evidence for
interactions between these two factors has relevance for the
etiology of glaucoma.

MITOCHONDRIAL DYSFUNCTION
CONTRIBUTES TO INFLAMMATION

Mitochondrial dysfunction and inflammation are interdependent
processes. Inhibition of Complex I by rotenone, or of Complex III
by antimycin A, in bone marrow-derived macrophages and in
primary mouse microglia (Ferger et al., 2010) induced oxidative
stress, activated microglia, activated the NLRP3 inflammasome,
and increased IL-1β production, resulting in pyroptosis (Zhou
et al., 2011). Rotenone administration concomitant with
inhibition of autophagy caused the accumulation of damaged
mitochondria with downstream IL-1β production (Nakahira
et al., 2011; Zhou et al., 2011). Furthermore, subcutaneous
injections of rotenone in rats increased IL-1β within the
hypothalamus, confirming that mitochondria may act
upstream of inflammation (Yi et al., 2007). Antioxidant
treatment using sulforaphane (SFN) significantly prevented
RGC death and suppressed microglia and inflammasome
activation in the transient IOP (110 mmHg for 1 h) model in
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rats suggesting that ROS production is upstream of inflammation
(Gong et al., 2019). Collectively, studies indicate that
mitochondria play an important role in regulating
inflammation and that mitochondrial dysfunction is upstream
of inflammation (Misawa et al., 2013); this has yet to be
determined in glaucoma, however.

Mitochondrial dysfunction may contribute to various forms of
inflammatory signaling, with links to NLRP3 inflammasome
signaling of particular relevance for neurodegeneration
(Nakahira et al., 2011; Zhou et al., 2011; Gurung et al., 2015).
Many of these pathological links are related to excess levels of
ROS; while ROS are mainly generated as byproducts of oxidative
phosphorylation, excess production or inadequate removal of
ROS can result in oxidative stress. Accumulated ROS results in
the opening of the mitochondrial permeability transition pores
that facilitates release of ROS (Kozlov et al., 2017) and damaged
mtDNA (Shimada et al., 2012) into the cytoplasm; both
substances act as DAMPs to induce NLRP3 inflammasome
activation and pyroptosis (Latz et al., 2013; Yin et al., 2016;
Bai et al., 2018). As ROS are short-lived and act only across short
distances (Veal et al., 2007), positional shifts that recruit NLRP3
towards mitochondria enhance the ability of ROS to increase
NLRP3 activation. During activation of the NLRP3
inflammasome, NLRP3 redistributes from the ER to
mitochondria-associated ER membranes (MAMSs), where
NLRP3 connects to the ASC adaptor protein, localized on the
mitochondria, enabling inflammasome assembly (Green et al.,
2011; Misawa et al., 2013; Heid et al., 2013; Misawa et al., 2013).
Although the approximation of NLRP3-ASC at MAMs is
important for NLRP3 activation, other factors also contribute.
For example, the mitochondria-associated adaptor molecule,
MAVS, is required for NLRP3 inflammasome activity as it
promotes the recruitment of NLRP3 to the mitochondria and
the subsequent IL-1β production in vivo (Subramanian et al.,
2013), however, this has yet to be shown in glaucoma.

Mitochondrial dysfunction can also lead to increased
inflammatory signaling through the cyclic GMP–AMP
synthase (cGAS)–stimulator of interferon genes (STING)
pathway (West and Shadel, 2017). The enzyme cGAS detects
cytoplasmic DNA, including mtDNA leaked from damaged
mitochondria. The reaction product cGAMP activates STING
(Gao et al., 2013), which in turn stimulates TANK-binding kinase
1 (TBK1), to promote homodimerization of interferon regulatory
factor 3 (IRF3) (Tanaka and Chen, 2012). Nuclear translocation
of this phosphorylated IRF3 enhances expression of interferons
and an enlarged interferon response (Hopfner and Hornung,
2020). mtDNA released across the plasmamembrane can activate
cGAS- or TLR9-dependent interferon signaling, thus
communicating the mitochondrial damage to neighboring cells
(West and Shadel, 2017). Components of the cGAS-STING
pathway have been identified in the murine retina (Tang et al.,
2019). In retinal microvascular endothelial cells, mtDNA in the
cytosol stimulated the cGAS-STING pathway and nuclear
translocation of IRF3 (Guo et al., 2020). Mutations in
optineurin (OPTN) associated with primary open angle
glaucoma (E50K) reduced the phosphorylation of IRF3 and
IFNα/β release assays in response to poly (I:C) stimulation of

TLR3 (O’loughlin et al., 2020). Further investigations into the
interactions betweenmtDNA releases as a result of mitochondrial
dysfunction in glaucoma and the cGAS-STING-pathway promise
to be informative.

Patients with glaucoma have an increased risk of developing
Alzheimer’s disease (Moon et al., 2018), and deposits of
Alzheimer’s disease marker amyloid beta (Aβ) accumulate in
RGCs following IOP elevation (Guo et al., 2007), suggesting
interactions between Aβ and mitochondria may contribute to
the pathology. Aβ accumulation in mitochondrial cristae
negatively impacted mitochondrial function. The translocase of
the outer membrane (TOM) machinery moves Aβ across the
membrane, allowing it to accumulate (Petersen et al., 2008).
Human neuroblastoma cells also internalized extracellularly
applied Aβ that colocalized with mitochondrial markers
(Petersen et al., 2008). While Aβ accumulation has been
shown in several glaucoma models (Mckinnon et al., 2002;
Guo et al., 2007; Wilson et al., 2016), the accumulation of Aβ
in neuronal and glial mitochondria has yet to be shown in
glaucoma as it has in the brain.

Mitochondrial dysfunction drives metabolic vulnerability in
the D2 mouse ON and retina, which in turn triggers AMP-
activated protein kinase activation (AMPK), a cellular energy
sensor, to activate NF-κB signaling and increase expression of
inflammatory genes (Harun-or-Rashid and Inman, 2018).
Treatment with a ketogenic diet reduces inflammation,
possibly while inhibiting AMPK activation while also meeting
the high neuronal energy demand. Expression of AMPK was
upregulated in the RGC of mice with elevated IOP following
injection of magnetic microbeads (Belforte et al., 2018).
Additional exploration of the role of AMPK in connecting
mitochondrial damage with inflammation in glaucoma is likely
to be fruitful, given the role of AMPK in systemic disease, and the
therapeutic potential of manipulating this pathway in ocular
disease (Powell et al., 2020).

HYPOXIA CONTRIBUTES TO
INFLAMMATION

The NLRP3 inflammasome can also link hypoxia to
inflammation and suggests how hypoxia, and thus increased
IOP in glaucoma, can contribute to inflammation. Chronic
intermittent hypoxia increased levels of cytokines associated
with M1-and M2-like microglial activation states (Snyder
et al., 2017). In retinal pigmented epithelial cells, hypoxia
induced expression of NLRP3 and IL-1β in a pathway
dependent upon ATP release and the P2Y12 receptor, and
inflammasome activation killed cells only under hypoxic
conditions (Doktor et al., 2018). HIF-1α is implicated in
hypoxia-mediated inflammasome priming as blockage of HIF-
1α reduced expression of NLRP3, caspase 1 and IL-1β and of
pyroptotic death in a stroke model (Jiang et al., 2020).

Similar connections between hypoxia and inflammation may
occur in glaucoma. IOP elevation and hypoxia can induce
pyroptosis by activating CASP8; CASP8 triggered NF-kB
translocation to induce HIF-1α signaling, which in turn
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facilitated NLRP12/NLRP3/NLRC4 assembly and activation
in vitro and in vivo (Chen et al., 2020). Hypoxia also induces
CASP1 release, NLRP3 inflammasome activation, IL-1β release,
GSDMD cleavage, and pyroptosis (Watanabe et al., 2020).
NLRP3 deficiency and CASP1 blockade significantly inhibited
hypoxia-induced IL-1β release from macrophages. Indeed,
genetic deletion of GSDMD, CASP8, or NLRP12 reduced RGC
death after the transient IOP elevation model, where IOP was
elevated to 110 mmHg for 90 min (Chen et al., 2020).

Given that oxidative phosphorylation in the mitochondria is
dependent on oxygen and is the main source of cellular ATP in
addition to glycolysis, hypoxia and glucose deprivation decrease
ATP, facilitate K+ efflux, and induce IL-1β release. Interestingly,
these effects were reversible by K+ efflux inhibition and KATP

channel blockers in macrophages (Watanabe et al., 2020). The
NLRP3 inflammasome acts as an intercellular sensor of ATP
decrease induced by glucose and oxygen deprivation (Watanabe
et al., 2020). Of relevance were studies showing that KATP channel
opener KR-31378 protected RGCs from ischemic damage
(Bucolo et al., 2018). In retinal vessels activation of the KATP

channel dramatically increased the vasotoxicity of P2X7 receptor
stimulation through elevation of calcium and increased oxidative
stress (Shibata et al., 2018); such interactions may increase
hypoxic challenge in glaucoma given the propensity of excess
P2X7 receptor stimulation with elevated IOP (Mitchell et al.,
2008). Further studies will be necessary to elucidate the precise
link between the KATP channel, the P2X7 receptor, NLRP3
inflammasome activation and cellular metabolic crisis in glia
vs. neurons during glaucoma.

There is also considerable evidence of a role for carbon
monoxide in glaucoma (Bucolo and Drago, 2011). A carbon
monoxide-releasing molecule, CORM-3, produced a dose-
dependent reduction in IOP in the rabbit eye (Stagni et al.,
2009). The precise mechanism remains to be determined,
although action on KCa2+ channels in the outflow pathway
has been suggested (Dong et al., 2007; Bucolo and Drago,
2011). Recent work in a model of hind limb ischemia suggests
the stabilization of HIF-1α by hemeoxygenase 1 (Hmox1) is at
least partially attributed to carbon monoxide, with carbon
monoxide a by-product of the breakdown of heme by of
Hmox1 (Dunn et al., 2021). In addition, carbon monoxide
regulates mitochondrial biogenesis and gene expression,
suggesting multiple protective sites in glaucoma are possible
(Cherry and Piantadosi, 2015).

DYSFUNCTIONAL MITOPHAGY
EXACERBATES INFLAMMATION

Mitophagy helps regulate mitochondria homeostasis by getting
rid of dysfunctional mitochondria, and the inhibition of
mitophagy results in the accumulation of damaged
mitochondria and sometimes inflammasome activation.
Mitophagy is driven by PTEN-induced putative kinase 1
(PINK1) and parkin (E3 ubiquitin ligase), where the
cytoplasmic Parkin is recruited to the mitochondria to interact
with PINK1 on the outer mitochondrial membrane and target

dysfunctional mitochondria (Palikaras et al., 2018). Adaptor
proteins such as p62 and OPTN join poly-ubiquitinated
strands to light chain 3 (LC3), initiating autophagy. The
mitochondrial accumulation of LC3 puncta after treatment
with Complex I inhibitor rotenone indicate mitophagy is
increased by mitochondrial stress (Zhou et al., 2011).

Impaired mitophagy has been implicated in glaucoma by
multiple observations. Elevation of IOP in rats increased
damaged mitochondria, parkin and optineurin levels in
RGCs, while function was partially restored following
overexpression of Parkin (Dai et al., 2018). Impaired
mitophagy was also implicated in the myelinated ON axons
of D2 mice by a rise in fragmented and damaged mitochondria
without changes in PINK or parkin levels (Coughlin et al.,
2015). These mice also displayed increased mitochondria
within autophagosomes in distal and proximal axons
(Kleesattel et al., 2015). An autosomal dominant form of
normal tension glaucoma is linked to mutations in OPTN
(Rezaie et al., 2002), and mice transgenic for E50K, the most
common mutation in normal tension glaucoma, showed
altered mitophagy and mitochondrial fission (Shim et al.,
2016). Pink1 and Parkin KO mice both showed an increase
in increased inflammation, but antioxidants abolished CASP1
activation, suggesting a role for ROS in the inflammation
associated with impaired mitophagy (Sliter et al., 2018).
These findings emphasize the importance of mitophagy in
combating inflammation, and justify further examination in
glaucoma.

NLRP3 inflammasome activation is negatively regulated by
mitophagy (Latz et al., 2013; Lai et al., 2018). Autophagic
proteins contribute to an anti-inflammatory response by
regulating NLRP3 inflammation and mitochondrial integrity
(Nakahira et al., 2011). Inflammasome activation recruits
autophagy adaptor protein p62 to the mitochondria. Measuring
LC3 and p62 puncta is a method of quantifying autophagy/
mitophagy. LC3 and p62 enable mitophagy, thereby inhibiting
NLRP3 inflammasome activation and preventing excessive IL-1β
production by degrading damaged mitochondria in macrophages
(Zhong et al., 2016). Depletion of genes for autophagic proteins
(specifically LC3B and Beclin 1), and the use of mitophagy inhibitors
(such as 3-methyladenine), promoted CASP1 activation, secretion of
IL-1β and IL-18, and the accumulation of dysfunctional
mitochondria in macrophages and in vivo (Nakahira et al., 2011).
In addition, stimulation by lipopolysaccharide (LPS) or ATP led to
the release of mtDNA and ROS into the cytosol and inflammasome-
dependent secretion of IL-1β and IL-18 (Nakahira et al., 2011).

Mitophagy can limit apoptosis by reducing the
accumulation of dysfunctional mitochondrial and
oxidative stress, and facilitate the metabolic switch of the
cell from oxidative phosphorylation to glycolysis to adapt to
the hypoxia reported during glaucoma (Liu et al., 2012a;
Jassim and Inman, 2019). Hypoxia-induced mitophagy
occurs through the action of a mitochondrial associated
membrane protein, FUNDC1, as reported in vitro (Liu
et al., 2012a; Chen et al., 2016; Wu et al., 2016). During
hypoxia, oxidative phosphorylation is expected to decline
and glycolysis would become the primary ATP source in the
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FIGURE 1 | This schematic illustrates the proposed cascade of events that link the increased intraocular pressure of glaucoma tomitochondrial dysfunction and the
NLRP3 inflammasome. (A) Intraocular pressure increases as a result of perturbed aqueous humor outflow in the eye. (B) Intraocular pressure increase prevents efficient
blood flow to the eye, resulting in hypoxia/ischemia. During physiological conditions, hypoxia induces mitophagy to eliminate dysfunctional mitochondrial accumulation.
(C) However, during glaucoma, hypoxia-induced mitophagy may be inhibited. Concomitantly, external ATP binds to and opens the cation-selective P2X7R (D).
Ca2+ influx can stimulate mitochondrial dysfunction that will induce inflammation, activated microglia, and cytokine release. (E) Dysfunctional and fragmented
mitochondria accumulate, thus promoting oxidative stress and metabolic vulnerability. Oxidative stress induces inflammasome assembly and activation as NLRP3,
localized at the ER, comes into proximity to the ASC, localized at the mitochondria, on MAMs. (F) Inflammasome activation releases cytokines that establish a positive
feedback loop to exacerbate further inflammatory response. (G) Aβ that has been demonstrated in mitochondria can also accumulate in axons, thereby inducing axon
transport deficit that further contributes to glaucoma progression. Created with Biorender.com

TABLE 1 | Pharmacological targets to ameliorate mitochondrial dysfunction and inflammation.

Protein/
Gene

Biological
target

Targeted pathway Scientific evidence References

HIF-1α Nucleus Hypoxic response Hypoxia preconditioniong rescue RGC during glaucoma Gidday et al. (2015)
KATP

channel
Membrane Metabolic function KATP blockers reduced IL-1β release; KATP opener protected

RGCs from ischemic damage
Watanabe et al. (2020)

HCAR1 Mitochondria L-lactate receptor Ketogenic diet stimulates HCAR1 to inhibit NLRP3
inflammasome in glaucoma

Harun-or-Rashid and Inman,
(2018)

AMPK Cytosol Energy sensor protein kinase Ketogenic diet reduced metabolic vulnerability and AMPK-
induceds inflammation

Harun-or-Rashid and Inman,
(2018)

cGAS Interferon in
cytosol

STING pathway Detects leaked mtDNA Sintim et al. (2019)

Aβ Cytosol,
mitochondria

Biomarker of neurodegeneration,
impaired clearance

Accumulates in mitochondria cristae, blocks function; induces
pro-inflamatory cytokines via P2X7R

Chiozzi et al., 2019, Petersen
et al., 2008

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6996238

Jassim et al. Mitochondria and Inflammation in Glaucoma

http://Biorender.com
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cell. Although high reliance on glycolysis was recently shown
in glaucomatous D2 ON (Jassim et al., 2021), degeneration
proceeds, indicating that ATP produced from glycolysis is
insufficient to meet the high energy demand of axons during
glaucoma.

INFLAMMATION CAN INDUCE
MITOCHONDRIAL DYSFUNCTION

While there is considerable evidence suggesting that
dysfunctional mitochondria can trigger inflammation, the
opposite is also true, with inflammation inducing
mitochondrial dysfunction. Inflammasome assembly can
impair organelle function and integrity; for example, activation
of the NLRP3 inflammasome in macrophages reduced cytoplasmic
levels of ATP and mitochondrial function (Heid et al., 2013).
Inflammation in LPS-treated macrophages resulted in a
metabolic shift from oxidative phosphorylation to glycolysis
(Mills et al., 2016). Interestingly, Complex II and Complex I
oxidation, and decreased NAD+ were necessary for the pro-
inflammatory response observed in these macrophages. TNFα
induced a oxidative phosphorylation deficit in a mouse
hippocampal cell line, suggesting a detrimental impact of
inflammation on mitochondrial function (Doll et al., 2015). In
optic nerve head astrocytes, stimulation of TLR3 led to a transfer of
cellular ATP from cytoplasmic to extracellular compartments,
suggesting inflammatory signaling can strain cellular energetics
in relationship to glaucoma (Beckel et al., 2018).

Microglia metabolic reprogramming has been found in
response to inflammation as cells switch between oxidative
phosphorylation and glycolytic metabolism (Lauro and
Limatola, 2020). Activated microglia have dysfunctional
mitochondria and they switch to glycolysis to compensate for
ATP loss. Stimulation of microglial cells with LPS reduced
mitochondrial oxygen consumption, ATP production and
oxidative phosphorylation, while increasing glycolysis
(Voloboueva et al., 2013). In addition, mitochondrial
dysfunction in microglia propagates mitochondrial dysfunction
in neurons and can block some of the alternative response
triggered by IL-4 (Ferger et al., 2010). As this IL-4 response
can reduce inflammation, mitochondrial dysfunction might
contribute to the pathological changes found in activated
microglia in glaucoma. Whether inflammatory stimuli lead
microglia in the retina to switch from oxidative

phosphorylation to glycolysis should be investigated given
central role of microglia in glaucomatous pathogenesis.

DISCUSSION AND FUTURE DIRECTIONS

The strong support for mitochondrial dysfunction and
inflammation in glaucoma outlined above, combined with
growing evidence for crosstalk between mitochondrial
dysfunction and inflammation in other neurodegenerations,
suggests interaction between these processes contributes to the
expanding pathogenesis in glaucoma patients. We propose that
IOP elevation initiates hypoxia that contributes to mitochondrial
dysfunction, oxidative stress, impaired mitophagy and
inflammation and that these processes are exacerbated by
interactions between inflammation and mitochondrial
dysfunctional (Figure 1).

While expanding evidence for both inflammation and
mitochondrial dysfunction supports crosstalk, the degree of
interaction may be influenced by several key factors, and
suggests several key targets for intervention (Table 1). For
example, the microglial activation state is expected to have a
considerable impact on waste accumulation and impaired
mitophagy (Campagno and Mitchell, 2021). Investigations into
compartmentalized interaction between ASC, NLRP3 and
oxidative stress in soma, axon, and synapse has particular
relevance for glaucoma given the ganglion cell architecture.
The ability of inflammation to disrupt mitochondrial signaling
remains largely undetermined in glaucoma. The development of
in vitro models using neurons, astrocytes, and microglia, in
addition to the use and development of mouse glaucoma
models with knockout technologies, will enable us to resolve
these questions.
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