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Abstract

This paper investigates the nature of day-to-day competition between flights using a

unique panel data set on prices and inventories. We use instrumental variables methods

and several spatial autoregressive models (SAR) to estimate price reaction functions.

The primary source of product differentiation is departure time. After controlling for

flight-specific characteristics and various sources of price dispersion, we find important

evidence of demand shifting between competing flights. Most of the shift is being

captured by flights scheduled to depart within a 3-hour window. We find no evidence

of demand shifting between airports.
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1 Introduction

Analyzing the nature of day-to-day competition and pricing in airlines is particularly im-

portant due to the existence of aggregate demand uncertainty and capacity constraints.

Airlines sell tickets in advance when there is uncertainty about the aggregate demand.

Moreover, capacity if fixed and can only be augmented at a relatively high marginal costs.

Hence, carriers employ dynamic pricing techniques, commonly known as ‘yield manage-

ment’ to try to reduce the costs of aggregate demand uncertainty and capacity costs. The

role of competition is important because a specific flight’s pricing decisions have to take

into account the prices of the competitors, especially in light of how easy it is for buyers to

compare fares across different departure times, dates and carriers.

Existing literature in airlines that analyzes the role of competition (e.g., Borenstein and

Rose (1994), and Gerardi and Shapiro (2009)) has focused on the analysis of how market

structure affects price dispersion. These papers, like most of the empirical work in airlines,

use the DB1B data from the Bureau of Transportation Statistics. The restriction of the

DB1B is that it is aggregate quarterly data that does not contain the contemporaneous

posted prices that are key to assess the existing day-to-day competition in airlines. In this

paper we use a unique airline data set obtained from the online travel agency Expedia.com

that contains information on prices, inventories, and contemporaneous prices of competing

flights. Previous research that uses data from online travel agencies includes Stavins (2001),

Bilotkach (2006), Escobari (2009), and Alderighi et al. (2011).

The current paper extends the existing literature by modeling the day-to-day competi-

tion between flights. We estimate the degree of demand shifting between competing flights

taking into account the most important nature of product differentiation, flight departure

times. The structure of the data also allows us to identify the degree of competition and

demand shifting across New York City area airports. To achieve this we use IV methods

and various spatial autoregressive (SAR) models to estimate price reaction functions. We

find that there is important demand shifts between competing flights, with nearly the entire

demand shift being captured by flights that depart within 3 hours of the scheduled flight.

We find no evidence of demand shifts between airports that serve the New York city area

for our particular destination, Toronto.
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The rest of the paper is structured as follows. Section 2 describes the collection of the

data. The estimation methodology is explained in section 3 and the results reported and

discusses in section 4. Section 5 concludes.

2 Data

Following Escobari (2009) and Escobari (2012), we collected from the online travel agency

Expedia.com the lowest available one-way economy-class posted fares for all the non-stop

flights between the three big airports serving the New York City area and the main air-

port in Toronto.1 The methodology allows us to keep track of inventories of seats at each

posted price by looking at the seat availability map. Given that overbookings are usually a

small fraction of the total number of tickets, our measure is assumed to be proportional to

bookings. Moreover, tickets obtained through frequent-flyer programs are excluded from

the sample. The three airports in the New York City area are Newark Liberty Interna-

tional Airport (EWR), John F. Kennedy International Airport (JFK), and La Guardia

Airport (LGA), while the airport in Toronto is the Toronto Pearson International Airport

(YYZ). The data set includes all 317 flights that served this route between December 19

and December 24, 2008.2 The data set is a panel, where each cross-sectional observation

corresponds to a flight. Fares and inventory levels were recorded every three days, with the

first cut in time corresponding to 43 days prior to departure and the last to 1 day prior to

departure. The carriers in the sample are American, Air Canada, Continental, Delta, Lan

Chile and United. Table 1 shows a summary of the flights by day and by carrier.

The construction of this data set as well as the selection of this particular city pair

has some important advantages. The route — New York City to Toronto — was selected

1While focusing on one-way fares seems restrictive, this should not affect the estimation as long as

the carriers adjust one-way prices based on the current inventories. Moreover, our results can be easily

generalized to round-trip tickets under the standard assumption in airlines where the round-trip price is

assumed to be two times the one-way price. See for example Borenstein and Rose (1994, p. 677), and

Gerardi and Shapiro (2009, p. 5).
2While the week before Christmas is not the typical week for air travel, it is not clear how the results

would be different during a more usual week. Our period of study probably has higher occupancy rates

and higher fares (see, for example Escobari (2009)). Sellers are potentially scheduling more or larger flights,

while buyers may be exerting more effort in their search for lower fares.
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because all New York flights arriving in Toronto have to land at the Toronto Pearson

Airport. Moreover, having three departing airports in the New York City area will let us

analyze the effect of competition between flights that have similar departure times, same

destination, but differ on the departing airport. By picking non-stop flights and one-way

fares we control for price differences associated with fare restrictions and cost differences

associated with round trip tickets (e.g., as Saturday-night-stay, minimum-, and maximum-

stay). This also controls for variation in prices related to more sophisticated itineraries

(e.g., travelers connecting to different cities). Because airlines price discriminate and offer

at the same time and for the same flight different types of tickets, we selected the least

expensive fare to control for the existence of a more expensive refundable ticket. Moreover,

restricting the analysis to economy-class tickets is important to control for heterogeneity

in consumers who may prefer to fly in first-class.

3 Estimated Model

3.1 SAR and Price Reaction Functions

In this section we describe the specifications that characterize the flights’ price reaction

functions. The first specification captures the demand shifting across different flights within

the same airport,

Priceit = λ1W · Priceit +Xβ + ηi + εit. (1)

The second specification captures the demand shifting across different airports while con-

trolling for competition within the same airport,

Priceit = λ1W · Priceit + λ2M · Priceit +Xβ + ηi + εit, (2)

where Price denotes the price for flight i at time t. X is a matrix of control variables that

includes linear and higher order polynomials of Advance and Seats. Advance is the

number of days in advance — prior to the departure date — the fares were recorded, while

Seats measures the inventories of seats relative to the aircraft size. It is calculated as the

ratio of seats sold to total seats in the aircraft. The matrices W and M are the spatial

weights that correspond to the flights departing from the same airport, W, and the flights
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departing from different airports, M. ηi denotes the unobservable flight specific effect and

εit denotes the remaining disturbance.

The variables in X and different assumptions on the two-way error component will allow

to control for various sources of price dispersion in airlines. The time-invariant flight-specific

characteristics (ηi) is very flexible because it controls for carrier- and airport-specific char-

acteristics as well. This includes costs at the flight level, aircraft’s characteristics, carrier’s

managerial capacity, route’s Herfindahl index based on the number of flights, distance, and

hub and network characteristics that are time invariant. These are all time-invariant char-

acteristics in Stavins (2001), Borenstein and Rose (1994), and Gerardi and Shapiro (2009),

who used a cross section of tickets and more aggregate data, respectively. Advance and

its higher order polynomials are expected to capture advance purchase restrictions and

other common nonlinear trends in prices that may include intertemporal price discrimina-

tion strategies. Moreover, higher order polynomials on Seats are expected to control for

the path of inventories and sales as predicted by models that take into account aggregate

demand uncertainty and costly capacity (e.g., Prescott (1975) and Dana (1999)).

The degree of demand shifting across flights is captured by the Spatial Autoregressive

Coefficient λ1 in Equation 1. If the price of a flight does not respond to the prices of the

competitors, this coefficient should not be significant. Moreover, for stationary reasons, we

expect λ1 to be a number between zero and one. The degree of demand shifting across

airports will be captured by the Spatial Autoregressive Coefficient λ2, in Equation 2.

In addition to the spatial dependencies modeled here, there may also exist temporal

dependencies in the sense that, for example, the price of the day before plays a role. Nearly

all previous literature ignores both, spatial and temporal dependencies. This paper is the

first to model the spatial dependencies. Additionally modeling the temporal dependencies

goes beyond the scope of this paper.3

3.2 Market Definition and Spatial Weights

To estimate the model specified in Equations 1 and 2, we need to specify the spatial matrices

W and M to construct the weighted average prices of the competing flights. Our measure

of distance is the time difference between different departing flights. While some methods

3A recent paper that takes into account temporal dependencies is Escobari (2012).
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of specifying the weight matrices include placing equal weights on all competitors within a

critical distance, we will adopt a more realistic strategy and also consider a critical distance,

but we place different weights based on the relative distance from competing flights. This

is intuitively correct because the competition is expected to be greater for flights that have

departure times that are closer. We use three different values of critical distance for the

local market definition: 3 hours, 6 hours, and 12 hours. This will allow us to construct

three different weighting matrices in the following way. Outside the critical distance the

elements in the matrix are zero, while inside the critical distance each of the elements is

defined as wij = ωij/
∑N

j=1 ωij . The value of ωij is calculated as 1/(1 + dij), where dij is

the distance in departure times between flight i and flight j.

4 Results

The first set of estimates of Equation 1 using linear controls are presented in Table 2.4

The numbers in parentheses are heteroskedasticity robust standard errors. The first three

columns present the fixed effects estimates, while columns three through six present instru-

mental variable estimates with fixed effects. The coefficient of interest is the estimate of

λ1, from the variable W·Price. Different columns present estimates for different specifi-

cations of the weighting matrix W. Columns one and four present estimates of the price

reaction function that take into account competing flight that are located within three

hours. Columns two and five consider flights within 6 hours, while columns three and six

flights within 12 hours.

The estimated coefficient of 0.309 means that the price of a given flight will increase by

30.9 cents if all the flights within 3 hours increase their prices by one dollar. Consistent with

spatial competition models and the existence of demand shifting, the coefficients for 6 and

12 hours are subsequently larger. For example, the estimate in the third column implies

that a given flight will increase its price by 55.7 cents if all the flights within 12 hours

increase their prices by one dollar. Because the effects are larger when the market is more

4Even though we focus on one single route there is a substantial price dispersion — the average fare is

176 dollars and standard deviation is 139.1. Moreover, the highest fare is fourteen times the least expensive

fare.
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broadly defined, the difference between the estimated coefficients in the first three columns

has a demand shifting connotation. If every flight within 3 hours increases its price, some

demand will be diverted to flights that are more than three hours away; hence, the response

is smaller (i.e., 30.9 cents). However, if every flight within twelve hours increases its price,

there will not be diverted demand from the flights within 3 hours to flights located 3 to 12

hours away. Then the response is larger (i.e., 55.7 cents).

A second interpretation for these coefficients follows the diversion ratio explained in

Pinkse et al. (2002) and used in Lee (2008). This interpretation comes from the assumption

that n firms compete in a Bertrand-Nash simultaneous game, marginal cost is constant and

firms face a downward sloping linear demand.5 Then, the price reaction functions for each

flight i can be written as:

Pricei = Xiβ + λ

n∑

j 6=i

wijPricej + µi (3)

where wij = dij/
∑n

j 6=i dij and λ = 1/2
∑n

j 6=i dij . The relative diversion ratios are given by

wij , and
∑n

j 6=iwijPricej is the weighted average price of i’s competing flights. Therefore,

when flight i increases its price, the coefficient of the competitors’ weighted average price

times two captures the fraction of sales lost.

Under this setting and based on the first column of Table 2, if a carrier increases

its price, the flights within three hours will capture 61.8% (30.9% × 2) of the diverted

demand. 81.4% percent of this demand will be captured by flights within 6 hours and the

entire demand will be captured by flights within 12 hours. This diversion ratio does not

consider the existence of outside goods, hence the possibility that the spatial autoregressive

coefficient can be greater than 0.5.

A typical concern in the estimation of spatial models is the endogeneity of the spatial

autoregressive term, W·Price. In this paper we follow the approach described in Kelejian

and Prucha (1998) and refined in Lee (2003). In our case this procedure involves a two-step

method which yields an asymptotically optimal IV estimator when errors are i.i.d. In the

first step we estimate Equation 1 via 2SLS using H = [X,WX,W2
X] as instruments. The

estimator is θ̂2SLS = (X̃
′
SX̃)−1X̃

′
SP, where P is the vector of prices, X̃ = [WP,X] is the

matrix of explanatory variables, and S = H(H′
H)−1H

′ is the weighting matrix. Using λ̂2SLS

5For a detailed derivation of the model, see Lee (2008).
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and β̂2SLS that are part of the vector θ̂2SLS , the second step estimates an IV regression

using instruments Ẑ = [X,W(I − λ̂2SLS)−1Xβ̂2SLS ]. That is, θ̂IV = (Ẑ
′
X̃)−1Ẑ

′
P. These

IV results are presented in columns 4 through 6 in Table 2. All spatial autoregressive

terms are significant and larger than the ones when not controlling for endogeneity. The

effect of competition appears to be larger and demand shifting is completely captured by

flights within 3 hours. The regression estimates that consider nonlinearities in the control

variables are presented in Table 3. The estimates of λ1 are slightly smaller, but all highly

statistically significant. The IV results still show that all demand is captured by flights

within 3 hours based on the diversion ratio.

To measure demand shifting across airports, Table 4 shows the estimates of Equation 2.

The coefficient on M·Price measures demand shifting across flights that depart from com-

peting airports. The estimates are small and not significant, hence there is no evidence of

demand shifting between the three airports that serve the New York City area.

5 Conclusions

This paper uses a unique panel data set of contemporaneous prices and inventories of

competing flights for one particular route, New York City to Toronto. It is set to identify

two particular effects. By estimating price reaction functions we capture the demand

shifting across flights that compete using different departure times. We also tested for

demand shifting for our particular route across the three airports that serve the New York

City area.

After controlling for multiple sources of price dispersion that arise at the individual

flight level, we are able to find that there is important demand shifting across flights. We

find that the entire demand shifting is captured by competing flights that depart within 3

hours. We did not find any evidence of demand shifting between airports.
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Table 1: Flights by Carrier and Date

Friday Saturday Sunday Monday Tuesday Wednesday

(Dec 19) (Dec 20) (Dec 21) (Dec 22) (Dec 23) (Dec 24) Total

American 12 8 11 12 13 11 67

Air Canada 19 9 13 20 20 16 97

Continental 8 5 7 8 8 6 42

Delta 4 4 4 4 4 3 23

Lan Chile 1 1 0 1 0 1 4

United 17 10 10 18 16 13 84

Total 61 37 45 63 61 50 317

Table 2: Across flights and linear controls

Fixed Effects Instrumental Variables

Variables 3 hours 6 hours 12 hours 3 hours 6 hours 12 hours

W·Price 0.309∗ 0.407∗ 0.557∗ 0.546∗ 0.580∗ 0.934∗

(0.023) (0.026) (0.031) (0.080) (0.076) (0.059)

Seats 92.916∗ 89.553∗ 88.352∗ 157.336∗ 170.642∗ 176.890∗

(22.774) (22.904) (22.654) (17.639) (16.376) (12.581)

Advance −2.847∗ −2.565∗ −2.346∗ −2.304 −2.808∗∗ −3.650∗

(0.317) (0.301) (0.318) (1.486) (1.418) (1.037)

Within R-squared 0.199 0.211 0.226 0.186 0.204 0.211

Observations 4398 4398 4398 4398 4398 4398

Notes: The dependent variable is Price. The IV approach follows Lee (2003). Numbers in

parentheses are heteroskedasticity robust standard errors. ∗ significant at 1%; ∗∗ significant

at 5%; ∗∗∗ significant at 10%. All specifications include flight-specific effects.
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Table 3: Across flights and nonlinear controls

Fixed Effects Instrumental Variables

Variables 3 hours 6 hours 12 hours 3 hours 6 hours 12 hours

W·Price 0.250∗ 0.340∗ 0.459∗ 0.518∗ 0.550∗ 0.834∗

(0.022) (0.026) (0.031) (0.076) (0.069) (0.112)

Seats 295.696∗∗∗ 288.037∗∗∗ 237.774 567.733∗ 563.195∗ 474.242∗

(168.969) (170.436) (169.839) (155.971) (150.587) (158.081)

Seats2 −1289.13∗ −1287.74∗ −1147.56∗ −1431.52∗ −1414.62∗ −1174.66∗

(311.384) (313.319) (310.992) (295.769) (294.713) (301.969)

Seats3 1177.43∗ 1177.96∗ 1074.56∗ 1056.71∗ 1158.10∗ 972.18∗

(181.422) (182.629) (181.821) (160.351) (174.940) (182.741)

Advance −10.336∗ −12.981∗ −11.929∗ −9.257∗∗ −11.841∗ −12.085∗

(3.601) (3.606) (3.572) (4.060) (4.014) (4.055)

Advance2 0.339∗∗ 0.435∗ 0.387∗∗ 0.340∗∗ 0.416∗∗ 0.359∗∗

(0.162) (0.162) (0.161) (0.169) (0.170) (0.168)

Advance3 −0.004∗∗∗ −0.005∗∗ −0.004∗∗ −0.004∗∗∗ −0.005∗∗ −0.004∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Within R-squared 0.251 0.263 0.271 0.229 0.249 0.250

Observations 4398 4398 4398 4398 4398 4398

Notes: The dependent variable is Price. The IV approach follows Lee (2003). Numbers in parentheses

are heteroskedasticity robust standard errors. ∗ significant at 1%; ∗∗ significant at 5%; ∗∗∗ significant

at 10%. All specifications include flight-specific effects.
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Table 4: Across airports and nonlinear controls

Variables 3 hours 6 hours 12 hours

W·Price 0.245∗ 0.338∗ 0.464∗

(0.024) (0.028) (0.033)

M·Price 0.018 0.005 −0.018

(0.025) (0.033) (0.029)

Seats 300.562∗∗∗ 288.778∗∗∗ 234.743

(171.750) (170.875) (170.104)

Seats2 −1292.45∗ −1288.24∗ −1143.76∗

(311.434) (312.680) (311.651)

Seats3 1177.05∗ 1177.98∗ 1072.60∗

(181.364) (182.633) (181.797)

Advance −10.597∗ −13.043∗ −11.756∗

(3.617) (3.623) (3.595)

Advance2 0.348∗∗ 0.437∗ 0.381∗∗

(0.163) (0.163) (0.162)

Advance3 −0.004∗∗∗ −0.005∗∗ −0.004∗∗

(0.002) (0.002) (0.002)

Within R-squared 0.251 0.263 0.271

Observations 4398 4398 4398

Notes: The dependent variable is Price. Numbers in parenthe-

ses are heteroskedasticity robust standard errors. ∗ significant

at 1%; ∗∗ significant at 5%; ∗∗∗ significant at 10%. All specifi-

cations include flight-specific effects.
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