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Positive solutions for the fractional Schrödinger equations with
logarithmic and critical non-linearities

Haining Fan, Zhaosheng Feng and Xingjie Yan

Abstract

In this paper, we study a class of fractional Schrödinger equations involving logarithmic
and critical non-linearities on an unbounded domain, and show that such an equation with
positive or sign-changing weight potentials admits at least one positive ground state solution
and the associated energy is positive (or negative). By applying the Nehari manifold method
and Ljusternik–Schnirelmann category, we investigate how the weight potential affects the
multiplicity of positive solutions, and obtain the relationship between the number of positive
solutions and the category of some sets related to the weight potential.

1. Introduction

The aim of this paper is to study how the weight potential affects the existence of ground state
solutions and the number of positive solutions of the fractional Schrödinger equation:

(−Δ)αu + u = λa(x)u ln |u| + b(x)|u|2∗
α−2u, x ∈ R

N , (1.1)

where α ∈ (0, 1), λ > 0, N > 4α, a(x) and b(x) are continuous and bounded weight potentials,
and 2∗α = 2N/(N − 2α) is the fractional critical Sobolev exponent. Let ℘(RN ) denote the
Schwartz space of rapidly decaying C∞ functions in R

N . The operator (−Δ)α is the fractional
Laplacian defined by the Riesz potential [18]:

(−Δ)αu(x) = −C(N,α)
2

∫
RN

u(x + y) + u(x− y) − 2u(x)
|y|N+2α

dy, x ∈ R
N , u ∈ ℘(RN )

where

C(N,α) =
(∫

RN

1 − cosξ1
|ξ|N+2α

dξ

)−1

, ξ = (ξ1, ξ2, . . . , ξN ).

For the definition of the fractional Laplacian (−Δ)α and the fractional Sobolev spaces, we refer
the reader to Nezza–Palatucci–Valdinoci [18].

Recall the classical Schrödinger elliptic equation:

−Δu + V (x)u = f(x, u) in R
N , (1.2)

where f(x, u) is a polynomial-type non-linearity, such as f(x, u) = a(x)|u|q−2u + b(x)|u|p−2u
with 2 < q < p � 2∗ = 2N

N−2 . del Pino–Kowalczyk–Wei [17] studied equation (1.2) with a
small parameter for standing waves for a non-linear Schrödinger equation in R

N when
f(x, u) = up, p > 1. Floer–Weinstein [24] constructed positive solutions to this problem when
p = 3 and N = 1, such that the concentration takes place near a given non-degenerate critical
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point x0 of V (x). Brezis–Nirenberg [5] obtained a positive solution of equation (1.2) in a
bounded domain for λ ∈ (0, λ1) when f(x, u) = λ|u|q−2u + |u|2∗−2u, where λ1 is the first
eigenvalue of −Δ with the Dirichlet boundary condition. Brezis [4] investigated how the weight
potential a(x) affects the number of solutions of (1.2), when f(x, u) = a(x)|u|q−2u + |u|2∗−2u.
For more results related to equation (1.2), we refer the reader to [7, 12, 38] for the subcritical
growth and [19, 21, 23] for the critical case.

Various non-linearities have a rather diverse group of applications in scientific fields [40,
42]. For example, logarithmic non-linearity appears frequently in partial differential equations
which are widely applied to quantum mechanics, reaction-diffusion phenomena, nuclear physics,
quantum optics, theory of superfluidity and Bose–Einstein condensation [43]. In particular, for
the Schrödinger equation with a logarithmic non-linearity:

−Δu + V (x)u = a(x)u lnu2 in R
N , (1.3)

where V (x) and a(x) are periodic weight potentials, Squassina–Szulkin [34] studied (1.3) in
H1(RN ) to establish the existence of infinitely many geometrically distinct solutions. Shuai [32]
proved the existence of positive and sign-changing solutions in H1(RN ) using the direction
derivative and constrained minimization method. Tanaka–Zhang [35] considered a spatially
periodic logarithmic Schrödinger equation and showed that there exist infinitely many multi-
bump solutions that are distinct under a ZN -action. For more results related to (1.3), we refer
the reader to [1, 37, 39, 41] and the references therein.

In recent years, much attention has been focused on studying the problems involving the
fractional Laplacian from both mathematical and application points of view [8, 13, 20, 26–28,
30, 33]. Laskin [26, 27] found a fractional generalization of the Schrödinger equation for the
wave function in quantum mechanical systems by considering the Lévy flights instead of the
Brownian motion in the Feynman path integral approaches:

(−Δ)αu + u = f(x, u), x ∈ R
N . (1.4)

By considering different expressions of the non-linearity f , quite many profound results have
been established on the existence and multiplicity of positive solutions. For example, Servadei–
Valdinoci [30] considered the model:{

(−Δ)αu = λu + |u|2∗
α−2u, in Ω,

u = 0, in R
N\Ω,

(1.5)

and obtained an extended version of the classical Brezis–Nirenberg result to the case of non-
local fractional operators through variational techniques. For f(x, u) = a(x)|u|q−2u + |u|2∗

α−2u
with 0 < q < 2∗α − 1 in (1.4), Dipierro–Medina–Peral–Valdinoci [20] presented the existence of
solutions by using the Lyapunov–Schmidt reduction method. Moreover, for 0 < q < 1, under a
new functional setting, a fractional elliptic regularity theory was developed too. Chen–Li [10]
established the radial symmetry and monotonicity for positive solutions to semilinear equations
involving the fractional p-Laplacian in a unit ball and in the whole space. For more results
related to (1.4), we refer to [2, 11 15, 16, 25 29, 31 36]. However, most of these results
assume that f is of polynomial-type.

There is quite a natural and interesting question here: if the non-linearity of the fractional
Schrödinger equation contains both logarithmic and critical terms like (1.1), how about the
existence and multiplicity of positive solutions for equation (1.1)? This is certainly not a trivial
problem, because the logarithmic non-linearity does not satisfy the monotonicity condition (or
Ambrosetti–Rabinowitz condition) and this type of non-linearity may change sign in R

N . On
the other hand, the appearance of logarithmic and critical non-linearity makes it more difficult
for us to prove the convergence of the resultant (PS) sequence, and the non-local properties of
fractional Laplacian operators also cause great difficulties for multiplicity of positive solutions.
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To the best of our knowledge, very little has been undertaken on the fractional Schrödinger
equations involving both logarithmic and critical non-linearities.

In the present paper, we will study the existence of ground state solutions of equation
(1.1) with positive, or negative, or sign-changing weight potentials, and show how the weight
potential affects the number of positive solutions.

Before stating our main results, we introduce some assumptions on a(x) and b(x).

(H1) lim|x|→∞ a(x) = 0, x ∈ R
N .

(H2) There exist a compact set M = {z ∈ R
N ; b(z) = maxx∈RN b(x) = 1} and a positive

number ρ > N such that b(z) − b(x) = O(|x− z|ρ) as x → z uniformly in z ∈ M .
(H3) a(x) > 0, x ∈ M .

Remark 1.1. Let Mr = {x ∈ R
N ; dist(x,M) < r} for r > 0. Then by (H2) − (H3) there

exist C0, r0 > 0 such that

a(x) > 0, x ∈ Mr0 ⊂ R
N

and

b(z) − b(x) � C0|x− z|ρ, x ∈ Br0(z)

uniformly in z ∈ M , where Br0(z) = {x ∈ R
N ; |x− z| < r0}.

Remark 1.2. Define

b∞ := lim sup
|x|→∞

b(x).

Then b∞ < 1.

Theorem 1.1. Assume that condition (H1) holds and a(x) is negative or sign-changing.
Then there exists Λ1 > 0 such that if λ ∈ (0,Λ1), equation (1.1) has a positive ground state
solution and the ground energy of (1.1) is negative.

Theorem 1.2. Assume that conditions (H1) − (H3) hold and a(x) � 0. Then there exists
Λ2 > 0 such that if λ ∈ (0,Λ2), equation (1.1) has a positive ground state solution and the
ground energy of (1.1) is positive.

We will present the definitions of ground state solution and ground energy in Section 2. The
following results are regarding the relationship between the number of positive solutions and
the weight potentials a(x) and b(x).

Theorem 1.3. Assume that conditions (H1) − (H3) hold and a(x) is sign-changing.
Then for each δ < r0, there exists Λδ > 0 such that if λ ∈ (0,Λδ), equation (1.1) has at
least catMδ

(M) + 1 distinct positive solutions, where cat means the Ljusternik–Schnirelmann
category (see [40]).

Theorem 1.4. Assume that conditions (H1) − (H3) hold and a(x) � 0. Then for each
δ < r0, there exists Λδ > 0 such that if λ ∈ (0,Λδ), equation (1.1) has at least catMδ

(M) distinct
positive solutions.

Remark 1.3. If the right-hand side of equation (1.1) changes to

λa(x)(u + |u|q−2u) + b(x)|u|2∗
α−2u,
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with q ∈ (1, 2) and N > 2α, by applying the techniques used in this paper, we can show that
(1.1) with small λ > 0 admits at least catMδ

(M) + 1 distinct positive solutions under the
conditions (H1) − (H3) and a(x) � 0 or a(x) is sign-changing, see [22].

Particularly, when b(x) ≡ 1, we have

Corollary 1.1. Assume that condition (H1) holds and a(x) is sign-changing. Then there
exists Λ3 > 0 such that if λ ∈ (0,Λ3), equation (1.1) has at least two distinct positive solutions.

Corollary 1.2. Assume that condition (H1) holds and a(x) � 0 but a(x) �≡ 0. Then there
exists Λ3 > 0 such that if λ ∈ (0,Λ3), equation (1.1) has at least one positive ground state
solution and the ground energy of (1.1) is positive.

Remark 1.4. Corollaries 1.1 and 1.2 are the special cases of Theorems 1.3 and 1.4,
respectively, so we will omit the proofs.

To achieve our aim, the Nehari manifold and the Ljusternik–Schnirelmann theory are main
tools in this study. The main feature which distinguishes this paper from other related
works lies in the fact that in the proofs of our results, one of primary difficulties is that
the logarithmic non-linearity does not satisfy the monotonicity condition or Ambrosetti–
Rabinowitz condition and this type of non-linearity may change sign in R

N , which makes
discussions more complicated and challenging than those without logarithmic non-linearity.
Another primary obstacle is the lack of compactness caused by the unbounded domain and the
critical non-linearity. Some concentration compactness results for the fractional Schrödinger
equations seem correct but have not been proved yet and thus cannot be applied directly. All
these difficulties mentioned above prevent us from using the classical variational methods in a
standard way, so innovative techniques are highly needed.

The remainder of this paper is structured as follows. In Section 2, we recall some basic
definitions, present the variational setting for the problem and study some properties of the
corresponding Nehari manifold. Moreover, we present the proof of Theorem 1.1. In Section 3, we
obtain useful estimates and use them to prove Theorem 1.2. Section 4 is dedicated to the proofs
of Theorems 1.3 and 1.4 by means of the Nehari manifold method and Ljusternik–Schnirelmann
category theory.

For convenience of our statements, throughout this paper we will use the following notation.

• → (respectively, ⇀) the strong (respectively, weak) convergence.
• | · |r the usual norm of the space Lr(RN ), (1 � r < ∞).
• | · |∞ denotes the norm of the space L∞(RN ).
• C or Ci (i = 0, 1, 2, . . .) denotes positive constants that may change from line to line.
• R

N+1
+ = {(x1, x2, . . . , xN+1) ∈ R

N+1|xN+1 � 0}.
• Br = {x ∈ R

N ; |x| < r} denotes a ball of radius r in Euclidean spaces.

2. Preliminaries and proof of Theorem 1.1

In this section, we first introduce the definition of α-harmonic extension. Then we present
the variational setting for the problem and properties of the corresponding Nehari manifold.
Finally, we use these properties to prove Theorem 1.1.

Denote the fractional Sobolev space Hα(RN ) as the completion of C∞
0 (RN ) with the norm:

‖u‖Hα :=
(∫

RN

|(−Δ)
α
2 u|2dx

) 1
2

+ |u|2.



210 HAINING FAN, ZHAOSHENG FENG AND XINGJIE YAN

Then Hα(RN ) ↪→ Lr(RN ), r ∈ [2, 2∗α], where α ∈ (0, 1) and 2∗α is the fractional Sobolev critical
exponent, and this embedding is locally compact while r ∈ [1, 2∗α) (see [18]).

To study the corresponding extension problem, we apply an extension method [9] and define
the extension function in Hα(RN ) as follows.

Definition 2.1. Given a function u ∈ Hα(RN ), we define the α-harmonic extension
Eα(u) = ω to the problem: {

div(y1−2α∇ω) = 0, in R
N+1
+ ,

ω = u, on R
N × {0}.

The extension function ω(x, y) has an explicit expression in term of the Poisson and Riesz
kernel, that is,

ω(x, y) = Pα
y ∗ u(x) =

∫
RN

Pα
y (x− ξ, u)u(ξ)dξ,

where Pα
y (x) = C(N,α) y2α

(|x|2+y2)
(N+2α)/2 with a constant C(N,α) such that

∫
RN Pα

1 (x)dx = 1

(see [9]).

Define the space

Xα(RN+1
+ ) :=

{
ω(x, y) ∈ C∞

0 (RN+1
+ );

∫
R

N+1
+

kαy
1−2α|∇ω|2dxdy +

∫
RN

|ω(x, 0)|2dx < ∞
}
,

equipped with the norm:

‖ω‖X =

(∫
R

N+1
+

y1−2α|∇ω|2dxdy +
∫
RN

|ω(x, 0)|2dx
)1/2

.

Note that ∫
R

N+1
+

kαy
1−2α|∇ω|2dxdy =

∫
RN

|Δα
2 u|2dx, (2.1)

where ω = Eα(u) and kα is a normal positive constant [9]. So the function Eα(·) is an isometry
between Hα(RN ) and Xα(RN+1

+ ). Then we re-formulate (1.1) as follows:{
div(y1−2α∇ω) = 0, in R

N+1
+ ,

−kα
∂ω
∂ν = −ω + λa(x)ω ln |ω| + b(x)|ω|2∗

α−2ω, on R
N × {0}, (2.2)

where

−kα
∂ω

∂ν
= −kα lim

y→0+
y1−2α ∂ω

∂y
(x, y) = (−Δ)αu(x).

In what follows, we set kα = 1, for simplicity. If ω is a solution of (2.2), then the trace
u = tr(ω) = ω(x, 0) is a solution of (1.1). Conversely, it is also true.

Let us introduce some properties on the spaces Xα(RN+1
+ ) and Lr(RN ).

Proposition 2.1 [25]. The embedding Xα(RN+1
+ ) ↪→ Lr(RN ) is continuous for r ∈ [2, 2∗α]

and locally compact for r ∈ [1, 2∗α).

Proposition 2.2 [25]. For every ω ∈ Xα(RN+1
+ ), there holds

S

(∫
RN

|u(x)| 2N
N−2α dx

)N−2α
N

�
∫
R

N+1
+

y1−2α|∇ω|2dxdy,
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where u = tr(ω). The best constant is given by

S =
2παΓ( 2−2α

2 )Γ(N+2α
2 )(Γ(N2 ))

2α
N

Γ(α)Γ(N−2α
2 )(Γ(N))

2α
N

,

and it is attained when u = ω(x, 0) takes the form:

uε(x) =
Cε

N−2α
2

(ε2 + |x|2)
N−2α

2

for an arbitrary ε > 0, ωε = Eα(uε) and∫
R

N+1
+

y1−2α|∇ωε|2dxdy =
∫
RN

|ωε(x, 0)| 2N
N−2α dx = S

N
2α .

The following property is concerning the logarithmic Sobolev inequality in the fractional
Sobolev space.

Proposition 2.3 [14]. Let f ∈ Hα(RN ) and σ > 0 be any number. Then∫
RN

|f |2 ln
|f |2
|f |22

dx � σ2

πα
|(−Δ)

α
2 f |22 −

[
N +

N

α
lnσ + ln

αΓ(N2 )
Γ( N

2α )

]
|f |22.

Remark 2.1. From (2.1) and definition 2.1, we have∫
RN

|ω(x, 0)|2 ln
|ω(x, 0)|2
|ω(x, 0)|22

dx � σ2

πα

∫
R

N+1
+

y1−2α|∇ω|2dxdy

−
[
N +

N

α
lnσ + ln

αΓ(N2 )
Γ( N

2α )

]
|ω(x, 0)|22

for any ω ∈ Xα(RN+1
+ ). Furthermore, there holds∫

RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

=
1
2

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|2dx

=
1
2

∫
RN

a(x)|ω(x, 0)|2 ln
|ω(x, 0)|2
|ω(x, 0)|22

dx +
1
2

∫
RN

a(x)|ω(x, 0)|2dx ln |ω(x, 0)|22

� 1
2
|a|∞ σ2

πα

∫
R

N+1
+

y1−2α|∇ω|2dxdy +
1
2
|a|∞

∣∣∣∣∣N +
N

α
lnσ + ln

αΓ(N2 )
Γ( N

2α )

∣∣∣∣∣|ω(x, 0)|22

+
1
2

∫
RN

a(x)|ω(x, 0)|2dx ln |ω(x, 0)|22. (2.3)

To analyze (2.2), we define the associated energy functional by

Iλ(ω) : =
1
2
‖ω‖2

X − λ

2

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

+
λ

4

∫
RN

a(x)|ω(x, 0)|2dx− 1
2∗α

∫
RN

b(x)|ω(x, 0)|2∗
αdx,
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where ω ∈ Xα(RN+1
+ ). Then Iλ is Fréchet differentiable and

I ′λ(ω)ϕ =
∫
R

N+1
+

y1−2α∇ω(x, y)∇ϕ(x, y)dxdy +
∫
RN

ω(x, 0)ϕ(x, 0)dx

− λ

∫
RN

a(x)ω(x, 0)ϕ(x, 0) ln |ω(x, 0)|dx−
∫
RN

b(x)|ω(x, 0)|2∗
α−2ω(x, 0)ϕ(x, 0)dx

for any ϕ ∈ Xα(RN+1
+ ). It is notable that finding the weak solution of (2.2) is equivalent to

finding the critical point of the energy functional Iλ.
Define

Φ := {non-trivial weak solutions of (2.2)}.
From (2.1) and Definition 2.1, we define the ground energy of equation (1.1) by

d := inf
ω∈Φ

Iλ(ω).

If ω is a non-trivial solution of system (2.2) such that Iλ(ω) = d, we call that u := ω(x, 0) is a
ground state solution of equation (1.1).

Since Iλ is not bounded from below on Xα(RN+1
+ ), we consider Iλ strictly on the Nehari

manifold:

Nλ := {ω ∈ Xα(RN+1
+ )\{0}; I ′λ(ω)ω = 0}.

Then ω ∈ Nλ if and only if

‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx−
∫
RN

b(x)|ω(x, 0)|2∗
αdx = 0. (2.4)

We analyze Nλ in terms of the stationary points of fibering maps [7] that φω : R
+ → R is

defined by

φω(t) := Iλ(tω).

Then we have

φω(t) =
t2

2
‖ω‖2

X − t2
∗
α

2∗α

∫
RN

b(x)|ω(x, 0)|2∗
αdx (2.5)

− λ
t2

2

(∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx + ln t

∫
RN

a(x)|ω(x, 0)|2dx− 1
2

∫
RN

a(x)|ω(x, 0)|2dx
)
,

φ′
ω(t) =t‖ω‖2

X − t2
∗
α−1

∫
RN

b(x)|ω(x, 0)|2∗
αdx

− λt

(∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx + ln t

∫
RN

a(x)|ω(x, 0)|2dx
)

and

φ′′
ω(t) = ‖ω‖2

X − (2∗α − 1)t2
∗
α−2

∫
RN

b(x)|ω(x, 0)|2∗
αdx

− λ

(∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx + ln t

∫
RN

a(x)|ω(x, 0)|2dx +
∫
RN

a(x)|ω(x, 0)|2dx
)
.

It is easy to see that ω ∈ Nλ if and only if φ′
ω(1) = 0.
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We split Nλ into three subsets N+
λ , N−

λ , and N0
λ that correspond to local minima, local

maxima, and points of inflection of fibering maps. respectively, that is,

N+
λ := {ω ∈ Nλ;φ′′

ω(1) > 0} = {tω ∈ Xα(RN+1
+ )\{0}; φ′

ω(t) = 0, φ′′
ω(t) > 0},

N−
λ := {ω ∈ Nλ;φ′′

ω(1) < 0} = {tω ∈ Xα(RN+1
+ )\{0}; φ′

ω(t) = 0, φ′′
ω(t) < 0},

N0
λ := {ω ∈ Nλ;φ′′

ω(1) = 0} = {tω ∈ Xα(RN+1
+ )\{0}; φ′

ω(t) = 0, φ′′
ω(t) = 0}.

Note that if ω ∈ Nλ, then φ′′
ω(1) = −λ

∫
RN a(x)|ω(x, 0)|2dx− (2∗α − 2)

∫
RN b(x)|ω(x, 0)|2∗

αdx.
Thus, we get the equivalent expressions:

N+
λ := {ω ∈ Nλ; λ

∫
RN

a(x)|ω(x, 0)|2dx + (2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx < 0},

N−
λ := {ω ∈ Nλ; λ

∫
RN

a(x)|ω(x, 0)|2dx + (2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx > 0},

N0
λ := {ω ∈ Nλ; λ

∫
RN

a(x)|ω(x, 0)|2dx + (2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx = 0}.

Lemma 2.1. If
∫
RN a(x)|ω(x, 0)|2dx � 0, then we have either

‖ω‖X � 1 (2.6)

or ∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X

for some C > 0 independent of ω ∈ Xα(RN+1
+ ).

Proof. To estimate
∫
RN a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx, we re-write it as∫

RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

=
∫
RN

a(x)|ω(x, 0)|2 ln
|ω(x, 0)|
‖ω‖X dx + ln ‖ω‖X

∫
RN

a(x)|ω(x, 0)|2dx

= I1 + I2,

where I1 :=
∫
RN a(x)|ω(x, 0)|2 ln |ω(x,0)|

‖ω‖X
dx and I2 := ln ‖ω‖X

∫
RN a(x)|ω(x, 0)|2dx.

If ‖ω‖X � 1, then (2.6) holds. If ‖ω‖X > 1, due to
∫
RN a(x)|ω(x, 0)|2dx � 0 we have I2 � 0.

This implies ∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � I1. (2.7)

We divide I1 into two parts: I1 = I11 + I12, where

I11 =
∫
R

N
a,+

a(x)|ω(x, 0)|2 ln
|ω(x, 0)|
‖ω‖X dx, I12 = +

∫
R

N
a,−

a(x)|ω(x, 0)|2 ln
|ω(x, 0)|
‖ω‖X dx,

R
N
a,+ :=

{
x ∈ R

N ; a(x) � 0
}
, R

N
a,− :=

{
x ∈ R

N ; a(x) < 0
}
.

When t, γ > 0, by using ln t � Cγt
γ , it follows from Proposition 2.1 that

I11 � C‖ω‖2−q
X

∫
R

N
a,+

a(x)|ω(x, 0)|qdx � C‖ω‖2
X (2.8)



214 HAINING FAN, ZHAOSHENG FENG AND XINGJIE YAN

for 2 < q < 2∗α, and

I12 �
∫

Ωa,−
a(x)|ω(x, 0)|2 ln

|ω(x, 0)|
‖ω‖X dx

=
∫

Ωa,−
(−a(x))|ω(x, 0)|2 ln

‖ω‖X
|ω(x, 0)|dx

� Cγ0‖ω‖γ0
X

∫
RN

|a(x)||ω(x, 0)|2−γ0dx

� C‖ω‖2
X (2.9)

for 0 < γ0 < 1, where Ωa,− := {x ∈ R
N
a,−; |ω(x, 0)| < ‖ω‖X}.

As a consequence of (2.7)–(2.9), we obtain∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X ,

where C is a positive constant independent of ω ∈ Xα(RN+1
+ ). �

Lemma 2.2. For each ω ∈ Xα(RN+1
+ )\{0}, there exists λ1 > 0 small enough such that if

λ ∈ (0, λ1), then the following two statements are true.

(i) If
∫
RN a(x)|ω(x, 0)|2dx > 0, then there exists t− := t−(ω) > 0 such that t−ω ∈ N−

λ and
Iλ(t−ω) = maxt�0 Iλ(tω).

(ii) If
∫
RN a(x)|ω(x, 0)|2dx < 0, then there exists a unique 0 < t+ := t+(ω) < t− := t−(ω) <

∞ such that t+ω ∈ N+
λ , t−ω ∈ N−

λ , Iλ(tω) is decreasing on (0, t+), increasing on
(t+, t−), and decreasing on (t−,+∞). Moreover, Iλ(t+ω) = min0�t�t− Iλ(tω) and Iλ(t−ω) =
maxt+�t Iλ(tω).

Proof. (i) Suppose that ω ∈ Xα(RN+1
+ )\{0} with

∫
RN a(x)|ω(x, 0)|2dx > 0. Since 2 < 2∗α and

limt→0+ ln t = −∞, there exists a small t0 > 0 such that

φω(t) > 0 (2.10)

for t ∈ (0, t0), where φω(t) is defined by (2.5). Moreover, we have

lim
t→0+

φω(t) = 0 and lim
t→+∞φω(t) = −∞. (2.11)

From (2.10) with (2.11), there is t− := t−(ω) > 0 such that

φω(t−) = Iλ(t−ω) = max
t�0

φω(t) = max
t�0

Iλ(tω).

This implies t−ω ∈ N−
λ .

(ii) Suppose that ω ∈ Xα(RN+1
+ )\{0} with

∫
RN a(x)|ω(x, 0)|2dx < 0. Note that

φ′
ω(t)
t

= ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

− λ ln t

∫
RN

a(x)|ω(x, 0)|2dx− t2
∗
α−2

∫
RN

b(x)|ω(x, 0)|2∗
αdx.

Let s(t) := λ ln t
∫
RN a(x)|ω(x, 0)|2dx + t2

∗
α−2

∫
RN b(x)|ω(x, 0)|2∗

αdx. Then tω ∈ Nλ if and
only if

s(t) = ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx.
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Since

lim
t→0+

s(t) = +∞ and lim
t→+∞ s(t) = +∞ (2.12)

and

ts′(t) = λ

∫
RN

a(x)|ω(x, 0)|2dx + (2∗α − 2)t2
∗
α−2

∫
RN

b(x)|ω(x, 0)|2∗
αdx, (2.13)

there exists

tmin :=

⎛⎜⎜⎝ −λ

∫
RN

a(x)|ω(x, 0)|2dx

(2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx

⎞⎟⎟⎠
1

2∗α−2

such that

s(tmin) = min
t�0

s(t)

=
1

2∗α − 2
λ

∫
RN

a(x)|ω(x, 0)|2dx ln

⎛⎜⎜⎝ −λ

∫
RN

a(x)|ω(x, 0)|2dx

(2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx

⎞⎟⎟⎠
− 1

2∗α − 2
λ

∫
RN

a(x)|ω(x, 0)|2dx.

Moreover, s(t) is decreasing in (0, tmin) and increasing in (tmin,+∞).
To show that

s(tmin) < ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx, (2.14)

we start with estimating
∫
RN a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx. It follows from Lemma 2.1 that either

‖ω‖X � 1 (2.15)

or ∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X (2.16)

for some C > 0 independent of ω. Thus we need to consider two cases.
Case 1. Assume that (2.15) holds. On the one hand, it follows from (2.3) and Proposition 2.1

that ∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C(‖ω‖2
X + ‖ω‖4

X) � C‖ω‖2
X

for some C > 0 independent of ω. So we have

‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X (2.17)

for λ > 0 small enough and some C > 0 independent of ω.
On the other hand, in view of the inequality ln t � t for t > 0, it follows from Proposition 2.1

and (2.15) that

s(tmin)

=
1

2∗α − 2
λ

∫
RN

a(x)|ω(x, 0)|2dx ln
(
−λ

∫
RN

a(x)|ω(x, 0)|2dx
)
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− 1
2∗α − 2

λ

∫
RN

a(x)|ω(x, 0)|2dx ln
(

(2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx

)
− 1

2∗α − 2
λ

∫
RN

a(x)|ω(x, 0)|2dx

� −λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx
[
−λ

∫
RN

a(x)|ω(x, 0)|2dx + (2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx + 1

]
� λC‖ω‖2

X [λC‖ω‖2
X + C‖ω‖2∗

α

X + 1]

� λC‖ω‖2
X (2.18)

for some C > 0 independent of ω. As a consequence of (2.17) and (2.18), we see that (2.14)
holds for small λ > 0.

From (2.12) to (2.14), there exists a unique 0 < t+(ω) < tmin < t−(ω) < ∞ such that

s(t+(ω)) = s(t−(ω)) = ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

and

t+(ω)ω ∈ Nλ and t−(ω)ω ∈ Nλ.

Since

s′(t+(ω)) < 0 < s′(t−(ω)),

it follows from (2.13) that t+(ω)ω ∈ N+
λ and t−(ω)ω ∈ N−

λ .
Using the fact that

s(t) − ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

⎧⎪⎨⎪⎩
� 0, 0 � t � t+(ω),
� 0, t+(ω) � t � t−(ω),
� 0, t−(ω) � t,

we obtain

φ′
ω(t)

⎧⎪⎨⎪⎩
� 0, 0 � t � t+(ω),
� 0, t+(ω) � t � t−(ω),
� 0, t−(ω) � t.

This indicates that Iλ(tω) is decreasing on (0, t+(ω)), increasing on (t+(ω), t−(ω)) and
decreasing on (t−(ω),∞). Moreover, we have

Iλ(t+(ω)ω) = min
0�t�t−(ω)

Iλ(tω) and Iλ(t−ω) = max
t�t+(ω)

Iλ(tω).

Case 2. Assume that (2.16) holds. Then

‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X (2.19)

for small λ > 0 and some C > 0 independent of ω.
If −λ

∫
RN a(x)|ω(x, 0)|2dx � (2∗α − 2)

∫
RN b(x)|ω(x, 0)|2∗

αdx, we have

λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx ln

⎛⎜⎜⎝ −λ

∫
RN

a(x)|ω(x, 0)|2dx

(2∗α − 2)
∫
RN

b(x)|ω(x, 0)|2∗
αdx

⎞⎟⎟⎠ � 0.
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That is,

s(tmin) � −λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx � λC‖ω‖2
X (2.20)

for some C > 0 independent of ω. From (2.19) and (2.20), we arrive at the desired result (2.14)
for small λ > 0.

Due to (2.14), similar to the proof of Case 1, there exist 0 < t+(ω) < tmin < t−(ω) < ∞ such
that t+(ω)ω ∈ N+

λ and t−(ω)ω ∈ N−
λ . Furthermore, we can see that Iλ(tω) is decreasing on

(0, t+(ω)), increasing on (t+(ω), t−(ω)) and decreasing on (t−(ω),∞). So we have

Iλ(t+(ω)ω) = min
0�t�t−(ω)

Iλ(tω) and Iλ(t−ω) = max
t�t+(ω)

Iλ(tω).

If −λ
∫
RN a(x)|ω(x, 0)|2dx < (2∗α − 2)

∫
RN b(x)|ω(x, 0)|2∗

αdx, in view of 2 < 2∗α, there exists
t0 > 0 such that

−λ

∫
RN

a(x)|t0ω(x, 0)|2dx > (2∗α − 2)
∫
RN

b(x)|t0ω(x, 0)|2∗
αdx.

Set

ω0 = t0ω.

Similarly, we can see that there are 0 < t+(ω0) < t−(ω0) < ∞ such that the desired result in
Case 1 holds for some ω0. Let t+(ω) = t0t

+(ω0) and t−(ω) = t0t
−(ω0). Consequently, there

exist 0 < t+(ω) < t−(ω) < ∞ such that the result in Case 1 holds for an arbitrary ω. �

Lemma 2.3. If ω is a critical point of Iλ on Nλ and ω �∈ N0
λ , then it is a critical point of Iλ

in Xα(RN+1
+ ).

Proof. Let ω be a critical point of Iλ on Nλ. Then

I ′λ(ω)ω = 0 and I ′λ(ω) = τΨ′
λ(ω) (2.21)

for some τ ∈ R, where

Ψλ(ω) := ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx−
∫
RN

b(x)|ω(x, 0)|2∗
αdx. (2.22)

Because of ω �∈ N±
λ , we get

Ψ′
λ(ω)ω : = 2‖ω‖2

X − 2λ
∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

− λ

∫
RN

a(x)|ω(x, 0)|2dx− 2∗α

∫
RN

b(x)|ω(x, 0)|2∗
αdx

= ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

− λ

∫
RN

a(x)|ω(x, 0)|2dx− (2∗α − 1)
∫
RN

b(x)|ω(x, 0)|2∗
αdx

= φ′′
ω(1) �= 0,

which together with (2.21) indicates that τ = 0, that is, I ′λ(ω) = 0. �

Lemma 2.4. There exists a small λ2 > 0 such that if λ ∈ (0, λ2), then the set N0
λ = ∅.
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Proof. Let ω ∈ N0
λ . Then

‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx−
∫
RN

b(x)|ω(x, 0)|2∗
αdx = 0 (2.23)

and

‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx− λ

∫
RN

a(x)|ω(x, 0)|2dx

− (2∗α − 1)
∫
RN

b(x)|ω(x, 0)|2∗
αdx = 0,

which lead to

λ

∫
RN

a(x)|ω(x, 0)|2dx = (2 − 2∗α)
∫
RN

b(x)|ω(x, 0)|2∗
αdx < 0. (2.24)

In view of (2.24), it follows from Lemma 2.1 that either

‖ω‖X � 1, (2.25)

or ∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C‖ω‖2
X , (2.26)

where C is a positive constant independent of ω ∈ N0
λ . If (2.26) holds, for sufficiently small

λ > 0 it follows from (2.23) to (2.24) and Proposition 2.1 that

0 = ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx−
∫
RN

b(x)|ω(x, 0)|2∗
αdx

= ‖ω‖2
X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx +
λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx

� ‖ω‖2
X(1 − λC)

� C‖ω‖2
X .

Thus, ‖ω‖X = 0, which obviously yields a contradiction to the fact ω �= 0. This implies that
(2.25) holds.

On the other hand, in view of ln t � t for any t > 0, it follows from (2.3) and Proposition 2.1
that ∫

RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C(‖ω‖2
X + |ω(x, 0)|42) � C(‖ω‖2

X + ‖ω‖4
X). (2.27)

With the help of (2.23), (2.24) and (2.27) and Proposition 2.1, we obtain

‖ω‖2
X = λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx− λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx

� λC(‖ω‖2
X + ‖ω‖4

X),

which together with (2.25) gives

C � λ(1 + ‖ω‖2
X) � 2λ.

This is a contradiction with the fact that λ is sufficiently small. �

Lemma 2.5. There exists a small λ3 > 0 such that if λ ∈ (0, λ3), then Iλ is bounded from
below on Nλ.
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Proof. Let ω ∈ N+
λ . According to the definition of N+

λ , we get

λ

∫
RN

a(x)|ω(x, 0)|2dx < 0

and ∫
RN

b(x)|ω(x, 0)|2∗
αdx <

−λ

2∗α − 2

∫
RN

a(x)|ω(x, 0)|2dx.

As discussing for (2.25), for λ > 0 small enough we can obtain

‖ω‖X � 1. (2.28)

Hence, the low bound of Iλ restricted on N+
λ can be attained by Proposition 2.1 and (2.28),

that is,

Iλ(ω) = Iλ(ω) − 1
2
I ′λ(ω)ω

=
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx

� λ

4

∫
RN

a(x)|ω(x, 0)|2dx

� −λC‖ω‖2
X

� −λC. (2.29)

For any ω ∈ N−
λ , we have

Iλ(ω) = Iλ(ω) − 1
2
I ′λ(ω)ω

=
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx. (2.30)

If Iλ(ω) � 0 for all ω ∈ N−
λ , obviously the lower bound of Iλ restricted on N−

λ can be achieved.
Otherwise, if there exists ω ∈ N−

λ such that Iλ(ω) < 0, by (2.30) it follows that

λ

∫
RN

a(x)|ω(x, 0)|2dx < 0

and ∫
RN

b(x)|ω(x, 0)|2∗
αdx <

−2∗α
2(2∗α − 2)

λ

∫
RN

a(x)|ω(x, 0)|2dx.

As we did for (2.25), there is a small λ > 0 such that

‖ω‖X � 1. (2.31)

Using Proposition 2.1 and (2.31), we obtain

Iλ(ω) =
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx

� λ

4

∫
RN

a(x)|ω(x, 0)|2dx

� −λC‖ω‖2
X

� −λC.

Hence, Iλ is bounded from below on N−
λ according to Lemma 2.4. �
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In view of Lemmas 2.2 and 2.5, we set

α+
λ := inf

ω∈N+
λ

Iλ(ω) and α−
λ := inf

ω∈N−
λ

Iλ(ω).

Lemma 2.6. (i) If a(x) is negative or sign-changing, then α+
λ < 0 and α+

λ � α−
λ .

(ii) If a(x) � 0, then N+
λ = ∅ and α−

λ > 0.

Proof. (i) If a(x) is negative or sign-changing, it follows from Lemma 2.2 that N+
λ �= ∅. Let

ω ∈ N+
λ . Then we have

λ

∫
RN

a(x)|ω(x, 0)|2dx < (2 − 2∗α)
∫
RN

b(x)|ω(x, 0)|2∗
αdx < 0.

This, together with I ′λ(ω)ω = 0, leads to

Iλ(ω) = Iλ(ω) − 1
2
I ′λ(ω)ω

=
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx

<
2 − 2∗α

4

∫
RN

b(x)|ω(x, 0)|2∗
αdx +

2∗α − 2
22∗α

∫
RN

b(x)|ω(x, 0)|2∗
αdx

=
(

1
4
− 1

22∗α

)
(2 − 2∗α)

∫
RN

b(x)|ω(x, 0)|2∗
αdx (2.32)

< 0.

Thus, we obtain α+
λ < 0.

For any ω ∈ N−
λ , if Iλ(ω) � 0, then

Iλ(ω) � α+
λ . (2.33)

If Iλ(ω) < 0, then

Iλ(ω) = Iλ(ω) − 1
2
I ′λ(ω)ω

=
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx

< 0.
That is, ∫

RN

a(x)|ω(x, 0)|2dx < 0.

With the help of Lemma 2.2(ii), there exists a unique t+(ω) < t−(ω) = 1 such that t+(ω)ω ∈
N+

λ and
Iλ(ω) � Iλ(t+(ω)ω) � α+

λ . (2.34)
Consequently, as a result of (2.33) and (2.34), we obtain

α+
λ � α−

λ .

(ii) If a(x) � 0, then for any ω ∈ Xα(RN+1
+ )\{0} we have∫

RN

a(x)|ω(x, 0)|2dx � 0, (2.35)

which implies N+
λ = ∅. Moreover, it follows from Lemma 2.2(i) that N−

λ �= ∅.



POSITIVE SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER EQUATIONS 221

For any ω ∈ N−
λ , we get

Iλ(ω) = Iλ(ω) − 1
2
I ′λ(ω)ω

=
λ

4

∫
RN

a(x)|ω(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ω(x, 0)|2∗
αdx

� 0,
which implies

α−
λ � 0.

We now suppose by contradiction that α−
λ = 0. Let {ωn} ⊂ N−

λ be a sequence such that
Iλ(ωn) → 0, as n → ∞. Then we have

0 ← Iλ(ωn) = Iλ(ωn) − 1
2
I ′λ(ωn)ωn

=
λ

4

∫
RN

a(x)|ωn(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ωn(x, 0)|2∗
αdx

� 0, as n → ∞,

which together with (2.35) yields

λ

∫
RN

a(x)|ωn(x, 0)|2dx = on(1) and
∫
RN

b(x)|ωn(x, 0)|2∗
αdx = on(1). (2.36)

It follows from (2.36) and Proposition 2.1 that∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx

=
∫
RN

a(x)|ωn(x, 0)|2 ln
|ωn(x, 0)|
‖ωn‖X dx + ln ‖ωn‖X

∫
RN

a(x)|ωn(x, 0)|2dx

�
∫
RN

a(x)|ωn(x, 0)|2 ln
|ωn(x, 0)|
‖ωn‖X dx + C‖ωn‖2

X . (2.37)

Similar to (2.8) and (2.9), we can obtain∫
RN

a(x)|ωn(x, 0)|2 ln
|ωn(x, 0)|
‖ωn‖X dx � C‖ωn‖2

X .

Using this estimate together with (2.37) leads to∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx � C‖ωn‖2
X . (2.38)

Taking into account (2.4), (2.36), (2.38) and Proposition 2.1, for sufficiently small λ > 0 we
deduce that

0 = ‖ωn‖2
X − λ

∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx−
∫
RN

b(x)|ωn(x, 0)|2∗
αdx

= ‖ωn‖2
X − λ

∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx + on(1)

� ‖ωn‖2
X(1 − λC) + on(1)

� C‖ωn‖2
X + +on(1).
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That is,

‖ωn‖X = on(1). (2.39)

On the other hand, in view of ln t � t for t > 0, it follows from (2.3) and Proposition 2.1
that∫

RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx � C
(‖ωn‖2

X + |ωn(x, 0)|42
)
� C

(‖ωn‖2
X + ‖ωn‖4

X

)
. (2.40)

Using (2.4), (2.40) and Proposition 2.2, we get

‖ωn‖2
X = λ

∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx +
∫
RN

b(x)|ωn(x, 0)|2∗
αdx

� λC(‖ωn‖2
X + ‖ωn‖4

X) + C‖ωn‖2∗
α

X .

That is, ‖ωn‖2∗
α

X + ‖ωn‖4
X � (1 − λC)‖ωn‖2

X � C‖ωn‖2
X for small λ > 0 and some C > 0.

Hence, we have ‖ωn‖2
X � C for some C > 0 independent of n ∈ Z+. Apparently, this yields

a contradiction to (2.39). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Step 1. We will show that there exists Λ1 > 0 such that for each
λ ∈ (0,Λ1), Iλ has a minimizer ω+

λ in N+
λ such that Iλ(ω+

λ ) = α+
λ .

Let {ωn} be a minimizing sequence {ωn} ⊂ N+
λ , that is, limn→∞ Iλ(ωn) = α+

λ . We claim
that there is some C > 0 such that

‖ωn‖X � C (2.41)

for all n ∈ Z+. Note that {ωn} ⊂ N+
λ . Then∫
RN

a(x)|ωn(x, 0)|2dx < 0

and ∫
RN

b(x)|ωn(x, 0)|2∗
αdx <

−λ

2∗α − 2

∫
RN

a(x)|ωn(x, 0)|2dx.

Analogous to the derivation of (2.25), we can see that (2.41) holds for λ > 0 small enough.
Thus there exists a subsequence (still denoted by {ωn}) and ω+

λ ∈ Xα(RN+1
+ ) such that

ωn ⇀ ω+
λ in Xα(RN+1

+ ), as n → ∞. (2.42)

To prove that∫
RN

a(x)|ωn(x, 0)|2dx →
∫
RN

a(x)|ω+
λ (x, 0)|2dx, as n → ∞, (2.43)

we know that for any ε > 0, according to condition (H1), there exists an R > 0 such that
|a(x)| < ε for |x| � R. It follows from (2.41) and Proposition 2.1 that∣∣∣∣∣

∫
RN\BR

a(x)|ωn(x, 0)|2dx
∣∣∣∣∣ � ε‖ωn‖2

X � Cε (2.44)

and ∣∣∣∣∣
∫
RN\BR

a(x)|ω+
λ (x, 0)|2dx

∣∣∣∣∣ � ε‖ω+
λ ‖2

X � Cε, (2.45)
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where BR := {x ∈ R
N ; |x| < R}. Then, using Hölder’s inequality and Proposition 2.1 leads

to ∣∣∣∣∫
BR

a(x)|ωn(x, 0)|2dx−
∫
BR

a(x)|ω+
λ (x, 0)|2dx

∣∣∣∣ → 0, as n → ∞. (2.46)

From (2.44) to (2.46), we arrive at (2.43).
To prove that∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx →
∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx, as n → ∞, (2.47)

we know from (2.42) that ωn(x, 0) → ω+
λ (x, 0) for a.e. x ∈ R

N . So for sufficiently large n there
holds

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)| → a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|
for a.e. x ∈ R

N . Note that for any β, γ > 0, there exists a constant Cβ,γ > 0 such that

| ln t| � Cβ,γ

(
tβ + t−γ

)
, t > 0.

This gives∣∣∣∣∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx
∣∣∣∣ � C

∫
RN

|a(x)|[|ωn(x, 0)|2−δ + |ωn(x, 0)|2+δ
]
dx

for small δ > 0. By virtue of Proposition 2.1 and Lebesgue’s dominated convergence theorem,
we obtain (2.47) immediately.

Set Ψn = ωn − ω+
λ . It follows from Brezis–Lieb’s lemma [40] that

‖Ψn‖2
X = ‖ωn‖2

X − ‖ω+
λ ‖2

X + on(1) (2.48)

and ∫
RN

b(x)|Ψn(x, 0)|2∗
αdx =

∫
RN

b(x)|ωn(x, 0)|2∗
αdx−

∫
RN

b(x)|ω+
λ |2

∗
αdx + on(1). (2.49)

From (2.43) and (2.47)–(2.49) we deduce that

1
2
‖Ψn‖2

X − 1
2∗α

∫
RN

b(x)|Ψn(x, 0)|2∗
αdx = α+

λ − Iλ(ω+
λ ) + on(1). (2.50)

As we discussed for (2.47), there holds∫
RN

a(x)ωn(x, 0)ω+
λ (x, 0) ln |ωn(x, 0)|dx →

∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx, (2.51)

as n → ∞. Combining (2.42) and (2.51), we have

I ′λ(ω+
λ )ω+

λ = 0, that is, ω+
λ ∈ Nλ ∪ {0}.

Note that

(2∗α − 2)
∫
RN

b(x)|ω+
λ (x, 0)|2∗

αdx � lim inf
n→∞ (2∗α − 2)

∫
RN

b(x)|ωn(x, 0)|2∗
αdx.

It follows from (2.43) that

ω+
λ ∈ N+

λ . (2.52)

According to Proposition 2.1, from (2.42)–(2.43) and (2.47)–(2.51) we obtain

on(1) = I ′λ(ωn)Ψn = (I ′λ(ωn) − I ′λ(ω+
λ ))Ψn = ‖Ψn‖2

X −
∫
RN

b(x)|Ψn(x, 0)|2∗
αdx, (2.53)

as n → ∞.
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We suppose that

‖Ψn‖2
X → l and

∫
RN

b(x)|Ψn(x, 0)|2∗
αdx → l, as n → ∞

for some l ∈ [0,+∞).
If l = 0, we obtain the desired result immediately. If l > 0, we have l � Sl

2
2∗α by Proposi-

tion 2.2, and then

l � S
N
2α . (2.54)

It follows from (2.50) and (2.52)–(2.54) that

α+
λ = Iλ(ω+

λ ) +
l

2
− l

2∗α
� α+

λ +
α

N
l � α+

λ +
α

N
S

N
2α .

This is a contradiction. Hence, the only choice is l = 0, that is, ωn → ω+
λ in Xα(RN+1

+ ) as
n → ∞.

Step 2. We show that ω+
λ (x, 0) is a positive ground state solution of equation (1.1).

Since ω+
λ ∈ Xα(RN+1

+ ) is a local minimizer for Nλ. Lemma 2.3 tells us that ω+
λ is a non-

trivial solution of (2.2), and so ω+
λ (x, 0) is a non-trivial solution of equation (1.1). Note that

Iλ(|ω+
λ |) = α+

λ . So we assume ω+
λ (x, 0) � 0. By virtue of the maximum principle for fractional

elliptic equations [33], ω+
λ is positive. Consequently, ω+

λ (x, 0) is a positive ground state solution
of equation (1.1). �

Corollary 2.1. (i) Iλ(ω+
λ ) → 0, as λ → 0. (ii) ‖ω+

λ ‖X → 0, as λ → 0.

Proof. (i) From Lemma 2.6(i) and (2.29), we have

0 > Iλ(ω+
λ ) = α+

λ > −λC.

This implies Iλ(ω+
λ ) → 0, as λ → 0.

(ii) From (2.52), we have ∫
RN

a(x)|ω+
λ (x, 0)|2dx < 0

and ∫
RN

b(x)|ω+
λ (x, 0)|2∗

αdx <
−λ

2∗α − 2

∫
RN

a(x)|ω+
λ (x, 0)|2dx. (2.55)

Similar to the derivation of (2.25), for sufficiently small λ > 0 we have

‖ω+
λ ‖X � 1. (2.56)

It follows from (2.3) and Proposition 2.1 that∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx � C(‖ω+
λ ‖2

X + |ω+
λ (x, 0)|42)

� C(‖ω+
λ ‖2

X + ‖ω+
λ ‖4

X). (2.57)

From (2.55) to (2.57) and Proposition 2.1, we obtain

‖ω+
λ ‖2

X = λ

∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx +
∫
RN

b(x)|ω+
λ (x, 0)|2∗

αdx

� λ

∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx +
−λ

2∗α − 2

∫
RN

a(x)|ω+
λ (x, 0)|2dx

� λC(‖ω+
λ ‖2

X + ‖ω+
λ ‖4

X) + λ‖ω+
λ ‖2

X

� λC. �
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3. Proof of Theorem 1.2

In this section, we present some results on compactness and estimates, and then prove
Theorem 1.2. Throughout this section, we always suppose that conditions (H1)–(H3) hold.

Lemma 3.1. The following two statements are true.

(i) If a(x) is negative or sign-changing, then Iλ satisfies the (PS)c condition for c ∈
(−∞, α+

λ + α
N S

N
2α ).

(ii) If a(x) � 0, then Iλ satisfies the (PS)c condition for c ∈ (−∞, α
N S

N
2α ).

Proof. Let {ωn} ⊂ Xα(RN+1
+ ) be a (PS)c sequence for Iλ. We claim that there exists some

C > 0 such that
‖ωn‖X � C, n ∈ Z+. (3.1)

Suppose otherwise that ‖ωn‖X → ∞, as n → ∞. A straightforward calculation gives

2λ‖ωn‖X � 1 +
α

N
S

N
2α + λ‖ωn‖X

� Iλ(ωn) − 1
2
I ′λ(ωn)ωn

� λ

4

∫
RN

a(x)|ωn(x, 0)|2dx +
(

1
2
− 1

2∗α

)∫
RN

b(x)|ωn(x, 0)|2∗
αdx

� λ

4

∫
RN

a(x)|ωn(x, 0)|2dx.

For sufficiently large n, there holds∫
RN

a(x)|ωn(x, 0)|2dx � C‖ωn‖X (3.2)

for some C > 0.
It follows from Proposition 2.1 that

ln |ωn(x, 0)|22 = 2 ln |ωn(x, 0)|2 � 2|ωn(x, 0)|2 � C‖ωn‖X (3.3)

for some C > 0. Using (2.3), (3.2) and (3.3) yields∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx � C‖ωn‖2
X .

Thus, we have
1 +

α

N
S

N
2α + λ‖ωn‖X

� Iλ(ωn) − 1
2∗α

I ′λ(ωn)ωn

=
(

1
2
− 1

2∗α

)
‖ωn‖2

X − λ

(
1
2
− 1

2∗α

)∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx

+
λ

4

∫
RN

a(x)|ωn(x, 0)|2dx

�
(

1
2
− 1

2∗α

)
‖ωn‖2

X − λC‖ωn‖2
X

� C‖ωn‖2
X
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for sufficiently small λ > 0. This obviously contradicts our assumption that {‖ωn‖X} is
unbounded. Hence, (3.1) holds.

From (3.1), there exists a subsequence (still denoted by {ωn}) and ω0 ∈ Xα(RN+1
+ ) such

that

ωn ⇀ ω0 in Xα(RN+1
+ ), as n → ∞. (3.4)

Similar to the derivations of (2.43) and (2.47), as n → ∞ we have∫
RN

a(x)|ωn(x, 0)|2dx →
∫
RN

a(x)|ω0(x, 0)|2dx (3.5)

and ∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx →
∫
RN

a(x)|ω0(x, 0)|2 ln |ω0(x, 0)|dx. (3.6)

Set Ψn = ωn − ω0. It follows from Brezis–Lieb’s lemma [40] that

‖Ψn‖2
X = ‖ωn‖2

X − ‖ω0‖2
X + on(1) (3.7)

and ∫
RN

b(x)|Ψn(x, 0)|2∗
αdx =

∫
RN

b(x)|ωn(x, 0)|2∗
αdx−

∫
RN

b(x)|ω0|2∗
αdx + on(1). (3.8)

From (3.5) to (3.8) we deduce

1
2
‖Ψn‖2

X − 1
2∗α

∫
RN

b(x)|Ψn(x, 0)|2∗
αdx = c− Iλ(ω0) + on(1). (3.9)

Similar to the derivation of (2.47), as n → ∞ we have∫
RN

a(x)ωn(x, 0)ω0(x, 0) ln |ωn(x, 0)|dx →
∫
RN

a(x)|ω0(x, 0)|2 ln |ω0(x, 0)|dx, (3.10)

which together with (3.4) leads to I ′λ(ω0)ω0 = 0, that is, ω0 ∈ Nλ ∪ {0}.
By (3.4)–(3.10) and Proposition 2.1, as n → ∞ we obtain

on(1) = I ′λ(ωn)Ψn = (I ′λ(ωn) − I ′λ(ω0))Ψn = ‖Ψn‖2
X −

∫
RN

b(x)|Ψn(x, 0)|2∗
αdx. (3.11)

We may suppose that

‖Ψn‖2
X → l and

∫
RN

b(x)|Ψn(x, 0)|2∗
αdx → l

for some l ∈ [0,+∞).
If l = 0, we can obtain ωn → ω0 as n → ∞ immediately. If l > 0, we divide our discussions

into two cases.
(i) If a(x) is negative or sign-changing, it follows from Lemma 2.6(i) that α−

λ � α+
λ . From

Proposition 2.2, we have l � Sl
2

2∗α . In view of (3.9), (3.11) and ω0 ∈ Nλ ∪ {0}, we get

α

N
S

N
2α + α+

λ > c = Iλ(ω0) +
l

2
− l

2∗α
� α

N
l + α+

λ � α

N
S

N
2α + α+

λ .

This is a contradiction. Hence, l = 0, that is, ωn → ω0 in Xα(RN+1
+ ) as n → ∞.

(ii) If a(x) � 0, it follows from Lemma 2.6(ii) that N+
λ = ∅ and α−

λ > 0. From Proposition 2.2,

we get l � Sl
2

2∗α . In view of (3.9), (3.11) and ω0 ∈ N−
λ ∪ {0} we have

α

N
S

N
2α > c = Iλ(ω0) +

l

2
− l

2∗α
� α

N
l � α

N
S

N
2α ,

which yields another contradiction. Hence, l = 0, that is, ωn → ω0 in Xα(RN+1
+ ) as n → ∞. �
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Let η(x, y) ∈ C∞(RN × R) such that 0 � η � 1, |∇η| � C and

η(x, y) :=

{
1, (x, y) ∈ B+

δ0
2

:= {(x, y) ∈ R
N+1
+ ;

√|x1|2 + |x2|2 + · · · + |xN |2 + |y|2 < r0
2 , y > 0},

0, (x, y) �∈ B+
δ0

:= {(x, y) ∈ R
N+1
+ ;

√|x1|2 + |x2|2 + · · · + |xN |2 + |y|2 < r0, y > 0},
where δ0 < r0 and r0 is defined in Remark 1.1.

Set

vε,z = η(x− z, y)ωε(x− z, y), z ∈ M. (3.12)

Following [25], we deduce that∫
R

N+1
+

y1−2α|∇vε,z|2dxdy =
∫
R

N+1
+

y1−2α|∇ωε|2dxdy + O(εN−2α), (3.13)

∫
RN

|vε,z(x, 0)|qdx =

⎧⎨⎩O(ε
2N−(N−2α)q

2 ), if q > N
N−2α ,

O(ε
(N−2α)q

2 ), if q � N
N−2α ,

(3.14)

and ∫
RN

|vε,z(x, 0)|2dx =

⎧⎪⎨⎪⎩
O(ε2α), if N > 4α,
O(ε2α ln(1

ε )), if N = 4α,
O(εN−2α), if N < 4α.

(3.15)

Lemma 3.2.

∫
RN b(x)|vε,z(x, 0)|2∗

αdx =
∫
RN |ωε(x, 0)|2∗

αdx + O(εN ).

Proof. By Remark 1.1 and the definition of vε,z, we have

0 � 1
εN

[∫
RN

|ωε(x, 0)|2∗
αdx−

∫
RN

b(x)|vε,z(x, 0)|2∗
αdx

]

= C

∫
RN\B δ0

2

b(z) − b(x + z)η2∗
α(x, 0)

(ε2 + |x|2)N
dx + C

∫
B δ0

2

b(z) − b(x + z)

(ε2 + |x|2)N
dx

� C

∫
RN\B δ0

2

1
|x|2N dx + C

∫
B δ0

2

|x|ρ
(ε2 + |x|2)N

dx

� C

∫ +∞

δ0
2

r−(N+1)dr + C

∫ δ0
2

0

rρ−N−1dr

� C

for z ∈ M . �

Set

I∞(ω) :=
1
2
‖ω‖2

X − 1
2∗α

∫
RN

b(x)|ω(x, 0)|2∗
αdx

and

I∞(ω) :=
1
2
‖ω‖2

X − 1
2∗α

∫
RN

|ω(x, 0)|2∗
αdx.

Define the Nehari manifold associated with I∞ and I∞ by

N∞(ω) := {ω ∈ Xα(RN+1
+ )\{0}; (I∞)′(ω)ω = 0}
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and

N∞(ω) := {ω ∈ Xα(RN+1
+ )\{0}; (I∞)′(ω)ω = 0}.

Lemma 3.3. infω∈N∞ I∞(ω) = infω∈N∞ I∞(ω) = α
N S

N
2α .

Proof. Since

max
t�0

(
a

2
t2 − b

2∗α
t2

∗
α

)
=

α

N

(
a2

b
2

2∗α

) 2∗α
2∗α−2

(3.16)

for any a, b > 0. It follows from Proposition 2.2 that

inf
ω∈N∞

I∞(ω) = inf
ω∈Xα(RN+1

+ )\{0}
sup
t�0

I∞(tω)

= inf
ω∈Xα(RN+1

+ )\{0}
α

N

⎛⎜⎜⎜⎝ ‖ω‖2
X(∫

RN

|ω(x, 0)|2∗
αdx

) 2
2∗α

⎞⎟⎟⎟⎠
N
2α

� α

N
S

N
2α . (3.17)

On the other hand, from (3.13), (3.15) and Lemma 3.2 it follows that

sup
t�0

I∞(tvε,z) =
α

N

⎛⎜⎜⎜⎝ ‖vε,z‖2
Xα(∫

RN

b(x)|vε,z(x, 0)|2∗
αdx

) 2
2∗α

⎞⎟⎟⎟⎠
N
2α

=
α

N
S

N
2α + oε(1), as ε → 0.

That is,
inf

ω∈N∞
I∞(ω) � α

N
S

N
2α . (3.18)

Note that b(x) � 1. From (3.17) and (3.18) we obtain
α

N
S

N
2α � inf

ω∈N∞
I∞(ω)

= inf
ω∈Xα(RN+1

+ )\{0}
sup
t�0

I∞(tω)

� inf
ω∈Xα(RN+1

+ )\{0}
sup
t�0

I∞(tω)

= inf
ω∈N∞

I∞(ω)

� α

N
S

N
2α . �

Lemma 3.4. The following two statements are true.

(i) If a(x) � 0, then there exists a small ε0 > 0 such that for ε ∈ (0, ε0) we have

max
t�0

Iλ(tvε,z) <
α

N
S

N
2α − σ(ε0)
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uniformly with respect to z ∈ M , where σ(ε0) is a small positive constant. Furthermore, there
exists some t−ε,z > 0 such that

t−ε,zvε,z ∈ N−
λ .

(ii) If a(x) is sign-changing, then there exists a small ε0 > 0 such that for ε ∈ (0, ε0) we
have

max
t�0

Iλ(ω+
λ + tvε,z) < α+

λ +
α

N
S

N
2α − σ(ε0)

uniformly with respect to z ∈ M , where σ(ε0) is a small positive constant.

Proof. (i) Since
lim
t→0+

Iλ(tvε,z) = 0 and lim
t→+∞ Iλ(tvε,z) = −∞

for sufficiently small ε > 0 and z ∈ M , there exist small t1 > 0 and large t2 > 0 such that

Iλ(tvε,z) <
α

N
S

N
2α , t ∈ (0, t1] ∪ [t2,+∞). (3.19)

For t ∈ [t1, t2], from (3.12), (3.13) and Lemma 3.2 we obtain

Iλ(tvε,z) � max
t�0

(
t2

2
‖vε,z‖2

X − t2
∗
α

2∗α

∫
RN

b(x)|vε,z(x, 0)|2∗
αdx

)

+ λC

∫
RN

a(x)|vε,z(x, 0)|2dx− λ
t21
2

∫
RN

a(x)|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx

� α

N

⎛⎜⎜⎜⎝ ‖vε,z‖2
X(∫

RN

b(x)|vε,z(x, 0)|2∗
αdx

) 2
2∗α

⎞⎟⎟⎟⎠
N
2α

+ λC

∫
RN

|vε,z(x, 0)|2dx

− λC

∫
RN

|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx

� α

N
S

N
2α + O(εN−2α) + λC

∫
RN

|vε,z(x, 0)|2dx

− λC

∫
RN

|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx, (3.20)

and ∫
RN

|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx

=
∫
Bε(z)

|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx +
∫
Br0 (z)\Bε(z)

|vε,z(x, 0)|2 ln |vε,z(x, 0)|dx

� C

∫
Bε

ε−(N−2α) ln ε−
N−2α

2 dx + CεN−2α

∫
{ε<|x|<r0}

1

(|x|2)N−2α
ln

Cε
N−2α

2

|x|N−2α
dx

� Cε2α ln ε−1 + CεN−2α

∫
{ε<|x|<r0}

1

(|x|2)N−2α
lnCεdx

= Cε2α ln ε−1 + CεN−2α lnCε. (3.21)
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Combining (3.15), (3.20) and (3.21) leads to

Iλ(tvε,z) �
α

N
S

N
2α + O(εN−2α) + O(ε2α) − Cε2α ln ε−1 + CεN−2α lnCε <

α

N
S

N
2α (3.22)

for small ε > 0 and z ∈ M , where we have used the assumption N > 4α.
It follows from (3.19) and (3.22) that there exists ε0 > 0 small enough such that for ε ∈ (0, ε0)

there holds

max
t�0

Iλ(tvε,z) <
α

N
S

N
2α − σ(ε0)

uniformly with respect to z ∈ M , where σ(ε0) is a small positive constant. Meanwhile, it follows
from Lemma 2.2 (i) that there exists t−ε,z > 0 such that

t−ε,zvε,z ∈ N−
λ .

(ii) Since

lim
t→0+

Iλ(ω+
λ + tvε,z) = α+

λ and lim
t→+∞ Iλ(ω+

λ + tvε,z) = −∞

for small ε > 0 and z ∈ M , there exist small t1 > 0 and large t2 > 0 such that

Iλ(ω+
λ + tvε,z) < α+

λ +
α

N
S

N
2α , t ∈ (0, t1] ∪ [t2,+∞). (3.23)

For t ∈ [t1, t2], taking into account I ′λ(ω+
λ )vε,z = 0 and Iλ(ω+

λ ) = α+
λ we derive that

Iλ(ω+
λ + tvε,z)

=
1
2
‖ω+

λ ‖2
X +

t2

2
‖vε,z‖2

X + t

∫
R

N+1
+

y1−2α∇ω+
λ ∇vε,zdxdy + t

∫
RN

ω+
λ (x, 0)vε,z(x, 0)dx

− λ

2

∫
RN

a(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2 ln |ω+

λ (x, 0) + tvε,z(x, 0)|dx

+
λ

4

∫
RN

a(x)|ω+
λ (x, 0)|2dx +

λt2

4

∫
RN

a(x)|vε,z(x, 0)|2dx +
λt

2

∫
RN

a(x)ω+
λ vε,z(x, 0)dx

− 1
2∗α

∫
RN

b(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2∗

αdx

= Iλ(ω+
λ ) + Iλ(tvε,z) − λ

2

∫
RN

a(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2 ln |ω+

λ (x, 0) + tvε,z(x, 0)|dx

+
λ

2

∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx +
λ

2

∫
RN

a(x)|tvε,z(x, 0)|2 ln |tvε,z(x, 0)|dx

+ λt

∫
RN

a(x)|ω+
λ (x, 0)|vε,z(x, 0) ln |ω+

λ (x, 0)|dx +
λt

2

∫
RN

a(x)ω+
λ (x, 0)vε,z(x, 0)dx

− 1
2∗α

∫
RN

b(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2∗

αdx

+
1
2∗α

∫
RN

b(x)[|ω+
λ (x, 0)|2∗

α + |tvε,z(x, 0)|2∗
α + 2∗α|ω+

λ (x, 0)|2∗
α−2ω+

λ (x, 0)tvε,z(x, 0)]dx

= α+
λ + Iλ(tvε,z) − i(t) − j(t), (3.24)
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where

i(t) : =
λ

2

∫
RN

a(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2 ln |ω+

λ (x, 0) + tvε,z(x, 0)|dx

− λ

2

∫
RN

a(x)|ω+
λ (x, 0)|2 ln |ω+

λ (x, 0)|dx− λ

2

∫
RN

a(x)|tvε,z(x, 0)|2 ln |tvε,z(x, 0)|dx

− λ

∫
RN

a(x)|ω+
λ (x, 0)|tvε,z(x, 0) ln |ω+

λ (x, 0)|dx− λ

2

∫
RN

a(x)ω+
λ (x, 0)tvε,z(x, 0)dx

and

j(t) : =
1
2∗α

∫
RN

b(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2∗

αdx (3.25)

− 1
2∗α

∫
RN

b(x)[|ω+
λ (x, 0)|2∗

α + |tvε,z(x, 0)|2∗
α + 2∗α|ω+

λ (x, 0)|2∗
α−2ω+

λ (x, 0)tvε,z(x, 0)]dx.

Let us estimate i(t) and j(t), respectively. To estimate i(t), we define
f(t) := ln(1 + t) + 2t ln(1 + t) − t, t � 0.

Note that

f(0) = 0 and f ′(t) =
t

1 + t
+ 2 ln(1 + t) � 0, t � 0.

So we have
f(t) � 0, t � 0,

which implies that

i(t) =
λ

2

∫
RN

a(x)|ω+
λ (x, 0)|2 ln

(
1 +

tvε,z(x, 0)
ω+
λ (x, 0)

)
dx

+ λ

∫
RN

a(x)|ω+
λ (x, 0)|2 tvε,z(x, 0)

ω+
λ (x, 0)

ln
(

1 +
tvε,z(x, 0)
ω+
λ (x, 0)

)
dx

− λ

2

∫
RN

a(x)|ω+
λ (x, 0)|2 tvε,z(x, 0)

ω+
λ (x, 0)

dx

+
λ

2

∫
RN

a(x)|tvε,z(x, 0)|2 ln
(

1 +
ω+
λ (x, 0)

tvε,z(x, 0)

)
dx

� λ

2

∫
RN

a(x)|tvε,z(x, 0)|2 ln
(

1 +
ω+
λ (x, 0)

tvε,z(x, 0)

)
dx

� 0. (3.26)
To estimate j(t), we follow [6, formulas (17) and (21)] and (3.14) to derive that∫

RN

b(x)|ω+
λ (x, 0) + tvε,z(x, 0)|2∗

αdx

=
∫
RN

b(x)|ω+
λ (x, 0)|2∗

αdx + 2∗αt
∫
RN

b(x)(ω+
λ (x, 0))2

∗
α−1vε,z(x, 0)dx

+ t2
∗
α

∫
RN

b(x)|vε,z(x, 0)|2∗
αdx

+ 2∗αt
2∗
α−1

∫
RN

b(x)(vε,z(x, 0))2
∗
α−1ω+

λ (x, 0)dx + o
(
ε

N−2α
2

)
,
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Using this estimate together with (3.14) and (3.25) leads to

j(t) � |t1|2∗
α−1

∫
RN

b(x)ω+
λ (x, 0)|vε,z(x, 0)|2∗

α−1dx + o(ε
N−2α

2 )

� C

∫
RN

ω+
λ (x, 0)|vε,z(x, 0)|2∗

α−1dx + o(ε
N−2α

2 )

� Cε
N−2α

2 + o(ε
N−2α

2 )

� Cε
N−2α

2 (3.27)

for small ε > 0.
Similar to the derivations of (3.22), we can obtain

Iλ(tvε,z) <
α

N
S

N
2α (3.28)

for z ∈ M and small ε > 0.
For small ε > 0, substituting (3.26)–(3.28) into (3.24) yields

Iλ(ω+
λ + tvε,z) < α+

λ +
α

N
S

N
2α − Cε

N−2α
2 , (3.29)

where z ∈ M and t ∈ [t1, t2].
Consequently, from (3.23) and (3.29) it follows that there exists small ε0 > 0 such that for

ε ∈ (0, ε0) there holds

max
t�0

Iλ(ω+
λ + tvε,z) < α+

λ +
α

N
S

N
2α − σ(ε0)

uniformly with respect to z ∈ M , where σ(ε0) is a small positive constant. �

Lemma 3.5. Assume that a(x) is sign-changing. Then for any z ∈ M there exists t−ε,z > 0
such that

ω+
λ + t−ε,zvε,z ∈ N−

λ .

Proof. Define

U1 :=
{
ω ∈ Xα(RN+1

+ )\{0}; 1
‖ω‖X t−

(
ω

‖ω‖X

)
> 1

}
∪ {0}

and

U2 :=
{
ω ∈ Xα(RN+1

+ )\{0}; 1
‖ω‖X t−

(
ω

‖ω‖X

)
< 1

}
.

Then N−
λ decomposes Xα(RN+1

+ ) into two disjoint connected components U1 and U2.
Since ω+

λ ∈ N+
λ , we have 1 < t−(ω+

λ ) and ω+
λ ∈ U1.

We claim that

0 < t−
(

ω+
λ + tvε,z

‖ω+
λ + tvε,z‖X

)
< C

for some C > 0 and all t � 0. Suppose otherwise that there exists a sequence {tn} such that
tn → ∞ and

t−
(

ω+
λ + tnvε,z

‖ω+
λ + tnvε,z‖X

)
→ ∞, as n → ∞.
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Set

υn =
ω+
λ + tnvε,z

‖ω+
λ + tnvε,z‖X

.

Recalling t−(υn)υn ∈ N−
λ ⊂ Nλ, by Lebesgue’s dominated convergence theorem we have∫

RN

b(x)|υn(x, 0)|2∗
αdx

=
1

‖ω+
λ + tnvε,z‖2∗

α

X

∫
RN

b(x)|ω+
λ (x, 0) + tnvε,z(x, 0)|2∗

αdx

=
1

‖ω+
λ

tn
+ vε,z‖2∗

α

X

∫
RN

b(x)
∣∣∣∣ω+

λ (x, 0)
tn

+ vε,z(x, 0)
∣∣∣∣2

∗
α

dx

→ 1

‖vε,z‖2∗
α

X

∫
RN

b(x)|vε,z(x, 0)|2∗
αdx, as n → ∞.

Then

Iλ(t−(υn)υn) → −∞, as n → ∞.

This contradicts the fact that Iλ is bounded below on Nλ.
Set

tλ =
‖ω+

λ ‖X +
√

C
2

+ ‖ω+
λ ‖2

X

‖vε,z‖X + 1.

By a direct calculation we obtain

‖ω+
λ + tλvε,z‖2

X

= ‖ω+
λ ‖2

X + t2λ‖vε,z‖2
X + 2tλ

(∫
R

N+1
+

y1−2α∇ω+
λ ∇vε,zdxdy +

∫
RN

ω+
λ (x, 0)vε,z(x, 0)dx

)

� ‖ω+
λ ‖2

X + t2λ‖vε,z‖2
X − 2tλ‖vε,z‖X‖ω+

λ ‖X

>

[
t−
(

ω+
λ + tλvε,z

‖ω+
λ + tλvε,z‖X

)]2

.

That is, ω+
λ + tλvε,z ∈ U2. Thus, there exists 0 < t−ε,z < tλ such that ω+

λ + t−ε,zvε,z ∈ N−
λ . �

Proof of Theorem 1.2. Let ωn ⊂ N−
λ be a sequence such that Iλ(ωn) → α−

λ as n → ∞.
It follows from the Ekeland’s variational principle [40] that there exists a sequence {ω̃n} ⊂
Xα(RN+1

+ ) such that

ω̃n − ωn → 0 in Xα(RN+1
+ ), I ′λ(ω̃n) → 0, Iλ(ω̃n) → α−

λ , as n → ∞.

According to Lemma 3.4(i), we have

α−
λ <

α

N
S

N
2α . (3.30)

It follows from (3.30) and Lemma 3.1(ii) that there exists ω−
λ ∈ Xα(RN+1

+ ) such that ω̃n → ω−
λ

as n → ∞. That is, ω−
λ ∈ Nλ and Iλ(ω−

λ ) = α−
λ .
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With the help of Lemmas 2.4 and 2.6(ii), we find N+
λ = N0

λ = ∅. Using Lemma 2.3 indicates
that ω−

λ is a non-trivial ground state solution of system (2.2), so ω−
λ (x, 0) is a non-trivial ground

state solution of equation (1.1).
Note that Iλ(|ω−

λ |) = α−
λ . We suppose ω−

λ � 0. By virtue of the maximum principle for the
fractional elliptic equations [33], we obtain that ω−

λ (x, 0) is a positive ground state solution of
equation (1.1). �

Remark 3.1. If a(x) is sign-changing, by using Lemmas 2.2(ii), 3.1(i), 3.4(ii) and 3.5, and
taking closely analogous arguments to the proof of Theorem 1.2, we can also obtain that there
exists ω̃−

λ ∈ N−
λ such that ω̃−

λ (x, 0) is a positive solution of equation (1.1) and Iλ(ω̃−
λ ) = α−

λ .

4. Multiple positive solutions

In this section, we apply the category theory to study multiple positive solutions of equation
(1.1) and prove Theorems 1.3 and 1.4. Throughout this section, we always suppose that
conditions (H1)–(H3) hold.

Proposition 4.1. [12]. Let R be a C1,1 complete Riemannian manifold (modeled on a
Hilbert space) and assume F ∈ C1(R,R) bounded from below. Let −∞ < infR F < a < b <
+∞. Suppose that F satisfies the (PS)-condition on the sublevel {u ∈ R;F (u) � b} and a is
not a critical level for F . Then we have

�{u ∈ F a; ∇F (u) = 0} � catFa(F a),

where F a ≡ {u ∈ R;F (u) � a}.

Proposition 4.2. [12]. Suppose that Q, Ω+ and Ω− are closed sets with Ω− ⊂ Ω+. Let φ :
Q → Ω+ and ϕ : Ω− → Q be two continuous maps such that φ ◦ ϕ is homotopically equivalent
to the embedding j : Ω− → Ω+. Then catQ(Q) � catΩ+(Ω−).

Set

Ẋα(RN+1
+ ) :=

{
ω(x, y) ∈ C∞

0 (RN+1
+ );

∫
R

N+1
+

y1−2α|∇ω|2dxdy < ∞
}

equipped with the norm:

‖ω‖Ẋ =

(∫
R

N+1
+

y1−2α|∇ω|2dxdy
) 1

2

.

Lemma 4.1. For any ω ∈ Xα(RN+1
+ ), given σ > 0 and x0 ∈ R

N , we define the following
scaled function

ρ(ω) = ωσ : (x, y) �→ σ
N−α

2 ω(σ(x− x0), σy).

Then this scaling operation ρ keeps norms ‖ωσ‖Ẋα and |ωσ(x, 0)|2∗
α

invariant with respect to
σ, and determined by the ‘center’ or ‘concentration’ point x0 and the ‘modulus’ σ.

Proof. We just need to show that ‖ωσ‖Ẋα = ‖ω‖Ẋα and |ωσ(x, 0)|2∗
α

= |ω(x, 0)|2∗
α
. Let z =

σ(x− x0) and t = σy. We have dz = σNdx and dt = σdy. Then∫
R

N+1
+

y1−2α|∇ωσ|2dxdy =
∫
R

N+1
+

t1−2α|∇ω|2dzdt.

Similarly, we can obtain |ωσ(x, 0)|2∗
α

= |ω(x, 0)|2∗
α
. �
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Applying Proposition 2.2 and Lemma 4.1, and following [3, Theorem 2.5], we can obtain the
following result on global compactness immediately.

Lemma 4.2. Let {ωn} ⊂ Xα(RN+1
+ ) ⊂ Ẋα(RN+1

+ ) be a (PS) sequence for I∞. Then there
exist a number k ∈ Z+, and k sequences of points {xi

n} ⊂ R
N (1 � i � k) and k + 1 sequences

of functions {ωj
n} ⊂ Ẋα(RN+1

+ ) (0 � j � k) such that for a sequence, still denoted by {ωn}, we
have

ωn(x, y) = ω0
n(x, y) + Σk

i=1

1

(σi
n)

N−α
2

ωi
n

(
x− xi

n

σi
n

,
y

σi
n

)
and

ωj
n → ωj in Ẋα(RN+1

+ ), 0 � j � k,

as n → ∞, where ω0 is a solution of{
div(y1−2α∇ω) = 0, in R

N+1
+ ,

−∂ω
∂ν = −ω + |ω|2∗

α−2ω, on R
N × {0},

ωj (1 � j � k) are solutions of{
div(y1−2α∇ω) = 0, in R

N+1
+ ,

−∂ω
∂ν = |ω|2∗

α−2ω, on R
N × {0},

and

• if xi
n → xi, as n → ∞, then either σi

n → +∞ or σi
n → 0;

• if |xn| → +∞, as n → ∞, then each of following three cases⎧⎪⎨⎪⎩
σi
n → +∞,

σi
n → 0,

σi
n → σi, 0 < σi < +∞

can occur.

Moreover, we have

‖ωn‖2
Ẋα → Σk

j=0‖ωj‖2
Ẋα

and

I∞(ωn) → I∞(ω0) + Σk
j=1I

∞(ωj)

as n → ∞, where I∞(ωj) = 1
2‖ωj‖2

Ẋα − 1
2∗
α

∫
RN |ωj(x, 0)|2∗

αdx, 1 � j � k.

The following corollary can be obtained from Proposition 2.2 and Lemma 4.2 directly.

Corollary 4.1. Let {ωn} ⊂ Xα(RN+1
+ ) be a non-negative function sequence with

|ωn(x, 0)|2∗
α

= 1 and ‖ωn‖2
X → S. Then there exists a sequence (xn, εn) ∈ R

N × R
+ such that

ωn(x, y) :=
1

S
N−2α

4α

Eα(uεn(x− xn)) + o(1)

in Ẋα(RN+1
+ ), where uε is defined in Proposition 2.2 and Eα(·) is the α-harmonic extension

given by Definition 2.1. Moreover, if xn → x, then εn → 0 or it is unbounded.
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Define the continuous map Φ : Xα(RN+1
+ )\G → R

N by

Φ(ω) :=

∫
RN

x|ω(x, 0) − ω+
λ (x, 0)|2∗

αdx∫
RN

|ω(x, 0) − ω+
λ (x, 0)|2∗

αdx

,

where G = {u ∈ Xα(RN+1
+ );

∫
RN |ω(x, 0) − ω+

λ (x, 0)|2∗
αdx = 0}, and define another map Φ̂ :

Xα(RN+1
+ )\{0} → R

N by

Φ̂(ω) :=

∫
RN

x|ω(x, 0)|2∗
αdx∫

RN

|ω(x, 0)|2∗
αdx

.

Lemma 4.3. (i) For each 0 < δ < r0, there exist λδ, δ0 > 0 such that if ω ∈ N∞ with

I∞(ω) < α
N S

N
2α + δ0 and λ ∈ (0, λδ), then Φ(ω) ∈ Mδ.

(ii) For each 0 < δ < r0, there exists δ0 > 0 such that if ω ∈ N∞ with I∞(ω) < α
N S

N
2α + δ0,

then Φ̂(ω) ∈ Mδ.

Proof. (i) Suppose on the contrary that there exists a sequence {ωn} ⊂ N∞ such that
I∞(ωn) < α

N S
N
2α + on(1), λ → 0+, and

Φ(ωn) �∈ Mδ for all n ∈ Z+. (4.1)

Since
α

N
S

N
2α + 1>I∞(ωn) − 1

2∗α
I ′∞(ωn)ωn

=
(

1
2
− 1

2∗α

)
‖ωn‖2

X ,

we obtain that {ωn} is bounded in Xα(RN+1
+ ).

From (3.16) and Lemma 3.3, there is a sequence {tn} ⊂ R
+:

tn :=

⎛⎜⎜⎝ ‖ωn‖2
X∫

RN

|ωn(x, 0)|2∗
αdx

⎞⎟⎟⎠
1

2∗α−2

such that {tnωn} ∈ N∞ and α
N S

N
2α � I∞(tnωn) � I∞(tnωn) � I∞(ωn) = α

N S
N
2α + on(1).

Thus, we have tn = 1 + on(1) and

lim
n→∞ I∞(ωn) = lim

n→∞
α

N
‖ωn‖2

X

= lim
n→∞

α

N

∫
RN

b(x)|ωn(x, 0)|2∗
αdx

=
α

N
S

N
2α + on(1). (4.2)

Set

Un =
ωn(∫

RN

|ωn(x, 0)|2∗
αdx

) 1
2∗α

.
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Then
∫
RN |Un(x, 0)|2∗

αdx = 1. It follows from (4.2) that limn→∞ ‖Un‖2
X = S. According to

Corollary 4.1, there exists a sequence {(xn, εn)} ⊂ R
N × R

+ such that

Un(x, y) :=
1

S
N−2α

4α

Eα(uεn(x− xn)) + on(1). (4.3)

Moreover, if {xn} → x, then εn → 0 or it is unbounded.
Case 1. Suppose that {xn} → ∞ as n → ∞. Without loss of generality, we assume that

b(xn) → b∞ as n → ∞, where b∞ is defined in Remark 1.2. From (4.2) and (4.3) we deduce
that

1 =

∫
RN

b(x)|ωn(x, 0)|2∗
αdx∫

RN

|ωn(x, 0)|2∗
αdx

+ on(1)

=
∫
RN

b(x)|Un(x, 0)|2∗
αdx + on(1)

= S− N
2α

∫
RN

b(x + xn)|uεn(x)|2∗
αdx + on(1)

� b∞.

This contradicts the fact of b∞ < 1.
Case 2. Suppose that {xn} → x as n → ∞. Using Corollary 4.1, we have εn → 0 as n → ∞.

It follows from (4.2) and (4.3) that

1 =

∫
RN

b(x)|ωn(x, 0)|2∗
αdx∫

RN

|ωn(x, 0)|2∗
αdx

+ on(1)

=
∫
RN

b(x)|Un(x, 0)|2∗
αdx + on(1)

= S− N
2α

∫
RN

b(
√
εnx + xn)|u1(x)|2∗

αdx + on(1)

= b(x), (4.4)
where u1(x) = uε(x) when ε = 1. In view of (4.4) and x ∈ M , we have

Φ(ωn) =

∫
RN

x|ωn(x, 0) − ω+
λ (x, 0)|2∗

αdx∫
RN

|ωn(x, 0) − ω+
λ (x, 0)|2∗

αdx

=

∫
RN

x|ωn(x, 0)|2∗
αdx∫

RN

|ωn(x, 0)|2∗
αdx

+ oλ(1), as λ → 0

=

∫
RN

(xn +
√
εnx)|u1(x)|2∗

αdx∫
RN

|u1(x)|2∗
αdx

+ oλ(1)

→ x ∈ M, as n → ∞.
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This yields a contradiction with (4.1). That is, part (i) holds.
Processing in an analogous manner, we can arrive at part (ii), so we omit it. �

Lemma 4.4. (i) There exists Λδ > 0 small enough such that if λ ∈ (0,Λδ) and ω ∈ N−
λ with

Iλ(ω) < α
N S

N
2α + δ0

2 (δ0 is given in Lemma 4.3(i)), then Φ(ω) ∈ Mδ.

(ii) There exists Λδ > 0 small enough such that if λ ∈ (0,Λδ) and ω ∈ N−
λ with Iλ(ω) <

α
N S

N
2α + δ0

2 (δ0 is given in Lemma 4.3(ii)), then Φ̂(ω) ∈ Mδ.

Proof. We only prove part (i). The proof of part (ii) is closely similar.
For any ω ∈ N−

λ with Iλ(ω) < α
N S

N
2α + δ0

2 , there is a unique number:

t∞(ω) =

⎛⎜⎜⎝ ‖ω‖2
X∫

RN

b(x)|ω(x, 0)|2∗
αdx

⎞⎟⎟⎠
N−2α

4α

such that t∞(ω)ω ∈ N∞. We now claim that there are some C1, C2 > 0 independent of ω such
that

C1 � t∞(ω) � C2. (4.5)

In view of Iλ(ω) < α
N S

N
2α + δ0

2 and I ′λ(ω)ω = 0, as we discussed for (3.1), there holds

‖ω‖X � C, (4.6)

where C is independent of ω.
On the other hand, it follows from (2.3) and Proposition 2.1 that∫

RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx � C(‖ω‖2
X + |ω(x, 0)|42) � C(‖ω‖2

X + ‖ω‖4
X). (4.7)

From (2.4), (4.7) and Proposition 2.1, we deduce that

‖ω‖2
X = λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx +
∫
RN

b(x)|ωn(x, 0)|2∗
αdx

� λC(‖ω‖2
X + ‖ω‖4

X) + C‖ω‖2∗
α

X .

That is,

‖ω‖2∗
α

X + ‖ω‖4
X � (1 − λC)‖ω‖2

X � C‖ω‖2
X

for small λ > 0 and some C > 0. Hence, we have

‖ω‖2
X � C3 (4.8)

for some C3 > 0 independent of ω.
Taking into account Proposition 2.2 with (2.4) and (4.6)–(4.8), we have∫

RN

b(x)|ω(x, 0)|2∗
αdx � C‖ω‖2∗

α

X � C4 (4.9)

and ∫
RN

b(x)|ω(x, 0)|2∗
αdx = ‖ω‖2

X − λ

∫
RN

a(x)|ω(x, 0)|2 ln |ω(x, 0)|dx

� ‖ω‖2
X − λC(‖ω‖2

X + ‖ω‖4
X)
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� ‖ω‖2
X(1 − λC)

� C5 (4.10)

for small λ > 0 and some positive constants C4, C5 > 0. Clearly, by combining (4.6) and (4.8)–
(4.10), we see that (4.5) holds.

In view of (4.5)–(4.7) and Proposition 2.1, we obtain

I∞(t∞(ω)ω) = Iλ(t∞(ω)ω) +
λ

2

∫
RN

a(x)|t∞(ω)ω(x, 0)|2 ln |t∞(ω)ω(x, 0)|dx

− λ

4

∫
RN

a(x)|t∞(ω)ω(x, 0)|2dx

� max
t�0

Iλ(tω) + λC

� α

N
S

N
2α +

δ0
2

+ λC

<
α

N
S

N
2α + δ0

for small λ > 0. �

Set

cλ :=

{
α
N S

N
2α − σ(ε0), if a(x) � 0,

α+
λ + α

N S
N
2α − σ(ε0), if a(x) is sign-changing,

and

N−
λ (cλ) := {ω ∈ N−

λ ; Iλ(ω) � cλ},
where σ(ε0) and σ(ε0) are given in Lemma 3.4.

Denote by IN−
λ

the restriction of Iλ on N−
λ . Then we have

Lemma 4.5. IN−
λ

satisfies the (PS)-condition on N−
λ (cλ).

Proof. Let {ωn} ⊂ N−
λ (cλ) be a (PS) sequence. Then there exists a sequence {θn} ⊂ R such

that

I ′λ(ωn) = θnΨ′
λ(ωn) + on(1),

where Ψλ is defined in (2.22). Since ωn ∈ N−
λ , we have Ψ′

λ(ωn)ωn < 0 and there exists a
subsequence (still denoted by {ωn}) such that Ψ′

λ(ωn)ωn → l � 0, as n → ∞.
If l = 0, then

‖ωn‖2
X − λ

∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx−
∫
RN

b(x)|ωn(x, 0)|2∗
αdx = on(1)

and

‖ωn‖2
X − λ

∫
RN

a(x)|ωn(x, 0)|2 ln |ωn(x, 0)|dx− λ

∫
RN

a(x)|ωn(x, 0)|2dx

− (2∗α − 1)
∫
RN

b(x)|ωn(x, 0)|2∗
αdx = on(1).
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The rest is similar to the proof of Lemma 2.4, we can obtain a contradiction. Hence, l < 0. Due
to I ′λ(ωn)ωn = 0, we conclude that {θn} → 0 as n → ∞. Consequently, we obtain I ′λ(ωn) → 0
as n → ∞. By virtue of Lemma 3.1, we arrive at the desired result. �

Proof of Theorem 1.3. Let δ,Λδ > 0 be the same as given in Lemmas 4.3(i) and 4.4(i),
respectively. First, we show that Iλ has at least catMδ

(M) critical points in N−
λ (cλ) for λ ∈

(0,Λδ). For z ∈ M , by Lemmas 3.4(ii) and 3.5, we define

F (z) = ω+
λ + t−ε,zvε,z,

which belongs to N−
λ (cλ). Note that Φ(N−

λ (cλ)) ⊂ Mδ for λ < Λδ according to Lemma 4.4 (i).
Define ξ : [0, 1] ×M → Mδ by

ξ(θ, z) = Φ
(
ω+
λ + t−(1−θ)ε,zv(1−θ)ε,z

)
∈ N−

λ (cλ).

By a straightforward calculation we have ξ(0, z) = Φ ◦ F (z) and limθ→1− ξ(θ, z) = z. Hence,
Φ ◦ F is homotopic to the inclusion j : M → Mδ. By virtue of Lemma 4.5 and Propositions 4.1
and 4.2, we obtain that IN−

λ (cλ) has at least catMδ
(M) critical points in N−

λ (cλ). In addition,
from Lemma 2.3, Iλ has at least catMδ

(M) critical points in N−
λ (cλ). According to the fact

N+
λ ∩N−

λ = ∅ and Theorem 1.1, Iλ has at least catMδ
(M) + 1 critical points.

To show that the problem (1.1) admits at least catMδ
(M) + 1 positive solutions, we set

I+
λ (ω) =

1
2
‖ω‖2

X − λ

2

∫
RN

a(x)|ω+(x, 0)|2 ln |ω+(x, 0)|dx

+
λ

4

∫
RN

a(x)|ω+(x, 0)|2dx− 1
2∗α

∫
RN

b(x)|ω+(x, 0)|2∗
αdx,

where ω+(x, y) := max{ω(x, y), 0}. Processing in an analogous manner, we can prove that I+
λ

has at least catMδ
(M) + 1 critical points. Suppose that ω is one of the critical pints of I+

λ .
Note that

(I+
λ )′(ω)ω−(x, y) = ‖ω−‖2

X = 0

with ω−(x, y) = min{ω(x, y), 0}. We have ω � 0. By virtue of the maximum principle for the
fractional elliptic equations [33], we obtain that the problem (2.2) admits at least catMδ

(M) + 1
positive solutions. �

Proof of Theorem 1.4. Let δ,Λδ > 0 be the same as given Lemmas 4.3(ii) and 4.4(ii),
respectively. We show that Iλ has at least catMδ

(M) critical points in N−
λ (cλ) for λ ∈ (0,Λδ).

For z ∈ M , by Lemma 3.4(i), we define

F (z) = t−ε,zvε,z,

which belongs to N−
λ (cλ). It follows from Lemma 4.4 that Φ̂(N−

λ (cλ)) ⊂ Mδ for λ < Λδ.
Define ξ : [0, 1] ×M → Mδ by

ξ(θ, z) = Φ̂
(
t−(1−θ)ε,zv(1−θ)ε,z

)
∈ N−

λ (cλ).

Then, ξ(0, z) = Φ̂ ◦ F (z) and limθ→1− ξ(θ, z) = z. Hence, Φ̂ ◦ F is homotopic to the inclusion
j : M → Mδ. Using Lemma 4.5 and Propositions 4.1 and 4.2, we obtain that IN−

λ (cλ) has at
least catMδ

(M) critical points in N−
λ (cλ). According to Lemma 2.3, we know that Iλ has at

least catMδ
(M) critical points in N−

λ (cλ).
Similar to the proof of Theorem 1.3, we can show that the problem (2.2) admits at least

catMδ
(M) positive solutions. �
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