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Abstract: Global demand for renewable and sustainable energy fostered the considerable 17 

development of biomass-to-ethanol valorization strategies. Thermochemical pretreatment 18 

methods have been proposed to render biomass more amenable to enzymatic and microbial 19 

digestion. However, the efforts have not led to its industrial-scale worldwide realization. One of 20 

the obstacles to commercialization could be related to water overconsumption, as excessive water 21 

washing of the pretreated slurry is often performed to remove inhibitory compounds and residual 22 

chemicals after biomass pretreatment. Only increasing solid loading for biomass pretreatment 23 

results in ineffective pretreatment performance, more inhibitors formation, and high viscosity, 24 

which in turn necessitates the water washing step. A number of physicochemical and biological 25 

methods are applied to detoxify the acid-pretreated liquid fraction for enzymatic hydrolysis and 26 

fermentation. Among them, alkaline neutralization and liquid-liquid extraction are preferred 27 

because of their simple operation and low cost. Seemingly, recycling black liquor for alkali 28 

pretreatment offers a pathway to reduce water and chemical consumption, but alkali 29 

replenishment and inhibitor accumulation significantly weaken this technology. Interestingly, 30 

quite a few studies have removed the water washing and even solid-liquid separation steps after 31 

(liquid hot water, Tween 40, and CaO) pretreatment. Whereas there is still a huge room for future 32 

studies to render biomass pretreatment more feasible in terms of economic and environmental 33 

points of view. This review provides a deep understanding of wastewater generation during 34 

biomass upgrading and discusses the solutions to reduce water consumption critically. 35 

Keywords: Biomass; pretreatment; detoxification; wastewater generation; ethanol production36 
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1. Introduction 37 

Global demand for coal and petroleum based energy sources resulted in the potential 38 

depletion of non-renewable fossil fuels.1–3 Exploring alternative bioresources with renewable and 39 

sustainable characteristics is an essential worldwide task to alleviate overdependence on fossil 40 

fuels and collateral environmental issues.4–6 The share of coal in the total U.S. energy 41 

consumption reduced in favor of emerging energy sources such as natural gas and nuclear for the 42 

past century.7 Strikingly, in the last two decades, other renewable energy sources stood out and 43 

occupied approximately 12% of U.S. primary energy consumption in 2020, as it plays an 44 

important role in reducing greenhouse gas emissions. Biomass-related resources approximately 45 

account for 39% of renewable energy.7 Woody biomass is what we often recognize as 46 

lignocellulosic biomass, which is commercially used by power plants to generate electricity and 47 

steam via combustion with/without coal to reduce net CO2 emissions. Counting its annual 48 

production, lignocellulosic biomass from agriculture (corn stover, wheat straw, sugarcane 49 

bagasse, etc.) and forestry (paper mill and sawmill discards) is typically underutilized.8,9 50 

Lignocellulosic biomass has been considerably recognized as a competitive candidate for 51 

ethanol production via pretreatment, enzymatic hydrolysis, and fermentation steps due to its 52 

substantial cellulose and hemicellulose components.10–12 However, the recalcitrance of robust 53 

lignin necessitates physicochemical pretreatment to render lignocellulosic biomass more 54 

amenable to enzymatic and microbial degradation.13–15 The mechanisms and effectiveness of 55 

pretreatment technologies can be found elsewhere.10,11,16–19 Despite half a century of efforts, the 56 

biomass-to-ethanol commercial realization has stagnated confronting several technical and 57 
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economic bottlenecks such as the difficulty in a massive collection of raw biomass and 58 

unaffordable production cost. From the production point of view, excessive water washing and 59 

anti-solvent addition after biomass pretreatment are commonly needed, since the inhibitory 60 

compounds such as derivatives [acetic acid (HOAc), formic acid, levulinic acid, furfural, 5-61 

hydroxymethylfurfural (HMF)] from sugar degradation and phenolic compounds from lignin as 62 

well as residual chemicals (acids, alkalis, and ionic liquids) play determinant roles in constraining 63 

enzymatic and microbial activities.20–23 Obviously, wastewater generation and subsequent 64 

discarding would result in water overconsumption.24–26 From the perspective of an economic 65 

aspect, such routine operations are inevitably not feasible in long-term commercial production, 66 

because the process of biomass-based ethanol refinery is affected by the availability of water 67 

resources and excessive wastewater generation can inevitably increase purification treatment 68 

costs.7,27 However, there is significant controversy among the studies regarding the 69 

technoeconomic feasibility of biomass processing plants.28–33 Although the directly unambiguous 70 

comparison between the studies is unfeasible, this is probably related to the inconsistency 71 

between process simulation and lab-scale experimental steps.34,35 For example, Zang et al.30 72 

reported that switchgrass pretreated by choline chloride:ethylene glycol (ChCl:EG) with 1% 73 

H2SO4 was washed with a water-acetone mixture and then hydrolyzed after adding water and 74 

enzymes directly, however, it was not in agreement with the cited reference where the citrate was 75 

used as a buffer.30 Besides, it was highlighted that after lignin precipitation the resultant liquid 76 

fraction was subjected to evaporation at 70 °C to remove water for ChCl:EG recovery, however, 77 

during process simulation the resultant liquid fraction was directly reused for switchgrass 78 
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pretreatment.30 Acetone-water washing of pretreated switchgrass could dilute the ChCl:EG 79 

concentration, even if some of it was reused, it would result in abundant wastewater (containing 80 

ChCl:EG) generation. Therefore, reducing water consumption during lignocellulosic ethanol 81 

production is crucial for a circular economy.36 82 

Maintaining high solid biomass loading from pretreatment to fermentation has been highly 83 

preferred to reduce production costs.37–39 To a certain extent, the application of high solid loading 84 

can increase the concentration of bioethanol and reduce the cost of distillation.40 However, with 85 

the respect to commercial promotion, it is necessary to consider the "high-solids side effect" such 86 

as the accumulation of inhibitory compounds, low cellulose accessibility, and high viscosity.41 87 

The undesirable outcomes might offset the advantages of operating at high solid loading.42 In 88 

addition, physicochemical detoxification technologies for acid pretreatment and successive 89 

recycling of black liquor for alkali pretreatment have been considerably proposed. Organosolv, 90 

ionic liquid, and deep eutectic solvent pretreatments have attracted considerable attention to 91 

fractionate biomass.17,19,43 Unfortunately, efficient and practical strategies targeting the reduction 92 

in water consumption are not available.41 This is probably because water or anti-solvent washing 93 

is inevitable to recover these expensive reagents.44  94 

The objectives of this work are to disclose the collateral challenges confronted by biomass-95 

to-ethanol production in terms of water overconsumption and offer a consolidated source of 96 

information in connection with the latest advances from the laboratory to commercial 97 

exploration. Explicitly, following a detailed discussion of wastewater generation, the 98 

corresponding solutions including the increment of solid loading, physicochemical detoxification, 99 
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and black liquor recycling are critically discussed to elucidate if these methods are effective in 100 

reducing water consumption. Additionally, several advances in response to alleviating water 101 

consumption during biomass-based ethanol production were illuminated. 102 

 103 

2. Water overconsumption  104 

Although physicochemical pretreatment can remove most of the hemicellulose and partially 105 

solubilize the lignin enhancing the enzymatic accessibility to cellulose, the undesired derivatives 106 

from sugar and lignin degradation can also be released during biomass pretreatment. These 107 

derivatives include furans (HMF and furfural], organic acids (HOAc, formic acid, and levulinic 108 

acid), pseudo-lignin, small lignin units, extractives, and phenolic compounds.10,45,46 Furthermore, 109 

the residual chemical reagents used for biomass pretreatment often contribute to inhibitory 110 

influences on enzymatic and microbial activities as well. To render the pretreated biomass 111 

amenable to ethanol conversion, the solid residues after pretreatment and solid-liquid separation 112 

are commonly washed extensively with water, whereas the resultant wastewater (liquid fraction), 113 

containing residual chemicals, derivatives, and sugars, is often discarded (Table 1). For example, 114 

Nogueira et al. reported that washing (200 mL water/15g raw biomass per time) was conducted 115 

12 times to achieve NaOH (2%, w/v) pretreated coconut fiber filtrate transparent and reach a 116 

neutral pH of this filtrate.47 Therefore, the post-washing process inevitably results in a large 117 

amount of water consumption and chemical loss (Table 1). Herein, the inhibitory compounds that 118 

appeared in the pretreated slurry are roughly categorized into two groups to elucidate the reasons 119 

for wastewater generation and discarding. 120 



7 
 

Table 1. A summary of representative studies regarding water overconsumption under different 121 

biomass pretreatment conditions at lab and pilot scales.1 122 

Biomass Pretreatment condition Post-treatment Ref. 

Corncob Combining H2SO4 and 

CH3COOH with different ratios 

under solid loading of 10-30% 

at 80-120 °C for 30-90 min 

The residues are washed with 

distilled water and separated 

using a vacuum filter, and the 

collected residues are dried to 

constant weight in an oven at 

105 °C 

Selvakumar 

et al. (2022) 

48 

Miscanthus The first stage: 1% HNO3 at 

90 °C for 2 h; the second stage: 

4% HNO3 solution at 94-96 °C 

for 8 h 

The solid residues are washed 

thoroughly with water until 

the neutral wash water is 

formed 

Skiba et al. 

(2022) 49 

Chestnut 

shell 

10% solid loading with 0-5% 

NaOH at 70 °C for 2 h 

The slurry is neutralized with 

distilled water to pH 7, and 

the residual chestnut shell is 

dried in an oven at 105 °C for 

48 h to completely remove the 

water 

Lee et al. 

(2022) 50 

Sugarcane 

bagasse 

Two stages ultrasonic assisted 

2.0% H2SO4 at 6% solid loading 

The solid residues are washed 

with distilled water until 

neutral pH for the filtrate, 

followed by drying the 

recovered solid overnight at 

55 ℃ 

Chen et al. 

(2022) 51 

Switchgrass 15% solid loading with liquid 

hot water at 200 °C for 5 min  

The pretreated biomass is 

washed with 10 g of distilled 

water per gram of solids four 

times with the wastewater is 

discarded 

Larnaudie 

et al. (2019) 

52 

Empty palm 

fruit bunch 

5–25% solid loading with liquid 

hot water at 160–210 °C for 0–

60 min  

The pretreated biomass is 

washed with an amount of 

water equivalent to 10 times 

the amount of biomass 

initially loaded to the reactor 

with the wastewater is 

discarded 

Cardona et 

al. (2018) 53 



8 
 

Acacia wood 5% solid loading with 0.05% 

H2SO4 at 200 ℃ for 5 min  

The pretreated filtrate and 100 

mL of washed deionized water 

are discarded 

Lee et al. 

(2020) 54 

Bamboo 10% solid loading with 30% 

hydrogen peroxide/glacial 

HOAc (1:1, v/v) at 85 ℃ for 

120 min 

The pretreated biomass is 

washed with tap water and the 

wastewater is discarded 

Song et al. 

(2020)55 

Sugarcane 

biomass 

2–8% solid loading with 1% 

(m/v) of H2SO4 at 121 ℃ for 

20–60 min 

The pretreated biomass is 

washed with distilled water 

until a pH close to 5.0 with the 

wastewater is discarded 

 Santos et 

al. (2020)56 

Cashew 

apple bagasse 

10% solid loading with HOAc 

(0–60 v/v) or H2SO4 (0–0.8 

w/v) at 121 ℃ for 30–60 min  

The pretreated biomass is 

washed eight times using 200 

mL of tap water with the 

wastewater is discarded 

Araujo 

Padilha et 

al. (2020)57 

Wheat straw 10% solid loading with 1–10% 

NaOH solutions at 190 ℃ for 

240 min 

Deionized water is used to 

wash the pretreated biomass 

and then discarded  

 Tsegaye et 

al. (2019)58 

Prosopis 

juliflora 

biomass 

Microwave irradiation power 

(270–450 W) for 3–5 min with 

0.75–1.25% (w/v) NaOH 

solutions at the liquid-to-solid 

ratio of 10–20 mL/g 

The filtrate is washed with 

distilled water until the pH 

becomes neutral and then 

discarded 

 Alexander 

et al. 

(2020)59 

Softwood 

pine 

10% solid loading with 0–2% 

w/v NaOH at 100–180 ℃ for 

1–5 h 

The pretreated biomass is 

washed with distilled water 

until reaching pH 7 with the 

wastewater is discarded 

Safari et al. 

(2017)60 

Poplar 

biomass 

13% solid loading with ethanol 

(60%, v/v) solution and 1.25% 

(w/w) of H2SO4 at 180 °C for 

60 min 

The pretreated biomass is 

washed with 60 °C aqueous 

ethanol (60%), as the 

washings are combined with 

the filtrate and poured into 

∼500 mL of deionized water. 

 Meng et al. 

(2020)61 

Hybrid 

Pennisetum 

Four organosolv (γ-

valerolactone, 

tetrahydrofurfuryl alcohol, 

ethanol, and acetone) assisted 

The pretreated biomass is first 

washed with an equal volume 

of the organic solvent at least 

three times to avoid lignin 

 Tan et al. 

(2020)62 
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by 0.05 mol/L H2SO4 with a 

liquid/solid ratio of 12:1 at 

100 °C for 2 h  

deposition and then washed to 

neutral with water as the 

wastewater is discarded 

Spruce and 

oak sawdust 

2% solid loading with 1-ethyl-

3-methylimidazolium acetate at 

45 °C for 40 min 

The pretreated biomass is 

precipitated by adding two 

times of ultrapure water and 

then centrifuged; it is 

thoroughly washed with 

ultrapure water as the 

wastewater is discarded 

 Alayoubi 

et al. 

(2020)63 

Hornbeam 

and spruce 

wood 

4% solid loading with biomass 

to 1-butyl-3-methylimidazolium 

chloride ratio of 1:4 at 50–

150 °C for 0.5–2 h 

The pretreated biomass is 

washed with distilled water to 

obtain 95–99% removal of the 

ionic liquids as the wastewater 

is discarded 

 Dotsenko 

et al. 

(2018)64 

Wheat straw 10% solid loading with ChCl, 

guaiacol, and AlCl3 (molar ratio 

of 25:50:1) at 80–130 °C for 1 h 

The pretreated biomass is 

washed with 200 mL of hot 

ethanol and excessive water 

stepwise as the wastewater is 

discarded 

 Huang et 

al. (2021)65 

Hybrid 

Pennisetum 

10% solid loading with FeCl3 in 

ChCl/glycerol at 60–140 °C for 

1–9 h 

The pretreated slurry is 

washed with 50% 

acetone/water (100 mL) and 

then vacuum-filtered and re-

washed with 50% 

acetone/water until the filtrate 

is colorless as the acetone is 

distilled from the filtrate 

 Wang et al. 

(2020)66 

Eucalyptus 

biomass 

Pilot-scale pretreatment at 

180 °C for 15 min with 2.4 

wt.% H2SO4 followed by steam 

explosion 

After pretreatment, residual 

biomass solids were pressed to 

remove the hydrolyzate, and 

the steam-explored sample 

was washed with distilled 

water until the pH of the 

filtrate was 6.0. 

 Mclntosh 

et al. 

(2016)67 

1The studies were collected from recent publications with a pretreatment that included liquid hot 123 

water, acid, alkaline, organosolv, ionic liquid, deep eutectic solvent, and combined methods. 124 

 125 
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2.1 Sugar and lignin derivatives 126 

Furans (HMF and furfural) are generally found in the acid-pretreated slurry and derived from 127 

cellulose and hemicellulose degradation, respectively.68–70 Based on the literature review, these 128 

molecules are not found to significantly inhibit enzymatic hydrolysis, apart from the work 129 

reported that the addition of 2 or 5 mg/mL of furfural to the substrate of cellulose and enzyme 130 

decreased glucose recovery by 5% and 9%, respectively.20 However, it has been widely 131 

recognized that they can negatively influence the microbial ethanol fermentation of the pretreated 132 

materials.71–79 In this regard, Roberto et al. demonstrated that furfural at 0.5 g/L had no significant 133 

effect on the cell growth of Scheffersomyces stipitis, while furfural at 2 g/L was detrimental to 134 

cell growth.80 Similarly, Nigam found that the presence of furfural at 0.25 g/L was unable to limit 135 

the cell growth of Pichia stipitis and ethanol production from wheat straw hydrolysates, while 136 

furfural at 1.5 g/L notably reduced ethanol yield and productivity by 90.4% and 85.1%, 137 

respectively.77 Concerning their inhibitory mechanisms, Allen et al. illuminated that furfural 138 

triggered the accumulation of reactive oxygen species in Saccharomyces cerevisiae inducing 139 

cellular damage via the destruction of mitochondria and vacuole membranes as well as the actin 140 

cytoskeleton and nuclear chromatin.81 During fermentation, HMF and furfural can be metabolized 141 

by Saccharomyces cerevisiae into 5-hydroxymethyl furfuryl alcohol and furfuryl alcohol, 142 

respectively, indicating their similar inhibitory mechanisms.75,76 Compared to furfural, HMF was 143 

found to have less inhibitory effects on microbial activity due to its lower membrane 144 

permeability.76,82 In addition, weak organic acids such as acetic, formic, and levulinic acids can 145 

typically be produced from the dissociation of acetyl groups and furans during pretreatment.46,82,83 146 
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The individual addition of organic acids to the hydrolysis or fermentation system was noticed to 147 

be detrimental,20,77 which could be attributed to the change in slurry pH inhibiting cell growth. 148 

Therefore, their negative effects may be mitigated via alkaline neutralization, which can be seen 149 

in the report that H2SO4 pretreated slurry after ammonia conditioning could be used for 150 

enzymatic hydrolysis and fermentation directly.84 151 

In the case of lignin, it has been assessed that non-productive adsorption and steric hindrance 152 

are broadly known as the primary mechanism controlling lignin-enzyme interactions,85 depending 153 

on the molecular weight and structural characteristic of lignin.86 Pseudo-lignin, formed from 154 

dilute acid pretreatment,69,70,87 can also significantly retard cellulose hydrolysis.88 Besides, the 155 

phenolic compounds are reported to be more poisonous than the previously-mentioned 156 

derivatives even at lower concentrations, due to their low molecular weight allowing them easily 157 

penetrate cell membranes and alter cell morphology.75,76,82 Even with solid-liquid separation after 158 

pretreatment, these degraded products are still partially adsorbed to the surface of the pretreated 159 

biomass, thus excessive water is usually used to remove them or reduce their recondensation.89 160 

 161 

2.2 Residual chemical reagents 162 

Another reason for post-washing the pretreated biomass is to remove the residual chemical 163 

reagents used for biomass pretreatment. For dilute acid and alkaline pretreatments, the pH of the 164 

pretreated slurry is commonly too severer to be used as a buffer solution for enzymatic hydrolysis 165 

and fermentation.69 The work by Frederick et al. highlighted that rinsing the 0.98% (v/v) H2SO4 166 

pretreated biomass with 1.5 or 3 volumes of water reached glucose yields that were seven folds 167 
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higher than the unwashed treatment.90 They also mentioned that the H2SO4 pretreated biomass 168 

washed with 3 volumes of water created the highest ethanol yields (up to 0.43 g/g-glucose) that 169 

were significantly higher than those from the unwashed sample (≤ 0.28 g/g-glucose).90 Based on 170 

the same enzymatic hydrolysis and fermentation conditions, it could be considered that the higher 171 

glucose and ethanol yields are highly associated with the removal of the residual H2SO4. In 172 

addition, Karuna et al. pretreated rice straw with NaOH and subsequently conditioned the 173 

pretreated slurry to a pH of 5-6 via extensive water washing or acidification with HCl plus water 174 

washing.91 In this case, excessive post-washing removed the disrupted lignin and residual NaOH, 175 

while acidification (neutralization between HCl and NaOH) with post-washing precipitated the 176 

modified lignin on the surfaces of rice straw, therefore, the former showed higher enzymatic 177 

digestibility of rice straw than the latter.91 In terms of ionic liquid pretreatment, the researchers 178 

performed choline acetate (ChOAc) and 1-ethyl-3-methylimidazolium acetate (EmimOAc) 179 

pretreatments (0.5 g biomass/5.0 g ionic liquid) of bagasse powder with different water post-180 

washing times (45 mL per time).92,93 It was found that cellulase and yeast were more sensitive to 181 

the residual EmimOAc concentrations in the pretreated biomass than ChOAc, based on their 182 

median effective concentrations.93 Besides, based on the original bagasse the overall ethanol yield 183 

after saccharification and co-fermentation of the pretreated bagasse with post-washing 5 times 184 

was only 54% for ChOAc and 22% for EmimOAc.92 This indicates that the residual ionic liquid 185 

in the pretreated biomass is dramatically detrimental to enzymatic and microbial activities, 186 

therefore, adequate water is crucial to remove the residual ionic liquid. Moreover, to remove the 187 

imidazole from the pretreated biomass, 2 volumes of distilled water and 3 volumes of ethanol 188 
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(96%) were employed. However, the HCl used for lignin precipitation was found to deprotonate 189 

imidazole.94 Therefore, even if the chemicals are recovered and recycled for biomass 190 

pretreatment, their functional integrity is unknown. Additionally, an anti-solvent applied for 191 

chemical reagent removal from the pretreated biomass has a significant influence on glucose 192 

conversion efficiency.95 193 

 194 

3. Common strategies for reducing water consumption 195 

3.1 Increasing solid loading 196 

Biomass pretreatment has been often performed at lower solid loadings (≤10%) to efficiently 197 

fractionate biomass into cellulose-concentrated solid fraction and hemicellulose- and lignin-198 

derived liquid fraction.96 In keeping with the idea of reducing water consumption, high solids 199 

loading (>10%) for biomass pretreatment was widely promoted. However, undesired side effects 200 

such as weak pretreatment effectiveness, accumulation of inhibitory compounds, and high 201 

viscosity were often observed.38,96 In terms of pretreatment effectiveness, Xu et al. conducted the 202 

EmimOAc pretreatment of corn stover assisted with/without NaOH and aqueous ammonia (10%, 203 

v/v) at 36% (w/w) solid loading but performed the enzymatic hydrolysis of pretreated biomass at 204 

1% (w/v) glucan loading after three times (10 mL/g biomass) of post-washing. In this study, only 205 

60.65–64.82% of total glucose yields were obtained at a higher enzyme loading,97 indicating that 206 

the accessibility of cellulose to enzymes after pretreatment was relatively low. Besides, the 207 

increment of solid loading for biomass pretreatment significantly reduced xylan and lignin 208 

removal as reported by Chen et al. who carried out the ternary deep eutectic solvent pretreatment 209 
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of switchgrass under 10-35% of solid loading.98 210 

The effects of solid loading used for pretreatment on the accumulation of inhibitory 211 

compounds in the pretreated slurry have not been investigated yet, but it can be inferred that an 212 

increase in solid loading would increase their concentrations.38,96 Therefore, the nominal 213 

reduction in water consumption may be offset by the heavy water post-washing operation needed 214 

for the removal of residual chemical reagents. Additionally, the resultant slurries with high solids 215 

tend to be super viscous,99 due to the water-biomass interaction.37 Viamajala et al.100 reported that 216 

biomass size reduction can decrease slurry viscosity, but a large amount of energy is required for 217 

milling.101 Moreover, it has been demonstrated that feedstock pump ability could only be 218 

achieved at solid loading below 15%.102 In this regard, Dãrãban et al. found that pumpable wood-219 

based slurry containing 20% solids can be prepared using recycled biocrude as a carrier fluid, 220 

given that the particle sizes of biomass were smaller than 0.125 mm.102 However, this 221 

phenomenon has been typically overlooked, instead, excessive water was used to flush the slurry 222 

out.98,103,104 Based on the previous analysis, it might be debatable whether high solid loading for 223 

pretreatment can save water because of the subsequent challenges. 224 

 225 

3.2 Physicochemical detoxification 226 

To render the dilute acid pretreated biomass and hydrolysate (liquid fraction) more 227 

acquiescent for microbial fermentation, many physicochemical [membrane filtration,105,106 228 

alkaline neutralization,107 ion exchange resin,108–110 liquid-liquid extraction,22,111 and activated 229 

charcoal adsorption21,112,113] and biological [laccase treatment,114,115 microbial degradation,116,117 and 230 
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engineered strain118–120] detoxification methods have been investigated. A summary of these 231 

representative studies is presented in terms of strengths and drawbacks (Table 2). The 232 

comprehensive collection and comparison among studies in this respect can be found 233 

elsewhere.10,11 but several crucial discoveries can be extracted from them: (1) alkaline addition is 234 

unavoidably required to neutralize the residual acid in both pretreated biomass and hydrolysate 235 

before enzymatic hydrolysis and fermentation regardless of which methods are applied; (2) the 236 

cost of chemicals and enzymes for detoxification should be taken into consideration since the end 237 

product-bioethanol is considerably sensitive to materials input;34 (3) excessive pursuit of HMF 238 

and furfural removal efficiency and negligence of their subsequent recovery are undesirable 239 

because they are especially high-value platform molecules for biofuels and chemicals conversion; 240 

and (4) almost all techniques only focus on the acid pretreated hydrolysate and ignore the residual 241 

inhibitors in the pretreated biomass. Concerning the simple operation and low capital investment, 242 

alkaline neutralization and liquid-liquid extraction might be relatively preferable. The former can 243 

create optimal conditions that result in an analogous fermentability comparing a synthetic sugar 244 

solution without inhibitors,107 whereas the latter can entirely extract HMF and furfural as high-245 

value coproducts with the extraction solvent can be recycled into the system.111 246 

 247 

Table 2. Different physicochemical and biological detoxification methods at lab and pilot scales 248 

with their advantages and disadvantages. 249 

Samples Methods Advantages Disadvantages Ref. 
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H2SO4 

pretreated 

corn stover 

hydrolysate1 

Trialkylamine 

extraction  

73.3% of HOAc, 

45.7% of HMF, 

and 100% of 

furfural are 

removed 

The concentration 

process of 

hydrolysate and 

post-washing of 

pretreated biomass 

are needed 

 Zhu et al. 

(2011)22 

Stepwisely 

liquid hot 

water and 

H2SO4 

pretreated 

sugarcane 

bagasse 

hydrolysate 

A sequence of 

treatments including 

Ca(OH)2 neutralization, 

IR-120 resin, activated 

charcoal, and IRA-67 

resin 

Inhibitors such as 

HMF, furfural, 

HOAc, and 

formic acid are 

removed 

Various chemicals 

[Ca(OH)2, resin, 

and activated 

charcoal] input 

with tedious 

operation 

procedures 

increases 

production 

baseline cost 

 Vallejos 

et al. 

(2016)109 

H2SO4 

pretreated 

seaweed 

hydrolysate 

Activated carbon, the 

over-liming method 

with Ca(OH)2, and the 

ion exchange method 

with polyethyleneimine 

Activated carbon 

shows the best 

performance for 

HMF removal 

with simple 

operation 

Ion exchange leads 

to a significant 

loss of fermentable 

sugars; higher 

energy is 

demanded to 

produce activated 

carbon 

 Nguyen 

et al. 

(2019)112 

H2SO4 

pretreated 

spruce 

hydrolysate  

NH4OH, NaOH, and 

Ca(OH)2 neutralization 

It is practical to 

operate with the 

mild optimal 

conditions (pH 

9.0/60 °C for 

NH4OH; from 

pH 9.0/80 °C to 

pH 12.0/30 °C for 

NaOH treatment) 

Sugars are 

partially lost; 

removal efficiency 

of phenols is 

relatively low; 

HMF and furfural 

removal highly 

depends on the 

alkaline 

concentration  

 Alriksson 

et al. 

(2006)107 

H2SO4 

pretreated 

sugarcane 

bagasse 

Vacuum evaporation 

followed by liquid-

liquid extraction using 

1-butanol, isobutyl 

acetate, or methyl 

isobutyl ketone 

Methyl isobutyl 

ketone leads to 

69.0% of 

phenolics, 85.4% 

of HOAc, and 

100.0% of HMF 

and furfural 

removal 

Vacuum 

evaporation 

increases energy 

input; organic 

solvents are costly 

and can be 

partially dissolved 

in the hydrolysate 

 Roque et 

al. 

(2020)111 
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Modeled 

hydrolysate  

Ten nanofiltration and 

reverse osmosis 

membranes with low 

molecular weight cut-

off 

High rejection 

performances 

(97% for sugars 

and 80% for 

HMF and 

vanillin) 

The operation 

process is costly; 

inhibitors can only 

be selectively 

removed; sugars 

are partially lost  

 Nguyen 

et al. 

(2015)106 

Simulated 

hydrolysate 

Activated charcoal in a 

fixed-bed column 

adsorption system 

HMF, furfural, 

and phenolic 

compounds can 

be efficiently 

removed 

The affinity of 

activated charcoal 

with H2SO4 and 

HOAc is weak; 

activated charcoal 

is costly 

Lee et al. 

(2020)21 

HNO3 

pretreated 

corncob 

hydrolysate 

Ion exchange resin 70% of the nitrate 

salt, phenolic 

content, and 

HMF are 

removed  

Pore diffusion is 

slow and required 

a high processing 

time 

 Kumar et 

al. 

(2018)108 

H2SO4 

pretreated 

corn stover 

hydrolysate 

Laccase treatment 84% of the 

phenolic 

compounds are 

removed  

Laccase is costly 

and cannot be 

recycled; the 

treatment is time-

consuming 

 Fang et 

al. 

(2015)114 

H2SO4 

pretreated 

sugarcane 

bagasse 

hydrolysate 

The isolated bacterium 

(Bordetella sp. 

BTIITR) treatment 

100% of furfural, 

94% of HMF, and 

82% of HOAc 

are removed 

The treatment is 

time-consuming, 

as incubation took 

16 h 

 Singh et 

al. 

(2017)116 

Dry H2SO4 

pretreated 

corn stover 

Co-culture of xylose-

utilizing and inhibitor-

tolerant Saccharomyces 

cerevisiae 

Ethanol yield and 

concentration are 

enhanced 

Large amounts of 

sugar are left in the 

final slurry; 

complex operation 

procedures are 

needed 

 Zhu et al. 

(2016)120 

Pilot-scale 

supercritical 

water with 

H2SO4 

catalyst 

The hydrolysate was 

centrifuged to remove 

the sediments and then 

treated with 4% (w/v) 

of activated carbon. 

The pH of the filtered 

The hydrolysate 

can be fermented 

to ethanol with a 

yield of 14.1% 

based on biomass 

Solid/liquid 

loading (1:50 w/v) 

for pretreatment is 

too low; 

detoxification 

(activated 

 Jeong et 

al. 

(2017)121 
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pretreated 

hydrolysate 

hydrolysate was 

adjusted to 5.5 by 5 N 

NaOH 

charcoal) and 

concentration 

(evaporation) of 

hydrolysates are 

costly  

1Hydrolysate was denoted as a liquid fraction after pretreatment and solid-liquid separation. 250 

 251 

3.3 Black liquor recycling 252 

In the case of alkaline pretreatment, the black liquor from the pretreated hydrolysate has 253 

typically been recycled for biomass pretreatment (Table 3). Seemingly, it is a promising strategy 254 

to reduce water and chemical consumption during biomass valorization. Several drawbacks make 255 

this method controversial: (1) the extra water and NaOH usually need to be replenished into the 256 

black liquor;122–126 (2) the pretreated biomass is commonly subjected to excessive water post-257 

washing and then combined with the fresh buffer before enzymatic hydrolysis and 258 

fermentation;124,125,127,128 and (3) the pretreatment effectiveness (lignin removal, sugar conversion, 259 

ethanol yield, etc.) often decreases as recycling time increases.122–124,127–129 Based on the previous 260 

analysis, it is difficult for a single acid and alkaline pretreatment to make up for their 261 

shortcomings in a comprehensive way.  262 

 263 

Table 3. Recycling of black liquor from alkaline pretreated biomass hydrolysate for biomass 264 

pretreatment. 265 

Biomass Initial 

pretreatment 

conditions 

Post-treatment 

process 

Pretreatment 

effectiveness and 

findings 

Ref. 
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Sugarcane 

bagasse 

A steam 

explosion under 

190 ℃ for 15 

min, followed by 

NaOH (1%, w/v) 

delignification at 

98–100 ℃ for 1 h 

with 5% solid 

loading 

The black liquor is 

recycled as a 

delignification 

solution with the pH 

adjusted to 13; the 

pretreated biomass is 

washed with water 

until pH 6 

NaOH can be 

recycled as black 

liquor but it is vital 

to keep the pH in 

the 12.6–13.3 range 

before each new 

delignification cycle 

 Rocha et 

al. 

(2014)122 

Rice straw 10% solid 

loading with 

NaOH (0.5 M, 

pH=13.9) at 

121 °C for 2 h 

The black liquor is 

ultrafiltered by a 

ceramic membrane; 

the permeate is 

recycled as a 

delignification 

solution with its pH 

readjusted to 13.9; 

the membrane is 

cleaned at 50 °C with 

an aqueous NaOH 

solution of 1% (w/v) 

for 1 h and then 

washed with 

deionized water 

Glucose yields from 

enzymatic 

hydrolysis at 10% 

solid loading with 

citrate buffer range 

from 40–50% as the 

black liquor is 

recycled four times 

Li et al. 

(2015)123 

Sugarcane 

bagasse 

10% solid 

loading with 

NaOH (2%, 

W/V) at 80 °C for 

2 h 

The pretreated solid 

is washed with 600 

mL water three times; 

the black liquor is 

added 0–1.5% (w/v) 

of NaOH and 

recycled for 

pretreatment  

Enzymatic 

hydrolysis 

efficiency decreases 

as the recycling 

times of black liquor 

increase 

 Wang et 

al. 

(2016)127 

Miscanthus 

sacchariflorus 

Twin-screw 

extrusion NaOH 

(0.6 M) 

pretreatment at 

100 °C 

The black liquor is 

recycled for 

pretreatment; the 

pretreated biomass is 

used for enzymatic 

hydrolysis directly 

without details  

Lignin removal and 

sugar yields 

decrease as 

recycling times 

increase 

 Cha et al. 

(2016)129 
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Corn stover 10% solid 

loading with 

H2O2 (7.5%, v/v) 

solution with pH 

of 11.58 at 25 °C 

for 1 h 

The pretreated 

biomass is washed 

with distilled water 

until neutral pH; the 

black liquor is 

recycled for 

pretreatment 

Lignin and 

hemicellulose 

removal and sugar 

yields decrease as 

recycling times 

increase 

 Alencar et 

al. 

(2017)124 

Corn stover 3 kg solids with 

0.165 kg sodium 

hydroxide pellets 

and 29.6 kg of 

tap water at 80 °C 

for 2 h 

The black liquor is 

combined with water 

and 0.165 kg of 

NaOH; the pretreated 

biomass is washed 

with 30 kg of fresh 

water in the paddle 

reactor for 30min 

The accumulation 

does not lower 

acetyl and lignin 

removal during 

pretreatment, 

resulting in 

comparable sugar 

yields in enzymatic 

hydrolysis 

 Chen et 

al. 

(2018)125 

Cogongrass 10% solid 

loading with 

NaOH (2%, 

W/V) at 85 °C for 

90 min 

The pretreated 

biomass is washed 

with 300 mL of water 

in three stages; the 

black liquor is diluted 

by wasted water and 

replenished with 1% 

(W/V) NaOH 

Ethanol yield 

decreases from 

90.8% (zero 

recycle) to 66.4% 

(tenth recycle) at 

3% solid loading of 

enzymatic 

hydrolysis   

Goshadrou 

(2019)128 

Sugarcane 

bagasse 

10% solid 

loading with 

vacuum-assisted 

NaOH 2% (w/v) 

pretreatment at 

121 °C for 1 h 

The pretreated 

biomass is washed to 

neutral pH in hot 

deionized water; the 

black liquor is 

supplied by fresh 

deionized water and 

adjusted to a pH of 

13.70 

Glucose yields are 

not significantly 

different between 

pretreatment with 

fresh NaOH and 

recovered black 

liquor; ethanol 

yields obtained from 

the unwashed 

biomass are 

significantly higher 

than those from the 

washed biomass  

 Fan et al. 

(2020)130 

 266 

4. Novel processes for reducing water consumption 267 

4.1 Omitting water-washing after solid-liquid separation 268 
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Eliminating the washing step after biomass pretreatment is required to reduce water use, 269 

therefore, it is vital to distinguish alternative pretreatment strategies to minimize the generation of 270 

inhibitory compounds.40 Previous studies have reported the potential of unwashed pretreated 271 

biomass from solid-liquid separation for enzymatic hydrolysis and fermentation. For example, Lu 272 

et al.131 achieved an ethanol concentration of 56.28 g/L via Tween 40 pretreatment of unwashed 273 

pretreated reed straw and further fed-batch fermentation (Fig. 1). Wang et al. used the unwashed 274 

NaOH pretreated sugarcane bagasse for fed-batch enzymatic hydrolysis and fermentation after 275 

pH adjusting with glacial HOAc (Fig. 2) and reached an ethanol production of 44.53 g/L and 276 

87.35% of theoretical ethanol yield.126 Furthermore, a pretreatment method of densifying biomass 277 

with acid or alkali chemicals followed by an autoclave has been proposed to achieve high ethanol 278 

concentration (> 70g/L) through fed-batch hydrolysis and fermentation.132–136 If water washing is 279 

omitted, the acid or alkali used for densifying biomass remains in the pretreated biomass. 280 

Therefore, the residual chemicals might destroy the structure and activity of the enzymes by 281 

changing the pH of the slurry during fed-batch fermentation. Unfortunately, it was only 282 

mentioned that no washing and detoxification were needed after pretreatment, whether the 283 

activity of enzymes changed and how to adjust the pH of slurry again when loading the pretreated 284 

biomass were not mentioned in detail. Additionally, the operation of liquid discarding and solid 285 

drying after solid-liquid separation may be a challenge for industrial applications. 286 
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 287 

Fig. 1. The schematic flowchart of Tween 40 pretreatment followed by solid-liquid separation 288 

and fed-batch fermentation for ethanol production.  289 

 290 

Fig. 2. The schematic flowchart of NaOH pretreatment followed by solid-liquid separation, pH 291 

adjusting with HOAc, and fed-batch fermentation for ethanol production.  292 

 293 

4.2 Omitting water-washing without solid-liquid separation 294 

The direct hydrolysis and fermentation of the pretreated slurry without solid-liquid 295 

separation may be the ideal pathway to reduce water consumption. Zheng et al.137 reported that 296 

the slurry of pretreated sugarcane bagasse at 5% (w/v) solid loading can be hydrolyzed and 297 

fermented to ethanol after pH adjusting with 4 mol/L NaOH solution (Fig. 3). Whether it can be 298 

applied to the pretreatment scenarios with high solid loadings remains unknown. Romaní et al.138 299 

conducted non-isothermal autohydrolysis pretreatment of Eucalyptus globulus wood and 300 

performed simultaneous saccharification and fermentation of the pretreated slurry at a liquid/solid 301 

(g/g) of 6.4 to achieve an ethanol concentration of 50.2 g/L. However, in this study, the method of 302 

pH adjustment was not introduced. Rana et al.139 conducted the wet explosion pretreatment of 303 
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loblolly pine with a solid loading of 25% at a pilot plant and then performed the enzymatic 304 

hydrolysis of the pretreated slurry after the pH was adjusted to 5.0 using 4 M KOH. Remarkably, 305 

a 96% glucose and nearly 100% hemicellulose yield was reached, even though HMF, furfural, 306 

and HOAc were produced.140 Note that just because a pretreated slurry can be hydrolyzed by 307 

enzymes after pH adjustment does not mean that it can be fermented by strains into ethanol as 308 

discussed in Section 2.1. This can be also verified by our previous study where H2SO4 (pH = 309 

1.12) or NaOH (pH = 13.53) pretreated slurry at initial solid loadings of 10 and 20% was 310 

subjected to enzymatic hydrolysis and fermentation after pH adjusting with 10 M NaOH and 10% 311 

H2SO4, respectively.141 Results showed that both scenarios can generate high sugar concentration 312 

and yield, but only the hydrolysate from NaOH pretreatment with 10% initial solid loading can 313 

be efficiently fermented to bioethanol.141 314 

 315 

Fig. 3. The schematic flowchart of liquid hot water pretreatment followed by pH adjusting with 316 

NaOH and fermentation for ethanol production.  317 

 318 

4.3 Perspective on CaO pretreatment with an acid neutralization   319 

Based on the finding in our previous study,141 could the toxicity of NaOH pretreated slurry 320 

with 20% initial solid loading after pH adjusting with H2SO4 to yeast cells be caused by the high 321 
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concentration of Na2SO4? If so, the CaSO4 produced by substituting NaOH with CaO turns into a 322 

precipitate that does not affect the growth of yeast cells, and the tiny amount of dissolved calcium 323 

ions may also be used by yeast (Fig. 4). In this regard, CaO [or Ca(OH)2] pretreatment of 324 

lignocellulosic biomass has been well established.142–146 Surprisingly, it was reported that 325 

Ca(OH)2 (0.15 g/g biomass) pretreated corn stover slurry after pH adjusting with H2SO4 can be 326 

efficiently converted to ethanol.147 There might be some concern about how to achieve the 327 

practical handling of CaSO4 and whether it affects downstream ethanol distillation. Replacing the 328 

H2SO4 with HOAc in the pH-adjusting pretreated slurry will lead to the formation of calcium 329 

acetate which can be separated from the fermented slurry before ethanol distillation. Compared to 330 

less-value CaSO4, calcium acetate is indeed a functional calcium salt. In addition, CO2 could be 331 

an alternative for the neutralization of Ca(OH)2 to form CaCO3. Experiments and techno-332 

economic analyses are needed to confirm whether the idea is feasible. In addition, in the process 333 

of thermochemical pretreatment with high solid loading, more or less inhibitory compounds will 334 

be produced in the pretreated slurry, so it is essential to screen and select robust enzymes and 335 

strains with high activity and tolerance. 336 
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 337 

Fig. 4. The schematic flowchart of CaO pretreatment followed by pH adjusting with acid for 338 

ethanol production without water washing and solid-liquid separation.  339 

 340 

5. Challenges and prospects 341 

The production of biofuels from lignocellulosic biomass has great potential to reduce the 342 

dependence on fossil fuels. However, no robust pretreatment technologies are available yet for 343 

commercialization even though H2SO4 pretreatment has been highly promoted due to its low 344 

production costs. One of the economic challenges could be associated with water and chemicals 345 

overconsumption. For example, Ovejero-Pérez et al.148 demonstrated that increasing water 346 

washing volumes of the pretreated biomass increased production costs but washing with 5.5 g 347 

water/g ionic liquid was approved to be the most economic option as it achieved a minimal total 348 
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ionic liquid recovery cost of $16/kg of biomass. Increasing solid loading for biomass 349 

pretreatment might be able to reduce water use to some extent, but the resulting side effects 350 

including ineffective pretreatment performance, more byproduct generation, and high viscosity 351 

cannot be ignored. For acid pretreatment, physicochemical and biological detoxification 352 

technologies have been applied to render the liquid fraction amenable to enzymes and microbes. 353 

Alkaline neutralization and liquid-liquid extraction could be doable based on their simple 354 

operation and low cost. For alkali pretreatment, recycling black liquor for biomass pretreatment 355 

provides a pathway to minimize water and chemical consumption, but several disadvantages such 356 

as declining pretreatment effectiveness should be considered. Up to now, several studies have 357 

removed the water washing step after pretreatment and achieved high ethanol concentration 358 

with/without solid-liquid separation, which offers a new pathway to reduce water use. Among 359 

them, CaO pretreatment followed by acid neutralization enables enzymatic hydrolysis and 360 

fermentation directly without solid-liquid separation and detoxification. To demonstrate the effect 361 

of water use during pretreatment on the economic and environmental aspects of the refinery, it is 362 

highly needed in future studies to obtain quantitative evaluation at a pilot scale. In addition, the 363 

development of robust strains that can keep effective digestion ability under severe conditions 364 

could also solve this challenge to a certain extent.  365 

 366 

6. Conclusions 367 

Physicochemical pretreatment strategies have been considerably developed to render 368 

lignocellulosic biomass amenable to enzymes and strains for ethanol production. However, a 369 
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large amount of wastewater generation and discarding after biomass pretreatment might stall 370 

commercial exploration. The inhibitory effects of derivatives and residual chemicals on enzymes 371 

and microbes necessitate the excessive water washing of the pretreated slurry. The undesired side 372 

effects such as weak pretreatment effectiveness, high concentration of inhibitory compounds, and 373 

high viscosity of slurry might offset the advantages of operating at high solid loading. 374 

Physicochemical detoxification of the acid-pretreated liquid fraction faces technoeconomic 375 

challenges due to the additional investment of chemicals and materials. Seemingly, black liquor 376 

recycling has great potential to reduce water and chemical consumption, however, the alkali-377 

pretreated biomass is substantially washed with water and then mixed with the fresh buffer for 378 

enzymatic hydrolysis and fermentation. Nevertheless, the additional water and alkali generally 379 

are replenished to the black liquor, because the pretreatment effectiveness inevitably decreases as 380 

black liquor recycling time increases. Recent studies on excluding water washing with/without 381 

solid-liquid separation provide new perspectives for water conservation. In particular, lime 382 

pretreatment followed by pH adjusting with acid may offer great promise for high-loading 383 

pretreatment and fermentation without water washing and solid-liquid separation to minimize 384 

water consumption.  385 
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