University of Texas Rio Grande Valley

ScholarWorks @ UTRGV

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

College of Sciences

2-7-2023

A Critical Review on Water Overconsumption in Lignocellulosic Biomass Pretreatment for Ethanol Production through Enzymic Hydrolysis and Fermentation

Jikai Zhao The University of Texas Rio Grande Valley, Jikai.Zhao@utrgv.edu

Juhee Lee The University of Texas Rio Grande Valley, juhee.lee@utrgv.edu

Donghai Wang

Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac

Part of the Earth Sciences Commons, and the Environmental Sciences Commons

Recommended Citation

Zhao, Jikai, Juhee Lee, and Donghai Wang. "A Critical Review on Water Overconsumption in Lignocellulosic Biomass Pretreatment for Ethanol Production through Enzymic Hydrolysis and Fermentation." Energy & Fuels 37, no. 4 (2023): 2667-2680. https://doi.org/10.1021/ acs.energyfuels.3c00015

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

1	A critical review on water overconsumption in lignocellulosic
2	biomass pretreatment for ethanol production through enzymic
3	hydrolysis and fermentation

5	Jikai Zhao, ^{1,2} *	Juhee Lee, ¹	Donghai	Wang ³ *
---	------------------------------	-------------------------	---------	---------------------

- ⁶ ¹School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande
- 7 Valley, Edinburg, TX 78539, United States
- ²Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539,
- 9 United States
- ³Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS

11 66506, USA

- 12
- 13 *Corresponding author:
- 14 Jikai Zhao (jikai.zhao@utrgv.edu)
- 15 Donghai Wang (<u>dwang@ksu.edu</u>)
- 16

17	Abstract: Global demand for renewable and sustainable energy fostered the considerable
18	development of biomass-to-ethanol valorization strategies. Thermochemical pretreatment
19	methods have been proposed to render biomass more amenable to enzymatic and microbial
20	digestion. However, the efforts have not led to its industrial-scale worldwide realization. One of
21	the obstacles to commercialization could be related to water overconsumption, as excessive water
22	washing of the pretreated slurry is often performed to remove inhibitory compounds and residual
23	chemicals after biomass pretreatment. Only increasing solid loading for biomass pretreatment
24	results in ineffective pretreatment performance, more inhibitors formation, and high viscosity,
25	which in turn necessitates the water washing step. A number of physicochemical and biological
26	methods are applied to detoxify the acid-pretreated liquid fraction for enzymatic hydrolysis and
27	fermentation. Among them, alkaline neutralization and liquid-liquid extraction are preferred
28	because of their simple operation and low cost. Seemingly, recycling black liquor for alkali
29	pretreatment offers a pathway to reduce water and chemical consumption, but alkali
30	replenishment and inhibitor accumulation significantly weaken this technology. Interestingly,
31	quite a few studies have removed the water washing and even solid-liquid separation steps after
32	(liquid hot water, Tween 40, and CaO) pretreatment. Whereas there is still a huge room for future
33	studies to render biomass pretreatment more feasible in terms of economic and environmental
34	points of view. This review provides a deep understanding of wastewater generation during
35	biomass upgrading and discusses the solutions to reduce water consumption critically.
36	Keywords: Biomass; pretreatment; detoxification; wastewater generation; ethanol production

1. Introduction

Global demand for coal and petroleum based energy sources resulted in the potential 38 depletion of non-renewable fossil fuels.^{1–3} Exploring alternative bioresources with renewable and 39 sustainable characteristics is an essential worldwide task to alleviate overdependence on fossil 40 fuels and collateral environmental issues.^{4–6} The share of coal in the total U.S. energy 41 consumption reduced in favor of emerging energy sources such as natural gas and nuclear for the 42 past century.⁷ Strikingly, in the last two decades, other renewable energy sources stood out and 43 occupied approximately 12% of U.S. primary energy consumption in 2020, as it plays an 44 important role in reducing greenhouse gas emissions. Biomass-related resources approximately 45 account for 39% of renewable energy.⁷ Woody biomass is what we often recognize as 46 lignocellulosic biomass, which is commercially used by power plants to generate electricity and 47 steam via combustion with/without coal to reduce net CO₂ emissions. Counting its annual 48 49 production, lignocellulosic biomass from agriculture (corn stover, wheat straw, sugarcane bagasse, etc.) and forestry (paper mill and sawmill discards) is typically underutilized.^{8,9} 50 Lignocellulosic biomass has been considerably recognized as a competitive candidate for 51 52 ethanol production via pretreatment, enzymatic hydrolysis, and fermentation steps due to its substantial cellulose and hemicellulose components.^{10–12} However, the recalcitrance of robust 53 lignin necessitates physicochemical pretreatment to render lignocellulosic biomass more 54 amenable to enzymatic and microbial degradation.^{13–15} The mechanisms and effectiveness of 55 pretreatment technologies can be found elsewhere.^{10,11,16–19} Despite half a century of efforts, the 56 biomass-to-ethanol commercial realization has stagnated confronting several technical and 57

58	economic bottlenecks such as the difficulty in a massive collection of raw biomass and
59	unaffordable production cost. From the production point of view, excessive water washing and
60	anti-solvent addition after biomass pretreatment are commonly needed, since the inhibitory
61	compounds such as derivatives [acetic acid (HOAc), formic acid, levulinic acid, furfural, 5-
62	hydroxymethylfurfural (HMF)] from sugar degradation and phenolic compounds from lignin as
63	well as residual chemicals (acids, alkalis, and ionic liquids) play determinant roles in constraining
64	enzymatic and microbial activities. ^{20–23} Obviously, wastewater generation and subsequent
65	discarding would result in water overconsumption. ^{24–26} From the perspective of an economic
66	aspect, such routine operations are inevitably not feasible in long-term commercial production,
67	because the process of biomass-based ethanol refinery is affected by the availability of water
68	resources and excessive wastewater generation can inevitably increase purification treatment
69	costs. ^{7,27} However, there is significant controversy among the studies regarding the
70	technoeconomic feasibility of biomass processing plants. ^{28–33} Although the directly unambiguous
71	comparison between the studies is unfeasible, this is probably related to the inconsistency
72	between process simulation and lab-scale experimental steps. ^{34,35} For example, Zang et al. ³⁰
73	reported that switchgrass pretreated by choline chloride:ethylene glycol (ChCl:EG) with 1%
74	H_2SO_4 was washed with a water-acetone mixture and then hydrolyzed after adding water and
75	enzymes directly, however, it was not in agreement with the cited reference where the citrate was
76	used as a buffer. ³⁰ Besides, it was highlighted that after lignin precipitation the resultant liquid
77	fraction was subjected to evaporation at 70 °C to remove water for ChCl:EG recovery, however,
78	during process simulation the resultant liquid fraction was directly reused for switchgrass 4

79	pretreatment. ³⁰ Acetone-water washing of pretreated switchgrass could dilute the ChCl:EG
80	concentration, even if some of it was reused, it would result in abundant wastewater (containing
81	ChCl:EG) generation. Therefore, reducing water consumption during lignocellulosic ethanol
82	production is crucial for a circular economy. ³⁶
83	Maintaining high solid biomass loading from pretreatment to fermentation has been highly
84	preferred to reduce production costs. ^{37–39} To a certain extent, the application of high solid loading
85	can increase the concentration of bioethanol and reduce the cost of distillation. ⁴⁰ However, with
86	the respect to commercial promotion, it is necessary to consider the "high-solids side effect" such
87	as the accumulation of inhibitory compounds, low cellulose accessibility, and high viscosity. ⁴¹
88	The undesirable outcomes might offset the advantages of operating at high solid loading. ⁴² In
89	addition, physicochemical detoxification technologies for acid pretreatment and successive
90	recycling of black liquor for alkali pretreatment have been considerably proposed. Organosolv,
91	ionic liquid, and deep eutectic solvent pretreatments have attracted considerable attention to
92	fractionate biomass. ^{17,19,43} Unfortunately, efficient and practical strategies targeting the reduction
93	in water consumption are not available. ⁴¹ This is probably because water or anti-solvent washing
94	is inevitable to recover these expensive reagents. ⁴⁴
95	The objectives of this work are to disclose the collateral challenges confronted by biomass-
96	to-ethanol production in terms of water overconsumption and offer a consolidated source of
97	information in connection with the latest advances from the laboratory to commercial
98	exploration. Explicitly, following a detailed discussion of wastewater generation, the
99	corresponding solutions including the increment of solid loading, physicochemical detoxification,

and black liquor recycling are critically discussed to elucidate if these methods are effective in 100 reducing water consumption. Additionally, several advances in response to alleviating water 101 consumption during biomass-based ethanol production were illuminated. 102 103 2. Water overconsumption 104 Although physicochemical pretreatment can remove most of the hemicellulose and partially 105 solubilize the lignin enhancing the enzymatic accessibility to cellulose, the undesired derivatives 106 from sugar and lignin degradation can also be released during biomass pretreatment. These 107 derivatives include furans (HMF and furfural], organic acids (HOAc, formic acid, and levulinic 108

acid), pseudo-lignin, small lignin units, extractives, and phenolic compounds.^{10,45,46} Furthermore,

the residual chemical reagents used for biomass pretreatment often contribute to inhibitory

111 influences on enzymatic and microbial activities as well. To render the pretreated biomass

amenable to ethanol conversion, the solid residues after pretreatment and solid-liquid separation

are commonly washed extensively with water, whereas the resultant wastewater (liquid fraction),

114 containing residual chemicals, derivatives, and sugars, is often discarded (Table 1). For example,

115 Nogueira et al. reported that washing (200 mL water/15g raw biomass per time) was conducted

116 12 times to achieve NaOH (2%, w/v) pretreated coconut fiber filtrate transparent and reach a

neutral pH of this filtrate.⁴⁷ Therefore, the post-washing process inevitably results in a large

amount of water consumption and chemical loss (Table 1). Herein, the inhibitory compounds that

appeared in the pretreated slurry are roughly categorized into two groups to elucidate the reasons

120 for wastewater generation and discarding.

Table 1. A summary of representative studies regarding water overconsumption under different
 biomass pretreatment conditions at lab and pilot scales.¹

protion	anone contantions at lab and prior se	u105.	
Biomass	Pretreatment condition	Post-treatment	Ref.
Corncob	Combining H ₂ SO ₄ and CH ₃ COOH with different ratios under solid loading of 10-30% at 80-120 °C for 30-90 min	The residues are washed with distilled water and separated using a vacuum filter, and the collected residues are dried to constant weight in an oven at 105 °C	Selvakumar et al. (2022) ⁴⁸
Miscanthus	The first stage: 1% HNO ₃ at 90 °C for 2 h; the second stage: 4% HNO ₃ solution at 94-96 °C for 8 h	The solid residues are washed thoroughly with water until the neutral wash water is formed	Skiba et al. (2022) ⁴⁹
Chestnut shell	10% solid loading with 0-5% NaOH at 70 °C for 2 h	The slurry is neutralized with distilled water to pH 7, and the residual chestnut shell is dried in an oven at 105 °C for 48 h to completely remove the water	Lee et al. (2022) ⁵⁰
Sugarcane bagasse	Two stages ultrasonic assisted 2.0% H ₂ SO ₄ at 6% solid loading	The solid residues are washed with distilled water until neutral pH for the filtrate, followed by drying the recovered solid overnight at 55 °C	Chen et al. (2022) ⁵¹
Switchgrass	15% solid loading with liquid hot water at 200 °C for 5 min	The pretreated biomass is washed with 10 g of distilled water per gram of solids four times with the wastewater is discarded	Larnaudie et al. (2019) ⁵²
Empty palm fruit bunch	5–25% solid loading with liquid hot water at 160–210 °C for 0– 60 min	The pretreated biomass is washed with an amount of water equivalent to 10 times the amount of biomass initially loaded to the reactor with the wastewater is discarded	Cardona et al. (2018) ⁵³

Acacia wood	5% solid loading with 0.05% H ₂ SO ₄ at 200 °C for 5 min	The pretreated filtrate and 100 mL of washed deionized water are discarded	Lee et al. (2020) ⁵⁴
Bamboo	10% solid loading with 30% hydrogen peroxide/glacial HOAc (1:1, v/v) at 85 °C for 120 min	The pretreated biomass is washed with tap water and the wastewater is discarded	Song et al. (2020) ⁵⁵
Sugarcane biomass	2–8% solid loading with 1% (m/v) of H ₂ SO ₄ at 121 °C for 20–60 min	The pretreated biomass is washed with distilled water until a pH close to 5.0 with the wastewater is discarded	Santos et al. (2020) ⁵⁶
Cashew apple bagasse	10% solid loading with HOAc $(0-60 \text{ v/v})$ or H ₂ SO ₄ $(0-0.8 \text{ w/v})$ at 121 °C for 30–60 min	The pretreated biomass is washed eight times using 200 mL of tap water with the wastewater is discarded	Araujo Padilha et al. (2020) ⁵⁷
Wheat straw	10% solid loading with 1–10% NaOH solutions at 190 °C for 240 min	Deionized water is used to wash the pretreated biomass and then discarded	Tsegaye et al. (2019) ⁵⁸
Prosopis juliflora biomass	Microwave irradiation power (270–450 W) for 3–5 min with 0.75–1.25% (w/v) NaOH solutions at the liquid-to-solid ratio of 10–20 mL/g	The filtrate is washed with distilled water until the pH becomes neutral and then discarded	Alexander et al. (2020) ⁵⁹
Softwood pine	10% solid loading with 0–2% w/v NaOH at 100–180 °C for 1–5 h	The pretreated biomass is washed with distilled water until reaching pH 7 with the wastewater is discarded	Safari et al. (2017) ⁶⁰
Poplar biomass	13% solid loading with ethanol (60%, v/v) solution and 1.25% (w/w) of H ₂ SO ₄ at 180 °C for 60 min	The pretreated biomass is washed with 60 °C aqueous ethanol (60%), as the washings are combined with the filtrate and poured into ~500 mL of deionized water.	Meng et al. (2020) ⁶¹
Hybrid Pennisetum	Four organosolv (γ- valerolactone, tetrahydrofurfuryl alcohol, ethanol, and acetone) assisted	The pretreated biomass is first washed with an equal volume of the organic solvent at least three times to avoid lignin	Tan et al. $(2020)^{62}$

	by 0.05 mol/L H ₂ SO ₄ with a liquid/solid ratio of 12:1 at 100 °C for 2 h	deposition and then washed to neutral with water as the wastewater is discarded	
Spruce and oak sawdust	2% solid loading with 1-ethyl- 3-methylimidazolium acetate at 45 °C for 40 min	The pretreated biomass is precipitated by adding two times of ultrapure water and then centrifuged; it is thoroughly washed with ultrapure water as the wastewater is discarded	Alayoubi et al. (2020) ⁶³
Hornbeam and spruce wood	4% solid loading with biomass to 1-butyl-3-methylimidazolium chloride ratio of 1:4 at 50– 150 °C for 0.5–2 h	The pretreated biomass is washed with distilled water to obtain 95–99% removal of the ionic liquids as the wastewater is discarded	Dotsenko et al. (2018) ⁶⁴
Wheat straw	10% solid loading with ChCl, guaiacol, and AlCl ₃ (molar ratio of 25:50:1) at 80–130 °C for 1 h	The pretreated biomass is washed with 200 mL of hot ethanol and excessive water stepwise as the wastewater is discarded	Huang et al. (2021) ⁶⁵
Hybrid Pennisetum	10% solid loading with FeCl ₃ in ChCl/glycerol at 60–140 °C for 1–9 h	The pretreated slurry is washed with 50% acetone/water (100 mL) and then vacuum-filtered and re- washed with 50% acetone/water until the filtrate is colorless as the acetone is distilled from the filtrate	Wang et al. (2020) ⁶⁶
Eucalyptus biomass	Pilot-scale pretreatment at 180 °C for 15 min with 2.4 wt.% H ₂ SO ₄ followed by steam explosion	After pretreatment, residual biomass solids were pressed to remove the hydrolyzate, and the steam-explored sample was washed with distilled water until the pH of the filtrate was 6.0.	McIntosh et al. (2016) ⁶⁷

¹The studies were collected from recent publications with a pretreatment that included liquid hot
 water, acid, alkaline, organosolv, ionic liquid, deep eutectic solvent, and combined methods.

126 2.1 Sugar and lignin derivatives

127	Furans (HMF and furfural) are generally found in the acid-pretreated slurry and derived from
128	cellulose and hemicellulose degradation, respectively. ^{68–70} Based on the literature review, these
129	molecules are not found to significantly inhibit enzymatic hydrolysis, apart from the work
130	reported that the addition of 2 or 5 mg/mL of furfural to the substrate of cellulose and enzyme
131	decreased glucose recovery by 5% and 9%, respectively.20 However, it has been widely
132	recognized that they can negatively influence the microbial ethanol fermentation of the pretreated
133	materials.71-79 In this regard, Roberto et al. demonstrated that furfural at 0.5 g/L had no significant
134	effect on the cell growth of Scheffersomyces stipitis, while furfural at 2 g/L was detrimental to
135	cell growth. ⁸⁰ Similarly, Nigam found that the presence of furfural at 0.25 g/L was unable to limit
136	the cell growth of Pichia stipitis and ethanol production from wheat straw hydrolysates, while
137	furfural at 1.5 g/L notably reduced ethanol yield and productivity by 90.4% and 85.1%,
138	respectively.77 Concerning their inhibitory mechanisms, Allen et al. illuminated that furfural
139	triggered the accumulation of reactive oxygen species in Saccharomyces cerevisiae inducing
140	cellular damage via the destruction of mitochondria and vacuole membranes as well as the actin
141	cytoskeleton and nuclear chromatin. ⁸¹ During fermentation, HMF and furfural can be metabolized
142	by Saccharomyces cerevisiae into 5-hydroxymethyl furfuryl alcohol and furfuryl alcohol,
143	respectively, indicating their similar inhibitory mechanisms. ^{75,76} Compared to furfural, HMF was
144	found to have less inhibitory effects on microbial activity due to its lower membrane
145	permeability.76,82 In addition, weak organic acids such as acetic, formic, and levulinic acids can
146	typically be produced from the dissociation of acetyl groups and furans during pretreatment. ^{46,82,83}

The individual addition of organic acids to the hydrolysis or fermentation system was noticed to 147 be detrimental,^{20,77} which could be attributed to the change in slurry pH inhibiting cell growth. 148 Therefore, their negative effects may be mitigated via alkaline neutralization, which can be seen 149 150 in the report that H₂SO₄ pretreated slurry after ammonia conditioning could be used for enzymatic hydrolysis and fermentation directly.84 151 In the case of lignin, it has been assessed that non-productive adsorption and steric hindrance 152 are broadly known as the primary mechanism controlling lignin-enzyme interactions,⁸⁵ depending 153 on the molecular weight and structural characteristic of lignin.⁸⁶ Pseudo-lignin, formed from 154 dilute acid pretreatment,^{69,70,87} can also significantly retard cellulose hydrolysis.⁸⁸ Besides, the 155 156 phenolic compounds are reported to be more poisonous than the previously-mentioned derivatives even at lower concentrations, due to their low molecular weight allowing them easily 157 penetrate cell membranes and alter cell morphology.^{75,76,82} Even with solid-liquid separation after 158 159 pretreatment, these degraded products are still partially adsorbed to the surface of the pretreated biomass, thus excessive water is usually used to remove them or reduce their recondensation.⁸⁹ 160 161

162 2.2 Residual chemical reagents

Another reason for post-washing the pretreated biomass is to remove the residual chemical reagents used for biomass pretreatment. For dilute acid and alkaline pretreatments, the pH of the pretreated slurry is commonly too severer to be used as a buffer solution for enzymatic hydrolysis and fermentation.⁶⁹ The work by Frederick et al. highlighted that rinsing the 0.98% (v/v) H_2SO_4 pretreated biomass with 1.5 or 3 volumes of water reached glucose yields that were seven folds

168	higher than the unwashed treatment. ⁹⁰ They also mentioned that the H ₂ SO ₄ pretreated biomass
169	washed with 3 volumes of water created the highest ethanol yields (up to 0.43 g/g-glucose) that
170	were significantly higher than those from the unwashed sample (≤ 0.28 g/g-glucose). ⁹⁰ Based on
171	the same enzymatic hydrolysis and fermentation conditions, it could be considered that the higher
172	glucose and ethanol yields are highly associated with the removal of the residual H ₂ SO ₄ . In
173	addition, Karuna et al. pretreated rice straw with NaOH and subsequently conditioned the
174	pretreated slurry to a pH of 5-6 via extensive water washing or acidification with HCl plus water
175	washing.91 In this case, excessive post-washing removed the disrupted lignin and residual NaOH,
176	while acidification (neutralization between HCl and NaOH) with post-washing precipitated the
177	modified lignin on the surfaces of rice straw, therefore, the former showed higher enzymatic
178	digestibility of rice straw than the latter.91 In terms of ionic liquid pretreatment, the researchers
179	performed choline acetate (ChOAc) and 1-ethyl-3-methylimidazolium acetate (EmimOAc)
180	pretreatments (0.5 g biomass/5.0 g ionic liquid) of bagasse powder with different water post-
181	washing times (45 mL per time).92,93 It was found that cellulase and yeast were more sensitive to
182	the residual EmimOAc concentrations in the pretreated biomass than ChOAc, based on their
183	median effective concentrations.93 Besides, based on the original bagasse the overall ethanol yield
184	after saccharification and co-fermentation of the pretreated bagasse with post-washing 5 times
185	was only 54% for ChOAc and 22% for EmimOAc.92 This indicates that the residual ionic liquid
186	in the pretreated biomass is dramatically detrimental to enzymatic and microbial activities,
187	therefore, adequate water is crucial to remove the residual ionic liquid. Moreover, to remove the
188	imidazole from the pretreated biomass, 2 volumes of distilled water and 3 volumes of ethanol 12

189	(96%) were employed. However, the HCl used for lignin precipitation was found to deprotonate
190	imidazole.94 Therefore, even if the chemicals are recovered and recycled for biomass
191	pretreatment, their functional integrity is unknown. Additionally, an anti-solvent applied for
192	chemical reagent removal from the pretreated biomass has a significant influence on glucose
193	conversion efficiency.95
194	
195	3. Common strategies for reducing water consumption
196	3.1 Increasing solid loading
197	Biomass pretreatment has been often performed at lower solid loadings ($\leq 10\%$) to efficiently
198	fractionate biomass into cellulose-concentrated solid fraction and hemicellulose- and lignin-
199	derived liquid fraction.96 In keeping with the idea of reducing water consumption, high solids
200	loading (>10%) for biomass pretreatment was widely promoted. However, undesired side effects
201	such as weak pretreatment effectiveness, accumulation of inhibitory compounds, and high
202	viscosity were often observed.38,96 In terms of pretreatment effectiveness, Xu et al. conducted the
203	EmimOAc pretreatment of corn stover assisted with/without NaOH and aqueous ammonia (10%,
204	v/v) at 36% (w/w) solid loading but performed the enzymatic hydrolysis of pretreated biomass at
205	1% (w/v) glucan loading after three times (10 mL/g biomass) of post-washing. In this study, only
206	60.65–64.82% of total glucose yields were obtained at a higher enzyme loading,97 indicating that
207	the accessibility of cellulose to enzymes after pretreatment was relatively low. Besides, the
208	increment of solid loading for biomass pretreatment significantly reduced xylan and lignin
209	removal as reported by Chen et al. who carried out the ternary deep eutectic solvent pretreatment 13

of switchgrass under 10-35% of solid loading.⁹⁸

The effects of solid loading used for pretreatment on the accumulation of inhibitory 211 compounds in the pretreated slurry have not been investigated yet, but it can be inferred that an 212 increase in solid loading would increase their concentrations.^{38,96} Therefore, the nominal 213 reduction in water consumption may be offset by the heavy water post-washing operation needed 214 for the removal of residual chemical reagents. Additionally, the resultant slurries with high solids 215 216 tend to be super viscous,⁹⁹ due to the water-biomass interaction.³⁷ Viamajala et al.¹⁰⁰ reported that biomass size reduction can decrease slurry viscosity, but a large amount of energy is required for 217 milling.¹⁰¹ Moreover, it has been demonstrated that feedstock pump ability could only be 218 achieved at solid loading below 15%.¹⁰² In this regard, Dãrãban et al. found that pumpable wood-219 based slurry containing 20% solids can be prepared using recycled biocrude as a carrier fluid, 220 given that the particle sizes of biomass were smaller than 0.125 mm.¹⁰² However, this 221 222 phenomenon has been typically overlooked, instead, excessive water was used to flush the slurry out.98,103,104 Based on the previous analysis, it might be debatable whether high solid loading for 223 pretreatment can save water because of the subsequent challenges. 224 225

226 3.2 Physicochemical detoxification

227 To render the dilute acid pretreated biomass and hydrolysate (liquid fraction) more

acquiescent for microbial fermentation, many physicochemical [membrane filtration,^{105,106}

alkaline neutralization,¹⁰⁷ ion exchange resin,^{108–110} liquid-liquid extraction,^{22,111} and activated

charcoal adsorption^{21,112,113}] and biological [laccase treatment,^{114,115} microbial degradation,^{116,117} and

231	engineered strain ^{118–120}] detoxification methods have been investigated. A summary of these
232	representative studies is presented in terms of strengths and drawbacks (Table 2). The
233	comprehensive collection and comparison among studies in this respect can be found
234	elsewhere. ^{10,11} but several crucial discoveries can be extracted from them: (1) alkaline addition is
235	unavoidably required to neutralize the residual acid in both pretreated biomass and hydrolysate
236	before enzymatic hydrolysis and fermentation regardless of which methods are applied; (2) the
237	cost of chemicals and enzymes for detoxification should be taken into consideration since the end
238	product-bioethanol is considerably sensitive to materials input; ³⁴ (3) excessive pursuit of HMF
239	and furfural removal efficiency and negligence of their subsequent recovery are undesirable
240	because they are especially high-value platform molecules for biofuels and chemicals conversion;
241	and (4) almost all techniques only focus on the acid pretreated hydrolysate and ignore the residual
242	inhibitors in the pretreated biomass. Concerning the simple operation and low capital investment,
243	alkaline neutralization and liquid-liquid extraction might be relatively preferable. The former can
244	create optimal conditions that result in an analogous fermentability comparing a synthetic sugar
245	solution without inhibitors,107 whereas the latter can entirely extract HMF and furfural as high-
246	value coproducts with the extraction solvent can be recycled into the system. ¹¹¹
247	

Table 2. Different physicochemical and biological detoxification methods at lab and pilot scaleswith their advantages and disadvantages.

Samples	Methods	Advantages	Disadvantages	Ref.	

H ₂ SO ₄ pretreated corn stover hydrolysate ¹	Trialkylamine extraction	73.3% of HOAc, 45.7% of HMF, and 100% of furfural are removed	The concentration process of hydrolysate and post-washing of pretreated biomass are needed	Zhu et al. (2011) ²²
Stepwisely liquid hot water and H ₂ SO ₄ pretreated sugarcane bagasse hydrolysate	A sequence of treatments including Ca(OH) ₂ neutralization, IR-120 resin, activated charcoal, and IRA-67 resin	Inhibitors such as HMF, furfural, HOAc, and formic acid are removed	Various chemicals [Ca(OH) ₂ , resin, and activated charcoal] input with tedious operation procedures increases production baseline cost	Vallejos et al. (2016) ¹⁰⁹
H ₂ SO ₄ pretreated seaweed hydrolysate	Activated carbon, the over-liming method with Ca(OH) ₂ , and the ion exchange method with polyethyleneimine	Activated carbon shows the best performance for HMF removal with simple operation	Ion exchange leads to a significant loss of fermentable sugars; higher energy is demanded to produce activated carbon	Nguyen et al. (2019) ¹¹²
H ₂ SO ₄ pretreated spruce nydrolysate	NH4OH, NaOH, and Ca(OH)2 neutralization	It is practical to operate with the mild optimal conditions (pH 9.0/60 °C for NH4OH; from pH 9.0/80 °C to pH 12.0/30 °C for NaOH treatment)	Sugars are partially lost; removal efficiency of phenols is relatively low; HMF and furfural removal highly depends on the alkaline concentration	Alriksson et al. (2006) ¹⁰⁷
H ₂ SO ₄ pretreated sugarcane bagasse	Vacuum evaporation followed by liquid- liquid extraction using 1-butanol, isobutyl acetate, or methyl isobutyl ketone	Methyl isobutyl ketone leads to 69.0% of phenolics, 85.4% of HOAc, and 100.0% of HMF and furfural removal	Vacuum evaporation increases energy input; organic solvents are costly and can be partially dissolved in the hydrolysate	Roque et al. (2020) ¹¹¹

Modeled hydrolysate	Ten nanofiltration and reverse osmosis membranes with low molecular weight cut- off	High rejection performances (97% for sugars and 80% for HMF and vanillin)	The operation process is costly; inhibitors can only be selectively removed; sugars are partially lost	Nguyen et al. (2015) ¹⁰⁶
Simulated hydrolysate	Activated charcoal in a fixed-bed column adsorption system	HMF, furfural, and phenolic compounds can be efficiently removed	The affinity of activated charcoal with H ₂ SO ₄ and HOAc is weak; activated charcoal is costly	Lee et al. (2020) ²¹
HNO ₃ pretreated corncob hydrolysate	Ion exchange resin	70% of the nitrate salt, phenolic content, and HMF are removed	Pore diffusion is slow and required a high processing time	Kumar et al. (2018) ¹⁰⁸
H ₂ SO ₄ pretreated corn stover hydrolysate	Laccase treatment	84% of the phenolic compounds are removed	Laccase is costly and cannot be recycled; the treatment is time- consuming	Fang et al. (2015) ¹¹⁴
H ₂ SO ₄ pretreated sugarcane bagasse hydrolysate	The isolated bacterium (Bordetella sp. BTIITR) treatment	100% of furfural, 94% of HMF, and 82% of HOAc are removed	The treatment is time-consuming, as incubation took 16 h	Singh et al. (2017) ¹¹⁶
Dry H ₂ SO ₄ pretreated corn stover	Co-culture of xylose- utilizing and inhibitor- tolerant Saccharomyces cerevisiae	Ethanol yield and concentration are enhanced	Large amounts of sugar are left in the final slurry; complex operation procedures are needed	Zhu et al. (2016) ¹²⁰
Pilot-scale supercritical water with H ₂ SO ₄ catalyst	The hydrolysate was centrifuged to remove the sediments and then treated with 4% (w/v) of activated carbon. The pH of the filtered	The hydrolysate can be fermented to ethanol with a yield of 14.1% based on biomass	Solid/liquid loading (1:50 w/v) for pretreatment is too low; detoxification (activated	Jeong et al. (2017) ¹²¹

pretreated hydrolysate	hydrolysate was adjusted to 5.5 by 5 N NaOH	charcoal) and concentration (evaporation) of hydrolysates are costly
		•

¹Hydrolysate was denoted as a liquid fraction after pretreatment and solid-liquid separation.

251

252	3.3 Black	liquor	recycling
-----	-----------	--------	-----------

253	In the case of alkaline pretreatment, the black liquor from the pretreated hydrolysate has
254	typically been recycled for biomass pretreatment (Table 3). Seemingly, it is a promising strategy
255	to reduce water and chemical consumption during biomass valorization. Several drawbacks make
256	this method controversial: (1) the extra water and NaOH usually need to be replenished into the
257	black liquor; ^{122–126} (2) the pretreated biomass is commonly subjected to excessive water post-
258	washing and then combined with the fresh buffer before enzymatic hydrolysis and
259	fermentation; ^{124,125,127,128} and (3) the pretreatment effectiveness (lignin removal, sugar conversion,
260	ethanol yield, etc.) often decreases as recycling time increases. ^{122–124,127–129} Based on the previous
261	analysis, it is difficult for a single acid and alkaline pretreatment to make up for their
262	shortcomings in a comprehensive way.
263	

Table 3. Recycling of black liquor from alkaline pretreated biomass hydrolysate for biomass

265 pretreatment.

Biomass	Initial	Post-treatment	Pretreatment	Ref.
	pretreatment	process	effectiveness and	
	conditions		findings	

Sugarcane bagasse	A steam explosion under 190 °C for 15 min, followed by NaOH (1%, w/v) delignification at 98–100 °C for 1 h with 5% solid loading	The black liquor is recycled as a delignification solution with the pH adjusted to 13; the pretreated biomass is washed with water until pH 6	NaOH can be recycled as black liquor but it is vital to keep the pH in the 12.6–13.3 range before each new delignification cycle	Rocha et al. (2014) ¹²²
Rice straw	loading 10% solid loading with NaOH (0.5 M, pH=13.9) at 121 °C for 2 h	The black liquor is ultrafiltered by a ceramic membrane; the permeate is recycled as a delignification solution with its pH readjusted to 13.9; the membrane is cleaned at 50 °C with an aqueous NaOH solution of 1% (w/v) for 1 h and then washed with deionized water	Glucose yields from enzymatic hydrolysis at 10% solid loading with citrate buffer range from 40–50% as the black liquor is recycled four times	Li et al. (2015) ¹²³
Sugarcane bagasse	10% solid loading with NaOH (2%, W/V) at 80 °C for 2 h	The pretreated solid is washed with 600 mL water three times; the black liquor is added 0–1.5% (w/v) of NaOH and recycled for	Enzymatic hydrolysis efficiency decreases as the recycling times of black liquor increase	Wang et al. (2016) ¹²⁷
Miscanthus sacchariflorus	Twin-screw extrusion NaOH (0.6 M) pretreatment at 100 °C	pretreatment The black liquor is recycled for pretreatment; the pretreated biomass is used for enzymatic hydrolysis directly without details	Lignin removal and sugar yields decrease as recycling times increase	Cha et al. (2016) ¹²⁹

Corn stover	10% solid loading with H_2O_2 (7.5%, v/v) solution with pH of 11.58 at 25 °C for 1 h	The pretreated biomass is washed with distilled water until neutral pH; the black liquor is recycled for pretreatment	Lignin and hemicellulose removal and sugar yields decrease as recycling times increase	Alencar et al. (2017) ¹²⁴
Corn stover	3 kg solids with 0.165 kg sodium hydroxide pellets and 29.6 kg of tap water at 80 °C for 2 h	The black liquor is combined with water and 0.165 kg of NaOH; the pretreated biomass is washed with 30 kg of fresh water in the paddle reactor for 30min	The accumulation does not lower acetyl and lignin removal during pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis	Chen et al. (2018) ¹²⁵
Cogongrass	10% solid loading with NaOH (2%, W/V) at 85 °C for 90 min	The pretreated biomass is washed with 300 mL of water in three stages; the black liquor is diluted by wasted water and replenished with 1% (W/V) NaOH	Ethanol yield decreases from 90.8% (zero recycle) to 66.4% (tenth recycle) at 3% solid loading of enzymatic hydrolysis	Goshadrou (2019) ¹²⁸
Sugarcane bagasse	10% solid loading with vacuum-assisted NaOH 2% (w/v) pretreatment at 121 °C for 1 h	The pretreated biomass is washed to neutral pH in hot deionized water; the black liquor is supplied by fresh deionized water and adjusted to a pH of 13.70	Glucose yields are not significantly different between pretreatment with fresh NaOH and recovered black liquor; ethanol yields obtained from the unwashed biomass are significantly higher than those from the washed biomass	Fan et al. (2020) ¹³⁰

267 4. Novel processes for reducing water consumption

268 4.1 Omitting water-washing after solid-liquid separation

269	Eliminating the washing step after biomass pretreatment is required to reduce water use,
270	therefore, it is vital to distinguish alternative pretreatment strategies to minimize the generation of
271	inhibitory compounds. ⁴⁰ Previous studies have reported the potential of unwashed pretreated
272	biomass from solid-liquid separation for enzymatic hydrolysis and fermentation. For example, Lu
273	et al. ¹³¹ achieved an ethanol concentration of 56.28 g/L via Tween 40 pretreatment of unwashed
274	pretreated reed straw and further fed-batch fermentation (Fig. 1). Wang et al. used the unwashed
275	NaOH pretreated sugarcane bagasse for fed-batch enzymatic hydrolysis and fermentation after
276	pH adjusting with glacial HOAc (Fig. 2) and reached an ethanol production of 44.53 g/L and
277	87.35% of theoretical ethanol yield. ¹²⁶ Furthermore, a pretreatment method of densifying biomass
278	with acid or alkali chemicals followed by an autoclave has been proposed to achieve high ethanol
279	concentration (> 70g/L) through fed-batch hydrolysis and fermentation. ^{132–136} If water washing is
280	omitted, the acid or alkali used for densifying biomass remains in the pretreated biomass.
281	Therefore, the residual chemicals might destroy the structure and activity of the enzymes by
282	changing the pH of the slurry during fed-batch fermentation. Unfortunately, it was only
283	mentioned that no washing and detoxification were needed after pretreatment, whether the
284	activity of enzymes changed and how to adjust the pH of slurry again when loading the pretreated
285	biomass were not mentioned in detail. Additionally, the operation of liquid discarding and solid
286	drying after solid-liquid separation may be a challenge for industrial applications.

287

Fig. 1. The schematic flowchart of Tween 40 pretreatment followed by solid-liquid separationand fed-batch fermentation for ethanol production.

Fig. 2. The schematic flowchart of NaOH pretreatment followed by solid-liquid separation, pHadjusting with HOAc, and fed-batch fermentation for ethanol production.

4.2 Omitting water-washing without solid-liquid separation

295 The direct hydrolysis and fermentation of the pretreated slurry without solid-liquid

separation may be the ideal pathway to reduce water consumption. Zheng et al.¹³⁷ reported that

the slurry of pretreated sugarcane bagasse at 5% (w/v) solid loading can be hydrolyzed and

fermented to ethanol after pH adjusting with 4 mol/L NaOH solution (Fig. 3). Whether it can be

applied to the pretreatment scenarios with high solid loadings remains unknown. Romaní et al.¹³⁸

300 conducted non-isothermal autohydrolysis pretreatment of Eucalyptus globulus wood and

301 performed simultaneous saccharification and fermentation of the pretreated slurry at a liquid/solid

(g/g) of 6.4 to achieve an ethanol concentration of 50.2 g/L. However, in this study, the method of

303 pH adjustment was not introduced. Rana et al.¹³⁹ conducted the wet explosion pretreatment of

304	lobiolly pine with a solid loading of 25% at a pilot plant and then performed the enzymatic
305	hydrolysis of the pretreated slurry after the pH was adjusted to 5.0 using 4 M KOH. Remarkably,
306	a 96% glucose and nearly 100% hemicellulose yield was reached, even though HMF, furfural,
307	and HOAc were produced. ¹⁴⁰ Note that just because a pretreated slurry can be hydrolyzed by
308	enzymes after pH adjustment does not mean that it can be fermented by strains into ethanol as
309	discussed in Section 2.1. This can be also verified by our previous study where H_2SO_4 (pH =
310	1.12) or NaOH (pH = 13.53) pretreated slurry at initial solid loadings of 10 and 20% was
311	subjected to enzymatic hydrolysis and fermentation after pH adjusting with 10 M NaOH and 10%
312	H ₂ SO ₄ , respectively. ¹⁴¹ Results showed that both scenarios can generate high sugar concentration
313	and yield, but only the hydrolysate from NaOH pretreatment with 10% initial solid loading can
314	be efficiently fermented to bioethanol. ¹⁴¹

Fig. 3. The schematic flowchart of liquid hot water pretreatment followed by pH adjusting withNaOH and fermentation for ethanol production.

318

4.3 Perspective on CaO pretreatment with an acid neutralization

Based on the finding in our previous study,¹⁴¹ could the toxicity of NaOH pretreated slurry

with 20% initial solid loading after pH adjusting with H₂SO₄ to yeast cells be caused by the high

322	concentration of Na ₂ SO ₄ ? If so, the CaSO ₄ produced by substituting NaOH with CaO turns into a
323	precipitate that does not affect the growth of yeast cells, and the tiny amount of dissolved calcium
324	ions may also be used by yeast (Fig. 4). In this regard, CaO [or Ca(OH) ₂] pretreatment of
325	lignocellulosic biomass has been well established.142-146 Surprisingly, it was reported that
326	$Ca(OH)_2$ (0.15 g/g biomass) pretreated corn stover slurry after pH adjusting with H ₂ SO ₄ can be
327	efficiently converted to ethanol. ¹⁴⁷ There might be some concern about how to achieve the
328	practical handling of CaSO4 and whether it affects downstream ethanol distillation. Replacing the
329	H ₂ SO ₄ with HOAc in the pH-adjusting pretreated slurry will lead to the formation of calcium
330	acetate which can be separated from the fermented slurry before ethanol distillation. Compared to
331	less-value CaSO ₄ , calcium acetate is indeed a functional calcium salt. In addition, CO ₂ could be
332	an alternative for the neutralization of Ca(OH) ₂ to form CaCO ₃ . Experiments and techno-
333	economic analyses are needed to confirm whether the idea is feasible. In addition, in the process
334	of thermochemical pretreatment with high solid loading, more or less inhibitory compounds will
335	be produced in the pretreated slurry, so it is essential to screen and select robust enzymes and
336	strains with high activity and tolerance.

Fig. 4. The schematic flowchart of CaO pretreatment followed by pH adjusting with acid for

ethanol production without water washing and solid-liquid separation.

340

341 5. Challenges and prospects

The production of biofuels from lignocellulosic biomass has great potential to reduce the dependence on fossil fuels. However, no robust pretreatment technologies are available yet for commercialization even though H₂SO₄ pretreatment has been highly promoted due to its low production costs. One of the economic challenges could be associated with water and chemicals overconsumption. For example, Ovejero-Pérez et al.¹⁴⁸ demonstrated that increasing water washing volumes of the pretreated biomass increased production costs but washing with 5.5 g water/g ionic liquid was approved to be the most economic option as it achieved a minimal total

ionic liquid recovery cost of \$16/kg of biomass. Increasing solid loading for biomass 349 pretreatment might be able to reduce water use to some extent, but the resulting side effects 350 including ineffective pretreatment performance, more byproduct generation, and high viscosity 351 352 cannot be ignored. For acid pretreatment, physicochemical and biological detoxification technologies have been applied to render the liquid fraction amenable to enzymes and microbes. 353 Alkaline neutralization and liquid-liquid extraction could be doable based on their simple 354 355 operation and low cost. For alkali pretreatment, recycling black liquor for biomass pretreatment provides a pathway to minimize water and chemical consumption, but several disadvantages such 356 as declining pretreatment effectiveness should be considered. Up to now, several studies have 357 358 removed the water washing step after pretreatment and achieved high ethanol concentration with/without solid-liquid separation, which offers a new pathway to reduce water use. Among 359 them, CaO pretreatment followed by acid neutralization enables enzymatic hydrolysis and 360 361 fermentation directly without solid-liquid separation and detoxification. To demonstrate the effect of water use during pretreatment on the economic and environmental aspects of the refinery, it is 362 highly needed in future studies to obtain quantitative evaluation at a pilot scale. In addition, the 363 364 development of robust strains that can keep effective digestion ability under severe conditions could also solve this challenge to a certain extent. 365

366

367 6. Conclusions

Physicochemical pretreatment strategies have been considerably developed to render
lignocellulosic biomass amenable to enzymes and strains for ethanol production. However, a

large amount of wastewater generation and discarding after biomass pretreatment might stall 370 commercial exploration. The inhibitory effects of derivatives and residual chemicals on enzymes 371 and microbes necessitate the excessive water washing of the pretreated slurry. The undesired side 372 effects such as weak pretreatment effectiveness, high concentration of inhibitory compounds, and 373 high viscosity of slurry might offset the advantages of operating at high solid loading. 374 Physicochemical detoxification of the acid-pretreated liquid fraction faces technoeconomic 375 challenges due to the additional investment of chemicals and materials. Seemingly, black liquor 376 recycling has great potential to reduce water and chemical consumption, however, the alkali-377 pretreated biomass is substantially washed with water and then mixed with the fresh buffer for 378 enzymatic hydrolysis and fermentation. Nevertheless, the additional water and alkali generally 379 are replenished to the black liquor, because the pretreatment effectiveness inevitably decreases as 380 black liquor recycling time increases. Recent studies on excluding water washing with/without 381 382 solid-liquid separation provide new perspectives for water conservation. In particular, lime pretreatment followed by pH adjusting with acid may offer great promise for high-loading 383 pretreatment and fermentation without water washing and solid-liquid separation to minimize 384 385 water consumption.

386

387 AUTHOR INFORMATION

388 Corresponding Authors:

*Email: jikai.zhao@utrgv.edu (Jikai Zhao) and <u>dwang@ksu.edu</u> (Donghai Wang)

390 ORCID

- 391 Jikai Zhao: 0000-0002-0119-8640
- 392 Juhee Lee: 0000-0001-5298-1099
- 393 Donghai Wang: 0000-0001-9293-1387
- 394 Author Contributions
- J. Z. wrote and revised the manuscript. J. L. and D. W. revised the manuscript. All authors have
- approved the final version of the manuscript.
- 397 Notes
- 398 The authors declare no competing financial interest.
- 399

400 ACKNOWLEDGMENTS

- 401 This research is not funded by a specific project grant.
- 402

403 Brief author biographies

- 404 Jikai Zhao: Dr. Jikai Zhao is an assistant professor of sustainable food, agricultural, and
- 405 environmental systems at the University of Texas Rio Grande Valley. He earned his Ph.D. in
- 406 Biological and Agricultural Engineering from Kansas State University. His research centers on
- 407 upgrading food waste, biomass, and grain to renewable energy, platform chemicals, and food
- 408 ingredients through catalysis and bioprocess.
- 409 Juhee Lee: Dr. Juhee Lee is an assistant professor of natural resource and environmental
- 410 economics at the University of Texas Rio Grande Valley. She earned her Ph.D. in Agricultural
- 411 Economics from Kansas State University. Her research centers on water use and quality, land use,

- and agri-environmental payment design associated with conservation, profitability, and
- 413 optimization of all types of natural resources and ecosystem services.
- 414 Donghai Wang: Dr. Donghai Wang is a professor at the Department of Biological and
- 415 Agricultural Engineering at Kansas State University. He earned her Ph.D. in Biological and
- 416 Agricultural Engineering from Texas A&M University. His research focuses on the bioconversion
- 417 of renewable materials into biofuels and chemicals.

418 References:

- 419 (1) Keller, F.; Lee, R. P.; Meyer, B. Life Cycle Assessment of Global Warming Potential,
- Resource Depletion and Acidification Potential of Fossil, Renewable and Secondary
 Feedstock for Olefin Production in Germany. *J Clean Prod* 2020, 250, 119484.
 https://doi.org/10.1016/j.jclepro.2019.119484.
- 423 (2) Wang, H.; Wang, G.; Qi, J.; Schandl, H.; Li, Y.; Feng, C.; Yang, X.; Wang, Y.; Wang, X.;
- Liang, S. Scarcity-Weighted Fossil Fuel Footprint of China at the Provincial Level. *Appl Energy* 2020, *258*, 114081. https://doi.org/10.1016/j.apenergy.2019.114081.
- 426 (3) Martins, F.; Felgueiras, C.; Smitková, M. Fossil Fuel Energy Consumption in European
 427 Countries. *Energy Procedia* 2018, 153, 107–111.
 428 https://doi.org/10.1016/j.egypro.2018.10.050.
- 429 (4) Gaete-Morales, C.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Life Cycle
 430 Environmental Impacts of Electricity from Fossil Fuels in Chile over a Ten-Year Period. J
- 431 *Clean Prod* **2019**, *232*, 1499–1512. https://doi.org/10.1016/j.jclepro.2019.05.374.
- 432 (5) Ayer, N. W.; Dias, G. Supplying Renewable Energy for Canadian Cement Production: Life
- 433 Cycle Assessment of Bioenergy from Forest Harvest Residues Using Mobile Fast Pyrolysis
- 434 Units. *J Clean Prod* **2018**, *175*, 237–250. https://doi.org/10.1016/j.jclepro.2017.12.040.
- 435 (6) Burnham, A.; Han, J.; Clark, C. E.; Wang, M.; Dunn, J. B.; Palou-Rivera, I. Life-Cycle
- 436 Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum. *Environ Sci*
- 437 *Technol* **2012**, *46* (2), 619–627. https://doi.org/10.1021/es201942m.
- 438 (7) Jiang, S., Wang, L., Zhao, Y., Shang, Y., & Wang, Q. Assessment of water demand for

- bioethanol production from biomass in China. EPiC Series in Engineering. 2018,3, 975-994. 439 (8) Wang, F.; Ouyang, D.; Zhou, Z.; Page, S. J.; Liu, D.; Zhao, X. Lignocellulosic Biomass as 440 Sustainable Feedstock and Materials for Power Generation and Energy Storage. Journal of 441 442 Energy Chemistry 2021, 57, 247–280. https://doi.org/10.1016/j.jechem.2020.08.060. Limayem, A.; Ricke, S. C. Lignocellulosic Biomass for Bioethanol Production: Current (9) 443 Perspectives, Potential Issues and Future Prospects. Prog Energy Combust Sci 2012, 38 (4), 444 449-467. https://doi.org/10.1016/j.pecs.2012.03.002. 445 Kumar, V.; Yadav, S. K.; Kumar, J.; Ahluwalia, V. A Critical Review on Current Strategies (10)446 and Trends Employed for Removal of Inhibitors and Toxic Materials Generated during 447 448 Biomass Pretreatment. Bioresour Technol 2020, 299, 122633. https://doi.org/10.1016/j.biortech.2019.122633. 449 Bhatia, S. K.; Jagtap, S. S.; Bedekar, A. A.; Bhatia, R. K.; Patel, A. K.; Pant, D.; Rajesh 450 (11)451 Banu, J.; Rao, C. V.; Kim, Y. G.; Yang, Y. H. Recent Developments in Pretreatment Technologies on Lignocellulosic Biomass: Effect of Key Parameters, Technological 452 Improvements, Challenges. Bioresour Technol 2020. 300. 122724. and 453 454 https://doi.org/10.1016/j.biortech.2019.122724. Tian, S. Q.; Zhao, R. Y.; Chen, Z. C. Review of the Pretreatment and Bioconversion of 455 (12)Lignocellulosic Biomass from Wheat Straw Materials. *Renewable and Sustainable Energy* 456 457 *Reviews* **2018**, *91*, 483–489. https://doi.org/10.1016/j.rser.2018.03.113.
- 458 (13) Li, Y. J.; Lu, Y. Y.; Zhang, Z. J.; Mei, S.; Tan, T. W.; Fan, L. H. Co-Fermentation of Cellulose
- 459 and Sucrose/Xylose by Engineered Yeasts for Bioethanol Production. *Energy and Fuels*

460		2017,	31	(4),	4061-4067.
461		https://doi.org/10.1021/AC	S.ENERGYFUELS.7E	000032/SUPPL_FII	LE/EF7B00032_SI_0
462		01.PDF.			
463	(14)	Vargas, F.; Domínguez, E	.; Vila, C.; Rodríguez,	A.; Garrote, G. Bi	iorefinery Scheme for
464		Residual Biomass Using	Autohydrolysis and	Organosolv Stages	s for Oligomers and
465		Bioethanol Production.	Energy and Fu	els 2016, 30	(10), 8236–8245.
466		https://doi.org/10.1021/AC	S.ENERGYFUELS.6E	00277/SUPPL_FII	LE/EF6B00277_SI_0
467		01.PDF.			
468	(15)	Sasmal, S.; Goud, V. v	.; Mohanty, K. Ultra	sound Assisted L	ime Pretreatment of
469		Lignocellulosic Biomass t	oward Bioethanol Proc	luction. Energy an	d Fuels 2012, 26 (6),
470		3777-3784. https://doi.org	/10.1021/EF300669W.		
471	(16)	Xu, H.; Li, B.; Mu, X.	Review of Alkali-Bas	ed Pretreatment to	Enhance Enzymatic
472		Saccharification for Lignor	cellulosic Biomass Con	version. Ind Eng Cl	hem Res 2016 , 55 (32),
473		8691-8705. https://doi.org	/10.1021/acs.iecr.6b019	007.	
474	(17)	Zhang, K.; Pei, Z.; Wang,	D. Organic Solvent Pre	treatment of Ligno	cellulosic Biomass for
475		Biofuels and Biochemi	cals: A Review. Bi	oresour Technol	2016 , <i>199</i> , 21–33.
476		https://doi.org/10.1016/j.bi	ortech.2015.08.102.		
477	(18)	Wang, Y.; Kim, K. H.; Jeon	ng, K.; Kim, N. K.; Yoo	, C. G. Sustainable	Biorefinery Processes
478		Using Renewable Deep Eu	tectic Solvents. Curr Op	pin Green Sustain C	Chem 2021 , 27, 100396.
479		https://doi.org/10.1016/j.co	ogsc.2020.100396.		
480	(19)	Elgharbawy, A. A.; Alam, I	M. Z.; Moniruzzaman, M 32	M.; Goto, M. Ionic I	Liquid Pretreatment as

481		Emerging Appro	oaches fo	r Enhanced	Enzymati	c Hydroly	sis of L	lignocel	lulosic B	iomass.
482		Biochem Eng J	2016, 109	, 252–267. ł	nttps://doi.o	org/10.101	6/j.bej.2	2016.01.	021.	
483	(20)	Arora, A.; Marti	n, E. M.; I	Pelkki, M. H	I.; Carrier,	D. J. Effec	t of For	mic Acio	l and Fur	fural on
484		the Enzymatic	Hydrolys	sis of Cell	ulose Pov	wder and	Dilute	Acid-P	retreated	Poplar
485		Hydrolysates.	ACS	Sustain	Chem	Eng	2013,	1	(1),	23–28.
486		https://doi.org/1	0.1021/sc	3000702.						
487	(21)	Lee, S. C.; Park	, S. Remo	oval of Fura	n and Pher	nolic Com	pounds	from Sir	nulated I	Biomass
488		Hydrolysates by	Batch Ad	sorption and	l Continuo	us Fixed-E	Bed Colu	mn Adso	orption N	lethods.
489		Bioresour Techn	ol 2016 , 2	216, 661–66	8. https://d	loi.org/10.	1016/j.b	iortech.2	2016.06.0	07.
490	(22)	Zhu, J.; Yong,	Q.; Xu,	Y.; Yu, S.	Detoxific	ation of (Corn St	over Pr	ehydroly	zate by
491		Trialkylamine E	xtraction	to Improve 1	the Ethano	l Productio	on with I	Pichia St	tipitis CB	S 5776.
492		Bioresour	Techno	ol 2	2011,	102	((2),	166	3–1668.
493		https://doi.org/1	0.1016/j.b	oiortech.201	0.09.083.					
494	(23)	Jung, Y. H.; Kim	n, K. H. Ev	valuation of	the Main I	nhibitors f	rom Lig	nocellul	ose Pretr	eatment
495		for Enzymatic H	Iydrolysis	and Yeast I	Fermentatio	on. <i>Biores</i>	ources 2	2 017 , <i>12</i>	(4), 934	8–9356.
496		https://doi.org/1	0.15376/b	iores.12.4.9	348-9356.					

- 497 (24) Zhao, J.; Lee, J.; Weiss, T.; Wang, D. Technoeconomic Analysis of Multiple-Stream Ethanol
- 498 and Lignin Production from Lignocellulosic Biomass: Insights into the Chemical Selection
- and Process Integration. ACS Sustain Chem Eng 2021, 9 (40), 13640–13652.
 https://doi.org/10.1021/acssuschemeng.1c05169.
- 501 (25) Zhao, J.; Yang, Y.; Zhang, M.; Wang, D. Effects of Post-Washing on Pretreated Biomass and

- 502 Hydrolysis of the Mixture of Acetic Acid and Sodium Hydroxide Pretreated Biomass and
- 503
 Their
 Mixed
 Filtrate.
 Bioresour
 Technol
 2021,
 339,
 125605.

 504
 https://doi.org/10.1016/j.biortech.2021.125605.
- 505 (26) Zhao, J.; Yang, Y.; Zhang, M.; Wang, D. Minimizing Water Consumption for Sugar and
- 506 Lignin Recovery via the Integration of Acid and Alkali Pretreated Biomass and Their Mixed
- Filtrate without Post-Washing. *Bioresour Technol* 2021, 337, 125389.
 https://doi.org/10.1016/j.biortech.2021.125389.
- 509 (27) Stone, K. C.; Hunt, P. G.; Cantrell, K. B.; Ro, K. S. The Potential Impacts of Biomass
- Feedstock Production on Water Resource Availability. *Bioresour Technol* 2010, *101* (6),
 2014–2025. https://doi.org/10.1016/J.BIORTECH.2009.10.037.
- 512 (28) Boakye-Boaten, N. A., Kurkalova, L., Xiu, S., & Shahbazi, A. Techno-economic analysis
- for the biochemical conversion of Miscanthus x giganteus into bioethanol. Biomass and
 Bioenergy. 2017, 98, 85-94.
- 515 (29) Gogar, R.; Viamajala, S.; Relue, P. A.; Varanasi, S. Techno-Economic Assessment of Mixed-
- Furan Production from Diverse Biomass Hydrolysates. *ACS Sustain Chem Eng* 2021, No.
 II. https://doi.org/10.1021/acssuschemeng.0c05847.
- 518 (30) Zang, G.; Shah, A.; Wan, C. Techno-Economic Analysis of Co-Production of 2,3-Butanediol,
- 519 Furfural, and Technical Lignin via Biomass Processing Based on Deep Eutectic Solvent
- 520 Pretreatment. Biofuels, Bioproducts and Biorefining **2020**, 14 (2), 326–343.
- 521 https://doi.org/10.1002/bbb.2081.
- 522 (31) Huang, K.; Won, W.; Barnett, K. J.; Brentzel, Z. J.; Alonso, D. M.; Huber, G. W.; Dumesic,

- J. A.; Maravelias, C. T. Improving Economics of Lignocellulosic Biofuels: An Integrated
 Strategy for Coproducing 1,5-Pentanediol and Ethanol. *Appl Energy* 2018, *213*, 585–594.
 https://doi.org/10.1016/j.apenergy.2017.11.002.
- Klein-Marcuschamer, D.; Simmons, B. A.; Blanch, H. W. Techno-Economic Analysis of a
 Lignocellulosic Ethanol Biorefinery with Ionic Liquid Pre-Treatment. *Biofuels, Bioproducts and Biorefining* 2011, 5 (5), 562–569. https://doi.org/10.1002/BBB.303.
- 529 (33) Nitzsche, R.; Budzinski, M.; Gröngröft, A. Techno-Economic Assessment of a Wood-Based
- 530 Biorefinery Concept for the Production of Polymer-Grade Ethylene, Organosolv Lignin and
- 531
 Fuel.
 Bioresour
 Technol
 2016,
 200,
 928–939.

 532
 https://doi.org/10.1016/j.biortech.2015.11.008.
- (34) Gnansounou, E.; Dauriat, A. Techno-Economic Analysis of Lignocellulosic Ethanol: A
 Review. *Bioresour Technol* 2010, 101 (13), 4980–4991.
 https://doi.org/10.1016/j.biortech.2010.02.009.
- (35) Zhao, J. Minimizing Water Consumption for Biofuel and Bioproduct Conversion from
 Lignocellulosic Biomass, Kansas State University, 2022.
- 538 (36) Yuan, H. wei; Tan, L.; Kida, K.; Morimura, S.; Sun, Z. Y.; Tang, Y. Q. Potential for Reduced
- Water Consumption in Biorefining of Lignocellulosic Biomass to Bioethanol and Biogas. J
 Biosci Bioeng 2021, *131* (5), 461–468. https://doi.org/10.1016/J.JBIOSC.2020.12.015.
- 541 (37) Da Silva, A. S. A.; Espinheira, R. P.; Teixeira, R. S. S.; De Souza, M. F.; Ferreira-Leitão, V.;
- 542 Bon, E. P. S. Constraints and Advances in High-Solids Enzymatic Hydrolysis of
- 543 Lignocellulosic Biomass: A Critical Review. *Biotechnol Biofuels* 2020, 13 (1), 1–28.

https://doi.org/10.1186/s13068-020-01697-w.

- (38) Koppram, R.; Tomás-Pejó, E.; Xiros, C.; Olsson, L. Lignocellulosic Ethanol Production at
 High-Gravity: Challenges and Perspectives. *Trends Biotechnol* 2014, *32* (1), 46–53.
 https://doi.org/10.1016/j.tibtech.2013.10.003.
- 548 (39) Modenbach, A. A.; Nokes, S. E. Enzymatic Hydrolysis of Biomass at High-Solids Loadings
- 549 A Review. *Biomass Bioenergy* 2013, 56, 526–544.
 550 https://doi.org/10.1016/j.biombioe.2013.05.031.
- 551 (40) Yuan, H. wei; Tan, L.; Kida, K.; Morimura, S.; Sun, Z. Y.; Tang, Y. Q. Potential for Reduced
- Water Consumption in Biorefining of Lignocellulosic Biomass to Bioethanol and Biogas. J *Biosci Bioeng* 2021, 131 (5), 461–468. https://doi.org/10.1016/J.JBIOSC.2020.12.015.
- (41) Zhao, J. Minimizing Water Consumption for Biofuel and Bioproduct Conversion from
 Lignocellulosic Biomass, Kansas State University, 2022.
- 556 (42) Kristensen, J. B.; Felby, C.; Jørgensen, H. Yield-Determining Factors in High-Solids
- 557 Enzymatic Hydrolysis of Lignocellulose. *Biotechnol Biofuels* 2009, 2, 1–10.
 558 https://doi.org/10.1186/1754-6834-2-11.
- 559 (43) Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Song, X.; Liu, S.; Tian, W. Key Process
- 560 Parameters for Deep Eutectic Solvents Pretreatment of Lignocellulosic Biomass Materials:
- 561 A Review. *Bioresour Technol* 2020, 310, 123416.
 562 https://doi.org/10.1016/j.biortech.2020.123416.
- 563 (44) Zhao, J.; Lee, J.; Wang, D. An Integrated Deep Eutectic Solvent-Ionic Liquid-Metal Catalyst
- 564 System for Lignin and 5-Hydroxymethylfurfural Production from Lignocellulosic Biomass:

565	Technoeconomic	Analysis.	Bioresour	Technol	2022,	127277.
566	https://doi.org/10.10)16/J.BIORTEC	H.2022.127277.			

- 567 (45) Meng, X.; Ragauskas, A. J. Mini-Review Recent Adv Petrochem Sci Pseudo-Lignin
 568 Formation during Dilute Acid Pretreatment for Cellulosic Ethanol. *Recent Adv Petrochem*569 *Sci.* 2017, *1* (1), 1–5.
- 570 (46) Kim, D. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and
 571 Detoxification Strategies: A Mini Review. *Molecules* 2018, 23 (2), 1–21.
 572 https://doi.org/10.3390/molecules23020309.
- 573 (47) da Costa Nogueira, C.; de Araújo Padilha, C. E.; de Sá Leitão, A. L.; Rocha, P. M.; de
- Macedo, G. R.; dos Santos, E. S. Enhancing Enzymatic Hydrolysis of Green Coconut
 Fiber—Pretreatment Assisted by Tween 80 and Water Effect on the Post-Washing. *Ind Crops*

576 *Prod* **2018**, *112*, 734–740. https://doi.org/10.1016/J.INDCROP.2017.12.047.

- 577 (48) Selvakumar, P.; Adane, A. A.; Zelalem, T.; Hunegnaw, B. M.; Karthik, V.; Kavitha, S.;
- Jayakumar, M.; Karmegam, N.; Govarthanan, M.; Kim, W. Optimization of Binary Acids

Pretreatment of Corncob Biomass for Enhanced Recovery of Cellulose to Produce

- 580 Bioethanol. *Fuel* **2022**, *321*, 124060. https://doi.org/10.1016/J.FUEL.2022.124060.
- 581 (49) Skiba, E. A.; Ovchinnikova, E. V.; Budaeva, V. V.; Banzaraktsaeva, S. P.; Kovgan, M. A.;
- 582 Chumachenko, V. A.; Mironova, G. F.; Kortusov, A. N.; Parmon, V. N.; Sakovich, G. V.
- 583 Miscanthus Bioprocessing Using HNO3-Pretreatment to Improve Productivity and Quality
- of Bioethanol and Downstream Ethylene. Ind Crops Prod 2022, 177, 114448.
- 585 https://doi.org/10.1016/J.INDCROP.2021.114448.

- (50) Lee, K. H.; Lee, S. K.; Lee, J.; Kim, S.; Kim, S. W.; Park, C.; Yoo, H. Y. Energy-Efficient
 Glucose Recovery from Chestnut Shell by Optimization of NaOH Pretreatment at Room
 Temperature and Application to Bioethanol Production. *Environ Res* 2022, 208, 112710.
 https://doi.org/10.1016/J.ENVRES.2022.112710.
- (51) Chen, S. J.; Chen, X.; Zhu, M. J. Xylose Recovery and Bioethanol Production from
 Sugarcane Bagasse Pretreated by Mild Two-Stage Ultrasonic Assisted Dilute Acid.
 Bioresour Technol 2022, 345, 126463. https://doi.org/10.1016/J.BIORTECH.2021.126463.
- (52) Larnaudie, V.; Ferrari, M. D.; Lareo, C. Enzymatic Hydrolysis of Liquid Hot WaterPretreated Switchgrass at High Solid Content. *Energy and Fuels* 2019, *33* (5), 4361–4368.
- 595 https://doi.org/10.1021/acs.energyfuels.9b00513.
- 596 (53) Cardona, E.; Llano, B.; Peñuela, M.; Peña, J.; Rios, L. A. Liquid-Hot-Water Pretreatment of
- 597 Palm-Oil Residues for Ethanol Production: An Economic Approach to the Selection of the
- 598
 Processing
 Conditions.
 Energy
 2018,
 160,
 441–451.

 599
 https://doi.org/10.1016/j.energy.2018.07.045.
- (54) Lee, I.; Yu, J. H. The Production of Fermentable Sugar and Bioethanol from Acacia Wood
 by Optimizing Dilute Sulfuric Acid Pretreatment and Post Treatment. *Fuel* 2020, 275,
 117943. https://doi.org/10.1016/j.fuel.2020.117943.
- (55) Song, Y.; Gyo Lee, Y.; Jin Cho, E.; Bae, H. J. Production of Xylose, Xylulose, Xylitol, and
 Bioethanol from Waste Bamboo Using Hydrogen Peroxicde-Acetic Acid Pretreatment. *Fuel*2020, *278* (May), 118247. https://doi.org/10.1016/j.fuel.2020.118247.
- 606 (56) Santos, C.; Bueno, D.; Sant'Anna, C.; Brienzo, M. High Xylose Yield from Stem and

- External Fraction of Sugarcane Biomass by Diluted Acid Pretreatment. *Biomass Convers Biorefin* 2020. https://doi.org/10.1007/s13399-020-01088-z.
- 609 (57) de Araújo Padilha, C. E.; da Costa Nogueira, C.; Oliveira Filho, M. A.; de Santana Souza,
- D. F.; de Oliveira, J. A.; dos Santos, E. S. Valorization of Cashew Apple Bagasse Using
- 611 Acetic Acid Pretreatment: Production of Cellulosic Ethanol and Lignin for Their Use as
- Sunscreen Ingredients. *Process Biochemistry* 2020, 91, 23–33.
 https://doi.org/10.1016/j.procbio.2019.11.029.
- (58) Tsegaye, B.; Balomajumder, C.; Roy, P. Alkali Pretreatment of Wheat Straw Followed by
 Microbial Hydrolysis for Bioethanol Production. *Environmental Technology (United Kingdom)* 2019, 40 (9), 1203–1211. https://doi.org/10.1080/09593330.2017.1418911.
- 617 (59) Alexander, R. A.; Innasimuthu, G. M.; Rajaram, S. K.; Jeganathan, P. M.; Chellam
- 618 Somasundarar, S. Process Optimization of Microwave-Assisted Alkali Pretreatment for
- Enhanced Delignification of Prosopis Juliflora Biomass. *Environ Prog Sustain Energy* **2020**,
- 620 *39* (1). https://doi.org/10.1002/ep.13289.
- 621 (60) Safari, A.; Karimi, K.; Shafiei, M. Dilute Alkali Pretreatment of Softwood Pine: A
 Biorefinery Approach. *Bioresour Technol* 2017, 234, 67–76.
 https://doi.org/10.1016/j.biortech.2017.03.030.
- 624 (61) Meng, X.; Bhagia, S.; Wang, Y.; Zhou, Y.; Pu, Y.; Dunlap, J. R.; Shuai, L.; Ragauskas, A. J.;
- 625 Yoo, C. G. Effects of the Advanced Organosolv Pretreatment Strategies on Structural
- 626 Properties of Woody Biomass. Ind Crops Prod 2020, 146, 112144.
- 627 https://doi.org/10.1016/j.indcrop.2020.112144.

628	(62)	Tan, X.; Zhang, Q.; Wang, W.; Zhuang, X.; Deng, Y.; Yuan, Z. Comparison Study of
629		Organosolv Pretreatment on Hybrid Pennisetum for Enzymatic Saccharification and Lignin
630		Isolation. Fuel 2019, 249, 334–340. https://doi.org/10.1016/j.fuel.2019.03.117.
631	(63)	Alayoubi, R.; Mehmood, N.; Husson, E.; Kouzayha, A.; Tabcheh, M.; Chaveriat, L.; Sarazin,
632		C.; Gosselin, I. Low Temperature Ionic Liquid Pretreatment of Lignocellulosic Biomass to
633		Enhance Bioethanol Yield. Renew Energy 2020, 145, 1808–1816.
634		https://doi.org/10.1016/j.renene.2019.07.091.
635	(64)	Dotsenko, A. S.; Dotsenko, G. S.; Senko, O. V.; Stepanov, N. A.; Lyagin, I. V.; Efremenko,
636		E. N.; Gusakov, A. V.; Zorov, I. N.; Rubtsova, E. A. Complex Effect of Lignocellulosic
637		Biomass Pretreatment with 1-Butyl-3-Methylimidazolium Chloride Ionic Liquid on Various
638		Aspects of Ethanol and Fumaric Acid Production by Immobilized Cells within SSF.
639		Bioresour Technol 2018, 250, 429-438. https://doi.org/10.1016/j.biortech.2017.11.064.
640	(65)	Huang, C.; Zhan, Y.; Cheng, J.; Wang, J.; Meng, X.; Zhou, X.; Fang, G.; Ragauskas, A. J.
641		Facilitating Enzymatic Hydrolysis with a Novel Guaiacol-Based Deep Eutectic Solvent
642		Pretreatment. Bioresour Technol 2021, 326, 124696.
643		https://doi.org/10.1016/J.BIORTECH.2021.124696.
644	(66)	Wang, Z. K.; Li, H.; Lin, X. C.; Tang, L.; Chen, J. J.; Mo, J. W.; Yu, R. S.; Shen, X. J. Novel
645		Recyclable Deep Eutectic Solvent Boost Biomass Pretreatment for Enzymatic Hydrolysis.
646		Bioresour Technol 2020, 307, 123237. https://doi.org/10.1016/j.biortech.2020.123237.
647	(67)	McIntosh, S.; Zhang, Z.; Palmer, J.; Wong, H. H.; Doherty, W. O. S.; Vancov, T. Pilot-Scale
648		Cellulosic Ethanol Production Using Eucalyptus Biomass Pre-Treated by Dilute Acid and

- Steam Explosion. Biofuels, Bioproducts and Biorefining 2016, 10 (4), 346–358. 649 https://doi.org/10.1002/bbb.1651. 650
- Zhao, J.; Xu, Y.; Zhang, M.; Wang, D. Integrating Bran Starch Hydrolysates with Alkaline 651 (68)
- Pretreated Soft Wheat Bran to Boost Sugar Concentration. Bioresour Technol 2020, 302, 652
- 122826. https://doi.org/10.1016/j.biortech.2020.122826. 653
- Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Wang, D. Conversion of Liquid Hot Water, Acid and 654 (69) Alkali Pretreated Industrial Hemp Biomasses to Bioethanol. Bioresour Technol 2020, 309, 655
- 123383. https://doi.org/10.1016/j.biortech.2020.123383. 656

- Zhao, J.; Li, J.; Qi, G.; Sun, X. S.; Wang, D. Two Nonnegligible Factors Influencing 657 (70)658 Lignocellulosic Biomass Valorization: Filtration Method after Pretreatment and Solid Loading during Enzymatic Hydrolysis. Energy and Fuels 2021, 35 (2), 1546-1556. 659 https://doi.org/10.1021/acs.energyfuels.0c03876. 660
- (71)Horváth, I. S.; Taherzadeh, M. J.; Niklasson, C.; Lidén, G. Effects of Furfural on Anaerobic 661
- Continuous Cultivation of Saccharomyces Cerevisiae. Biotechnol Bioeng 2001, 75 (5), 540-662 549. https://doi.org/10.1002/bit.10090. 663
- 664 (72)Heer, D.; Sauer, U. Identification of Furfural as a Key Toxin in Lignocellulosic Hydrolysates and Evolution of a Tolerant Yeast Strain. Microb Biotechnol 2008, 1 (6), 497-506. 665 https://doi.org/10.1111/j.1751-7915.2008.00050.x.
- 667 (73)Sanchez, B.; Bautista, J. Effects of Furfural and 5-Hydroxymethylfurfural on the Fermentation of Saccharomyces Cerevisiae and Biomass Production from Candida 668 Guilliermondii. Enzyme Microb Technol 1988. 10 (5), 315-318. 669

https://doi.org/10.1016/0141-0229(88)90135-4.

- 671 (74) Oliva, J. M.; Negro, M. J.; Sáez, F.; Ballesteros, I.; Manzanares, P.; González, A.; Ballesteros,
- M. Effects of Acetic Acid, Furfural and Catechol Combinations on Ethanol Fermentation of
- Kluyveromyces Marxianus. *Process Biochemistry* 2006, 41 (5), 1223–1228.
 https://doi.org/10.1016/j.procbio.2005.12.003.
- (75) Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. I:
 Inhibition and Detoxification. *Bioresour Technol* 2000, 74 (1), 17–24.
 https://doi.org/10.1016/S0960-8524(99)00160-1.
- (76) Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. II:
 Inhibitors and Mechanisms of Inhibition. *Bioresour Technol* 2000, 74 (1), 25–33.
 https://doi.org/10.1016/S0960-8524(99)00161-3.
- 681 (77) Nigam, J. N. Ethanol Production from Wheat Straw Hemicellulose Hydrolysate by Pichia
- 682 Stipitis. *J Biotechnol* **2001**, 87 (1), 17–27. https://doi.org/10.1016/S0168-1656(00)00385-0.
- (78) Banerjee, N.; Bhatnagar, R.; Viswanathan, L. Inhibition of Glycolysis by Furfural in
 Saccharomyces Cerevisiae. *European Journal of Applied Microbiology and Biotechnology*
- 685 **1981**, *11* (4), 226–228. https://doi.org/10.1007/BF00505872.
- 686 (79) Ask, M.; Bettiga, M.; Mapelli, V.; Olsson, L. The Influence of HMF and Furfural on Redox-
- Balance and Energy-State of Xylose-Utilizing Saccharomyces Cerevisiae. *Biotechnol Biofuels* 2013, 6 (1), 1–13. https://doi.org/10.1186/1754-6834-6-22.
- (80) Roberto, I. C.; Lacis, L. S.; Barbosa, M. F. S.; de Mancilha, I. M. Utilization of Sugar Cane
- Bagasse Hemicellulosic Hydrolysate by Pichia Stipitis for the Production of Ethanol.

- 691 *Process Biochemistry* **1991**, *26* (1), 15–21. https://doi.org/10.1016/0032-9592(91)80003-8.
- 692 (81) Allen, S. A.; Clark, W.; McCaffery, J. M.; Cai, Z.; Lanctot, A.; Slininger, P. J.; Liu, Z. L.;
- 693 Gorsich, S. W. Furfural Induces Reactive Oxygen Species Accumulation and Cellular
- Damage in Saccharomyces Cerevisiae. *Biotechnol Biofuels* 2010, *3*, 1–10.
 https://doi.org/10.1186/1754-6834-3-2.
- 696 (82) Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of Chemical Pretreatment for
- Bioconversion of Lignocellulosic Biomass. *Renewable and Sustainable Energy Reviews*2014, *36*, 91–106. https://doi.org/10.1016/j.rser.2014.04.047.
- (83) Xing, R.; Qi, W.; Huber, G. W. Production of Furfural and Carboxylic Acids from Waste
 Aqueous Hemicellulose Solutions from the Pulp and Paper and Cellulosic Ethanol Industries.
 Energy Environ Sci 2011, 4 (6), 2193–2205. https://doi.org/10.1039/c1ee01022k.
- 702 (84) Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof,
- B.; Worley, M.; Sexton, D.; Dudgeon, D. Process Design and Economics for Biochemical
- Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and
 Enzymatic Hydrolysis of Corn Stover. *National Renewable Energy Laboratory* 2011, No.
 May, 1–147.
- 107 (85) Li, X.; Zheng, Y. Lignin-Enzyme Interaction: Mechanism, Mitigation Approach, Modeling,
 108 and Research Prospects. *Biotechnol Adv* 2017, 35 (4), 466–489.
 109 https://doi.org/10.1016/j.biotechadv.2017.03.010.
- 710 (86) Li, X.; Li, M.; Pu, Y.; Ragauskas, A. J.; Klett, A. S.; Thies, M.; Zheng, Y. Inhibitory Effects
- of Lignin on Enzymatic Hydrolysis: The Role of Lignin Chemistry and Molecular Weight.

- 712 *Renew Energy* **2018**, *123*, 664–674. https://doi.org/10.1016/j.renene.2018.02.079.
- 713 (87) Hu, F.; Jung, S.; Ragauskas, A. Pseudo-Lignin Formation and Its Impact on Enzymatic
- 714
 Hydrolysis.
 Bioresour
 Technol
 2012,
 117,
 7–12.

 715
 https://doi.org/10.1016/j.biortech.2012.04.037.

 <t
- (88) Kumar, R.; Hu, F.; Sannigrahi, P.; Jung, S.; Ragauskas, A. J.; Wyman, C. E. Carbohydrate
 Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion. *Biotechnol Bioeng*2013, *110* (3), 737–753. https://doi.org/10.1002/bit.24744.
- (89) Rajan, K.; Carrier, D. J. Effect of Dilute Acid Pretreatment Conditions and Washing on the
 Production of Inhibitors and on Recovery of Sugars during Wheat Straw Enzymatic
 Hydrolysis. *Biomass Bioenergy* 2014, 62, 222–227.
 https://doi.org/10.1016/j.biombioe.2014.01.013.
- 723 (90) Frederick, N.; Zhang, N.; Ge, X.; Xu, J.; Pelkki, M.; Martin, E.; Carrier, D. J. Poplar
- 724 (Populus Deltoides L.): The Effect of Washing Pretreated Biomass on Enzymatic Hydrolysis
- and Fermentation to Ethanol. ACS Sustain Chem Eng 2014, 2 (7), 1835–1842.
 https://doi.org/10.1021/sc500188s.
- 727 (91) Karuna, N.; Zhang, L.; Walton, J. H.; Couturier, M.; Oztop, M. H.; Master, E. R.; McCarthy,
- 728 M. J.; Jeoh, T. The Impact of Alkali Pretreatment and Post-Pretreatment Conditioning on the
- Surface Properties of Rice Straw Affecting Cellulose Accessibility to Cellulases. *Bioresour*
- 730 *Technol* **2014**, *167*, 232–240. https://doi.org/10.1016/j.biortech.2014.05.122.
- 731 (92) Ninomiya, K.; Ogino, C.; Ishizaki, M.; Yasuda, M.; Shimizu, N.; Takahashi, K. Effect of
- 732 Post-Pretreatment Washing on Saccharification and Co-Fermentation from Bagasse

- Pretreated with Biocompatible Cholinium Ionic Liquid. *Biochem Eng J* 2015, *103*, 198–204.
 https://doi.org/10.1016/j.bej.2015.08.002.
- 735 (93) Ninomiya, K.; Omote, S.; Ogino, C.; Kuroda, K.; Noguchi, M.; Endo, T.; Kakuchi, R.;
- Shimizu, N.; Takahashi, K. Saccharification and Ethanol Fermentation from Cholinium
 Ionic Liquid-Pretreated Bagasse with a Different Number of Post-Pretreatment Washings.
- *Bioresour Technol* **2015**, *189*, 203–209. https://doi.org/10.1016/j.biortech.2015.04.022.
- 739 (94) Morais, A. R. C.; Pinto, J. V.; Nunes, D.; Roseiro, L. B.; Oliveira, M. C.; Fortunato, E.;
- Bogel-Łukasik, R. Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation
 and Delignification. *ACS Sustain Chem Eng* 2016, *4* (3), 1643–1652.
 https://doi.org/10.1021/acssuschemeng.5b01600.
- 743 (95) Ogura, K.; Ninomiya, K.; Takahashi, K.; Ogino, C.; Kondo, A. Pretreatment of Japanese
- 744 Cedar by Ionic Liquid Solutions in Combination with Acid and Metal Ion and Its Application
- to High Solid Loading. *Biotechnol Biofuels* 2014, 7 (1), 1–10.
 https://doi.org/10.1186/s13068-014-0120-z.
- (96) Modenbach, A. A.; Nokes, S. E. The Use of High-Solids Loadings in Biomass Pretreatmenta Review. *Biotechnol Bioeng* 2012, *109* (6), 1430–1442. https://doi.org/10.1002/bit.24464.
- 749 (97) Nieves, D. C.; Ruiz, H. A.; de Cárdenas, L. Z.; Alvarez, G. M.; Aguilar, C. N.; Ilyina, A.;
- 750 Martínez Hernández, J. L. Enzymatic Hydrolysis of Chemically Pretreated Mango Stem
- Bark Residues at High Solid Loading. *Ind Crops Prod* 2016, *83*, 500–508.
 https://doi.org/10.1016/j.indcrop.2015.12.079.
- 753 (98) Chen, Z.; Jacoby, W. A.; Wan, C. Ternary Deep Eutectic Solvents for Effective Biomass

754		Deconstruction at High Solids and Low Enzyme Loadings. Bioresour Technol 2019, 279
755		(January), 281–286. https://doi.org/10.1016/j.biortech.2019.01.126.
756	(99)	Jørgensen, H.; Kristensen, J. B.; Felby, C. Enzymatic Conversion of Lignocellulose into
757		Fermentable Sugars: Challenges and Opportunities. Biofuels, Bioproducts and Biorefining.
758		John Wiley & Sons, Ltd October 2007, pp 119–134. https://doi.org/10.1002/bbb.4.
759	(100)	Viamajala, S.; McMillan, J. D.; Schell, D. J.; Elander, R. T. Rheology of Corn Stover Slurries
760		at High Solids Concentrations - Effects of Saccharification and Particle Size. Bioresour
761		Technol 2009, 100 (2), 925–934. https://doi.org/10.1016/j.biortech.2008.06.070.
762	(101)	Miao, Z.; Grift, T. E.; Hansen, A. C.; Ting, K. C. Energy Requirement for Comminution of
763		Biomass in Relation to Particle Physical Properties. Ind Crops Prod 2011, 33 (2), 504–513.
764		https://doi.org/10.1016/j.indcrop.2010.12.016.
765	(102)	Dãrãban, I. M.; Rosendahl, L. A.; Pedersen, T. H.; Iversen, S. B. Pretreatment Methods to
766		Obtain Pumpable High Solid Loading Wood-Water Slurries for Continuous Hydrothermal
767		Liquefaction Systems. <i>Biomass Bioenergy</i> 2015, 81, 437–443.
768		https://doi.org/10.1016/j.biombioe.2015.07.004.
769	(103)	Li, C.; Tanjore, D.; He, W.; Wong, J.; Gardner, J. L.; Sale, K. L.; Simmons, B. A.; Singh, S.
770		Scale-up and Evaluation of High Solid Ionic Liquid Pretreatment and Enzymatic Hydrolysis
771		of Switchgrass. Biotechnol Biofuels 2013, 6 (1). https://doi.org/10.1186/1754-6834-6-154.
772	(104)	Luterbacher, J. S.; Tester, J. W.; Walker, L. P. Two-Temperature Stage Biphasic CO 2-H 2O
773		Pretreatment of Lignocellulosic Biomass at High Solid Loadings. <i>Biotechnol Bioeng</i> 2012,
774		109 (6), 1499–1507. https://doi.org/10.1002/bit.24417.

- (105) Fayet, A.; Teixeira, A. R. S.; Allais, F.; Bouix, M.; Lameloise, M. L. Detoxification of Highly
 Acidic Hemicellulosic Hydrolysate from Wheat Straw by Diananofiltration with a Focus on
 Phenolic Compounds. *J Memb Sci* 2018, 566, 112–121.
 https://doi.org/10.1016/j.memsci.2018.08.045.
- (106) Nguyen, N.; Fargues, C.; Guiga, W.; Lameloise, M. L. Assessing Nanofiltration and Reverse
 Osmosis for the Detoxification of Lignocellulosic Hydrolysates. *J Memb Sci* 2015, *487*, 40–
 50. https://doi.org/10.1016/j.memsci.2015.03.072.
- (107) Alriksson, B.; Sjöde, A.; Nilvebrant, N. O.; Jönsson, L. J. Optimal Conditions for Alkaline
- Detoxification of Dilute-Acid Lignocellulose Hydrolysates. *Appl Biochem Biotechnol* 2006,
 130 (1–3), 599–611. https://doi.org/10.1385/ABAB:130:1:599.
- (108) Kumar, V.; Krishania, M.; Preet Sandhu, P.; Ahluwalia, V.; Gnansounou, E.; Sangwan, R. S.
- 786 Efficient Detoxification of Corn Cob Hydrolysate with Ion-Exchange Resins for Enhanced
- 787 Xylitol Production by Candida Tropicalis MTCC 6192. *Bioresour Technol* 2018, 251, 416–
- 788 419. https://doi.org/10.1016/j.biortech.2017.11.039.
- (109) Vallejos, M. E.; Chade, M.; Mereles, E. B.; Bengoechea, D. I.; Brizuela, J. G.; Felissia, F.
- E.; Area, M. C. Strategies of Detoxification and Fermentation for Biotechnological
- Production of Xylitol from Sugarcane Bagasse. Ind Crops Prod 2016, 91, 161–169.
- 792 https://doi.org/10.1016/j.indcrop.2016.07.007.
- (110) Kumar, V.; Sandhu, P. P.; Ahluwalia, V.; Mishra, B. B.; Yadav, S. K. Improved Upstream
- 794 Processing for Detoxification and Recovery of Xylitol Produced from Corncob. *Bioresour*
- 795 *Technol* **2019**, *291*, 121931. https://doi.org/10.1016/j.biortech.2019.121931.

- (111) Roque, L. R.; Morgado, G. P.; Nascimento, V. M.; Ienczak, J. L.; Rabelo, S. C. Liquid-Liquid
 Extraction: A Promising Alternative for Inhibitors Removing of Pentoses Fermentation. *Fuel* 2019, 242, 775–787. https://doi.org/10.1016/j.fuel.2018.12.130.
- (112) Nguyen, T. H.; Sunwoo, I. Y.; Jeong, G. T.; Kim, S. K. Detoxification of Hydrolysates of the
- Red Seaweed Gelidium Amansii for Improved Bioethanol Production. *Appl Biochem Biotechnol* 2019, *188* (4), 977–990. https://doi.org/10.1007/s12010-019-02970-x.
- 802 (113) Sarawan, C.; Suinyuy, T. N.; Sewsynker-Sukai, Y.; Gueguim Kana, E. B. Optimized
- Activated Charcoal Detoxification of Acid-Pretreated Lignocellulosic Substrate and
 Assessment for Bioethanol Production. *Bioresour Technol* 2019, 286, 121403.
 https://doi.org/10.1016/j.biortech.2019.121403.
- 806 (114) Fang, Z.; Liu, X.; Chen, L.; Shen, Y.; Zhang, X.; Fang, W.; Wang, X.; Bao, X.; Xiao, Y.
- 807 Identification of a Laccase Glac15 from Ganoderma Lucidum 77002 and Its Application in
- Bioethanol Production David Wilson. *Biotechnol Biofuels* 2015, 8 (1), 2–13.
 https://doi.org/10.1186/s13068-015-0235-x.
- 810 (115) Saravanakumar, T.; Park, H. S.; Mo, A. Y.; Choi, M. S.; Kim, D. H.; Park, S. M.
- 811 Detoxification of Furanic and Phenolic Lignocellulose Derived Inhibitors of Yeast Using
- Laccase Immobilized on Bacterial Cellulosic Nanofibers. J Mol Catal B Enzym 2016, 134,
- 813 196–205. https://doi.org/10.1016/j.molcatb.2016.11.006.
- 814 (116) Singh, B.; Verma, A.; Pooja; Mandal, P. K.; Datta, S. A Biotechnological Approach for
- 815 Degradation of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysate
- Liquor Using Bordetella Sp. BTIITR. *Chemical Engineering Journal* **2017**, *328*, 519–526.

https://doi.org/10.1016/j.cej.2017.07.059.

818	(117)	He, Y.; Zhang, J.; Bao, J. Acceleration of Biodetoxification on Dilute Acid Pretrea	ted
819		Lignocellulose Feedstock by Aeration and the Consequent Ethanol Fermentation Evaluat	ion.
820		Biotechnol Biofuels 2016, 9 (1), 1–13. https://doi.org/10.1186/s13068-016-0438-9.	
821	(118)	Wang, X.; Khushk, I.; Xiao, Y.; Gao, Q.; Bao, J. Tolerance Improvement of Corynebacteri	um
822		Glutamicum on Lignocellulose Derived Inhibitors by Adaptive Evolution. Appl Microb	viol
823		Biotechnol 2018, 102 (1), 377-388. https://doi.org/10.1007/s00253-017-8627-4.	
824	(119)	Suo, Y.; Liao, Z.; Qu, C.; Fu, H.; Wang, J. Metabolic Engineering of Clostridi	um
825		Tyrobutyricum for Enhanced Butyric Acid Production from Undetoxified Corncob A	cid
826		Hydrolysate. Bioresour Technol 2019, 271, 266–2	73.
827		https://doi.org/10.1016/j.biortech.2018.09.095.	
828	(120)	Zhu, J. Q.; Li, X.; Qin, L.; Li, W. C.; Li, H. Z.; Li, B. Z.; Yuan, Y. J. In Situ Detoxificat	ion
829		of Dry Dilute Acid Pretreated Corn Stover by Co-Culture of Xylose-Utilizing and Inhibit	or-
830		Tolerant Saccharomyces Cerevisiae Increases Ethanol Production. Bioresour Technol 20	16,
831		218, 380-387. https://doi.org/10.1016/j.biortech.2016.06.107.	
832	(121)	Jeong, H.; Park, Y. C.; Seong, Y. J.; Lee, S. M. Sugar and Ethanol Production from Woo	ody
833		Biomass via Supercritical Water Hydrolysis in a Continuous Pilot-Scale System Using A	cid
834		Catalyst. Bioresour Technol 2017, 245, 351–3	57.
835		https://doi.org/10.1016/J.BIORTECH.2017.08.058.	
836	(122)	Rocha, G. J. M.; Nascimento, V. M.; Silva, V. F. N. da; Corso, D. L. S.; Gonçalves, A.	R.

Contributing to the Environmental Sustainability of the Second Generation Ethanol 837

- Production: Delignification of Sugarcane Bagasse with Sodium Hydroxide Recycling. *Ind Crops Prod* 2014, *59*, 63–68. https://doi.org/10.1016/j.indcrop.2014.05.002.
- (123) Li, Y.; Qi, B.; Luo, J.; Wan, Y. Alkali Recycling from Rice Straw Hydrolyzate by
 Ultrafiltration: Fouling Mechanism and Pretreatment Efficiency. *Ind Eng Chem Res* 2015,
- 842 54 (32), 7925–7932. https://doi.org/10.1021/acs.iecr.5b01766.
- 843 (124) Alencar, B. R. A.; Reis, A. L. S.; de Souza, R. de F. R.; Morais, M. A.; Menezes, R. S. C.;
- Dutra, E. D. Recycling the Liquid Fraction of Alkaline Hydrogen Peroxide in the Pretreatment of Corn Stover. *Bioresour Technol* **2017**, *241*, 928–935. https://doi.org/10.1016/j.biortech.2017.06.022.
- (125) Chen, X.; Kuhn, E.; Nagle, N.; Nelson, R.; Tao, L.; Crawford, N.; Tucker, M. Recycling of
 Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent
 Chemicals and Biomass Pretreatment Waste. *Front Energy Res* 2018, *6*, 1–11.
 https://doi.org/10.3389/fenrg.2018.00051.
- 851 (126) Wang, Q.; Wang, W.; Zahoor; Tan, X.; Zhuang, X.; Miao, C.; Guo, Y.; Chen, X.; Yu, Q.;
- 852 Yuan, Z. Recycling of Black Liquor for Treating Sugarcane Bagasse at Low Temperature to
- Attain High Ethanol Production without Washing Step. ACS Sustain Chem Eng 2020, 8 (46),
- 17016–17021. https://doi.org/10.1021/acssuschemeng.0c05763.
- (127) Wang, W.; Wang, Q.; Tan, X.; Qi, W.; Yu, Q.; Zhou, G.; Zhuang, X.; Yuan, Z. High
 Conversion of Sugarcane Bagasse into Monosaccharides Based on Sodium Hydroxide
- 857 Pretreatment at Low Water Consumption and Wastewater Generation. *Bioresour Technol*
- **2016**, *218*, 1230–1236. https://doi.org/10.1016/j.biortech.2016.07.074.

- (128) Goshadrou, A. Bioethanol Production from Cogongrass by Sequential Recycling of Black
 Liquor and Wastewater in a Mild-Alkali Pretreatment. *Fuel* 2019, 258, 116141.
 https://doi.org/10.1016/J.FUEL.2019.116141.
- 862 (129) Cha, Y. L.; Yang, J.; Seo, S. II; An, G. H.; Moon, Y. H.; You, G. D.; Lee, J. E.; Ahn, J. W.;
- Lee, K. B. Alkaline Twin-Screw Extrusion Pretreatment of Miscanthus with Recycled Black
 Liquor at the Pilot Scale. *Fuel* 2016, *164*, 322–328.
 https://doi.org/10.1016/j.fuel.2015.10.006.
- 866 (130) Fan, Z.; Lin, J.; Wu, J.; Zhang, L.; Lyu, X.; Xiao, W.; Gong, Y.; Xu, Y.; Liu, Z. Vacuum-
- Assisted Black Liquor-Recycling Enhances the Sugar Yield of Sugarcane Bagasse and
 Decreases Water and Alkali Consumption. *Bioresour Technol* 2020, 309, 123349.
 https://doi.org/10.1016/j.biortech.2020.123349.
- 870 (131) Lu, J.; Li, X.; Yang, R.; Zhao, J.; Qu, Y. Tween 40 Pretreatment of Unwashed Water-
- 871 Insoluble Solids of Reed Straw and Corn Stover Pretreated with Liquid Hot Water to Obtain
- High Concentrations of Bioethanol. *Biotechnol Biofuels* 2013, 6 (1), 1–11.
 https://doi.org/10.1186/1754-6834-6-159/TABLES/3.
- (132) Yu, Y.; Yu, J.; Wang, Z.; Yuan, X.; Chen, X.; Zhai, R.; Xu, Z.; Jin, M. Development of DLC
- and DLCA Pretreatments with Alkalis on Rice Straw for High Titer Microbial Lipid
 Production. *Ind Crops Prod* 2021, *172*, 114086.
 https://doi.org/10.1016/J.INDCROP.2021.114086.
- 878 (133) Yuan, X.; Chen, X.; Shen, G.; Chen, S.; Yu, J.; Zhai, R.; Xu, Z.; Jin, M. Densifying
- 879 Lignocellulosic Biomass with Sulfuric Acid Provides a Durable Feedstock with High

- Bigestibility and High Fermentability for Cellulosic Ethanol Production. *Renew Energy*2022, 182, 377–389. https://doi.org/10.1016/J.RENENE.2021.10.015.
- 882 (134) Wang, Z.; Xu, Z.; Chen, S.; Chen, X.; Yuan, X.; Shen, G.; Jiang, X.; Liu, S.; Jin, M. Effects
- of Storage Temperature and Time on Enzymatic Digestibility and Fermentability of
 Densifying Lignocellulosic Biomass with Chemicals Pretreated Corn Stover. *Bioresour Technol* 2022, *347*, 126359. https://doi.org/10.1016/J.BIORTECH.2021.126359.
- 886 (135) Shen, G.; Yuan, X.; Chen, S.; Liu, S.; Jin, M. High Titer Cellulosic Ethanol Production from
- Sugarcane Bagasse via DLCA Pretreatment and Process Development without
 Washing/Detoxifying Pretreated Biomass. *Renew Energy* 2022, *186*, 904–913.
 https://doi.org/10.1016/J.RENENE.2022.01.062.
- 890 (136) Chen, X.; Liu, S.; Zhai, R.; Yuan, X.; Yu, Y.; Shen, G.; Wang, Z.; Yu, J.; Jin, M. Lime
- Pretreatment of Pelleted Corn Stover Boosts Ethanol Titers and Yields without Water
 Washing or Detoxifying Pretreated Biomass. *Renew Energy* 2022.
 https://doi.org/10.1016/J.RENENE.2022.04.095.
- (137) Zheng, X.; Xian, X.; Hu, L.; Tao, S.; Zhang, X.; Liu, Y.; Lin, X. Efficient Short-Time
 Hydrothermal Depolymerization of Sugarcane Bagasse in One-Pot for Cellulosic Ethanol
- 896 Production without Solid-Liquid Separation, Water Washing, and Detoxification. *Bioresour*
- 897 *Technol* **2021**, *339*, 125575. https://doi.org/10.1016/J.BIORTECH.2021.125575.
- (138) Romaní, A.; Ruiz, H. A.; Pereira, F. B.; Teixeira, J. A.; Domingues, L. Integrated Approach
 for Effective Bioethanol Production Using Whole Slurry from Autohydrolyzed Eucalyptus
- 900 Globulus Wood at High-Solid Loadings. *Fuel* **2014**, *135*, 482–491.

https://doi.org/10.1016/J.FUEL.2014.06.061.

- 902 (139) Rana, D.; Rana, V.; Ahring, B. K. Producing High Sugar Concentrations from Loblolly Pine
 903 Using Wet Explosion Pretreatment. *Bioresour Technol* 2012, 121, 61–67.
 904 https://doi.org/10.1016/J.BIORTECH.2012.06.062.
- 905 (140) Rana, D.; Rana, V.; Ahring, B. K. Producing High Sugar Concentrations from Loblolly Pine
- 906 Using Wet Explosion Pretreatment. *Bioresour Technol* 2012, *121*, 61–67.
 907 https://doi.org/10.1016/J.BIORTECH.2012.06.062.
- 908 (141) Zhao, J.; Yang, Y.; Lee, J.; Zhang, M.; Roozeboom, K.; Wang, D. Experimental and
- 909 Technoeconomic Assessment of Monosaccharide and Furan Production under High Biomass
- 910 Loading without Solid–Liquid Separation. ACS Sustain Chem Eng 2022.
 911 https://doi.org/10.1021/ACSSUSCHEMENG.2C00063.
- 912 (142) Rabelo, S. C.; Filho, R. M. I.; Costa, A. C. Lime Pretreatment of Sugarcane Bagasse for
- Bioethanol Production. Appl Biochem Biotechnol 2009, 153 (1–3), 139–150.
 https://doi.org/10.1007/S12010-008-8433-7/FIGURES/8.
- 915 (143) Kaar, W. E.; Holtzapple, M. T. Using Lime Pretreatment to Facilitate the Enzymic
 916 Hydrolysis of Corn Stover. *Biomass Bioenergy* 2000, 18 (3), 189–199.
 917 https://doi.org/10.1016/S0961-9534(99)00091-4.
- 918 (144) Rabelo, S. C.; Filho, R. M.; Costa, A. C. Lime Pretreatment and Fermentation of
- 919 Enzymatically Hydrolyzed Sugarcane Bagasse. *Appl Biochem Biotechnol* **2013**, *169* (5),
- 920 1696–1712. https://doi.org/10.1007/S12010-013-0097-2/FIGURES/9.
- 921 (145) Jin, W.; Chen, L.; Hu, M.; Sun, D.; Li, A.; Li, Y.; Hu, Z.; Zhou, S.; Tu, Y.; Xia, T.; Wang, Y.;

922		Xie, G.; Li, Y.; Bai, B.; Peng, L. Tween-80 Is Effective for Enhancing Steam-Exploded							
923		Biomass Enzymatic Saccharification and Ethanol Production by Specifically Lessening							
924		Cellulase Absorption with Lignin in Common Reed. Appl Energy 2016, 175, 82-90.							
925		https://doi.org/10.1016/j.apenergy.2016.04.104.							
926	(146)	Zhang, J.; Kong, C.; Yang, M.; Zang, L. Comparison of Calcium Oxide and Calcium							
927		Peroxide Pret	Peroxide Pretreatments of Wheat Straw for Improving Biohydrogen Production. ACS						
928		Omega 2020, 5 (16), 9151–9161. https://doi.org/10.1021/ACSOMEGA.9B04368.							
929	(147)	Zhao, J.; Yan	ng, Y.; Lee, J	.; Zhang, M	I.; Wang, D.	Technoec	conomic An	alysis of Ethanol	
930		Production from	rom Corn Sto	over without	Solid-Liquid	l Separat	ion and De	toxification. ACS	
931		Sustain	Chem	Eng	2022,	10	(30),	10077-10083.	
932		https://doi.org	g/10.1021/AC	SSUSCHEN	/ENG.2C035	72.			
933	(148)	Ovejero-Pérez	z, A.; Ayuso, I	M.; Rigual, V	V.; Domínguez	z, J. C.; G	arcía, J.; Alc	onso, M. V.; Oliet,	
934		M.; Rodriguez	z, F. Technoe	conomic As	sessment of a	ı Biomass	Pretreatme	nt + Ionic Liquid	
935		Recovery Pro	cess with Apr	cotic and Cho	oline Derived	Ionic Liq	uids. ACS S	Sustain Chem Eng	
936		2021. https://c	doi.org/10.102	21/acssusche	emeng.1c0136	51.			
937									
938									
939									
940									
941									
942					54				

For Table of Contents Use Only

945 Synopsis

- 946 This review reveals wastewater generation during lignocellulosic bioethanol production and
- 947 presents facile processes to reduce water consumption.

948