
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

12-2018 

The Mathematical Aspects of Theoretical Physics The Mathematical Aspects of Theoretical Physics 

Hassan Kesserwani 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Kesserwani, Hassan, "The Mathematical Aspects of Theoretical Physics" (2018). Theses and 
Dissertations. 295. 
https://scholarworks.utrgv.edu/etd/295 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fetd%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/295?utm_source=scholarworks.utrgv.edu%2Fetd%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


THE MATHEMATICAL ASPECTS OF THEORETICAL PHYSICS

A Thesis

by

HASSAN KESSERWANI

Submitted to the Graduate College of

The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2018

Major Subject: Mathematics





THE MATHEMATICAL ASPECTS OF THEORETICAL PHYSICS

A Thesis

by

HASSAN KESSERWANI

COMMITTEE MEMBERS

Dr. Sergey Grigorian

Chair of Committee

Dr. Paul Bracken

Committee Member

Dr. Elena Poletaeva

Committee Member

Dr. Karen Yagdjian

   Committee Member

December 2018





Copyright 2018 Hassan Kesserwani

All Rights Reserved





ABSTRACT

Kesserwani, Hassan, The Mathematical Aspects of Theoretical Physics. Master of Science (MS), 

December, 2018, 468 pp., 32 figures, 41 titles.

The aim of this thesis is to outline the mathematical machinery of general relativity, quan-

tum gravity, cosmology and an introduction to string theory under one body of work. We will 

flesh out tensor algebra and the formalism of differential geometry. After deriving the Einstein 

field equation, we will outline its traditional applications. We then linearize the field equation by 

a perturbation method and describe the mathematics of gravitational waves and their spherical 

harmonic analysis. We then transition into the derivation of the Schwarzschild metric and the 

Kruskal coordinate transformation, in order to set the stage for quantum gravity. This sets the 

background in order to segway into the principles of cosmology. We then introduce the formal-

ism of quantum mechanics and derive the Hawking radiation formula of a non-spinning black-

hole. We describe the phenomenology of quantum scattering, Regge theory and its mathematical 

underpinnings. This allows us to introduce string theory by studying infinite momentum boosts 

and strings in two dimensions.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The aim of this thesis was to flesh out the mathematical and phenomenological machin-

ery of general relativity in its full glory and to stitch together fundamental areas of theoretical

physics including quantum mechanics, quantum gravity and string theory. This body of physics

and applied mathematics, especially general relativity, is notorious for its laborious and compli-

cated calculations, despite the fact that the ideas and principles are intrinsically relatively simple.

This thesis is unique in that for the first time, this body of knowledge has been teased out and

honeycombed under one edifice. Special attention was taken to outline some of the historical

perspectives, the underlying physical mechanisms i.e. phenomenology, and the basic applied

mathematical methods.

Hence, a whole swath of mathematics was covered in some detail; including tensor alge-

bra, traditional and modern differential geometry, vector calculus, variational calculus, Hamil-

tonian mechanics, partial differential equations, perturbation theory, Green’s functions. the for-

malism of quantum mechanics (bra-ket notation, linear algebra, operators and basic scalar field

theory), classical Newtonian physics, spherical harmonics, symplectic geometry, Fourier trans-

forms and complex analysis. This is a truncated list of the major areas covered. The body of this

thesis covers general relativity and its applications, quantum mechanics and Hawking radiation,

the basic principles of cosmology and an introduction into string theory. An extensive appendix

was provided in order to fill in any gaps and enhance certain methods in more detail. Some ar-

eas were repetitive but in a different guise. For example, we contrast the parallel ideas of vector

calculus and p-forms, the contrasting roles of Poisson brackets in classical physics versus com-

1



mutators in quantum mechanics and the bra-ket notation of quantum mechanics, which is just the

multiplication of a vector with its dual.

While writing this thesis, two major events unfolded; Cambridge University released

Stephen Hawkings’ 1965 dissertation on the properties of the cosmos and blackhole radiation

and the 2017 Nobel prize for physics was awarded for the final discovery of gravitational waves.

Naturally, these are two areas that we explored in some detail and we approached both subjects

from first principles. While writing, we were acutely aware of the fact that physical principles are

rooted in phenomenology. As a contrasting example, let us look at the insolubility of the quintic

in group theory. Here we start with an axiomatic approach; we begin with a field, extend the field,

permute the roots of a polynomial whose coefficients lie in the field, obtain an automorphism

group and then break the group into normal subgroups. Since, for polynomials of degree 5 or

above, the automorphism groups are insoluble (Jordan - Holder theorem), hence we cannot arrive

at an equation for the roots of a polynomial of degree 5 or above. This axiomatic approach is not

available here, since the mathematical principles are rooted in empirical facts. As illustrating ex-

amples; the momentum operator p = - ih̄ ∂
∂x , has its inception in the duality of waves and particles

(an experimental finding); Regge field theory and quantum scattering have their origins in the em-

pirical observation that the angular momentum of sub-atomic particles is proportional to the mass

squared. General relativity was catapulted into the consciousness of physicists by explaining age

old phenomena, such as the precession of the perihelion of the planet Mercury, which could not

be explained by Newtonian gravity. These ideas are embedded in the applied mathematics of

these topics, which we have exposed in some detail.

In order to cover this vast subject in a comprehensive manner, the thesis is long. Exten-

sive use of the literature was made. Many standard textbooks in general relativity, cosmology,

quantum mechanics and string theory were consulted. Several research articles from disserta-

tions, established physics and mathematical journals were studied. Unfortunately, most treatises

in general relativity are relatively advanced and difficult to follow. This thesis’ aim was to cir-

cumvent that and allow one to segway naturally into quantum mechanics and string theory.The
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calculations here are computed step by step. It it is assumed that the reader is well versed in lin-

ear algebra and standard calculus. Nevertheless, the computations can be difficult to follow as the

calculations of the Christoffel symbols (connections) are laborious, and require a concentrated

effort. A word of caution; we frequently equate the Planck’s constant, h̄, the speed of light, c, and

the gravitational constant, G, as unity, in order to minimize clutter in the calculations. No effort

is spared in trying to adumbrate and explicitly explain the physical and mathematical reasoning

behind ideas, in order to better one’s understanding. There was a deliberate attempt to repeat cal-

culations and outline mathematical methods in a different guise or format. All of this in an effort

to better one’s deep understanding of these interwining disciplines.

1.2 Historical Perspective and Preamble of Mathematical Aspects

The theory of general relativity is one of the most sublime intellectual creations of human

kind. It was a breakthrough that shattered previously held notions of space and time. It placed

space and time at an equal footing, the spacetime manifold. Its consequences were far reach-

ing from re-formulating the structure of the universe to practical applications in global satellite

positioning systems, GPS. It provided a new theory of the large scale structure of the universe

and fused mathematics (differential geometry) and physics (energy-momentum tensor) into one

equation. It basically described the whole universe in one simple equation; the field equation;

Rμν − 1

2
Rgμν = Tμν

where the left hand side describes the curvature of spacetime and the right hand side describes

the energy density of matter. As we outline in this thesis, by computing the connections in empty

space, this simple equation gave birth to the concept of blackholes , and to the emergence of grav-

itational waves as a solution of the field equation, by linearizing through perturbation theory. In

the first four chapters, we will flesh out the formalism of tensor algebra and the basics of differ-

ential geometry. After all, the language of general relativity is the language of tensor algebra. We

will derive Einstein’s field equation by the Hilbert action. The action of a physical system is the
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integral over time of a Lagrangian function, from which the behavior of a physical system can

be determined by the principle of least action. Tensors are the mathematical nuts and bolts of

general relativity. A tensor is invariant under coordinate transformation. A useful test of tensor

character is the idea that tensors contract into a scalar, which is indeed invariant under coordi-

nate transformations. For example, the Riemann curvature tensor contracts inro the Ricci tensor,

which contracts into the Ricci scalar;

Rα
βγδ = Rα

βαδ = Rβδ = S

Many Nobel prizes in physics have been awarded for contributions and discoveries in this

field. In fact, the very first Nobel prize in physics to an American was awarded to Albert Michel-

son in 1907 for the Michelson - Morley experiment for disproving the ether hypothesis. Many

more were to follow; In 1983, Chandrasekhar was awarded the prize for his work on stellar evolu-

tion and the mathematics of blackholes. Blackholes are amongst the most fantastic structures in

the universe, yet their mathematics is relatively simple; being described by two parameters, their

mass and angular momentum. In 1993, Hulse and Taylor received the prize for the discovery of

a new type of pulsar whose orbital characteristics provided indirect evidence for the existence of

gravitational waves. Perlmutter and colleagues, in 2011, received the prize for the discovery of

the accelerating expansion of the universe through the observation of distant supernovae. And

finally, in 2017, Thorne and colleagues received the prize for the decisive observation of gravi-

tational waves. It should also be noted that two other prizes were awarded for the discovery of

cosmic rays and the cosmic microwave background radiation, an area which is important, but not

a direct area of study of this thesis.

The same year that Einstein introduced the general theory of relativity, in 1915, Karl

Schwarzschild provided the first exact solution to the Einstein field equation, for the limited case

of a single spherical, non-rotating blackhole. In June 8, 1989, Arthur Eddington provided direct

experimental evidence for the general theory of relativity by observing the solar eclipse on that

day, and demonstrating the gravitational bending of light by the Sun, by oberving the stars of
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the constellation of Taurus, in the island of Principe, off the coast of West Africa. At the time,

this was a major discovery and catapulted general relativity to the frontlines of physics. Pari-

passu with these developments, quantum theory was in its birth pangs. Between 1900 and 1918,

Max Planck put forward his theory on energy quanta. It was Kirchoff, who postulated that the

intensity of radiation from a blackbody is dependent upon the wavelength of the radiation and the

temperature of the radiating body. Using the current theory at the time, the radiation in the high

frequency area of the spectrum becomes infinite; according to the Rayleigh-Jeans law

Bλ (T ) =
2ckbT

λ 4

at very low wavelengths of λ , the spectral radiance, Bλ (T), becomes infinitely large; not in ac-

cordance with observation. This is the so called ultraviolet catastrophe. Max Planck was able to

remedy this aberration by theorising that the energy of radiation is quantized

E = h̄ν

and the black body spectrum becomes

Bλ (T ) =
2h̄c2

λ 5

1

e
h̄c

λkBT −1

where kB is Boltzmann’s constant, c is the speed of light, T , is temperature and, ν , is the fre-

quency of radiation. In this form, Planck’s law avoids the ultraviolet catastrophe. Incredibly,

Einstein promulgated this hypothesis by explaining the photoelectric effect. He was able to show

that only light of a certain frequency, no matter how high the intensity, can displace an electron

from a metal, according to Planck’s law

E = hν

If this limit is exceeded, the effect is proportional to the light intensity at constant frequency.
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For this work, and not for general relativity, Einstein received the Nobel prize for physics in

1921. It was Paul Dirac and Erwin Schrodinger who formally mathematized the wave nature of

particles. Why is quantum mechanics quantized ? Another way to look at this is via De Broglie’s

conception of waves in a circle, for wavelength λ , as explained later in this introduction, the

wave number k is expressed as

k =
2π
λ

and the momentum is expressed in terms of the Planck’s constant h̄ as

p = h̄k

As we will show later, the wave function ψ(x) for a free particle is

ψ(x) = aei p
h̄ x = aeikx

When normalized, after all, the particle has to exist somewhere, we have

ˆ 2πR

0

dxψ∗(x)ψ(x) = a2

ˆ 2πR

0

dxe−ikxeikx = 1 = 2πRa2

Therefore,

ψ(x) =
1√
2πR

ei p
h̄ x

where a is a constant and R is the radius of the circle. We get

ei p
h̄ x = ei p

h̄ (x+2πR) =⇒ ei p
h̄ 2πR = 1

=⇒ pR
h̄

= n =⇒ p =
n
R

h̄
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Note, the angular momentum L is expressed as

L = pR = R
n
R

h̄ =⇒ L = nh̄

Therefor n has integer values; angular momentum is quantized.

In relativistic quantum mechanics

W 2

c2
− pr

2−m2c2 = 0

where W is the kinetic energy of the particle, pr(r = 1,2,3) is the momentum. Paul Dirac defined

the operators

W = i
∂ h̄
∂ t

and

pr =−ih̄
∂
∂x

and demanded the left hand side act on the wave function ψ . However, for the theory of quantum

mechanics to work, this equation needs to be linear in the operators, so four new variables were

introduced; αr and ασ , operators that operate on ψ; such that

(
W
c
+αr pr +ασ mc)(

W
c
−αr pr−ασ mc) = 0

with the conditions that αr
2 = 1 and αrασ + ασ αr = 0. Furthermore, the α’ s commute with the

p′s and W . The new variables α give rise to the spin of the electron, the spin angular momen-

tum of half quantum. An astute observation by Dirac led to the prediction of the positron. It is to

be noted that these equations allow for a positive W greater than mc2 or a negative W less than

mc2. The negative W gives rise to electrons with a strange property; the faster they travel, the less

energy they have, and one must inject energy into them to bring them to rest. It turns out exper-
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imentally that these negative energies correspond to electrons with a positive charge, positrons.

However, in nature, there is no such thing as negative energy. So Dirac invoked the Pauli exclu-

sion principle, in which no two electrons can exist in the same state. The negative energy state is

interpreted as a hole with positive energy. This hole is the positron with opposite charge to the

electron. When an electron with positive energy falls into a hole and occupies it, electromagnetic

radiation is released. In this way, an electron and positron annihilate each other. The converse

process with creation of an electron and a positron from electromagnetic radiation should also

be able to take place, a process which has been documented experimentally. These commutation

relationships in quantum mechanics are known as first quantization, and are exemplified by the

non-commutativity of the position x̂ and momentum p̂ operators;

[x̂, p̂] = ih̄

This is a very poweful identity. It tells us that the position and momentum operators cannot be

simultaneously zero, leading to the Heisenberg uncertainty principle, which we shall prove in

chapter 14. In chapter 16, we will appreciate the underlying algebraic structure of these operators

in the context of Lie groups and their associated Lie algebras.

Having laid out the mathematics of general relativity and quantum theory, we are now

well poised to combine the physics of the very large with the physics of the very small. These

two meet at the event horizon of a blackhole. Hence, the birth of quantum gravity. Indeed, in

1965, Stephen Hawkings was able to apply quantum mechanics to particle creation near the

event horizon to show that blackholes emit black body radiation. We use a different approach in

this thesis, by applying scalar field theory and number operators to derive the equation of black

body radiation of a blackhole. The formalism of quantum theory is introduced in its full glory

in chapter 13 and in the appendix. We also make a brief excursion into scalar field theory and

introduce the machinery of creation and annihilation operators.

During the first half of the twentieth century, equally stunning developments occured in

the field of cosmology. Through the work of Slipher, Friedmann and Hubble, theoretical and
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experimental findings had suggested that the universe is expanding;

v = ȧ(t)H(t)D

where, v, is the velocity of the receding galaxy, a(t) , is the scaling factor (an artificial flexible

coordinate grid), H(t) is Hubble’s “constant”, and, D, is the distance between galaxies. Through

simple algebra and calculus, Friedman was able to show that in a matter dominated universe ,

a(t) = ct
2
3

where c is a constant and t is time. This says as time increases, the universe’s grid expands. In an

energy dominated universe, the equation becomes

a(t) = ct
1
2

Einstein entertained this idea by adding the so called cosmological constant,Λ , to his field equa-

tion

Λgμν +Rμν +
1

2
gμνR = Tμν

By setting Tμν = 0 and taking the trace of this equation, we get

4Λ = S

where S is the Ricci scalar. This tells us that empty space has curvature. Einstein dropped this

term, only to regret it later, and stating that this was his greatest blunder.

In 1964, Fred Hoyle and Jayant Narlikar proposed an action at a distance cosmology, by

applying Mach’s principle that the inertia of a particle is due to the rest of the particles in the

universe. They applied the concept of retarded and advanced waves of a moving charge, Green’s

functions (appendix J) and an action principle to describe their cosmology. Stephen Hawking op-
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posed this view by showing that the advanced mass diverges to infinity in an expanding universe.

However, Hawkings was not armed with what we know now, that the universe is accelerating

with a cosmic event horizon. His views were challenged by Heidi Fearn in 2014, who showed

that the advanced mass does not diverge to infinity if one factors in the cosmic event horizon, and

so the upper limit of the advanced wave integral should be finite and not infinite.

String theory is a byproduct of S-matrix theory, which describes how incoming particles

convert into outgoing ones; quantum scattering. The S-matrix describes this process, where the

numerical entries of the matrix are the scattering amplitudes. An example is an electron and a

positron annihilating each other to produce two photons. Poles of the S-matrix in the complex

energy plane are identified with the bound states (virtual states, resonances). Branch cuts are

associated with the opening of a scattering channel. In 1959, Tullio Regge, studied the analytic

properties of scattering as a function of complex angular momentum. As a simple example, let us

explore the quantum mechanical treatment of the Coulomb potential, V (r);

V (r) =− e2

4πε0r

where ε0 is the permissivity of the vacuum, r is the distance from the point source and e is the

charge. By computing the binding energy, E, of an electron to a proton and obtaining the solu-

tion of the radial Schrodinger equation, we obtain the quantum number, l, of the orbital angular

momentum. The equation of l in terms of E is a complex function, known as the Regge trajec-

tory. These Regge trajectories exist in the complex plane and can be obtained for many other

potentials, the most important being the Yukawa potential, as explained in chapter 13. Regge tra-

jectories appear as poles of the scattering amplitudes of the S-matrix. It was Gabrielle Veneziano,

who in the 1968, attempted to glue together the various observations. He noted that the beta func-

tion has poles at non positive integers. These are identified as the particle energies, resonances.

The gamma function is defined as
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Γ(z) =
ˆ ∞

0

xz−1e−xdx(Re(z)> 0)

It can be easily shown that

Γ(z+1) = zΓ(z)

The gamma function Γ(z) , has an analytic continuation to the domain C - { 0, -1, -2, ...}. Γ(z)

has simple poles at z = 0, -1, -2, ..., and no zeros. Its cousin, the beta function, is defined as

B(r,s) =
ˆ 1

0

xr−1(1− x)s−1dx,(Re(r),Re(s)> 0)

Like the gamma function, this integral converges absolutely and uniformly on a neighbourhood

of any (r,s), and defines a function analytic in each variable. By change of variables u = x+ y,

(r,s) can be written as

B(r,s) =
Γ(r)Γ(s)
Γ(r+ s)

It was noted that the plot of angular momentum, J, of hadrons is proportional to the energy, E ,

squared

R = αJ2

As noted above, these are the Regge trajectories. This relationship is between J and E2, emerges

naturally from a rotating classical open string. Veneziano proposed that the beta function closely

approximates the behavior of quantum scattering and the Regge trajectories. Leonard Susskind

interpreted the cross-sectional invariance of these trajectories as due to the binding together of the

heavy hadrons at a finer level by strings of quarks.

A central theme of this thesis is to understand the basic concepts of wave-particle duality.

Mass, m, and energy, E, are equivalent and interconvertible,
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E = mc2

In electromagnetism, energy is related to the wavelength, λ , and frequency, ν , by

E = h̄ν =
c
λ
= mc2

where h̄ is Planck’s constant. Hence mass, energy and radiation can be unified as

m =
h̄ν
c2

=
1

λc

This simple but powerful equation suggests that when radiation reaches very high frequencies

or very short wavelengths , it is expected to exhibit mass properties. It is assumed that the reader

has some idea about special relatvity. However, of vital import is the total energy of a relativistic

particle, which is well worth deriving in the introduction, in order to provide a flavor of the mood

of this thesis. It should be noted from the special theory of relativity, for a relativistic particle, of

rest mass m0, the total energy, E, is expressed as

Total Energy = Kinetic Energy, Ek + Rest Mass Energy;

mc2 = Ek +m0c2

Hence,

Ek = (m−m0)c2

We know from special relativity that the relativistic mass, with β = v
c , can be written as

m =
m0√

1−β 2

Substituting into Ek, we get
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Ek = (
1√

1−β 2
−1)m0c2

By Taylor expanding, we obtain

Ek = (1+
1

2
β 2 + ...−1)m0c2

When v <<c;

Ek =
1

2
(
v
c
)2m0c2 =

1

2
m0v2

This means that for velocities far less than the speed of light, we recover classic mechanics, the

kinetic energy of a particle. Since the momentum , p, is

p =
m0v2√
1− v2

c2

2

p2 =
m2

0v2

1− v2

c2

2

p2c2 =
m2

0v2c2

1− v2

c2

=
m2

0
v2

c2 c4

1− v2

c

By adding and subtracting a term;

p2c2 =
m2

0c4( v2

c2 −1)

1− v2

c2

+
m2

0c4

1− v2

c

=−m2
0c4 +(mc2)2

We arrive at the famous relativistic equation

E2 = p2c2 +(m2
0c2)2

We will use this identity to derive the Klein-Gordon equation, which is the quantized version of

the relativistic energy-momentum relation. This is done by simply substituting the momentum
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and Hamiltonian operator. Many of the equations we use are of the form

∇2 f (x) = g(x)

for functions f (x) and g(x). These are second order linear elliptic differential equations. The

simplest being Poisson’s equation

∇2 f (x) = 0

Another interesting example is the Helmholtz equation for a vibrating drum with Dirichlet bound-

ary conditions; where the velocities at the edge u(t) = 0.

(∇2 + k2) f = g

(∇2 + k2)u = 0

∇2u = –k2u

where k is the wave number described below. The three dimensional wave equation is generalized

as

(∇2− 1

c2

∂
∂ t2

)ψ = 0

where � is the d’Alembertian operator ; ∇2- 1
c2

∂ 2

∂ t2 . The plane and spherical waves are special

solutions. At each point of the wavefront, a normal vector k is assigned, where

|k|= 2π
λ

where λ is the wavelength. The equation is solved by the ansatz
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ae−i(k.r−ωt)

where r is the position vector. From this, we obtain

|k|2 = ω2

c2
=⇒ |k|= ω

c
=

2πn
k
≡ k

wkere k is the wave number. The wavefront is the surface

k.r = constant

This is the locus of points on the wave that have the same phase, modulo 2π , after propagating by

the same time . The wave equation for the electromagnetic field in a vacuum is

�Aμ = 0

where Aμ is the electromagnetic four-potential. The Klein-Gordon equation has the form

(�+m2)ψ = 0

As will be explained below, the Green’s function for the d’Alembertian is defined as

�G(x,x
′
) = δ (x− x

′
)

where δ (x− x
′
)is the multi-dimensional Dirac delta function and x,x

′
are two points in space.

Plane wave solutions of the generalized wave equation are of the form

ψ = ψ0e−ik.r

By assuming that the wave equation is separable;
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ψ(r, t) = A(r)T (t)

and substituting into the generalized wave equation, we get

∇2A(r)
A(r)

=
1

c2T (t)
d2T (t)

dt2
=−k2

The left hand side depends on r only, the right hand side depends on t only. This can only be so,

if both sides are equal to a constant, which is set as −k2. Hence, we get Helmholtz’s equation

(∇2 + k2)A = 0

The two dimensional solution to this equation in cylindrical coordinates gives us the

radial and angular harmonics of a vibrating drum and the two dimensional solutions to the

Schrodinger equation. The three dimensional solutions in polar coordinates gives us the spherical

harmonics of the wave equation in angular and radial components, as outlined in chapter 11.

A central feature of this thesis is the deployment of applied mathematical methods. An

important method in quantum mechanics is Green’s functions. In the thesis, we will introduce

Green’s functions to help solve second order linear differential equations. The method simply

involves inverting a differential operator. In this introduction, I will utilize the bra-ket notation

of quantum mechanics, which we will outline in detail in both the body of the thesis and in the

appendix. Let us define the differential operator D

D f (x) = g(x)

In bra-ket notation;

D| f >= |g >
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=⇒ | f >= D−1|g >+∑
i

ci|hi >

where the first term is the complementary function and the second term is the homogeneous

solution, such that D|hi >= 0. Notimg that

f (x) =< x| f >

Hence

< x| f >= f (x) =< x|D−1|g >+∑
i

ci < x|hi >

< x|D−1|g >=< x|D−1|x′ >< x
′ |g >=

ˆ
dx

′
G(x,x

′
)g(x

′
)

where the Green function, G(x,x
′
),for D is

G(x,x
′
) =< x|D−1|x′ >

Since DD−1 = 1

DG(x,x
′
) =< x|x′ >= δ (x− x,)

Due to its importance, I will illustrate with a simple example. Let us look at a self-adjoint differ-

ential operator

d2

dx2
f (x) = g(x),x ∈ [0,1], f (0) = 1, f (1) = b

The Green’s function should satisfy

d2

dx2
G(x,x

′
) = δ (x− x

′
)
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This tells us that the second derivative is 0, when x �= x
′
. When 0 ≤ x≤ x

′
, the second derivative is

0; therefore

G(x,x
′
) = A1x+A2

where A1 and A2 could depend on x
′
. When x

′ ≤ x≤ 1,

G(x,x
′
) = A3x+A4

where the Ai’s are constants. We use the boundary conditions, continuity of G(x,x
′
) at x

′
and the

fact that the integral of d2G
dx2 = 1 to obtains the constants.

Albert Einstein was inspired by Poisson’s equation, the left hand side expressing the

properties of space and the right hand side, the mass density, in order to derive the field equation

of general relativity. We will discuss solutions to this second order linear equation, which plays a

fundamental part in later chapters. Let us analyze the general Poisson equation

∇2 f (
−→
r) = g(

−→
r)

In terms of Green’s function, ignoring the complementary function

f (
−→
r) =

ˆ
d3−→r G(−→r −→r ′

)g(−→r ′
)

By construction of Green’s function

∇2G(�r−→r ′
) = δ (3)(−→r −−→r ′

)

Since the boundary is asymptotically flat, letting
−→
R = −→r - −→r ′

,

∇2
R = ∇2

r
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Hence,

∇2
RG(

−→
R ) = δ (3)(

−→
R)

We next take the Fourier transform

G(
−→
R) = (

1

2π
)3

ˆ
d3kei

−→
k
−→
R G̃(

−→
k)

where

∇2ei
−→
k .
−→
R =−k2ei

−→
k .
−→
R

Hence,

G(
−→
R) = (

1

2π
)3

ˆ
d3kei

−→
k
−→
R [−k2G̃(

−→
k)] = (

1

2π
)3

ˆ
d3kei

−→
k .
−→
R

The equality on the right is the three dimensional delta function

=⇒ G̃(k) =− 1

k2

Note that ei
−→
k
−→
R are the unit vectors. Next, we integrate

G(
−→
R ) =− 1

(2π)3

ˆ
dk3ei

−→
k
−→
R

Choose polar axis in k−space in direction of
−→
R and noting G(

−→
R) is a scalar;

G(
−→
R ) =− 1

(2π)3

ˆ ∞

0

dk
ˆ 2π

0

dφ
ˆ 1

−1

d(cosθ)eikRcosθ

G(
−→
R) =− 1

(2π)2

ˆ ∞

0

dk
2isinkR

ikR
=

1

4π2

ˆ ∞

0

2sink
kR

=
1

4πR
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Note that the last integral is the Dirichlet integral and we arrive at the Coulomb potential. So we

can define the Green function to be the Coulomb potential or the inverse Fourier transform. So

f (
−→
r) =− 1

4π

ˆ
d3r

′ g(r
′)

|−→r −−→r ′ |

If the angle between −→r and −→r ′
is γ , 1−→r −−→r ′ can be expanded , if r>r

′

1
−→r − r′

=
1

r

∞

∑
l=0

(
r
′

r
)Pl(cosγ)

This is the multipole expansion. In polar coordinates, we get the spherical harmonics

1
−→r − r′

=
1

r

∞

∑
l=0

(
r
′

r
)

l

∑
m=−l

Ylm(θ ,φ)Y ∗lm(θ
′
φ
′
)

Next, we shift gear to Cosmology. In order to explain the cosmic inflation model of the

universe, we invoke the concept of quantum fluctutations. This is the temporary appearance of

energetic particles out of empty space. It makes intuitive sense when viewed through the prism

of Heisenbeg’s uncertainity principle, as we explain in chapter 9. This allows for the creation of

particle-antiparticle pairs of virtual particles. This is the vacuum or zero-point energy underlying

the cosmological constant, Λ, which explains the accelerating expansion of the universe. Since

the particle number operator does not commute with the field’s Hamiltonian or energy operator,

the ground state is not empty, see below, but a quantum superposition of particle number eigen-

states. A key idea is one of density of states, If a particle is described by a wave function φ(r),

then the probability, w, to find it in a small element of space dτ = dxdydz around r is

w(r)dτ = φ∗(r)φ(r)dτ

where, * , is the complex conjugate. Since the particle has to be found somewhere, it has to be

normalized
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ˆ
w(r)dτ =

ˆ
φ∗(r)φ(r)dτ = 1

φ(r) is of the form

eikr

In quantum mechanics, as introduced by Paul Dirac and John Von Neumann, the func-

tions exist in Hilbert space. A Hilbert space is an infinite-dimensional inner-product space. The

inner product of two vectors f (x) and g(x) is defined as

( f (x),g(x)) =
ˆ

f ∗(x)g(x)dx

For orthogonal functions, for integers j and k,

(ei jx,eikx) =

ˆ 2π

0

dxe− jxeikxdx = 2πδ jk

These functions can be used as basis vectors, {ek}={eikx}. A vector function f (x) in the Hilbert

space can be expressed as

f (x) =
1

2π

∞

∑
k=−∞

Fkeikx

where

Fk = (eikx, f (x)) =
ˆ 2π

0

dx f (x)e−ikx

The coefficients Fk are the inner product (eikx, f (x)) in a manner analogous to that seen in Fourier

series. When the interval over which functions are defined stretches from -∞ to +∞, the relations

become Fourier transforms. The basis becomes
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eiωx

where ω is a continuous variable. The components of the vector are given by the inner product of

f with basis vectors, the Fourier transform

f̂ (x) =
1

2π

ˆ +∞

−∞
dx f (x)e−iωx

The inverse Fourier transform is

f (x) =
1

2π

ˆ +∞

−∞
dx f̂ (x)eiωx

For non-periodic functions, the Fourier transform is used to decompose a function of time into

its frequency components. Time and frequency are conjugate variables. Position and momen-

tum are conjugate variables. There are many ways of dissecting the Fourier transforms. One can

think of winding the frequency function around the origin at a variable frequency and at resonant

frequency, compute the displacement of the center of mass from the origin. The greater the en-

ergy density at a particular frequency, the greater the displacement from the origin. We can also

think of abstractly dividing the frequency function by the complex unit circle. And in this way

decomposing the frequency function. An interesting consequence is an analogue of the Heisen-

berg uncertainty principle. If the duration of analysis of the frequency function is short, then the

Fourier transform at the resonant frequency is broad, and vice versa. A more apt term for the Un-

certanty Principle is the Unsharpness Principle, as the frequency band is splayed out rather than

standing out sharply.

In the general form above, x and ω are conjugate variables. The position, x, and momen-

tum, p, pair can be expressed as

f̂ (p) =
1

2π

ˆ +∞

−∞
dx f (x)e−ipx
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f (x) =
1

2π

ˆ +∞

−∞
d p f (p)eipx

Why is −ih̄ ∂
∂x the momentum operator ? As outlined above, the wave number k is

k =
2π
λ

The momentum p is

p = h̄k

Since the operator ∂
∂x has the basis vectors eikx as its basis vectors, using k as our continuous

variable, and setting h̄=1

−i
∂
∂x

(eikx)) = k(eikx)

One can see by inspection that

p =−i
∂
∂x

Next, we examine how Fourier transforms appear in quantum mechanics. It arises natu-

rally from the definitions of the momentum operator and the bra-ket formalism of the vector-dual

vector spaces. We know that for a wave function ψ(x),

−ih̄
∂
∂x

ψ(x) = pψ(x) =< p|ψ(x)>

This is the momentum operator in position basis, We will set h̄= 1, and by separation of variables,

and integrating, we arrive at

ψ(x) = ae−ipx
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where a is a constant. The eigenfunctions of the momentum operator in the x basis is

< x|p >= aeipx

From the bra-ket formalism

< x|ψ >=

ˆ +∞

−∞
d p < x|p >< p|ψ >=

ˆ +∞

−∞
d peipx < p|ψ >

Therefore,

< x|ψ >= ψ(x) =
ˆ +∞

−∞
d peipxψ̃(p)

Hence, the momentum-basis wave function is the inverse Fourier transform of the position basis

wave function.

Whereas in classical mechanics, we deploy Poisson brackets to compute with the Hamil-

tonian, in quantum mechanics, we deploy the commutator. John Von Neumann introduced com-

mutator rules for quantum mechanics and Paul Dirac built on it in a huge way. Dirac loved to

commute conjugate variables. Commutator relationships provide much more than algebraic struc-

ture. They have deep physical meaning. For example, non commutativity in a scalar field means

that both variables cannot be measured simultaneously. For two positions x and y in a scalar field,

if the creation, Ψ+and annihilation operators, Ψ− commute

[Ψ+(x),Ψ−(y)] = 0

then there is no interference when we measure the fields at x and y. Furthermore, a symmetry is a

unitary operator, U, that commutes with the Hamiltonian. Even more, a symmetry that commutes

with the Hamiltonian is conserved. The Hamiltonian commutes with itself, hence it is conserved.

The mathematical basis of these ideas will be explained in Chapter 11 and Appendices L and O.

In this introduction, we hope to demonstrate the parallel themes in the concepts of the
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classical and non-classical physics and the thread that runs through the different disciplines.

Analyzing the time-dependent Schrodinger wave equation,

ih̄
∂ψ
∂ t

=
−ih̄
2m

∇2ψ +V (r)ψ

Taking the complex conjugate

−ih̄
∂ψ∗

∂ t
=

ih̄
2m

∇2ψ∗+V (r)ψ∗

Multiplying the first equation by iψ∗ and the second equation by iψ and subtracting the second

from the first

h̄(ψ
∂ψ∗

∂ t
+ψ

∂ψ
∂ t

) =− h̄2

2m
(ψ∗∇2ψ−ψ∇2ψ∗)

The left hand equality is nothing but

h̄
∂
∂ t

(ψ∗ψ)

where

ψ∗ψ = |ψ|2

is the density of the waveform, the probability of finding a particle. Consider the case of a stream

of electrons of charge density, ρ. The right hand side is the divergence

∇.J

where J is the probability current. Hence, the Schrodinger equation is nothing but the continuity

equation
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∂ρ
∂ t

+∇.J = 0

Let us next juxtapose the three great equations; Poisson’s Equation, Einstein’s Field Equation and

the Friedmann-Robertson-Walker equation;

∇2φ = ρ

Rμν − 1

2
Rgμν = Tμν

ä
a
=−4

3
πG(ρ +3p)

A common thread runs through these equations of classical physics, general relativity and cos-

mology; the left hand side represents geometry (curvature) and the right hand side, matter/energy

density. It is hoped that this thesis runs a thread through the various concepts of theoretical

physics, and is able to stitch together the mathematical underpinnings of general relativity and

quantum mechanics. A very useful concept that we will deploy in this thesis frequently is the

idea that the total derivative of a scalar function vanishes at infinity in a spacetime manifold.

Here, we apply the divergence theorem, which we will prove in its full glory by utilizing the ma-

chinery of p-cubes, pull-backs, meaure theory and Fubini theorem. We begin with a vector field

ω(x,y,z), such as velocity, and a scalar field ψ(x,y,z, t), such as density, pressure or temperature.

By the chain and product rule, we get

dψ
dt

=
∂ψ
∂ t

+(ω.∇)ψ

where ω= (dx
dt ,dy

dt , dz
dt ) and ∇= ( ∂

∂x ,
∂
∂y ,

,∂
∂ z). At spatial infinity,

∂ψ
∂ t = 0 and for the second diver-

gence term, we invoke Stoke’s theorem, for a p-form dω and a smooth manifold M
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ˆ
∂M

ω =

ˆ

M

dω

The left hand equality is zero at spatial infinity, therefore

ˆ
∂M

ω =

ˆ

M

dω =⇒ ω.∇ = 0

This identity is very useful when we derive the field equation of general relativity via the Hilbert

action and when we derive the wave equation of a scalar field. This is a brief outline of some of

the important physics and mathematical machinery deployed throughout the thesis. It is hoped

that at the end of this thesis, one can see the parallel ideas between covariant/contravariant ten-

sors, vectors/ dual vectors of a vector space and the bra/ket formalism of quantum mechanics. To

add the icing on the cake, we will outline the machinery of advanced quantum mechanics, that

is, propagators and the second quantization formalism. Finally, I will adumbrate on the symme-

tries of motion and conservation laws, as illustrated by Emily Noether. As a simple example, if

a Lagrangian is rotationally symmetric, Noether’s theorem dictates that the angular momentum

of the system is conserved. If the Lagrangian is symmetric under continuous under translations

of space, then linear momentum is conserved. Under translation of time, energy is preserved.

The conserved quantities are known as invariants. It should be noted that ordinary differential

equations are usually deployed to describe distinct particles, and partial differential equations are

used to describe fields. Meanwhile, the conservation laws are usually expressed in the form of a

continuity equation. And the symmetry is usually equivalent to the covariance of the equations

in a Lie group of transformations(chapter 16, section 65). An invariant X in the evolution of a

system is such that

dX
dt

= 0

X is conserved, also known as a constant of motion. The action S of a system, with coordinates q
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and q̇ , with Lagrangian L. is defined as

S =

ˆ
L(q, q̇, t)dt

The Euler-Lagrange equation, where the particle takes a path, with no variation in S is

d
dt
(
∂L
∂ q̇

)− ∂L
∂q

) = 0

This is easily derived by setting boundary conditions, integrating by parts and and applying the

fundamental lemma of variational calculus. For a general system, we set q as qi. Noting that the

momentum pk is

pk =
∂L
∂ q̇

If one of the coordinates qk does not appear in the Lagrangian, we get

d
dt

pk = 0

Then the Lagrangian is invariant under a transformation of qk; that is, a symmetry under this

transformation, pk is conserved. The beauty of Noether’s theorem is that symmetries lead to

conservation laws, which lead to a simplication of equations of motion, as the right hand side

of the equations are set equal to a constant. We will address Noether’s theorem in more detail

in section 52 of chapter 14. In the last chapter, ideas coalesce, when we outline Lie groups and

their Lie algebras, a common thread will emerge between seemingly unrelated areas. We will

also make a brief excursion into gauge transfomations and the seeds of the Yang-Mills theory.

With gauge theory under our belt, we will conclude with a brief outline of the Standard Model of

particle physics.
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CHAPTER II

OVERVIEW OF TENSORS AND MANIFOLDS

2.1 Tensors on a Vector Space

We will begin with basic definitions and concepts,[27]. It is assumed that the reader is

familar with the basic tenets of linear algebra and vector spaces (linearity and multiplication of

vectors by scalars) linear maps, bilinear maps, basic vector calculus, multi-variable calculus and

some measure theory. Let V be a finite dimensional vector space and V* be the dual space of V .

The dual space is the space of covectors or real valued linear functionals. Hence, we define the

mapping;

A covariant k-tensor on V is a multilinear map

F : V × ...×V→ R

with k copies of V . A contravariant l- tensor is a multilinear map

: V ∗ × ...×V ∗→ R

with l copies of V∗.

A mixed tensor of type (k
l ) is a multilinear map

F : V ∗ × ...V ∗ ×V × ...×V→ R

with k copies of V∗ and l copies of V . The tensor product linking the various tensor spaces over V

is as follows ; If F ∈ Tk
l(V) and G ∈ T p

q( V), the tensor product F ⊗ G ∈ Tk+p
l+q is defined as
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F⊗G(ω l, ...,ω l+q,Xl, ...,Xk+p) = F(ω1, ...,wl,X1, ...,Xk)G(ω l+1, ...,ω l+q,Xk+1, ...,Xk+p)

, where , ω ∈V* and X∈ V . Let (E1,..., En) be a basis for V and (ϕ1,...,ϕn) be the dual basis for

V*. Then , by construction , we define

ϕ i(E j) = δ i
j (2.1.1)

where δ i
j is the Kronecker delta. A basis for Tk

lis given by the set of all tensors of the form

E j1⊗ ...⊗E jl⊗ϕ i1⊗ ...⊗ϕ ik

where the i’s and j’s run from l to n. Any tensor F∈Tk
l(V) can be written in terms

of this basis. Note: components of vectors have upper indices and components of covectors have

lower indices.There are obvious identities : Tk
0(V) = Tk(V) , T0

l(V) = Tl(V), T1(V) = T*(V),

T1(V) = V** = V . An important identity is T1
1(V)= End (V)= R

Theorem . If V is a finite - dimensional vector space , then there is a natural , basis inde-

pendent isomorphism between Tk
l+1(V) and the space of multi - linear maps

V ∗ × ...×V ∗ × ...×V →V

l terms of V∗ and k term of V . We define the trace tr: T
k+1

l+1 (V)→ Tk
l(V) by letting tr F(ω1,...,ω l ,V1,...,Vk)

be the trace of the endomorphism

F(ω1, ...,ω l,V1, ...,Vk) � T 1
1 (V )

Any pair of indices can be contracted as long as one is contravariant and the other is covariant ,

i.e. contraction of tensors. For example ; Ak= Bi
ik
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Testing for Tensor Character . A map

τ : T ∗(M)× ...×T ∗(M)×T (M).× ...×T (M)→C∞(M)

is induced by a (k
l )-tensor field if and only if it is multi-linear over C∞. Similarly, a map

τ : T ∗(M)× ...T ∗(M)×T (M)× ...×T (M)→ T (M)

is induced by a (k
l+1)-tensor field if and only if it is multi-linear over C∞(M) .Note ; in the first

case , we have an equal number of vectors and covectors and we produce a function. In the sec-

ond instance, we have one more vector that than covector and we produce a vector.

2.2 Index - based Approach

At this point , we will outline the traditional approach to tensors using local coordinates

and indices,[30]. A set of basis vector {e} is chosen so that any vector , V , can be expressed as

V =V iei

Given the basis set {e} , a basis set of dual vectors is {e j} defined by

eie j = δ i
j (2.2.1)

The dual basis vectors are perpendicular to all basis vectors with a different index, and the scalar

product of the dual basis vecor with the basis vector of the same index is unity. A vector V can be

expressed in terms of the dual basis vector as

V =Viei
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The metric tensor gi j is defined by the basis vectors

gi j = eie j (2.2.2)

The metric tensor provides the scalar product of a pair of vectors A and B by

A.B = gi jV iV j (2.2.3)

where Vi and V j are the contravariant components of A and B

Contravariant Vectors.Vectors are best understood by the way they transform under dif-

ferent coordinate systems. The components of a vector V in one coordinate system may be trans-

formed into a vector V
′
in another coordinate system by the transformatiom matrix, the Jacobian

matrix, as follows

V
′α =

∂x
′α

∂xβ V β

The upper index is the row , the lower index is the column of the matrix.

Covariant Vectors (1-forms). The covariant components of a vector transform as

V
′
α =

∂xβ

∂x′α
Vβ

Here β is the row , α is the column . The contravariant and covariant components are constructed

such that

V αVβ = δ α
β (2.2.4)

is the identity matrix , where δ is the Kronecker Delta

Tensor Transformation Rules. These follow the rules for vector transformation. For exam-

ple , for a tensor of contravariant rank 2 and a tensor of covariant rank 1 ;

T ′γ
αβ =

∂x′α

∂xμ
∂x′β

∂xν
∂xρ

∂x′γ
T μν

ρ
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where the prime symbol indicates the new coordinate system and the transformed tensor. We

will discuss the metric tensor later , but I will list a few important rules. The metric tensor gμν is

defined by

gμν = eμ .eν (2.2.5)

The infinitesimal displacement vector dx

dx = dxμeμ

dx2 = dxμeμdxνeν = gμνdxμdxν (2.2.6)

The metric tensor gμμ and its inverse gμν are used to raise and lower indices

Tν = gμνT μ

T ν = gμνTμ

This process also works for higher order tensors. Tensors are invariant under coordinate trans-

formations. Let us explore this idea further. For example , let us examine a (0
2) tensor under a

coordinate transformation. Asume Xab = Yab in a coordinate frame , X . What does it look like

in a coordinate frame, X′ ? . Applying tensor transformation rules; multiplying both sides by

∂xa

∂x′c
. ∂xb

∂x′d
, we obtain

∂xa

∂x′c
∂xb

∂x′d
Xab =

∂xa

∂x′
′a

∂xb

∂x′d
Yab

Therefore, X
′
ab = Y

′
ab , i.e. tensors hold in any coordinate system.

2.3 Manifolds

A manifold is a topological space , that is smooth (infinitely differentiable), Hausdorff

and second countable,[17], [31]. The space is locally Euclidean. The passage from one coordi-
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nate system to another is smooth. Some important topological concepts ;

Hausdorff Spaces - a topological space X is a Hausdorff space, if for every x,y ∈ X , x �= y,

there are neighbourhoods U,V of x,y respectively , such that U ∩ V = /0 . In a Hausdorff space ,

singleton sets {x} are always closed. A metric topology is always Hausdorff.

Connectedness - A topological space X is connected if the only subsets of X which are

both closed and open are /0 and X itself. Conversely , a topological space X is not connected if

and only if there are nonempty sets G and H , such that G ∩ H = /0 , G ∪ H = X .

Compactness - If A ⊂ X , a covering of A is a family { Cα | α∈ J ) in the power set of X

, such that A ⊂ ∪α∈J Cα . An open covering is one for which the family consists of open sets.

A subset A of X is compact if every open covering of A has a finite subcover . Conversely, the

closed bounded set of R are compact. This result generalises to Rn- the compact subsets of Rnare

exactly those which are closed and bounded.

If X is a topological space , a chart at p ∈ X is a function

μ : U → Rd

where U is an open set containing p and μ is a homeomorphism onto an open set of Rd . The

dimension of the chart μ: U→ Rd is d. Two chart μ: U→ Rd and τ: V→ Re on a topological

space X are C∞ , related if d = e and either U ∩ V = /0 or μ◦τ−1 and τ ◦ μ−1 are C∞ maps . The

domain of μ◦τ−1 is τ(U ∩ V), an open set in Rd . See Figure 2.1 for an illustration.

Homeomorphism. A homeomorphism f: X→ Y is a 1-1 onto function such that f and f−1:

Y → X are both continuous.

Diffeomorphism. A diffeomorphism φ : M→ N is a smooth map that has an inverse map

that is also smooth. It is said that M and N are diffeomorphic under φ . A simple example , any

open interval (a,b) in R1 is diffeomorphic to (-1,1 ) under a suitable linear map.

Tangent Space. For any point p ∈M , the tangent space TpM is the set of all tangent

vectors, the directional derivatives. The local coordinates ( xi) give a basis for TpM consisting of

the partial derivative operators ∂
∂xi .
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Figure 2.1: Homomorphism between charts

Pick a vector X ∈ V , a finite dimensional vector space , with a smooth manifold structure.

The directional derivative is defined as ;

X f =
d
dt
|t=0 f (p+ tX) (2.3.1)

This is the usual identification (x1, ...,xn)�→ xi ∂
∂xi

Submanifold. If M’ is a smooth manifold , a submanifold (or immersed submanifold) of

M
′
is a smooth M together with an injective immersion ι ;

ι : M →M
′
,

where ι(M) ∈M
′
.Whereas M is a subset of M

′
, the topology of M may be different. An em-

bedding is where the inclusion map is an onto homeomorphism. Let M be an embedded sub-

manifold (n-dimensional) of a manifold M
′
(m-dimensional). For every point p ∈M , there ex-

ists slice coordinates (x1, ...,xn) on a neighbourhood U
′
of p in M , such that U

′ ∩M is given by
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Figure 2.2: Local trivialization

(xn+1, ...,xm = 0) and (x1, ...,xn) form local coordinates for M. At each q ∈ U
′∩M, TqM can be

identified as the subspace of TqM spanned by the vectors ( ∂
∂x1 ,..., ∂

∂xn ).

Vector Bundles. When the tangent space at all points on a manifold M are glued together,

a vector bundle is constructed. It is a union of vector spaces and a manifold. A vector bundle is

defined as a combination of ;

(a) the manifold , M , the base

(b) a smooth manifold , E , the total space

(c) a projection , an onto map π: E→M, with the following properties ;

(1) each set Ep, called the fiber of E over p , Ep:= π−1(p)

(2) for each p � M , ∃ a neighbourhood U of p and a diffeomorphism ϕ ; such that

ϕ : π−1(U)→U×Rk

This is known as a local trivialization . See Figure 2.2 for an illustration.

In simple words, for any small enough region U in M, the manifold E is a product U ×
Rk. Noting that in the case of the tangent bundle TM , each coordinate system U ∈M gives rise

to a coordinate system ∂ i at p on π−1(U) ⊂ TM . These function are bundle charts making TM an

n vector bundle over Mn. A vector field X on M is a section X : M→ TM of the tangent bundle

. Having built our topological space and manifold, we later build upon this theme to reach the
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Riemannian and Semi-Riemannian manifold as follows;

Set −→
topology Topological Space −→

locallyRn Manifold −→
connection Manifold with Connection −→

metric

Riemannian Manifold
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CHAPTER III

CALCULUS ON MANIFOLDS

3.1 Differential Forms

Differential forms are a critical branch of differential geometry, as they allow complex

theoretical constructs and bridge together multi-variable calculus , vector calculus and operations

on manifolds,[9]. I will first illustrate this in the 3-dimensional case. The differential or exterior

derivative, d f , of a function f (x,y,z) is defined to be

d f =
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂ z

dz

The expression d f is called a one-form. More generally , a 1-form φ on Rn is a real valued func-

tion on the set of all tangent vectors to Rn, that is

φ : TRn → R

where φ is linear on the tangent space TxR
n, for every x ∈ Rn and for any smooth vector field

v = v(x), the function φ (v) : Rn→ R is smooth. The 1-forms φ , for each x ∈Rn, are elements of

the dual space (TRn)∗. The space of 1- forms on Rn is dual to the space of vector fields on Rn.

For any vector v ∈ Rn, the 1-forms dxi pick out the i-th coefficient

dxi(v) = vi

The dxi’s form a basis for the 1-forms , so a 1-form φ can be expressed as
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φ = fi(x)dxi

For any vector v∈ Rn , where v = vi;

φ(v) = fivi

Algebra of Differential Forms. There are at least three operations on p-forms. The most

basic is the wedge product. Multiplication is known as a wedge product and is skew-symmetric.

dxi∧dx j =−dx j∧dxi (3.1.1)

Hence dxi∧dx j = 0, if i = j. If φ contains pdxi’s , then we have a p− form. More generally , if ζ

is a k−form and η is a l - form , then

ζ ∧η = (−1)klζ ∧η (3.1.2)

and the derivation rule for differentiation, using Leibniz rule and skew-symmetry property , be-

comes

d(ζ ∧η) = dζ ∧η +(−1)klζ ∧dη

Furthermore , the differential operator d is nilpotent .

d(dφ) = 0

This is an important property that is easily proven by using the commutativity of mixed partial

derivatives and the skew symmetry property.

0-forms can be identified with scalar functions. With the differentiation operator ω �−→dω ,

this is identifiable to the gradient operation f �→∇ f
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Figure 3.1: Pullback

1-forms can be identified with vector fields, and to the curl operation X→∇×X

2- forms can be identified with vector fields via the right hand rule and to the divergence

operation X→∇.X

3- forms can be identified with scalar functions

This is an example of Hodge duality , which we will address later.

When we apply the nilpotent property ,d(dw)= 0 , we arrive at

∇×∇ f = 0

∇.(∇×X) = 0

for a smooth scalar function f and a vector field X .

Next, we describe a very important mapping, the pull back , which will help us jump

across maps without coordinate transformation.

Pull Back. Suppose M1, M2 and M3 are smooth manifolds. Let α : M1→M2 to be a

differentiable map . Then, given a function f : M2→M3, we can define a pullback of f under α ,

denoted by

This is equivalent to substituting the coordinates of α into the formula of f , see Figure 3.1

for an illustration. A useful theorem , which we will not prove here, but is useful for later proving

Stoke’s theorem, will be shown next.

Theorem. If ϕ: M→ N is a C∞ map and θ is a p− form on N , then dϕ*θ = ϕ*dθ
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3.2 Integration of Forms

Integration over p-forms is done by integrating over C∞ p-cubes and sums of p-cubes

(chains),[26].

Rectilinear p-Cube. A rectilinear p- cube in Rp is a closed cubical neighbourhood in

Cartesian coordinates

U = (u1, ...,up)|bi ≤ ui ≤ bi + ci, i = 1, ..., p

where bi and ci are constants , so U is closed and bounded , hence compact.

p- Cube. A C
∞

p−cube α in a manifold M is a C∞ map

α : U →M

, where U is a rectilinear p- cube

Oriented p - Cube. An oriented p- cube is a pair (α ,ω), where α is a p-cube and ω is

an orientation of Rp. If the coordinates xi and yi are related by the Jacobian determinant J =

det( ∂xi

∂y
j ), then dx1...dxp = Jdy1...dyp. This way we compare coordinate volume elements dxiand

dy j, noting that one of the two Cartesion systems u1, ...,up or −u1,u2, ...,up must be consistently

oriented with respect to ω . Another theorem we need to prove Stoke’s theorem is Fubini’s theo-

rem .

Theorem. Fubini’s Thorem . If f is continuous on U , then the definite integrals

fp(u1, ...,up−1) =

ˆ bp

ap
f (u1, ...,up−1,up)dup

are continuous functions of the parameters u1, ...,up−1 , and the Riemann integral of f is

ˆ

U

f dμp =

ˆ

Up−1

fpdμp−1
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where the (p− 1)− cube Up−1 = (u1, ...,up−1)|ai ≤ ui ≤ bi, i = 1, ..., p−1),where μ is the stan-

dard measure on a p-cube. It follows by iteration that

ˆ

U

f dμp =

ˆ b1

a1

(...

bp−1ˆ

ap−1

(

bpˆ

ap

f (u1, ...,up)dup)dup−1...)du1 (3.2.1)

Now, we are armed with the necesessary tools to examine integration of forms.

Motivation. Our goal here is to prove Stoke’s theorem, which is a powerful theorem , with

applications in many branches of mathematics and a central role in the theory of manifolds and

general relativity. Its use is indispensable . And I will dedicate a lot of time to this endeavor,[41].

At an infinitesimal level, the amount of work done to move a particle from a point xi∈∑R to

a point xi+1∈ R is linearly proportional to the displacement�xi= xi+1− xi and a constant of

proportionality f (xi) and is approximately

ˆ b

a
f (x)dx =

n−1

∑
i=0

f (xi)�xi

In higher dimensions, the equivalent of a proportionality constant of a linear relationship is a

linear transformation. Therefore, for each xi , we need a linear transformation

ωxi : Rn → R

that takes in an infinitesimal displacement�xi∈ Rnand returns a scalar ωxi(�xi) ∈ R. Here, ωxi

acts as a linear functional on the space of tangent vectors at xi and is therefore a cotangent vector

at xi. In analogy to the 1-dimensional case above, the net work required to move from a to b

along the path γ is approximately

ˆ

γ

ω �
n−1

∑
i=0

ωxi(�xi)

Next , a quick review on integration on Euclidean spaces. Let U be the standard measure of a
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rectilinear p-cube U = {(u1,...,up| ai≤ ui≤ b j)} given by μ pU = (b1−a1)(b2−a2)...(bp−ap) ;μ p

assigns numbers to the cubical cubes of Rp, a measure. The Riemann integral of a real-valued

function f defined on U is

ˆ

U

f dμp = lim
Uj→0

n

∑
f=1

f (x j)μpUj

where U is broken up into N smaller p-cubes U f and a point xi has been chosen in each U j. Next,

integration of forms.

Integration of Forms. Let α: U→M , where U is as defined above, a measure. Let θ be

a p - form , defined on a region of M , which contains the range of an oriented p - cube (α ,ω).

Then, α∗θ is the pullback of θ to U , under α . As we will illustrate below, with an example , this

is a substitution of the coordinate formula for α into the coordinate expression for θ . Hence, we

get an expression α∗θ = f ω , where f is a C∞ real - valued function on U. We then define an

inner product on p-forms on Rp, such that < ω , ω>p = 1 , then

f =< α∗θ ,ω >p

Then , the definition of the integral of θ on (α , ω) is

ˆ

(α,ω)

θ =

ˆ

U

< α∗θ ,ω >p dμ

The integral of a p- form on a p-chain ∑ riCi is defined in terms of integrals on p−cubes :

ˆ

∑riCi

θ = ∑ri

ˆ

Ci

θ

Example. Take the circle S1= {(x,y)| x2 + y2 = 1 in R , with a counterclockwise orientation.

Define α on [ 0 , 2π] by α(u)= (cosu,sinu). The coordinate equations for α are x = cosu , y =

sinu. If θ = xdy−ydx
x2+y2 , then α∗θ =

cosud(sinu)−sinud(cosu)
cos2u+sin2u = du. Now < du,du >1= 1 , so
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ˆ
(α,du)

θ =

ˆ

[0,2π]

1dμ =

ˆ 2π

0

du = 2π

One more definition which is necessary for proving Stokes Theorem is the concept of Partition of

Unity.

Partition of Unity. A smooth partition of unity on a manifold M is a collection { fa:α ∈ A}

of functions fα∈J(M) such that

(1) 0≤ fα ≤ 1 for all α ∈ A

(2) {supp fα : α∈ A) is locally finite

(3) ∑α fα = 1

Property (2) can be re-stated as the partition of unity is subordinate to an open covering C

of M provided each set supp fα is contained in some element of C.

Let f : X→ R be a function from a topological space X . The support of f is the closed

set supp f = [ f−1(R \ 0)]C. Partitions of unity are useful for assembling locally defined objects

into a global object or decomposing a global object into a sum of local objects.

Theorem. Stokes Theorem. Armed with the necessary tools, we can now state and prove

Stoke’s theorem. Let θ be a (p- 1)-form defined on the ranges of all the cubes of a p - chain C ,

where p> 0. Then ˆ
C

dθ =

ˆ
∂C

θ (3.2.2)

We will prove this for a single p−cube C = (α , ω). By linearity and partition of unity , this argu-

ment can be extended to a chain of p - cubes.

Proof. Let α : U→M , U as defined above , where θ is a p-form ∈M . First , we define

the pull back α∗θ = ∑i(-1)i−1 fidu1...dup. By Theorem 1 : dα∗θ = α∗dθ = (∑ ∂i fi)du1...dup.

ˆ

U

< α∗dθ ,ω >p dμp = ∑
i

ˆ

U

∂i fidμp

Next, we apply Fubini’s theorem to the right hand side of the integral with the ith variable as
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variable of integration

ˆ

U

∂i fidμp

=

ˆ

U

ˆ bi+ci

bi

∂i fi(u1, ...,ui, , ,up)duidμp−1

=

ˆ

U

[ fi(u1, ...,bi + ci, ...,up)− fi(u1, ...,bi, ...up)]dμp

The second equality follows from the fundamental theorem of calculus. Therefore

ˆ

U

< α∗dθ ,ω >p dμp =

ˆ

(α,ω)

dθ =

ˆ

∂ (α,ω)

θ

the first equality follows from the definition of integration of forms. By linearity;

ˆ

C

dθ =

ˆ
∂C

θ

Application of Stoke’s Theorem . Next , I present a forme fruste version of Stoke’s Theorem.

I will need to use the metric of a vector space , the covariant derivative of a manifold, and the

Christoffel symbol , which I will expand on in great detail in the next two chapters. Let X∈ T M ;

the map

div : T M →C∞(M)

is called the divergence operator . In terms of local coordinates (U,xi), X = Xi ∂
∂xi , then

div(X) =
1√g.gi j

∂
∂xi (

√
g.gi jXi), (3.2.3)

where g = detgi j, and gi j = (∂i,∂ j)

Proof. We know X = Xi∂i , where ∂i is a shorter notation for ∂
∂xi . The covariant derivative
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∇X = ( ∂iX i + XkΓi
k j)dx j

� ∂i

Hence, div(X) = ∂iX i+ XkΓi
ki . Using the identity Γi

ki=
1
2gi j

kgi j=
1

2g.gi j
∂kg.gi j=

1√g.gi j
∂k
√g.gi j.

By substituting into ∇X ; we obtain the identity div(X) = 1√g.gi j
∂ i(
√g.gi jXi).

Interior Product. The interior product is defined to be the contraction of a differential

form with a vector field. Thus , if X is a vector field on the manifold M , then

ιX : Ωp(M)→Ωp−1(M)

is the map which sends a p-form ω to the (p−1)-form ιX defined by

ω(X ,X1, ...,Xp−1) = (ιX ω)(X1, ...,Xp−1)

for any vector fields X1, ...,Xp−1.The interior product on a 1-form α is

ιX α = α(X) =< α,X >

where < , > is the duality pairing between α and the vector X . If β is a p−form and γ is a q−
form, then

ιX(β ∧ γ) = (ιX β )∧ γ +(−1)pβ ∧ (ιX γ)

That is , the interior product obeys Leibniz’s rule. An operation satisfying linearity and the Leib-

nix rule is called a derivative. Note : A dual pair is a 3-tuple ( X ,Y, < , >) consisting of two vector

spaces X and Y over the same field F and a bilinear map

<,>: X×Y → F

such that ∀ x∈ X�{0}, ∃ y ∈Y : (x,y) �= 0 and ∀ y ∈ Y�{0} , ∃ x∈X : (x,y) �= 0 . If the vector

spaces are finite dimensional, this means that the bilinear form is non-degenerate .
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Theorem. A vector space V together with its dual V ∗ and the bilinear map

< x, f >:= f (x)

where x ∈ V and f ∈ V ∗forms a dual pair. In a local coordinate ( U,xi), let vol be defined as

vol =
√

gdxi∧ ...∧dxm (3.2.4)

where gis det (gi j). Vol is a global m-form, called the volume form of M. Fix a smooth tangent

vector field X . The interior product ι(X) is defined for every tangent vector field X1, ...Xm−1

(ι(X)vol)(X1, ...,Xm−1) = vol(X1, ...,Xm−1)

Then, for every smooth tangent vector field X ,

d(ι(X)vol) = div(X).vol

Proof. Since vol =
√

g .dx1...dxm

div(X)vol = ∂i(
√

gXi)dx1, ...,dxm = d((−1)i+1√gXi)∧dx1∧ ...∧dxm)

= ω , by setting bracketed right hand expression as ω . ω is independent of choice of coordinates,

so ω is a globally defined (m−1) form

div(X)vol = dω = ι(X)vol

second equality follows from definition. Applying Stokes Theorem , we arrive at our final result

ˆ
M

div(X)vol =
ˆ

∂M
ω (3.2.5)
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This identity is very useful , and will be applied later when we derive Einstein’s field equation.

This is an area we will revisit later when we look at determinants of the metric tensor and its

variation.

3.3 Hodge Star Operator

There are three operators that act on p-forms: wedge product , d-operator and the Hodge

star operator,[13],[18]. To complete the picture, we will take a brief survey of the Hodge star

operator. Let V be a finite n-dimensional vector space with inner product g , where

g = gi jei⊗ e j

The Hodge star operator , ∗ , is a linear operator mapping p-forms on V to (n− p)-forms

∗ : Ω(V )p →Ωn−p(V )

Let V have a basis (e1, ...,en) and let V ∗ have the dual basis (e1, ...,en). The Hodge star operator is

defined as the linear operator that maps the basis elements of Ωp(V) as

∗(ei1 ∧ ...∧ eip) =

√|g|
(n− p)!

gi1 l1...gip lpεl1 ...εlp lplp+1...lnelp+1 ∧ ...∧ eln ,

|g| = detgi j and ε is the Levi-Civita permutation symbol. The Hodge star operator can also be

defined in a coordinate free manner by the following expression

u∧∗v = g(u,v)Vol(g)

where g(u,v) is the inner product on p-forms g(u,v) = gi1 j1 ...gipg jpui1...ip v j1... jp and Vol(g) is the

unit volume form associated with the metric, Vol(g) =
√

det(g)e1...en. Note : ∗∗ = (-1)p(n−p)id

, where id is the identity operator in Ωp(V). In three dimensions . ∗∗ = id for p = 0,1,2,3 . In R3,

the metric tensor g = dx⊗dx + dy⊗dy + dz⊗dz and the Hodge star operator is ∗dx = dy∧dz , ∗dy

= dx ∧dz and ∗dz = dx ∧ dy
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3.4 Correspondence Between Vectors and p-forms

In this next section, we will flesh out core concepts at a basic level in order to better our

understanding,[32] . The idea here is to form a bridge between vector calculus and p-forms. Let

us examine the case for 3 dimensions. One needs to note that there is a correspondence between

vectors and 1-forms:

(a,b,c)←→ adx+bdy+ cdz

Vectors also correspond to constant 2-forms:

(a,b,c)←→ adydz+bdzdx+ cdxdy

The cross product is the product of 1 forms :

(adx+bdy+ cdz)(rds+ sdy+ tdz) = (bt− cs)dydz+(cr−at)dzdx+(as−br)dxdy

The dot product is the product of a 1-form and a 2 -form

(adx+bdy+ cdz)(rdydz+ sdzdx+ tdxdy) = (ar+bs+ ct)dzdydx

Note that in 3 dimenssions , a scalar can be either a 0-form or 3-form. In summary;

0− f orm
f

d→ 1− f orm
dx,grad

→ 2− f orm
dxdy,curl

d→ 3− f orm
dxdydz,scalar

We have alluded to this before , but it is worth restating in words; If ω is a constant form , such as

dx or dxdy , then its differential is 0.

dω = 0
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However, consider the differential of the following 1 - from

d(ydx+ zdy+ ydz) = dydx+dzdy+dydz

The differential of a 1-form is a 2 -form. In general, the differential of a k-form is a k+1 form. If

ω is a k-form for which there exists a k−1 form , say ν , such that

ω = dν

then ω is exact.

Claim. If ω is any differential form whose coefficients have continous second partial

derivatives, then

d(dω) = 0

The proof is available in most standard textbooksof advanced calculus. A differential form ω is

closed if

dω = 0

If ω is exact , that is ω = dν , and has continuous partial derivatives, then ω must be closed

dω = d(dν) = 0

However, a closed differential form does not have to be exact. Consider the boundary operator ∂ .

If C is a closed curve, then it has no boundary

∂C = Ø

Since the boundary of a simply connected surface is always a closed curve
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∂ (∂S) = Ø

The boundary of a boundary of a simply conneced manifold is always the empty set.

Lemma. Poincare Lemma If ω is a differential form that is closed and differentiable in a

simply connected region, R , then ω is exact in R.

Note duality between differential forms and geometric objects.

d(dω) = 0←→ ∂ (∂M) = Ø

This duality can be seen with Stokes Theorem

ˆ
∂M

ω =

ˆ

M

dω

Finally we re-state some and complete the rest of the basic operators

Gradient ∇ f←→ differential of a 0-form

Curl ∇× F←→ differential of a 1-form

Divergence ∇. f ←→ differential of a 2-form

Laplacian ∇2 f ←→ re-write df as a 2-form and then take its differential

∇× (∇ f ) = 0←→ d(dω) = 0, ω is a 0-form

∇(∇× f ) = 0←→ d(dω) = 0 , ω is a 1-form
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CHAPTER IV

METRICS

4.1 Riemannian Metric

Riemannian metric on a smooth manifold M is a 2-tensor field g ∈T 2(M) that is

(a) symmetric g(X ,Y ) = g(Y,X)

(b) positive definite g(X ,X) > 0 , X �= 0

A Riemannian metric determines an inner product on each tangent space TpM;

(X ,Y ) := g(X ,Y ) f orX ,Y ∈ TpM

Hence, a Riemannian manifold is a manifold with a Riemannian metric (M, g),[29],[33]. The

length or norm of any tangent vector X ∈ TpM is

|X | :=< X ,X >1/2

Vectors E1, ...,Ek are orthonormal if of unit length and pairwise orthogonal;

EiE j = δi j

Isometry of M . Let ϕ: (M
′
, g

′
)→ (M, g ) , where (M

′
,g
′
),(M, g) are Riemannian mani-

folds.

A diffeomorphism ϕ from M
′
to M is an isometry if

ϕ∗g = g′
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It can be shown that an isometry is an equivalence relation. Furthermore, a composition of isome-

tries is an isometry and the inverse of an isometry is an isometry. It turns out that the set of isome-

tries of M is a group, the isometry group of M, which is also a Lie group acting smoothly on M.

A discussion of Lie groups will follow later. Let (E1, ...,En) be a basis for T M and (ϕ1, ..., ϕn) its

dual basis. The Riemann metric can be expressed as

g = gi jϕ i⊗ϕ j

where gi j= < Ei,E j> is the coefficient matrix and is symmetric in i snd j. In a co-ordinate frame

g = gi jdxi⊗dx j

Because of the symmetry of gi j

g = gi jdxidx j

For a Euclidean metric

g = δi jdxidx j

Raising and Lowering Indices. We have seen this before , but in a different format. As before

, this allows us to convert vectors to covectors and vice versa. Given a metric g on M , define a

map from T M → T ∗M , that sends a vector X to the covector X � by

X �(Y ) = g(X ,Y )

In coordinate form,

X � = g(Xi∂i, .) = gi jXidx
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where Xj = gi jXi;X � is obtained from X by lowering an index - hence musical notation of flat,�

. SInce matrix gi j is invertible , so is the flat operator. It is designated as sharp,� . ω �−→ ω� . In

coordinates , components of ω� has components

ω i = gi jω j

Here , we are raising the index. In juxtaposition to the vector based approach above , I will state

briefly the metric tensor transformation in the index based approach format. Metric tensor tranfor-

mation between different coordinate systems, using tensor algebra rules, is as follows

gαβ =
∂xγ

∂xα
∂xδ

∂xβ gλδ

Given a co-ordinate transformation, we can compute the components of the metric tensor. Or , if

we have a basis { ei} and its dual basis {ei}. The metric tensor gi j can be computed by gi j = eie j ,

for the basis vector, gi j = eie j , for the dual basis and g j
i = eie j, for the contravariant and covariant

basis. Later on , we will address the distance element of a metric space. However, we can also

compute , literally read off the components of the metric , by using the distance element. I will

illustrate with a simple example in a Euclidean 2 - dimensional space. We have ds2 = gi jdxidx j,

which reduces to ds2 = dx2 +dy2. The metric tensor is

⎛⎜⎝ 1 0

0 1

⎞⎟⎠ . This is simply the coefficients

of the above equation in 2 ×2 matrix form. Next , we address the algebra of the metric tensor and

try and collect all the identities that will prove very useful later. We will adopt the tensor index

approach. In summary, the metric has at least three different roles , the last two properties we will

expand on in later chapters.

(1) The metric allows us to compute the dot product and norm of a vector

A.B = gμνAμBν

(2) The metric , as we will see later , will give us a connection on a manifold, through the
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Christoffel symbol

(3) The metric, through a coordinate basis , will allow us to calculate length

ds2 = gμνdxμdxν .

4.2 Variation of Metric and Metric Determinant

Varying the metric inverse and the metric determinant, we know that gμνgμν = δ μ
λ , [7].

Taking the variation ;

δgμνgμλ +gμνδgνλ = 0

Multiply by gλρ ;

δgμνδ ρ
λ =−gλρgμνδgνλ

We arrive at our first identity ;

δgμρ =−gλρgμνδgμλ (4.2.1)

Next, we prove a very powerful identity , the differential of the determinant of the metric tensor.

Theorem. If g is the determinant of a metric tensor gab , then ∂cg = g.gab∂cgab

Proof. Let A = (ai j) be a square matrix , a = detA , Ai j the cofactor of (ai j). Then, the

inverse of A, (bi j) = 1
a(A

i j)T , T being the transpose. Fix i, and expand the determinant (ai j) by the

i− th row. So a = ai jAi j , we are using Einstein summation convention. Differentiating both sides

with respect to ai j , we obtain

∂a
∂ai j

= Ai j

Note ai j does not appear in any of the cofactors Ai j. Assume a′i js are all functions of the coordi-

nates xk, the the determinant is a function of ai j , which is a function of xk. Therefore,

a = a(ai j(xk))
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Differentiating with respect to xk and using ∂a
∂ai j

= Ai j , by the chain rule ,

∂a
dxk =

∂a
∂ai j

∂ai j

∂xk

= Ai j ∂ai j

∂xk

= ab ji ∂ai j

∂xk

by applying definition of inverse. Noting that a = detA = g = detgi j and symmetry of metric tensor

gi j, we get

∂cg = ggi j∂cgi j

By differentiating
√−g and by symmetry , we obtain

∂
√−g =

1

2

√−ggi j∂gi j (4.2.2)

4.3 Pseudo-Riemannian Metric

Also known as semi-Reimannian metric, defined on a smooth manifold M, is a symmetric

2-tensor field g that is

(a) non-degenerate at each point p ∈M , i.e

g(X ,Y ) = 0,∀Y ∈ TpM ←→ X = 0

(b) if g = gi jϕ iϕ j, in terms of a dual co-frame , non-degeneracy means that the metric gi j

is invertible , gi j. By applying the Gram - Schmidt algorithm, one can construct a basis (E1, ...En)

for TpM such that

g =−(ϕ1)2− ...− (ϕr)2
+(ϕr+1)2 + ...+(ϕn)2
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for 0 ≤ r ≤ n, r is the index of g and it is the maximum dimension of any subspace of TpM on

which g is negative definite,[9],[13] . By Sylvester’s Law of Inertia, the index is independent

in the choice of basis. The most important pseudo-Reimannian metric is the Lorentz metric of

index 1. An example of the Lorentz metric is the Minkowski metric on Rn+1 . With co-ordinates

(ζ 1,...,ζ n,τ), the Minkowski metric is

m =−(dτ)2 +(dζ 1)2 + ...+(dζ n)2,

where ζ is the space direction and τ is the time direction. The ζ i s and τ belong to subspaces

on which g is positive definite and negative definite, respectively. The Minkowki metric is the

invariant of Einstein’s special theory of relativity, meaning the laws of physics have the same

form in any coordinate system , in the absence of gravity. Before we move onto volume forms, I

will outline the generalization of the gradient and the divergence operators that we encounter in

vector calculus. Let J(M) be the set of all smooth real-valued functions on M. Let X(M) be the

module over J(M)

Gradient. Then the gradient, grad f , of a function f ∈ J(M) is the vector field that is

metrically equivalent to the differential d f ∈ J∗(M) ; hence

< grad f ,X >= d f (X) = X f

X ∈ X(M). In coordinate notation,

d f =
∂ f
∂xi dxi

Hence

grad f = gi j ∂ f
∂xi ∂ j

Before, we define the divergence of a vector field , we will define the covariant differential of a
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tensor.

Covariant Differential. The covariant differential of an (r,s) tensor A on M is the (r,s+1)

tensor DA such that

DA(θ 1, ...,θ r,X1, ...,Xs,V ) = (DV A)(θ 1, ...,θ r,X1, ...,Xs)

for all V,Xi∈X(M) and θ j∈X∗(M). When r = s = 0, the covariant differential is the usual differen-

tial;

(D f )(V ) = DV f =V f = d fV (4.3.1)

Divergence. The divergence of a tensor A, divA, is the contraction of a covariant slot in its

covariant differential DA. This requires us to use frame fields, which is an orthonomal basis for a

tangent space. Let D be the covariant derivative ( a whole subsection will be devoted to this later).

Let C be a contraction and ε i = < Ei,Ei>. If V is a vector field , then

divV = εi < DEi ,Ei >

In the coordinate system ,

divV =
∂V i

∂x j +Γi
i jV

i (4.3.2)

Γi
i j is the Christoffel symbol. Finally, we can now discuss volume elemnts and forms which are

fundamental to our pursuit of the Einstein Field Equation.

4.4 Volume Forms

A volume element on an n-dimensional vector space V is a function ω that assigns to n

vectors v1, ...,vn ∈ V the volume of the parallelpiped with these vectors as sides. Stated more

explicitly, the determinant of a set of basis vectors is the signed hypervolume of the parallelpiped

spanned by the vectors,[32]. If ω(v1, ...,vn) = 0 , then the vectors are linearly dependent and the

parallelpiped collapses. If ω is multilinear and if ( e1, ...,e2) is an orthonormal basis for V, then
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ω(e1, ...,en) =±1

A volume element on an n-dimensional pseudo- Riemannian manifold M is a smooth n-form ω

such that ω(e1, ...,en) = ±1. The next two lemmas are important and we will prove both.

Lemma. On the domain U of a coordinate system ζ , there is a volume element ω such

that

ω(∂1, ...,∂n) =
√

(detgi j)

Proof. Let V1, ...,Vn be vectors on U , then V j= V i
j∂ i . Define ω(V1, ...,Vn) = det(V i

j )
√

(detgi j).

If (V1, ...,Vn) is a basis, then

δi jε j =<Vi,Vj >= (V r
i ∂r,V s

j ∂s) =V rgrsV s
j ,

where ε j= < Vj,Vj>. Taking determinants gives

(−1)n = (detV i
j)

2det(gi j)

Hence

ω(V1, ...,Vn) = det(V i
j)
√

(detgi j) =±1 (4.4.1)

In differential forms, the notation is

ω =
√

(detgi j)dx1...dxn (4.4.2)

Later on , we will examine the Lie derivative LX . However, another important lemma is ;

Lemma. If ω is a local volume element on M , then

LX(ω) = (divX)ω (4.4.3)
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Proof. Let (E1, ...,En) be a basis such that ω(E1, ...,En) = 1 . SinceLX is a tensor deriva-

tive , then LX 1 = X .1 = 0

(LX ω)(E1, ...,En) =−ω(E1, ...,LX Ei, ...En)

Let us write the Lie derivative as

LX Ei = [X ,Ei] = fi jE j,

where [ ] is the commutator. Since ω is skew symmetric , the only term that survives is fiiEi.

Since divX= ε i< DEi ,X ,Ei > , and applying simple commutator algebra ;

divX = εi < DX Ei,Ei >=−εi < [X ,E]i,Ei >

Since < Ei,Ei > is constant , the first term vanishes. Since [X ,Ei] = fi jE j, we obtain our final result

divX =− fii = LX
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CHAPTER V

OVERVIEW OF CONNECTIONS

5.1 Differentiating Vector Forms

Let γ: (a,b)→ M be a curve in a Manifold M. We need to think of a geodesic as the Rie-

mannian equivalent of a straight line in Euclidean space,[27],[30]. First , we orthogonally project

γ̈(t) onto the tangent space Tγ̇ (M). We would like to define a geodesic as a curve in M whose

tangential acceleration, γ̈ is zero. Note , the velocity vector, γ̇(t) , is co-ordinate invariant for each

t ∈ M. Essentially, this is a ’ vector field along a curve ’. However, the acceleration vector, γ̈(t),

is not co-ordinate invariant. If we move from t1 to t2 , in order to differentiate γ̇(t), , we need to

compute the difference quotient involving velocity vectors γ̇(t1) and γ̇(t2). However, these vectors

live in different tangent spaces, Tγt1
M and Tγt2

, and their subtraction is meaningless. Therefore,

to obtain an acceleration of a curve in a manifold , in a co-ordinate invariant manner, the trick is

to compare values of the velocity vector at different points on the manifold. In other words, to

connect nearby tangent spaces.

5.2 Connections

As above, we want to compare two tangent vectors and produce a third . We do this in a

tangent bundle and define a linear connection in TM, the tangent space,[27]. Hence, we define a

map

∇ : T (M)×T (M)→ T (M)

∇ has to satisfy the following three properties ; for X ,Y ∈ T(M)
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(1) ∇XY is linear over C∞(M) in X

∇ f X1+gX2
= f ∇X1

Y +g∇X2
Y ; f ,g ∈C∞(M)

(2) ∇XY is linear over R in Y

∇X(aY1 +bY2) = a∇XY1 +b∇XY2;a,b ∈ R

(3) ∇ satisfies the product rule (Leibniz)

∇X( fY ) = f ∇XY +(X f )Y ; f ∈C∞

Noting, f is a scalar function , hence ∇ does not apply to it, here we have an ordinary derivative.

We say ∇XY is the covariant derivative of Y in the direction of X . Let (E1, ...,En) be n smooth

vector fields defined on an open set U such that (E1, ...,En)|p form a basis for TpM at every point

p in U, where U is a neighbourhood of p in M. This is known as a local frame. Paraphrasing

, note that the mapping is defined on a tangent bundle of a manifold. And we are mapping a

velocity vector from one tangent space to another via a linear connection. Next, we examine the

covariant derivative of the basis vectors {E}, remembering that we cannot subtract vectors on

a non-Euclidean manifold, wthout a special operation, known as a connection. The action of ∇

is determined completely by the Christophel symbol Γk
i j. Since ∇ is a (2

1) tensor operation , we

expect Γi
jk to be a (1

2) indexed operator. It is not linear over C∞(M) in Y as in (1) above. Next, we

express the connection in a coordinate framework. Let ∇ be our linear connection and X ,Y ∈
T(M). In a local frame, X = XiEi = Xi∂i, Y = Y jE j = Y i∂ j. Then

∇XY = ∇X(Y jE j)
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= (XY j)E j +Y j∇XiEi
E j

= (XY j)E j +XiY j∇EiE j

= XY jE j +XiY jΓk
i jEk

∇XY = XY jE j +XiY jΓk
i jEk

First equality follows by the product rule, in the second equality, note that Xi’ s are components,

third equality expresses covariant derivative of E j and we apply dummy index to first term of last

equality.

Covariant Differentiation of Tensor Fields. For every input , v, a tangent vector ∈ T pM

at a point p, if X is a vector field, there is a unique operation ∇vX , such that ∀ p ∈ M , all u,v

∈T pM, and all a ∈ R , the following operations hold;

(1)∇(u+v)X = ∇uX +∇vX

(2)∇avX = a(∇vX)

(3)∇v(X +Y ) = ∇vX +∇v(Y ),X ,Y vector f ields

(4)∇v(X .Y ) = (∇vX)Y +X(∇vY )

Note XY is a tensor product, X ⊗ Y .

Covariant Derivative of a Covariant Vector Field. Let F = Fidxi be a covector field , a 1-
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form. Let X = Xi∂i be any vector field. Then F.X = FiXi. Applyng (4);

∇ j(F.X) = ∇ j(FiXi) = (∇ jF)iX i +Fi(∇ jX)i

For derivatives of scalar functions;

∂ j(FiXi) = (∂ jFi)Xi +Fi(∇ jX)i

Equating the last two expressions and re-arranging ;

[(∇ jF)i−∂ jFi]Xi = Fi[−(∇ jX)i +∂ jX i]

We know that ∇ jXk = ∂ jXk + XiΓk
i j. Substituting above and re-arranging, we obtain

(∇ jF)i = ∂ jFi−FkΓk
i j = Fi, j

5.3 Lie Brackets and Lie Derivatives

Above , we discussed how to compare vectors on a section of a tangent bundle using a

connection,[27],[28]. This is a coordinate invariant method . Next, we discuss another method

of taking derivatives along a section of a vector bundle ; the Lie Derivative , also a coordinate

invariant method. The objects in the tangent space T(M) are first order linear operators acting on

C∞ functions of the manifold. Consider such an operator X p( ) acting on two functions f and g.

At each point p ∈ M, we have, by linearity and the product rule, respectively

Xp( f +g) = Xp( f )+Xp(g)

Xp( f g) = Xp( f )g(p)+ f (p)Xp(g)
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Xp( f ) is the directional derivative of f in the direction of X at p. Thus, X inputs a function at p

and outputs a real number. Remembering that Tp(M) is an n- dimensional vector space with a

basis in local coordinates ( ∂
∂x1 ,..., ∂

∂xn ), hence

Xp = Xi ∂
∂xi
|p;X( f ) = Xi ∂

∂xi
( f )|p

Let us examine XY and Y X .

XY = X j∂ j(Y i∂i) = X j∂ jY i∂i +X jY i∂ 2
ji

This is a second order derivative and not a tangent vector.

Y X = Y j∂ jX i∂i +Y jXi∂ 2
ji

Subtracting;

XY −Y X = (X j∂ jY i−Y j∂ jX i)∂i

Therefore,

[X ,Y ]i = X j∂ jY i−Y j∂ jX i (5.3.1)

, is a vector field. The Lie bracket is the Lie derivative of two smooth vector fields

LXY = [X ,Y ] (5.3.2)

The bracket of two coordinate vector fields from the same coordinate system is 0, because the

second partial derivatives commute on C∞.

∂i∂ j f −∂ j∂i f = [∂i,∂ j] f = 0.

However, this is not generally true. Properties of Lie brackets are easy to prove , and they are
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Figure 5.1: Geometric representation of a Lie bracket

(a) Linearity

[X +Y,Z] = [X ,Z]+ [Y,Z]

[X ,Y +Z] = [X ,Y ]+ [X ,Z]

(b) Skew- symmetry

[X ,Y ] =−[Y,X ]

(c) [fX ,gY ] is not linear , unless f ,g are constants

(d) The Jacobi Identity

[[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0

We will examine the Jacobi identity in more detail later.

Geometrical interpretation of the Lie bracket . Take two vector fields, u and v, on a man-

ifold M. See Figure 5.1 for an illustration. First , we flow with u to v. We compare this to a flow

with v to u.

We start at point xi and make infinitesimal shifts and Taylor expand. Moving with u to v:
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route 1

xi u→ xi + εui(x) v→ xi + εui(x)+ εvi(x+ εu) = xi + εui(x)+ εvi(x)+ ε2v jui
, j

Moving with v to u: route 2

xi v→ xi + εvi(x) u→ xi + εvi(x)+ εui(x+ εv) = xi + εvi(x)+ εui(x)+ ε2u jv′ j
i

Subtracting; Route 1 - Route 2 ;

[u,v] = ε2(u jvi
, j−v jui

, j)

Hence the bracket is a measure of how much such parallelograms fail to close. The parallelogram

collapses when [u,v] = 0 .

5.4 Lie Algebras and Lie Groups

I will give definitions and then furnish examples.

Lie Algebra . A Lie algebra over R is a real vector space g with a bilinear bracket opera-

tion

[, ] : g×g→ g

, such that ∀ X ,Y,Z ∈ g

(1)[X ,Y ] =−[Y,X ],skew−asymmetry

(2)[[X ,Y ],Z]+ [[Y,Z],X ]+ [[Z,X ],Y ] = 0,Jacobi− identity
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Lie Group . A Lie group G is a smooth manifold that is also a group with smooth group

operations that are smooth maps

(1)μ : G×G→ G,sending− (a,b)− to−ab

(2)η : G→ G,sending−a− to−a−1

Example. GL(n,R) . The set gl(n,R) of all n×n real matrices is a real vector space, hence

a manifold. The map gl(n, R)→ Rn2
is a diffeomorphism. gl(n,R) can be made a Lie algebra by

defining [x,y] = xy− yx , where x,y ∈gl(n,R) and xy is matrix multiplication.

Lie Derivatives. If f ∈ C∞ and X ∈ T(M) ;

LX( f ) = X f

For X ,Y ∈ T(M) ;

LXY = [X ,Y ]

Useful properties of Lie derivatives : For X ,Y,Z ∈ T(M)

(1)LXY =−LY X

(2)LX [Y,Z] = [LXY,Z]+ [Y,LX Z]

(3)L[X ,Y ]Z = LX LY Z−LY LX Z

(4)LX( fY ) = (X f )Y + f LXY
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To provide a flavor of the algebra of Lie derivatives, I will prove (3).

L[X ,Y ]Z = [[X,Y],Z] = [XY-YX,Z] = [XY,Z] - [YX,Z] = LXY Z - LY X Z = LX LY Z - LY LX Z

5.5 Tetrads and Vierbein Formalism

The Verbein formalism will allow us to arrive at Einstein’s field equation via a different

route than varying the metric. Instead, we vary the basis at each point in the manifold,[29]. A

vector basis is said to be orthonormal at a point in a manifold i

eμ .eν = ημν

, where ημν is the Minkowski metric. The smoothness of the manifold will allow us to do so.

There is also a corresponding basis of orthonormal dual one-forms, with the usual duality condi-

tion

< e∗
μ
,eν >= δ μν

An orthonormal basis, unless it has a coordinate basis, does not have enough information to

provide the line element for the connection. To allow this to happen, we must find a linear trans-

formation from the orthonormal basis to the coordinate basis. In general relativity, a tetrad is a set

of basis vectors {γm} , m = 0,1,2,3 attached to each point of spacetime xμ . As above, an orthonor-

mal tetrad , which forms a locally inertial frame at each point of the manifold, whereby the scalar

product of the basis vectors form the Minkowski metric

γmγn = ηmn

Associated with the tetrad frame at each point, we have a local set of coordinates {ξ m}, m =

0,1,2,3. Note that the local coordinates ξ m do not extend beyond the local frame at each point

.That is , we have a moving frame from point to point. A coordinate interval is
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dx = γmdξ m

and the distance element is

ds2 = dx.dx = γmndξ mdξ n

The vierbein, German for four legs, eμ
m, is defined to be a 4 by 4 matrix that transforms between

the tetrad frame and the coordinate frame. The tetrad index, m, comes first, then the coordinate

index μ .

γm = eμ
mgμ

The inverse vierbein matrix is em
μ , hence

em
μ eν

m = δ μ
ν

And hence

gμ = em
μ γm

The metric encodes the vierbein

gμν = γmnem
μ en

ν

5.6 Geodesics and Parallel Transport

Here, we will analyze curves on manifolds, address the question of covariant derivatives

along curves and then define a geodesic and address their existence and uniqueness,[27],[29]. Let

γ: I→M be a curve, where I ⊂ R , is an interval. At any time t∈ I, the velocity γ̇(t) is defined as
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γ̇(t) f =
d
dt
( f ◦ γ)(t),

In coordinate representation

γ̇(t) = γ̇ i(t)∂i

A vector field along a curve γ: I → M is a smooth map V : I → T M such that V (t) ∈ T γ(t)M for

every t ∈ I, for example γ̇(t)∈T γ(t)(M). Extendibility is an important idea . A vector field V along

γ is said to be extendible if there exists a vecor field V
′
on a neighbourhood of the image of γ

that is related V , direction - wise. For example, if γ(t1) = γ(t2) , but γ̇(t1) �= γ̇(t2) , then γ is not

extendible, as the velocity vectors at the same point , point very different directions, Figure 5. Let

T(γ) be the space of vector fields along γ . Let ∇ be a linear connection on M. Then, for every

curve γ: I→M, ∇ determines a unique operator Dt : T(γ)→ T(γ), a connection, the covariant

derivative of X along γ , that is linear over R, satisfies Leibniz’s rule and the covariant derivative

is extensible. I will state this without proof;

(1) Linearity :

Dt(aV +bW ) = aDtV +bDtW,a,b ∈ R

(2) Product Rule :

Dt( fV ) = ḟV + f DtV, f ∈C∞(I)

(3) If V is extensible, then for any extension V
′
of V ,

DtV (t) = ∇γ̇(t)V
′

Geodesics Let M be a manifold with a linear connection ∇. Let γ be a curve in M. Then

the vector field Dt γ̇ is the acceleration of γ . A curve γ is a called a geodesic if its accelerattion is
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zero;

Dt γ̇(t) = 0 (5.6.1)

For coordinates {x} , on some neighbourhood of a point on the manifold the geodesic equation

can be shown to satify

d2xk

dt2
+Γk

i j
dxi

dt
dx j

dt
= 0 (5.6.2)

(1) This is a second order differential equation . It can be converted to a first order linear

differential equation by the method of change of variables. By specifying initial conditions and

by the Existence and Uniqueness Theorem of first order linear differential equations, a unique

solution does exist.

(2) It follows from the uniqueness theorem, for any point p and vector V , there is a unique

maximal geodesic with initial point p and initial velocity V .

A physical approach to the geodesic equation follows next.

The Lagrangian of a free particle in a gravitational field is given by

L =
1

2
Mgμν ẋμ ẋν (5.6.3)

, where M is the mass. Parameterization of xμ → xμ(s), and applying the Euler Lagrange equa-

tion, which we will discuss later, under the principle of least action,

d
ds

(
∂L
∂ ẋμ )−

∂L
∂xμ = 0 (5.6.4)

, the following observations are noteworthy.

(a) For M = Rn , the Christoffel symbols Γk
i j = 0 , then , ẍk = 0⇒xk = ai + bit, a straight

line; ai,bi are constants

(b) If γ̇(t) �= 0 , a geodesic cannot slow down and stop

(c) For xμ = x0,x1,x2,x3 . Let ẋ0 � 1 , ẋ1 = ẋ2 = ẋ3 � 1, ẍ0 = - Γ1
00 and by Newton’s Law ,

ẍ = -∇φ . Therefore φ= potential ∼= metric . This observation will become apparent later.
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Theorem. Let M be a manifold with a connection ∇. Let p be a point in M and v ∈ TpM,

a vector at p. then there is a unique geodesic p(t) defined on some interval around t = 0, so tha t

p(0) = p, and ṗ(0) = v. This is is a re-statement of what we outlined above

Fix p0 ∈ M, a coordinate system xi around p0 is said to be a local inertial frame , if all Γi
jk

disappear at p0.

The covariant derivative ∇ is said to be symmetric if

Γi
jk = Γi

k j

for all coordinate systems xi. As stated above, based upon the uniqueness theorem, for any p ∈ M

and V ∈ Tp(M), there is a unique maximal geodesic γ: I→ M with γ(0) = p and γ̇(0) = V , on an

open interval I. The maximal geodesic is the geodesic with initial point p and initial velocity V ,

written as γV . If we define π : T M → M , one can see that p = π(V ). The next question is ; how

do geodesics behave ? Do they vary with the initial point , vector or both ? Can we extract any

global information from local information. It turns out that the exponential map from the tangent

bundle to the manifold, by sending the vector V along the maximal geodesic γV for a time t = 1,

gives us the information we need.

Exponential Map. Define the exponential map exp : E→ M by

exp(V ) = γV (1),

for each p ∈M, where E is a subset of T M , E = { V ∈ T M, γV is defined on an interval [0,1].

A brief introduction into exp maps (without proofs); the exponential map exp carries lines

through the origin of Tp(M) to geodesics of M through p. for each point p ∈M, ∃ a neighbourhood

U ′ of p in TpM on which the exponential map expp is a diffeomorphism onto a neighbourhood U

of p in M.. A subset S of vector space is starshaped about 0 if v ∈ S implies tv ∈ S, ∀ 0 ≤ t ≤ 1.

If U and U
′
are as defined above, if U

′
is star shaped about 0, then U is a normal neighbourhood

of p. A broken geodesic is a piecewise smooth curve segment whose smooth subsegments are
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geodesics. A semi-Riemannian manifold M is connected if and only if any two points of M can

be joined by a broken geodesic.

Properties of Normal Coordinates Let {U,(xi)} be a normal coordinate chart centered at

p. Then

(a) For any V =V i∂i∈ TpM, the geodesic γV starting at p with initial velocity vector V is

represented in normal coordinates by the radial line segment γV (t) = (tV 1, ..., tV n) , as long as γV

stays within U

(b) The coordinates of p are (0, ...,0)

(c) The components of the metric at p are gi j = δ i j

(d) Any Euclidean ball contauned in U is a geodesic ball in M
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CHAPTER VI

CURVATURE

6.1 Metric Compatibility

Let g be a Riemannian or Semi-Riemannian metric on a manifold M. A linear connection

∇ is said to be compatible with g if for all vector fields X ,Y,Z , the following product rule is

satisfied

∇X < Y,Z >=< ∇XY,Z >+< Y,∇X ,Z >

The following conditions are equivalent

(1) ∇ is compatible with g

(2) ∇g= 0

(3) If V,W are parallel vector fields along a curve γ , then < V,W > is constant

(4) If V,W are vector fields along any curve γ

d
dt

<V,W >=< DtV,W >+<V,DtW >

(5) Parallel translation Pt0t1: T γ(t0)M → T γ(t1)M is an isometry for each t0, t1.

Compatibility of the metric is not enough for uniqueness of the connecttion. We need

another property that involves the torsion tensor of the connection.The torsion tensor is a (2,1)

tensor τ , defined by

τ(X ,Y ) = ∇XY −∇Y X− [X ,Y ] (6.1.1)
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A linear connection is said to be symmetric if the torsion tensor vanishes

∇XY −∇Y X = [X ,Y ] (6.1.2)

Lie derivatives satisfy the identity

L[X ,Y ] = [LX ,LY ] = LX LY −LY LX . (6.1.3)

Hence , if [X ,Y ] = 0, then LX and LY commute. This result usually fails for the covariant deriva-

tive DX ,[27],[30].

6.2 Riemann Curvature

Parallel Transport,[27],[28],[30],. Let M be a manifold with a linear connection ∇. A

vector field V along a curve γ is said to be parallel to γ if

DtV = 0 (6.2.1)

Armed with all these tools , now we can tackle the concept of curvature.

Motivation for Riemann Curvature Tensor

When we parallel translate a vector Z in a Euclidean plane, Riemann 2- manifold , along

two cordinate bases, X= ∂1 and Y = ∂2 , we showed geometrically, in the section on Lie deriva-

tives that

∇∂1
∇∂2

Z−∇∂2
∇∂1

Z = 0

However, in a curved surface , we have non - commutativity of these second order covariant

derivatives. Let us examine this more closely, in Rn with the Euclidean metric

∇X ∇Y Z = ∇X(Y Zk∂k) = XY Zk∂k
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∇Y ∇X Z = Y XZk∂k

The difference between these two expressions

(XY Zk−Y XZk)∂k = ∇[X ,Y ]Z = ∇X ∇Y Z−∇Y ∇X Z (6.2.2)

This is the flatness criterion. It holds for X ,Y,Z ∈ Rn. If M is a Riemannian manifold, the Rie-

mann Curvature Endomorphism is the map

R : T(M)×T(M)×T(M)→ T(M)

defined by

R(X ,Y )Z = ∇X ∇Y Z−∇Y ∇X Z−∇[X ,Y ]Z (6.2.3)

The Riemann Curvature Tensor - basic observations and properties

(1) It is a (3
1) tensor . It can be shown to be multilinear over C∞ and R

(2) It can be wriiten in any local frame with one upper and three lower indices. For exam-

ple ; R = Ri jk
ldxi⊗ dx j ⊗ dxk∂ l

(3) Skew-symmetry R(X ,Y )Z =−R(Y,X)Z

(4) It can also be defined as the covariant 4-tensor, obtained from the (3
1) tensor by lower-

ing the last index

Rm(X ,Y,Z,W ) =< R(XY )Z,W >

In coordinates;

Rm = Ri jkldxi⊗dx j⊗dxk⊗dxl

Note Ri jkl = glmRm
i jk

(5) A Riemann manifold is flat⇐⇒ its curvature tensor is zero.

Symmetries of the Curvature Tensor . I will express these in 3 ways; Rm, < > , and in
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coordinate form. For vector fields W,X ,Y,Z

Symmetry 1 - follows from the definition of the curvature endomorphism

Rm(W,X ,Y,Z) =−Rm(X ,W,Y,Z)

< R(W,X)Y,Z >=−< R(X ,W )Y,Z >

Ri jkl =−R jikl

Symmetry 2 - follows from the compatibility of the Riemann connection with the metric

Rm(W,X ,Y,Z) =−Rm(W,X ,Z,Y )

< R(W,X)Y,Z)>=−< R(W,X)Z,Y )

Ri jkl =−Ri jlk

Symmetry 3 - follows from the symmetries 1, 2 and 3

Rm(W,X ,Y,Z) = Rm(Y,Z,W,X)

< R(W,X)Y,Z >=< R(Y,Z)W,X >

Ri jkl = Rkli j

Symmetry 4 - follows from the symmetry of the connection also known as first Bianchi identity
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R(W,X ,Y,Z)+R(X ,Y,W,Z)+R(Y,W,X ,Z) = 0

Ri jkl +R jkil +Rki jl = 0 (6.2.4)

6.3 Fundamentals of Riemannian Geometry

I left this at the end of the chapter and not at the beginning because we needed the math-

ematics of earlier chapters. Furthermore , it is a good entry point into General Relativity. Let

(M,g) be a Riemannian or PseudoRiemannian manifold. Then, there is a unique linear con-

nection on M that is compatible with g and symmetric. It is known as the Levi-Civita Connec-

tion,[27],[28],[29]. We will be expressing this in terms of the metric. Let X ,Y,Z be vector fields

in T(M). Applying metric compatibility;

X < Y,Z >=< ∇XY,Z >+< Y,∇X Z >

Y < Z,X >=< ∇Y Z,X >+< Z,∇Y X >

Z < X ,Y >=< ∇ZX ,Y >+< X ,∇Z,Y >

Noting that < Y, [X ,Z]> = < Y,∇X Z−∇ZX> = <Y,∇X Z > - < Y,∇ZX >, we obtain

< Y,∇X Z >=< Y,∇ZX >+< Y, [X ,Z]>

Doing the same for the second term of the above equations, we obtain

X < Y,Z >=< ∇XY,Z >+< Y,∇ZX >+< Y, [X ,Z]>

Y < Z,X >=< ∇Y Z,X >+< Z,∇XY >+< Z, [Y,X ]>
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Z < X ,Y >=< ∇ZX ,Y >+< X ,∇Y Z >+< X , [Z,Y ]>

Adding the first two equations, subtracting the third and solving for

<∇XY,Z >=
1

2
X < Y,Z >+Y < Z,X >−Z < X ,Y >−< Y, [X ,Z]>−< Z, [Y,X ]>+< X , [Z,Y ]>

Since the last three terms of right hand side of this equation do not depend on the connection, the

Lie brackets vanish. Using a local coordinate chart ,

< ∇∂i∂ j,∂l >=
1

2
∂i < ∂ j,∂l >+∂ j < ∂l,∂i >−∂l < ∂i,∂ j >

Noting < ∂ i,∂ j > = gi j and ∇∂i∂ j = Γm
i j∂ m . Inserting these above, we obtain

Γm
i jgml =

1

2
(∂ig jl +∂ jgil−∂lgi j) (6.3.1)

Multiplying by glk and noting gmlglk = δ k
m. Therefore,

Γk
i j =

1

2
gkl(∂ig jl +∂ jgil +∂lgi j) (6.3.2)

Remark;

(a) Γi
jk = Γi

k j , symmetry of the connection is evident

(b) The Christoffel symbol defines the connection in the chart

(c) Compatibility ∇g= 0 can be established by further computation using covariant deriva-

tive equation

The Christoffel symbol is so important, it is worth spending the time deriving it through

another shorter method; Noting that gλ μ = eλ eμ . Differentiating :
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∂gλ μ

∂xν = eλ
∂eμ

∂xν +
∂eλ
∂xν eμ

= eλ ekΓk
μν + eμekΓk

λν

= gλkΓk
μν +gμkΓk

λν

= Γλ μν +Γμλν

By symmetry,

∂gλ μ

∂xν +
∂gλν
∂xμ − ∂gμν

∂xλ = Γλ μν +Γμλν +Γλ μν +Γνλ μ −Γμνλ +Γνμλ = 2Γλ μν

terms vanish by applying free torsion condition.. Therefore

Γλ μν =
1

2
(
∂gλ μ

∂xν +
∂gkν
∂xμ −

∂gμν
∂xλ )

Application of Riemann Curvature Tensor : Geodesic Deviation Equation,[7],[14],[38].The

geodesic equation relates the acceleration of the separation vector χ between two nearby geodesics

to the Riemann curvature tensor. First, we define a separation 4-vector χ(τ) that connects a point

xα (τ) on one geodesic (fiducial) to point xα (τ) + χα (τ) on a nearby geodesic at the same proper

time. Let u= 4-velocity vector of fiducial geodesic. Let v = separation velocity vector = ∇uχ

.Then, the separation acceleration is defined as w

w = ∇u∇uχ = ∇uv

Noting that for any function f∈ R∞
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d f
dτ

=
d f (xα(τ)

dτ
=

∂ f
∂xα

dxα

dτ
= uα ∂ f

∂xα

We next calculate the coordinate basis components of v and w using the geodesic equation and

applying the expression above;

vα = (∇uχ)α = uβ ∇β χα =
dχα

dτ
+Γα

βγuβ χγ (6.3.3)

wα = (∇uv)α = uβ ∇β vα =
dvα

dτ
+Γα

δεuδ vε (6.3.4)

Next, we substitute vα from (6.3.3) into (6.3.4);

wα =
d2χα

dτ2
+

d
dτ

(Γα
βγuβ χχ)+Γα

δεuδ (
dχε

dτ
+Γε

βγuβ χγ)

=
d2χ
dτ2

α

+2Γα
βγuβ dχγ

dτ
+

∂Γα
βγ

∂xδ uδ uβ χγ +Γα
βγ

duβ

dτ
χγ +Γα

δεΓε
βγuβ uδ χγ (6.3.5)

with re-labelling of dummy indices. Noting that the geodesic equation applies to xα (τ) + χα (τ) ,

we get

d2(xα +χα)

dτ2
+Γα

βγ(x
δ +χδ )

d(xβ +χβ
dτ

dxγ +χγ

dτ
= 0

Taylor exapnding, since χ is small, we ignore second order terms, noting uα= dxα

dτ and symmetry

of connection Γα
βγ = Γα

γβ , and relabelling indices, we obtain

d2χα

dτ2
+2Γα

βγuβ dxγ

dτ
+

∂Γα
βγ

dxδ uβ uγ χδ = 0

Substituting
d2χα

dτ2 of above expression into (6.3.5) above, we get

wα =−(
∂Γα

βδ

∂xγ −
∂Γα

βγ

∂xδ +Γα
γεΓε

βδ −Γα
δεΓε

βγ)u
β χγuδ

ωα =−Rα
βγδ uβ χγuδ (6.3.6)
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As one can see, the separation acceleration of geodesics is directly proportional to the Riemann

curvature tensor. In the weak field limit, the metric is approximatley Minkowski and the veloci-

ties of test particles are much less than c, the speed of light.

6.4 Introduction to General Relativity

Ricci Tensor. The 4 indexed Riemann curvature tensor is very complicated with 44 = 256

entries. Instead, we define an index 2 covariant Ricci tensoe , Ric or Rc . The Ricci tensor is

defined by contracting the first and last indices of the Riemann curvature tensor,:

Ri j = gkmRki jm = Rk
ki j

Scalar Curvature. The scalar curvature S is the trace of the Ricci tensor

S = Ri
i = gi jRi j

The Ricci tensor and scalar curvature are linked through the following identity, [7] ,[14] ,[38].

Lemma. The covariant derivatives of the Ricci and scalar curvatures satisfy the following

identity

divRc =
1

2
∇S (6.4.1)

R j
i j; =

1

2
S; j

Proof. For this proof, we need the Differential Bianchi Identity of the curvature tensor:

Rabmn;l +Rablm;n +Rabnl;m = 0

Contract this equation with the tensor product gbngam;

gbngam(Rabmn;l +Rablm;n +Rabnl;m) = 0
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gbn(Rm
bmn;l−Rm

bml;n +Rm
bnl;m) = 0

noting that first index contracts, the second index slides through

gbn(Rbn;l−Rbl;n−Rm
b nl;m) = 0

Rn
n;l−Rn

l;n−Rnm
nl;m = 0

The first term contracts to a Ricci scalar, the second term contracts to (1
1) Ricci tensor.Therefore,

we obtain

R;l−Rn
l;n−Rm

l;m = 0

Noting n and m are dummy indices

R;l = 2Rm
l;m

Therefore,

∇Rc =
1

2
∇R

Definition. A Riemann metric is said to be an Einstein metric if Rc = λg , where λ is a

function, g is metric . Taking the trace of each side; tr Rc = S and tr g = gi jg ji= δ i
i = dim M, M

Manifold, therefore

S = λdimM =⇒ Rc =
S

dimM
g

Let dim M = n and taking the covariant derivative of this last expression, we obtain
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Ri j;k =
1

n
S;kgi j

Taking the trace of this equation, we obtain

Ri j; j =
1

n
S;i

Comparing with

R j
i j =

1

2
S;i

We obtain

1

n
S;i =

1

2
S;i

We can conclude that for n > 2, S;i = 0⇒ S, Ricci Scalar is a constant, noting M is a connected

space. Therefore S, the Ricci scalar is a constant for n ≥ 3. The idea is to find a Riemannian

metric on a given manifold that provides constant curvature. This is done by studying the critical

points of the total scalar curvature functional. Given a metric g ∈M , the total scalar curvature

functional S : M→ R is defined as

S(g) =
ˆ

M

SdV

dV = volume form of metric. The Einstein metric can be thought of as the higher dimensional

analogue of the Gaussian curvature of a 2-manifold. The Gaussian curvature is intrinsic to the

2-manifold. The central them in General Relativity is that space time is modelled by a 4-manifold

that satisfies the field equation

Rc− 1

2
Rg = T (6.4.2)

where g is the Lorentz metric and T is the energy-momentum tensor. The Hilbert action is the
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variational equation of a functional. The functional is defined on the space of all metrics in a 4-

manifold. The theory of General Relativity states that the scalar curvature S is a crtitical point of

this function. Let us examine the field equation .

Case 1: T = 0 , Then Rc = 1
2Rg. Take the trace ;

S = 2S =⇒ S = 0 =⇒ Rc = 0

Therefore, g is an Einstein metric

Case 2. Einstein considered adding λg to the LHS of the field equation.

λg+Rc− 1

2
Rg = T

If T = 0, and we take the trace of both sides of the field equation, we obtain

4λ −S = 0⇒ S = 4λ (6.4.3)

This means that empty space has curvature. Einstein dropped this factor. In its entire form, the

field equation can be expressed as

Rc− 1

2
Rg+λg = κT (6.4.4)

where κ is a constant. In (6.4.4) , if T �= 0, we have

4λ −S = κT

Multiply by 1
2g

2λg− 1

2
gR =

1

2
gκT (6.4.5)

Subtracting (6.4.4) - (6.4.5)

Rc = κ(T − 1

2
gT )+λg (6.4.6)
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We will need this alternate form of the field equation when we deduce the Newtonian

weak field limit below. Special relativity can be thought of as the flat, simply connected, Lorentz

manifold of dimension 4, the Minkowski metric of index 1. Hence, we now explore the Newto-

nian limit of the field equation.

The Newtonian Limit. Recall the geodesic equation

wα =−Rα
μνσ uσ uμ χν

The equivalent Newtonian tidal deviation equation is

wα =−η i j(∂k∂ jΦ)χk

, where η i j is the Minkowski metric and Φ is the gravitational potential.

Taking the Newtonian limit, we make 3 assumptions:

(1) spacetime is almost flat - weak gravitational field- flat space metric η i j

(2) objects move with speeds << c = 1. This means the 4-velocity can be expressed as

(1,0,0,0)

(3) mass energy density ρ = T u >> T μν components of the field source ( more on this

later)

Therefore, in the Newtonian limit ; uμ = uν = 1, when ν = t

wα �−Ri
iν iχ

ν =−Ri
tkt χ

k

Comparing this to the Newtonian tidal deviation equation, we note that

Ri
tkt = η i j(∂ j∂kΦ)� Rk

tkt = Rtt = Rtt

Using the alternate form of the field equation outlined above, we obtain
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∇2φ � Rtt = κ(T − 1

2
gT )+λg

If ρ = T u >> other T μν , then T = gμνT μν � ημνTμν � η ttρ = -ρ , where ρ is the mass density.

Therefore, ∇2φ � Rtt � κ[ρ - 1
2(-1)(-ρ)] - λ = 1

2κρ - λ

Remarks.

(1) set κ = 8πG and assume λ << 4πρG , we obtain ∇2φ = 4πGρ (2) If ρ = 0, in the

Newtonian limit, ∇2φ = -λ , if λ > 0 , this creates a repulsive force. Einstein reasoned that this

may cause the universe to expand, and hence dropped the term. In 1929, Edwin Hubble, showed

by observing the red shift of receding galaxies, that the universe was indeed expanding. After

which, Einstein remarked that this was his biggest blunder

(2) Energy Momentum Tensor. Now, we briefly introduce the energy momentum tensor

. A whole sub-section will be dedicated to this. Matter is a carrier of energy-momentum, mathe-

matically it is expressed as an energy momentum tensor, T. Einstein had initially suggested that

G = kT, where G is a function of the Ricci tensor, and k is a constant. We showed earlier, that Div

Rc = 1
2∇R, and so Div T = 0⇒ div G = 0. So subtracting 1

2R from Rc makes sense. Indeed, the

Einstein gravitational tensor of spacetime, G, is

G = Rc− 1

2
Rg (6.4.7)

If M is a spacetime containing matter with stress - energy tensor T , then

G = Rc− 1

2
Rg = 8πT

The Einstein equation implies that the stress-energy tensor is a symmetric (0,2) tensor with zero

divergence,[35].

divG = div(Rc− 1

2
Rg) =

1

2
∇R− 1

2
∇R = 0

G = 8πT tells us how matter determines Ricci curvature , divT = 0 tells us that Ricci curvature
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moves this matter. When T= 0, M is Ricci flat, then M is empty, a vacuum.

A perfect fluid on a spacetime M is a triple (U,ρ , p) where

(1) U is a timelike future pointing unit vector field on M called the flow vector field

(2) ρ is the energy density function in T ∗(M) and p is the pressure function in T ∗(M)

(3) The stress-energy tensor is

T = (ρ + p)U •⊗U∗+ pg (6.4.8)

where U∗ is the one-form metrically equivalent to U. If X ,Y ⊥U , then T (U,U) = ρ , T (X ,U) =

T (U,X) = 0,T (X ,Y ) = p < X ,Y > . Noting that divT = 0, in coordinates;

T i j = (ρ + p)UiU j + pgi j

The divergence is

∑
J

T i j
; j = ∑

J
(ρ + p); jUiU j +(ρ + p)Ui

; jU
j +(ρ + p)UiU j

; j + p; jgi j

Therefore,

divT =Ugrad(ρ + p)U +(ρ + p)DUU +(ρ + p)(divU)U +grad p

Proposition. The Energy Equation. < DivT,U > = 0 and noting U is a unit vecor and

DUU⊥U

0 =Ugrad(ρ + p)+(ρ + p)divU +Ugrad p

Ugradρ =−(ρ + p)divU

This gives us the rate of change of energy density as measured by U .

Proposition. The Force Equation Substituting Ugradρ = −(ρ + p)divU into divT , we get
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(ρ + p)DUU =−grad p.

This is equivalent to Newton’s law F = ma, where force is equivalent to the pressure gradient

and mass is replaced by ρ + p, while DUU ⊥U is the spatial acceleration of the molecules of

flow . We will later need the Maxwell Energy Momentum Tensor. in order to derive the Reissner-

Nordsrtom metric of a charged non- rotating blackhole;

Tab =
1

4π
(−gcdFacFbd +

1

4
gabFcdFcd),

where Fab is the electromagnetic energy momentum tensor.
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CHAPTER VII

VARIATIONAL CALCULUS AND HILBERT ACTION

7.1 Euler - Lagrange Equations - Variational Calculus and Functionals

For the functional S[y} =
´ b

a dxF(x,y,y′) , y(a) = A,y(b) = B, where F(x,u,v) is a real

function of three real variables, a necessary and sufficient condition for the twice differentiable

function y(x) to be a stationary path is that it satisfies the equation

d
dx

(
∂F
∂y′

)− ∂F
∂y

= 0 (7.1.1)

, and the boundary conditions y(a) = A,y(b) = B. This is known as the Euler Lagrange Equation.

On a stationary path, the functional may achieve a maximum or minimum value, the path being

named an extremal. The nature of the stationary path is determined by the term O(ε2) in the ex-

pansion S[y+ εh]. The limit�S[y,h] = d
dε S[y + εh]|ε=0 is linear in h and is known as the Gateaux

differential.The Gateaux differential identifies stationary points of the functional,[12],[38].

Lemma. Fundamental Lemma of Calculus of Variation. If z(x) is a continuous function of

x for a ≤ x ≤ b, and if ˆ b

a
dxz(x)h(x) = 0

for all functions h(x) that are continuous for a ≤ x ≤ b and are zero at x = a and x = b, then

z(x) = 0 for a ≤ x ≤ b. By applying the chain rule, integration by parts and the fundamental

lemma of the calculus of variation, we can easily derive the Euler Lagrange equation. The Euler

Lagrange equation identifies stationary extremal paths. The same idea applies to Lagrangian

Mechanics: Define an action S[x(t)] =
´ t2

t1 dtL(x, ẋ), where L(x, ẋ) = T (ẋ)−V (x), where T (ẋ) is
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the kinetic energy, V (x) is the potential energy. The extremal path δS is set to 0 and defined as

δS = δ
ˆ t2

t1
dtL(x, ẋ) = 0

Hence, we arrive at the Principle of Least Action.

7.2 Hibert Action

The variation with respect to the metric or inverse metric is set to zero, that is

δS = 0

Define F : space of all metrics→ R, then

F(g) =
ˆ

M
R
√

(detg)dnx (7.2.1)

, where g= metric, R = Ricci Scalar,
√
(detg)dnx is the volume form. We want F(g + δg) = 0 for

all variations δg, i.e. we want δF(g) = 0. In space-time, we have a 4-manifold, with a metric

signature

ds2 = c2dt2−dx2−dy2−dz2,(+,−,−,−)

or ( −,+,+,+) , dependent on convention, and the volume element, d4V is

d4V =
√

(−g)d4x

where g = detgμν . We showed in subsection 3.3 that the variation of the metric, δ
√
(−g), is

δ
√
(−g) = -1

2

√
(−g)gμνδgμν . As a quick reminder, the Ricci tensor is a contracted Riemann

curvature tensor

Ri j = Rk
ik j
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and the Ricci curvature scalar S,

R = gklRkl (7.2.2)

Also, a manifold for which] Rc = kg, k a constant is an Einstein metric. We need Stokes theorem,

which we proved in subsection 2.3, and states; for a differential form ω , on a manifold M with a

boundary ∂M

ˆ
M

dω =

ˆ
∂M

ω

This is useful when we compute the second term of the Hilbert action. The metric compatibility

is also useful. The covariant derivative of a metric is zero. By combining

∇igkl = ∂ jgkl−Γm
jkgml−Γm

jlgkm

and

Γm
i j =

1

2
gml(∂ jgil +∂igl j−∂lg ji)

and noting gmngml= δ n
l , we get

∇ jgkl = 0

Now we can construct the Hilbert action. Define the action as S,

S =

ˆ
R
√

(−g)d4x (7.2.3)

R, the Ricci scalar curvature, is a good intuitive guess for our functional because it is integrable

and it is gauge invariant(see section). Note catena of events on our 4-manifold

metric,g derivative−→ Γi
jk

derivative−→ R jkl
i contraction−→ S
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where Γi
jk is the Levi-Civita Connection, R jkl

i is the Riemann Curvature Tensor and S is the

Scalar Curvature. Applying variation of our action;

δS = δ
ˆ

d4x
√

(−g)R = 0

δS = δ
ˆ

d4x(
√

(−g)δR+δ
√

(−g)R) = 0

Substituting for R and δ (
√
(−g) ;

δS =

ˆ
d4x

√
(−g)δ (gkmRkm)− 1

2

√
(−g)gkmδgkmR = 0

δS =

ˆ
d4x

√
(−g)Rkmδgkm +gkm

√
(−g)δRkm− 1

2
gkm(

√
−g)Rδgkm = 0

Next, we must show that the second term
´

d4x
√

(−g)gkmδRkm = 0. This is so because since R =

gkmRkm,

δR = δgkmRkm +gkmδRkm = δgkmRkm +gkm∇lδΓl
mk−∇mδΓl

lk

The first term disappears as it is the derivative of a metric. The second term is the covariant

derivative of a vector field. When multiplied by
√

(−g) it becomes a total derivative, which

makes it equivalent to the divergence of a vector field. Hence, when integrated, as above, we can

apply Stokes Theorem. By Stokes theorem, when this term is integrated over a volume element

d4x, the entire term only contributes at the boundary of the manifold. For spacetime, the universe,

the boundary is infintely far away. That is ,

ˆ
M

dω =

ˆ
∂M

ω = 0

Therefore,
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δS =

ˆ
d4x(Rkmδgkm− 1

2
gkmRδgkm) = 0

δS =

ˆ
d4xδgkm(Rkm− 1

2
gkmR) = 0

By the fundamental lemma of the calculus of variation

Rkm− 1

2
gkmR = 0
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CHAPTER VIII

TRADITIONAL APPLICATIONS OF GENERAL RELATIVITY

8.1 Newtonian Limit

Without gravitation, spacetime posseses the Minkowski metric ημν ,[37]. Weak gravita-

tional fields cause small curvature in spacetime. The metric takes the form of

gμν = ημν +hμν , |hμν |<< 1

The metric is also stationary, that is, ∂ 0gμν = 0. The geodesic expression for a free falling parti-

cle is

d2x
dτ2

+Γμ
νσ

dxν

dτ
dxσ

dτ
= 0 (8.1.1)

We set dxi

dt << c, for (i = 1,2,3) , dxi

dτ << dx0

dτ and x0 = ct . Computing the Levi-Civita connection

Γμ
00 =

1

2
gκμ(∂0g0κ +∂0g0κ −∂κg00)

=−1

2
gκμ∂κg00 =−1

2
ηκμ∂κh00 (8.1.2)

Noting that dt
dτ = 1, substituting into equation

d2x
dt2

=−1

2
c2∇h00

Compare with Newton’s equation d2�x
dt2 = -

∂φ
∂x , we get

h00 =
2φ
c2
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Therefore,

g00 = 1+h00 = (1+
2φ
c2

) (8.1.3)

This equation tells us that spacetime curvature causes the time coordinate t to be different from

the proper time. Consider a clock at rest, so that dxi

dt = 0. The proper time dτ between two ticks of

the clock is given by

c2dτ2 = gμνdxμdxν = g00dx0dx0 = g00c2dt2

Therefore,

dτ = (1+2
φ
c2
)

1
2 dt

This is the interval in proper time dτ that corresponds to an interval dt for a stationary observer

in the vicinity of a massive object with gravitational potential φ . Since φ is negative, the proper

time interval is shorter than the corresponding interval for a stationary observer at a large distance

to the object, where φ −→ 0 and and where dt = dτ . The space time interval is given by

ds2 =−(1+ 2φ
c2

)(cdt)2 +dx2 +dy2 +dz2

This equation tells us that Newtonian gravitation corresponds solely to a curvature of time.

8.2 Gravitational Red-shift

If a stationary light emitter emits photons at a frequency ν1, what is the observed fre-

quency? Since this is a light signal ds2 = c2dτ2 = 0 = dxi2, i = 0,1,2,3. That is, the world line

corresponding to the propagation of light would be a null geodesic,[28]. If we have a stationary

light emitter at x1 and a stationary observer at x2, then since the coordinate time for two emission

cycles is the same

c2dτ2
1 = g00(x1)dt2 = c2dτ2

2 = g00(x2)dt2
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Therefore, setting c = 1

dt =
dτ1√
g

00
(x1)

=
dτ2√
g

00
(x2)

Hence, the ratio between the observed and emitted frequencies is

ν2

ν1
=

dτ1

dτ2
=

√
g00(x1)

g00(x2)

In a weak field, substituting g00 = 1+2
φ
c2

ν2

ν1
=

√√√√1+ 2φ1

c2

1+ 2φ2

c2

Therefore,

ν2

ν1
� 1+

φ1

c2
− φ2

c2

zgrav =
Δν
ν

=
ν1−ν2

ν1
= 1− ν2

ν1
=

φ2−φ1

c2

8.3 Advance of Perihelion of Mercury

Astronomers needed an additional mass nearer to the sun than mercury to explain the

strange advance of the perihelion of mercury. No such mass was found,. Newton’s theory of

gravitation was found to be imperfect. This is the one body problem of general relativity. We

assume that a centrally massive body produces a spherically symmetric gravitational field. The

general relativity solution is the Schwarzschild solution which provides a solution. Hence, we

begin with the Schwarzschild spherically symmetric vacuum solution(the Schwarzschild solution

will be reviewed in the next section). The test particle moves in a time-like geodesic.

ds2 = (1− 2m
r
)dt2− 1

1− 2M
r

dr2− r2(dθ 2 + sin2θdφ 2) (8.3.1)
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Since the test mass, Mercury, moves along a geodesic, the Lagrangian, L, is the kinetic energy

gαβ ẋα ẋβ = 1. Hence, setting ẋ = dx
dτ , where τ is the proper time;

L =
m
2
[(1− 2m

r
)ṫ2− 1

1− 2m
r

ṙ2− r2θ̇ 2− r2sin2θφ̇ 2]

where x0 = t,x1 = r,x2 = θ ,x3 = φ . Applying the Euler Lagrange Equation

∂L
∂xα −

d
dτ

(
∂L
∂ ẋα ) = 0

When a= 0 , we get

d
dτ

[(1− 2m
r
)ṫ] = 0 (8.3.2)

When a = 2,

d
dτ

(r2φ̇)− r2sinθcosθφ̇ 2 = 0 (8.3.3)

When a= 3,

d
dτ

(r2sin2θφ̇) = 0

The case a= 1, that is r, is messy to differentiate, and will be left out. At τ = 0, assume θ = π
2 and

θ̇ = 0, then (28.3) gives

d
dτ

(r2φ̇) = 0

=⇒ r2φ̇ = h = constant

Integrating (8.3.2);

(1− 2m
r
)ṫ = k,constant (8.3.4)
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Substituting (8.3.2) and θ = π
2 into (8.3.3) we get

k2

1− 2m
r

− ṙ2

1− 2m
r

− r2φ̇ 2 = 1 (8.3.5)

Let u= 1
r , then ṙ = dr

dτ = d
dτ (1

u ) = - 1
u2 ( du

dφ )(
dφ
dτ ) = - 1

u2 ( du
dφ )hu2 = -h du

dφ . Substituting ṙ = -h du
dφ , r = 1/u

and r2φ̇ = h into (28.5)

k2

1−2mu
−

h2( du
dφ )

2

1−2mu
−h2u2 = 1

Multiply through by 1−2mu
h2 ;

k2

h2
− (

du
dφ

)2−u2(1−2mu) =
1−2mu

h2

Re-arranging;

(
du
dφ

)2 +u2 =
k2−1

h2
+

2m
h2

u+2mu3

Differentiating with respect to u;

d2u
dφ 2

+u =
m
h2

+3mu2 (8.3.6)

Re-writing in simpler form and let ε = 2m2

h2 ;

u
′′
+u

′
=

m
h2

+ ε(
h2u3

m
) (8.3.7)

Apply a perturbation method, where u = u0 + εu1 +O(ε2) and substitute into Eq.

u
′′
0 +u0− m

h2
+ ε(u1

′′
+u1− h2u2

0

m
)+O(ε2) = 0

Equating ε0 coefficients
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u0 =
m
h2

(1+ ecosφ)

Equating coefficients of εand substituting for u0

u1
′′
+u1 =

h2u2
0

m
=

m
h2

(1+ ecosφ)2 =
m
h2

(1+2ecosφ + ε2cos2φ)

u
′′
1 +u1 =

m
h2

(1+
1

2
e2)+

2me
h2

cosφ +
me2

2h2
cos2φ (8.3.8)

Let us try a general solution u1 = A+Bφsinφ +Ccos2φ

u
′
1 = Bsinφ +Bφcosφ −2Csin2φ

u
′′
1 = 2Bcosφ −Bφsinφ −4Ccos2φ

Therefore,

u1
′′
+u1 = A+2Bcosφ −3Ccos2φ

Comparing with (8.3.8), we get A= m
h2 ( 1 + e2

2 ), B = me
h2 and C= −me2

6h2 . Hence,

u1 =
m
h2

(1+
e2

2
)+

me
h2

φsinφ − me2

6h2
cos2φ

Finally,

u� u0 + εu1 =
m
h2

(1+ ecosφ)+ ε
m
h2

(1+
e2

2
)+ ε

me
h2

φsinφ − εme2

6h2
cos2φ

u� m
h2

(1+ ecosφ + εφsinφ)
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u� m
h2

[1+ cos[φ(1− ε)] (8.3.9)

One can see from (8.3.9) that Mercury’s orbit is no longer an ellipse, but is still periodic with

period 1 - ε = 1 - 2m2

h2 . Its period is T;

T =
2π

1− ε
� 2π(1+ ε)

Therefore, precession is

precession� 2πε = 6
πm2

h2

That is, a planet will travel in an ellipse, but the axis of the ellipse will move by an amount equal

to 2πε between two points of closest approach. This is the time honored and famous precession

of the perihelion,[38].

8.4 The Bending of Light

As above, we begin with the Schwarzschild solution, express the Lagrangian, compute the

Euler Lagrange equation and solve the differential equation by perturbation methods,[28],[38].

However, we have one crucial difference, we are dealing with a null geodesic and ds = 0. We

obtain a modified equation to that of (8.3.6)

d2u
dφ 2

+u = 3mu2

The homogenous solution is

d2u
dφ 2

+u = 0

which has a solution u0 = 1
Dsin(φ - φ 0), where D is a constant. Then by a perturbation method, set

u = u0 +mu1, by setting φ0 = 0, and neglecting terms of order (mu)2, we obtain
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Figure 8.1: Bending of light

u
′′
1 +u1 = u2

0 =
sin2φ

D2

This has a solution u1 = (1+Ccosφ + cos2φ)/3D2, where C is a constant of integration. The

general solution is

u� sinφ
D

+
m(1+ cosφ + cos2φ)

D2

Since u= 1
r , as r −→∞, u −→ 0 and the right hand side vanishes. Let the angle of the asymptotes

be -ε1 and π + ε2, see Figure 8.1 for an illustration.

By applying small angle formula, we get

−ε1

D
+

m
D2

(2+C) = 0

and

−ε2

D
+

m
D2

(2−C) = 0

The angle of deflection of a light ray

δ = ε1 + ε2 =
4m
D

=
4GM
c2D
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The deflection of light which grazes the sun has been shown experimentally to be 1.75 seconds of

arc. This agrees with the theoretical calculation.This was confirmed by Sir Arthur Eddington in

1919 during a total eclipse, by measuring the apparent position of stars.. If one considers a family

of light rays arriving in parallel from a distant source, then the presence of a massive object will

cause the light rays to bend and produce a caustic line on the axis. This is the phenomenon of

gravitational lensing.
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CHAPTER IX

PRINCIPLES OF COSMOLOGY

9.1 Derivation of Basic Friedmann Equations for a Matter and Radiation Dominated

Universe

We assume that the universe is expanding adiabatically and that the cosmos is isotropic

and homogeneous. By isotropy we mean the universe has no preferrred direction, that is , axially

symmetric. By homogeneity, the temperature and density is the same everywhere. In practical

terms, homogeneity means a relatively uniform cosmic microwave background. By adiabatic

expansion, we mean, if in relative terms, the universe is expanding slowly, say doubling its size

every 10 billion years, then the number of nodes of any wave on the boundary of the expansion

does not change. Or, the relative distances between galaxies does not change. Under these con-

ditions, we imagine a grid covering the universe. We introduce a(t), the scaling factor, of the

grid. We take a galaxy of unit mass m = 1, situated a unit distance from the center of an imagi-

nary sphere. Then, by Newton’s theorem, the force experienced by this unit mass galaxy is only

accounted for by the total mass of galaxies within the sphere,[14],[38]. We have, the distance, D,

of the unit galaxy, from the center

D = a(t)x

Here, x = 1. Then

D = a(t)

Since the kinetic energy, with m = 1, is
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1

2
˙a(t)

2

and the potential energy, with m = 1, is

−GM
a(t)

and the volume of a sphere is, with mass density ρ , is

4

3
πa(t)3

In terms of energy, kinetic and potential, we define a factor - k, such that

1

2
˙a(t)

2
+

4

3
π

a(t)3ρG
a

=−k

We will drop the t for convenience. Re-arranging and dividing by a2

(
ȧ
a
)2ρ− k

a2
=

8π
3

Gρ (9.1.1)

Compare this with the Einstein field equation for x0 = t;

R00− 1

2
g00R =

8π
3

T 00

The left hand side in both cases refers to the geometry of spacetime and the right hand side to

matter and energy density respectively. Noting that ρ is the unit mass density

ρ =
M
a3

We substitute into (9.1.1) and get the matter dominated form of Friedmann’s equations

(
ȧ
a
)2 =

8πG
3

M
a3
− k

a2
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and assuming ρ is very small

(
ȧ
a
)2 ∼= 1

a2

Substituting a = bt p, where b and p are constants, and assuming ρ is very small

(
ȧ
a
)2 =

p2

t2
=

1

b3t3p =⇒ p =
2

3

Therefore,

a = bt
2
3

Note that Hubble’s constant, H(t), is

ȧ
a
= H(t)

As the universe expands in a matter dominant universe, the expansion is proportional to t
2
3 .

In an energy dominated universe; again, think of a unit volume,V , where

V = a3

By Planck’s law , the energy, E, of a photon is

E = h̄ν =
h̄c
λ

where h̄ is Planck’s constant, νis the frequency and λ is the wavelength. If the photon occupies

the unit volume, then λ = a. Setting c = 1 and h̄ = 1 we get

E = ν =
1

a

We know that ρ = M
a3 . Substituting into (9.1.1), we obtain
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(
ȧ
a
)2 =

8πG
3

1

a4
− k

a2

k is so small, k
a2 can be ignored; so

(
ȧ
a
)2 � 1

a4

Hence,

ȧ
a
� 1

a2
=⇒ ȧ =

1

a

Integrating, we get for an radiation dominated universe

a2 ∝ t =⇒ a ∝ t
1
2

Combining the equations for both a matter and radiation dominated universe, we get

(
ȧ
a
)2 =

c1

a3
+

c2

a4

where c1 and c2 are constants.

Remark. For small a, 1
a4 dominates 1

a3 , and in the early universe , radiation dominates. For

large a, beyond 2 billion years, 1
a3 dominates, and matter domnates. By 10,000 years after the big

bang, the universe transitioned from a radiation to a matter dominated universe. The photons had

smaller wavelengths, higher energies and hence the temperature of the universe was higher. The

temperature was high enough that the hydrogen and helium atoms were ionized, and the universe

was opaque. The temperature was around 3000 K. Today it is 3 K. Since E ∝ T ∝ 1
a , the universe

was 1000 times smaller. When the universe cooled down, if we look at the ratio

t
2
3
today

t
2
3
ionized

= 1000
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Since the time today is roughly 10 billion years, it is actually 13.6 billion years, substituting

into the above equation, we obtain t
2
3 ionized = 1010

3×104 =⇒tionized = 300,000 years, the universe was

completely ionized, hot and opaque, a plasma of ions. Light cannot penetrate and observations

are not possible. Beyond this, there is no ionization, and light can penetrate. This boundary is the

surface of last scattering, and is approximately 300,000 years after the big bang. Since neutrinos

have no charge, they can penetrate deeper, to a certain extent. Gravitons even deeper. Due to very

large red shift, the surface of last scattering cannot be observed.

9.2 Friedmann- Robertson-Walker Metric (FRW Metric)

The FRW metric describes an expanding homogeneous universe, [8],[38]. On a large

scale, the universe is both isotropic (no preferred direction) and homogeneous (the same every-

where). Homogeneity means that at any given time the temperature and density are the same

everywhere. Noting that nothing bypasses you faster than the speed of light, in spatial terms

c2dt2 = ds2 +gi jdxidx j (9.2.1)

, where dl2 = gi jdxidx j. For dl2, we use spherical coordinates (ρ ,θ ,φ ) , ρ is the radius and θ , φ

are the azimuthal and altitudinal angles, respectively.

dl2 = dρ2 +ρ2dΩ2 +dω2

, where dΩ2 = dθ 2 + sin2θdφ 2 and

x2 + y2 + z2 +ω2 = ρ2 +ω2 = R2 (9.2.2)

Differentiating

2ρdρ +2ωdω = 0
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Therefore

dω2 =
ρ2dρ2

ω2
=

ρ2dρ2

R2−ρ2

Thus

dl2 = dρ2 +
ρ2dρ2

R2−ρ2
+ρ2dΩ2

Hence

dl2 =
dρ2

1− (ρ
R)

2
+ρ2dΩ2

Let ρ = Rr , dl2 = R2( dr2

1−kr2 + r2dΩ2), where k = -1, 0 or +1. R is a function of t , R(t), not posi-

tion, to preserve homogeneity. Thus, we arrive at FRW,

ds2 = c2dt2−R(t)2(
dr2

1− kr2
+ r2dθ 2 + r2sin2θdφ 2) (9.2.3)

Geometry of the Universe. There are 3 possibilities:

(1) k = 1, positive curvature, closed universe ,

(2) k = 0, zero curvature, flat universe,

(3) k = -1 , negative curvature, open universe.

Let k = 1, r = sinχ , then

ds2 = c2dt2−R(t)2(dχ2 + sin2χdΩ2)

The circumference , C, of a circle of radius r=
´

Rdχ = Rχ , is

C = 2πRsinχ = 2πRsin(
r
R
)

The area of a sphere of same radius is
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A = 4π(Rsinχ)2 = 4πR2sin2(
r
R
)

And the volume is

V =

ˆ χ

0

(4πR2sin2χ)Rdχ = 2πR3[
r
R
− 1

2
sin(

2r
R
)]

As r → πR, C and A→ 0 and V → 2π2R3is finite, hence a closed universe. The FRW metric can

be written as

ds2 = c2dt2−R2(t)(dχ2 +S2
k(χ)dΩ2) (9.2.4)

where sin χ , for k=1; Sk(χ) = χ , for k = 0; and sinh χ , for k = -1.

Next, we will will flesh out the above analysis in more detail. Imagine a set of observers,

each at rest relative to the motion of a nearby mass. Each observer is equipped with a clock. In

the metric description of spacetime, physical distances and time are described by the line element.

Neighboring events along the world line of an observer are separated by dxα= 0, α = 1,2,3 ;

spatial coordinates. Because the observer has fixed spatial coordinates, and by dx0 = dt, which is

the proper time interval read from a clock, we get the invariant interval connecting the events is

ds2 = gi jdxidx j = g00dx0dx0 = g00dt2 = dt2

Therefore,

g00 = 1

Now, consider two intervals dxi = (0,dxα) and dy j = (dt,0), running from an event in spacetime.

The first dxi connects comoving observers at the same time frame, t. The second connects two

events along the path of one of the comoving observers. We want to synchronize the clocks to sat-

isfy g0α = 0 for α = 1, 2, 3 because in a homogeneous and isotropic universe there is no preferred

direction for g0α to point. Therefore,
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dx.dy = g0αdt.dxα = 0

dx.dy vanishes in locally Minkowski space. This means that every observer sees that neighbour-

ing observer ’s clocks are synchronized to his. We arrive at the Cosmological Principle, which

states; isotropy allows synchronization of neighboring clocks and homogeneity allows synchro-

nization through space. Hence, we arrive at the line element

ds2 = dt2 +gαβ dxαdxβ = dt2−dl2,

dl2being the proper spatial separation between events at the same world time. Poisson’s equation

for the Newtonian gravitational acceleration g in a small region generalizes to

∇.g =−4πG(ρ +3p),

where ρ(x) = mass density and p(x) = pressure. This equation says that gravitational mass density

acts as the source of gravitational acceleration. Homogeneity and isotropy require that

(1) mean mass density and pressure are functions of time,

(2) the spatial part of the mertic tensor can evolve through a univeral function of time

a(t)2,

(3) each galaxy has a fixed spatial coordinate, xα ,

(4) the proper physical distance dl between a pair of comoving galaxies scales with time

as l(t) ∝ a(t) where

ds2 = dt2−dl2 = dt2−a(t)2gαβ dxαdxβ

Consider an expanding sphere with mean flow of matter so that there is no net flux of material

through any part of the sphere. A fixed point on the surface has fixed comoving spatial coordi-

nates χ , θ and φ in the line element, so that the proper physical radius of the sphere varies as
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l(t) = l0a(t), with l0 a constant . Birkhoff’s theorem states that material outside the sphere can-

not have any gravitational effect on the material that is inside. Since M = ρV = 4
3π(ρ + 3p)l3, l=

radius. The gravitational acceleration

l̈ =−GM
L2

=−4

3
πG(ρ +3p)l

This is the equation for the evolution of a homogenous mass distribution. Therefore, substituting

l̈ = l0ä into above equation, we get

ä
a
=−4

3
πG(ρ +3p)

When ρ(t) and p(t) are written as the sum of mean values ρ0(t) and p0(t) and the cosmological

constant Λ, we obtain the standard relativistic form for the acceleration of the cosmological

expansion

ä
a
=−4

3
πG(ρ0 +3p0)+

Λ
3

Since ρ is mass per unit volume and mass is equivalent to energy, the net energy U within a

sphere is U = ρV. Differentiating;

dU = ρdV +V dρ

But, the change in energy is dU, where, by Boyle’s Law

dU =−pdV

Therefore, re-arranging; we obtain the energy conservation equation

ρ̇ =−(ρ + p)
V̇
V

=−(ρ + p)
l̇
l
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and since V ∝ l̇ , eliminating p , we get

l̈ =
8

3
πGρl +

4

3
πGρ̇

l2

l̇

which is a perfect differential

l̇2 =
8

3
πGρl2 +K

, where K is constant of integration . Combining, we obtain

ρ̇0 =−3(ρ0 + p0)
ȧ
a

As we did above, we eliminate ρ̇ , and derive the second cosmological equation

(
ȧ
a
)2 =

8

3
πGρ0 +

K
a2

+
Λ
3

The cosmological equation in the standard form is

H2 = (
ȧ
a
)2 =

8

3
πGρ0± 1

a2R2
+

Λ
3

The sign in front of the curvature term is negative in the closed line element and positive in the

open line element. H is an expression for Hubble’s parameter.

Remarks. (1) Returning to the energy conservation equation ρ̇ = -3(ρ + p) ȧ
a . At zero

pressure, ρ̇0 = -3ρ0
ȧ
a , with a solution ρ0 ∝ 1/a(t)3. This only says that mass per unit volume

varies inversely as the volume.

(2) When the mass density dominates, the expansion equation reduces to ( ȧ
a )2 = 8

3πρ0

(3)) Solving , we get a ∝ t
2
3 and t = 2

3H = 1√
(6πGρ0)

(4) The zero of world time is the singularity at a→ 0, where ρ → ∞

(5) When the curvature term is dominant ∝ 1
a2 and is positive, the geometry is open.

(6) If the cosmological constant Λ dominates, the solutions are hyperbolic sines and
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cosines, as in the De Sitter solution, to be discussed below.

(7) The mean mass density, ρ0 , varies as the inverse of the cube of a(t), at a higher power

than the curvature and cosmological constant. This means if a→ 0, and we go far back in time, a

very large density comes into play at the singularity.

In summary, the expansion rate, H(t), the mean mass density, ρ0 , the radius of curvature

of space, a(t)R, and the cosmological constant, Λ , describe spacetime geometry.

9.3 Dark Matter and Dark Energy

Vera Rubin’s observations on spiral galaxies led to the conclusion that spiral galaxies have

flat rotation curves, instead of a decrement in star rotation velocities the further one travels away

from the galactic center. As above, one would expect from Newtonian gravity and from F = ma

that

GM
r2

=
v2

r

where r is the radius of the star from the galactic center, vis the rotation velocity and M is the

mass within a sphere of radius r. Hence.

v =

√
MG

r

and therefore, one would expect that the star rotation velocity is inversely proportional to
√

r.

However, observations suggest otherwise, a flat rotaion curve, as in Figure 9.1 illustrated below.

This can be explained by a halo of non-luminous dark matter of very little friction, non-

collapsing, surrounding the galaxy. Its mass is estimated to be 10 times larger than the galaxy. As

explained above, matter energy density scales with inverse of a3 and radiation scales with inverse

of a4. Dark matter scales with a3. Dark energy scales with a0; it does not change.

If we think of a photon traveling in one dimension bouncing between two walls, separated

by a distance, l, the force , F, exerted on the wall is given by
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Figure 9.1: Flat rotation curve of spiral galaxies

F =
d p
dt

=
2p

2l/c
=

pc
l

where, c , is the speed of light, p is the momentum , and 2p = p - (-p) is due to the conservation of

momentum. Since the energy, E, is equal to pc; we get the energy density, ρ;

F =
E
l
= ρ

In three dimensions, if we think of a rectanguloid of end area, A, and length, l, then

F =
E
lA

where lA = V , the volume of the rectanguloid, and the pressure, P, is the energy density, ρ . In

each direction,

P =
1

3
ρ

For matter,

ρM =
c
a3

,a∼ t
2
3

Here, the pressure, P = 0, as the particles are relatively fixed and not bouncing off the walls.
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For radiation,

ρR =
c
a4

, t ∼ a
1
2

and as shown above P =1
3ρ .

Question is, what is ρ for empty space ? We will next try to answer this question. In fact,

it turns out that ρ is constant for emoty space. As empty space expands, the energy density re-

mains the same; an amazing finding, It is as if energy is created to keep ρ a constant. The general

expression for P is

P = ωρ

where ω is a constant. Let us examine a cube of space , filled with particles, with sides of area,

A, and pressure, P, at each end. The work done, E , by the particles in pushing the sides by a

displacement dx is

E = PdxA = PV

where V is the volume displaced. Then

dE =−PdV

Since

E = ρV

Differentiating

dE = ρdV +V dρ
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Hence

ρdV +V dρ =−ρdV

Re-arranging

V dρ =−(P+ρ)dV

Substituting P = ωρ

V dρ =−(ω +1)ρdV

Dividing by ρ and integrating

ˆ
dρ
ρ

=−(ω +1)

ˆ
dV
V

lnρ =−(ω +1)lnV = ln
1

V ω+1

ρ =
1

V ω+1

Since V = a3

ρ =
1

a3(ω+1)

We recover our previous expressions for matter and energy dominated universe, with a unique

circumstance, when ω = -1. In summary;

when ω = 0, ρ = 1
a3 , P = 0 and a = t3

2

when ω = 1
3, ρ = 1

a4 , P =
ρ
3 and a = t

1
2

when ω = -1 ρ = a constant, P = - ρ and a = e
√

Λt
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when ω = -1, ρ = ρ0, a constant;

(
ȧ
a
)2 =

8πG
3

ρ0

8πGρ0

3 = Λ is known as the cosmological constant; we get

(
ȧ
a
) =

√
Λ

ȧ = a
√

Λ

Integrating,

a =Ce
√

(Λ)t

where C is a constant. So in a vacuum; ω =-1 , P= -ρ , and a increases exponentially with time.

However, this is not what happens. The universe doubles in size every 10 billion years. ρ0 is

balance by luminous matter and dark matter. ρ0 accounts for vacuum energy. It is constant with

expansion of space, being constantly created. The current hypothesis is that the universe was

initially radiation dominated and expanding as a power of t
1
2 . At around 10, 000 years , it be-

came matter dominated and expanded as a power of t
2
3 . We are now in a cosmological constant-

dominated universe that is exponentially expanding as e
√

Λt . The latter is supported by Perlmut-

ter’s observation of Type 1A supernovae, for which he received the Nobel prize. In summary, the

energy density scales differently over time. Today, the cosmological constant accounts for 0.7 of

all energy density, matter is 0.3, radiation is extremely small. The energy density of matter is ac-

counted by a fraction of 0.25 for dark matter and 0.05 fraction for luminous matter. The distance

to the horizon of the universe can be calculated simply. Taking ρ0 to be the energy density of a

cosmological dominated universe and H, the Hubble constanr
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ȧ
a
=

√
8πGρ0

3
= H

Integrating,

a ∝ eHt

Since at the horizon v = c, and since v = HD, where D is the distance to the horizon; setting c = 1

;

1 = D

√
8πGρ0

3

So

D =
1√

8πGρ0

3

D turns out to be 12 billion light years. The horizon is the distance at which galaxies are moving

away at the speed of light. It is a fixed distance. It is to be noted that the cosmological constant,

Λ, is the vacuum energy density, ρ0, which does not dilute as the universe expands.

9.4 De Sitter Solution

The De Sitter metric is a solution for the Einstein field equation with a positive cosmologi-

cal constant, leading to an expanding universe. We begin with an empty universe, that is, we set

our energy momentum tensor to zero; we go from

Rc− 1

2
Rg+Λg =−T

, where symbols, as before, with Λ being the cosmological constant, to

Rc = Λg
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We proceed along similar lines as we did for the Schwarzschild metric. As before, we begin with

a static metric with spherical symmetry

ds2 = f (r)dt2−g(r)dr2− r2(dθ 2 + sin2θdφ 2)

Notice, this time I use a different metric signature(+,-,-,-). It will not change our final result, but

we must specify which convention we deploy.Here f (r) and g(r) are both ≥ 0, hence we get our

familiar metric

ds2 = eA(r)dt2− eB(r)dr2− r2(dθ 2 + sin2θdφ 2)

Yet again, we run through the usual cascade of reading out our metric components, calculating

the Christoffel symbols (connections), and computing the Ricci tensors, and finally substituting

into our contracted field equation. The components of the Ricci tensors are

Rtt =−eA−B(
1

2
A
′′ − 1

4
A
′
B
′
+

1

4
(A

′
)2 +

A
′

r
)

Rrr =
1

2
A
′′ − 1

4
A
′
B
′
+

1

4
(A

′
)2− B

′

r

Rθθ = e−B(1+
1

2
r(A

′ −B
′
))−1

Rφφ = Rθθ sin2θ

where the prime,
′
, is the derivative with respect to r. Setting these components equal to Λg = 0,

for the Rtt and Rrr components, and with a little algebra, we obtain, as we showed before A
′
=−B

′

gives A = -B, by setting constant of integration = 0. For the Rtt equation

121



eA(1+ rA
′
) = 1−Λr2

Let α = eAr, we get the differential equation,

α + rα
′
= 1−Λr2

which can be written as

d
dr

(rα) =
d
dr

(r− Λ
r

r3)

which gives us

rα = r− Λ
3

r3 +M

, where M is the integration constant. Substituting this into our line element equation, we get the

De Sitter metric

ds2 = (1−M
r
− 1

3
Λr2)dt2− 1

1− M
r − 1

3Λr2
dr2− r2(dθ 2 + sin2θdφ 2), (9.4.1)

where M is the spherical mass at the origin.

Remark. (1)For Λ = 0, we obtain the Schwarzschild solution, which models the curvature

of spacetime with M at the origin; (2) For M = 0, we obtain the De Sitter metric

ds2 = (1− 1

3
Λr2)dt2− 1

1− 1
3Λr2

dr2− r2(dθ 2 + sin2θdφ 2)

Historical perspective. De Sitter in 1917 pointed out that one can find another solution to

Einstein’s field equation for a universe that is homogeneous, isotropic and static. De Sitter sets ρ0

=p0 = 0 and 1
R2 = 0. In this limit, by simply solving our second cosmological equation we get,
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a(t) = eHΛt

, where HΛt= (Λ
3 )

1
2 . Our line element reduces to

ds2 = dt2− e2HΛt(dr2 + r2dΩ)

In De Sitter’s original paper, he changed the time and radial space variables from t → t̂ and r →
r̂, with

eHΛt = cosr̂eHΛt̂

HΛr = tanr̂e−HΛt̂

His line element looked like this

ds2 = cos2r̂dt̂2−H−2
Λ [dr̂2 + sin2r̂dΩ]

Remarks.

(1) This solution is time invariant, as spacetime is determined by one parameter only, Λ

(2) The source term in the field equation would be T = (Λg/8)πG This is proportional to

the metric tensor g, which is invariant under a Lorentz velocity transformation . That is, there is

nothing to define a preferred velocity

(3) The term HΛr̂ = tanr̂e−HΛt indicates that a freely moving particle is accelerated in the

direction of increasing r̂ and that acceleration increases with distance. That is, freely moving

particles, scatter and accelerate away from each other. At this time, Slipher noted that the nebu-

lae (galaxies) had spectra that were red-shifted.This was interpreted as the De Sitter scattering

effect. However, the De Sitter solution does not define a preferred velocity. If initial conditions

are assigned such that galaxies move on geodesics with fixed spatial conditions, then the pattern
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of relative velocities of galaxies is independent of the galaxy to which the distance and velocities

are referred. The redshift of a galaxy is proportional to its distance. The situation is different in

a matter filled universe, here the streaming motion of matter has to yield to the energy momen-

tum tensor. Hubble finally published his 1929 data for a linear redshift-distance relation. The

observation that the universe is filled with galaxies would argue for Einstein’s matter filled static

universe, but galaxy redshifts would favor De Sitter’s solution. In 1930, this conundrum was dis-

ambiguated by Lemaitre’s resolution, an expanding matter filled solution. In this situation, the

universe is expanding because of a repulsive cosmological constant.

9.5 Cosmic Inflation

We begin with a scalar field V(φ), with relatively high vacuum energy( zero point energy),

in a rapidly expanding inflaton,[34],[38]. If the cosmic scaling factor is a(t); then the Lagrangian,

L , is

L = a3(t)[φ̇ 2−V (φ)

Next, we find the equation of motion by computing the Euler Lagrange equation;

d
dt

a3(t)φ̇ =−a3(t)
∂V
∂φ

a3(t)φ̈ +3a2(t)ȧ(t)φ̇ =−a3(t)
∂V
∂φ

φ̈ +3(
ȧ
a
)φ̇ =−∂V

∂φ

φ̈ +3Hφ =−∂V
∂φ
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Figure 9.2: Scalar field of inflation

This is the equation of viscosity. The first term is the acceleration, the second term the viscous

drag force (Hubble friction) and the third, the force. An imaginary particle in this scalar field

would get to a terminal velocity. In this inflaton, the vacuum energy is so large that the universe is

e-folding, expanding veru rapidly e60. However, at around 300,000 years, there is a sudden drop

in vacuum energy, see Figure 9.2 for an illustration.

As shown in section 32, the expansion is exceptionally high, the flat section of the curve

is known as e-folding, where,

a ∝ eHt

where H is very high, a red-shift close to 1000.

At this point, we introduce the ideas of quantum fluctuation and vacuum energy (zero

point energy). To do so, we will need Heisenberg’s uncertainty principle and the dynamics of

harmonic oscillators. The Heisenberg uncertainty principle simply states that given a momentum,

p, and position ,x, both these variables cannot be instantly determined together. This principle

has far reaching consequences, as one determines from the relativistic energy-momentum relation

of particles
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E2 = p2c2 +(m2
0c2)2

Since p and x can never be zero at the same time, E can never be zero. At this point, we introduce

harmonic oscillators

E =
1

2
ẋ2 +

1

2
ω2x2

The quantized Planck energy of particles is

E = (n+1)h̄ω

The zero point energy, when n = 0, is

E =
1

2
h̄ω

When ẋ = 0;

1

2
ω2x2 =

1

2
h̄ω =⇒ x =

√
h̄
ω

For planar waves,

x =

√
h̄
ω

eiωt

For a damped oscillator;

ẍ+ γ ẋ+ω2x = 0

where the second term is the damping factor( friction), and γis the drag coefficient. Solving, by

substituting x = eαt ;
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α2 + γα +ω2 = 0

α =−γ
2
± i

√
4ω2− γ2

2

Case 1. Viscosity is small γ2 < 4ω2; underdamped oscillator

α =−γ
2
± i

√
4ω2− γ2

2

x = ce−
γ
2 te±

i
2

√
4ω2−γ2t

Multiplicative factor means oscillation with dissipation

Case 2. γ2 > 4ω2; overdamped oscillator

α =−γ
2
±

√
γ2−4ω2

2

Both roots are negative.

x = ce−|α|t

Exponential drop-off

Case 3. Critical case; γ2 = 4ω2 =⇒ γ = 2ω; crossover from one state to another.

Case 4. When restoring force is zero, ω= 0, and oscillator is completely dominated by

friction, γ .

α2 + γα+= 0

α(α + γ) = 0
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For α = 0, α = -γ

x = c0 + c1e−γt

This asymptotically goes into a constant ,c0 , exponentiallly. Comes to rest quickly. Note;

ω varies very slowly, begins large, in the oscillating regime, γ sets in, frequency decreases, then

ω = 2γ , transition phase, then stops at some point. Next, we need the equations of motion of the

inflaton. This is a scalar field with a potential V (φ ). It varies as in figure 8.2. The value of the

field varies as shown in diagram. The field equation for a scalar field, where V
′
(φ ) = 0, the linear

part of diagram. This is wave equation for a scalar field of flat potential; if not flat, we equate

with -∂V
∂φ

∂ 2φ
∂ t2

− ∂ 2φ
∂x2

= 0

The universe is expanding. We use the equation we derived above

φ̈ +3Hφ = 0

If φ varies, we need to reproduce wave equation; and noting that D = a(t)dx;

¨∂ 2φ
∂ t2

+3H
∂φ
∂ t
− 1

a(t)2

∂ 2φ
∂x2

= 0

The solution has a waveform

φk(t)eik.x

Substituting;

φ̈k(t)+3Hφ̇k(t)+
k2

a(t)2
φk = 0
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This is the damped harmonic oscillator, where

3H = γ

ω2 =
k2

a(t)2
=⇒ ω =

k
a(t)

Note, ω depends on time, as the universe expands, a(t) increases with time, and the restoring

force decreases with time. The waves will stretch, they oscillate for a while, they then come

to rest for a non-zero value for the field, for each k. This is what happens with inflation. Now

quantum mechanics kicks in, with zero point oscillations. There is an oscillating field for each k.

These oscillations are initially very fast, they slow down, then freeze. From underdamped, they

transition to overdamped, then freezing. When does this critical damping happen ? This happens

at γ= 2ω , where γ = 3H. and ω= k
a(t) . Therefore,

3H = 2
k
a
=⇒ a(t) =

2k
3H

Large k means small wavelength, high frequency, and transition happens at large a(t). Let us

replace k by wavelength. Since

λ =
2πa(t)

k
=⇒ k =

2πa(t)
λ

Hence,

a(t) =
2

3H
(
2πa(t)

λ
) =⇒ λ =

4π
3H

This is exactly the event horizon- the boundary of last scattering; since by Hubble’s law; v = HD.

setting c= 1

1 = HD =⇒ D =
1

H
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Figure 8.2 Quantum noise superimposed on a scalar background

So the distance to the horizon is λ . The wave is expanding with the universe; the Hubble constant

was very large. The wave freezes and stops oscillating when D = λ = 1
H . Since all the waves will

eventually feeeze, there is a source of a new population of waves. They come from the vacuum

energy, quantum fluctuations.While the scalar field slowly decreases, the quantum fluctuations

are buzzing in the background. We then slide down and go over the edge, as shown in Figure

8.2. The potential energy turns into particles. There is less vacuum energy, the expansion is no

longer exponential and the energy density dilutes. However, from point to point, the field varies

due to quantum noise. Over the edge, in the vicinity of the
′
cliff

′
, the energy density is diluting,

the universe is no longer exponentially expanding, the potential energy is converted into particles.

The trough of the wave is lagging behind, so we obtain a fractal of variation of energy over the

edge. The variation is 1 in 100,000 as determined theoretically and by WMAP measurements of

the cosmic microwave background. The density fluctuations are the seeds of structure. This is the

origin of matter in the universe. This process is depicted graphically in Figure 9.5 below.
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CHAPTER X

SOLUTIONS TO THE FIELD EQUATIONS

10.1 Schwarzschild Metric

Metrics with spherical symmetry,[8],[38]. When a coordinate transformation from xi to

yi is made, the metric tensor gi j will change to g
′
i j by tensor transdormation rules, as outlined

in subsection 1.2, that is , they are not form invariant. However, as outlined below, there are

instances when they are form invariant. A metric gi j, that is form invariant under a group of

orthogonal transformations x̄ = Ax and AAT = I, is said to be spherically symmetric, about the

origin, where xi,yi are spatial coordinates , i = 1,2,3 and x0 = y0 = t, is unaltered. Invariants of

this group of coordinate transformtions are

x2 + y2 + z2,xdx+ ydy+ zdz,dx2 +dy2 +dz2

In spherical polar coordinates, the invariants are

r2,rdr,dr2 + r2dθ 2 + r2sin2θdφ 2

It follows that r,dr,dθ 2 + sin2θdφ 2 are invariants. Hence, the most general metric with spherical

symmetry looks like

ds2 = A(r, t)dr2 +B(r, t)(dθ 2 + sin2θdφ 2)+C(r, t)drdt +D(r, t)dt2

Next, we replace r by a new coordinate r
′
, according to the transformation r

′2 = B(r, t), so that
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ds2 = E(r′, t)dr′2 + r′2(dθ 2 + sin2θdφ 2)+F(r′, t)dr
′
dt +G(r′, t)dt2

Compare the above equation with the space time metric in spherical polar coordinates

ds2 = dr2 + r2(dθ 2 + sin2θdφ 2)− c2dt2

For convenience, we will drop the primes and obtain E(r, t) = 1, F(r, t) = 0 and G(r, t) = -c2. Let

us examine the special case when the gravitational field is static, that is , the functions E,F,G are

independent of t. We then obtain

ds2 = adr2 + r2(dθ 2 + sin2θdφ 2)−bc2dt2

, where a,b are functions of r. So for our metric, x1 = r,x2 = θ ,x3 = φ , x4 = t ; g11 = a, g22 = r2 ,

g33 = r2sin2θ and g44 =−bc2. Thus g11 = 1
a , g22 = 1

r2 , g33 = 1
r2sin2θ , g44 = - 1

bc2 . Putting a = eα ,

b= eβ , we calculate the Christoffel symbols, and denoting prime (
′
) , differentiation with respect

to r;

Γk
i j =

1

2
gkl(∂ig jl +∂ jgil−∂lgi j)

and noting the symmetry Γk
i j = Γk

ji

Γ1
11 =

1

2
g11(∂1g11) =

1

2
e−α ∂

∂ r
(eα) =

1

2
α ′

Γ2
12 = Γ2

21 =
1

2
g22(∂1g22 +∂2g12−∂2g12) =

1

2

1

r2
∂1r2 =

1

r
,

Γ3
13 = Γ3

31 =
1

2
g33∂1g33 =

1

2

1

r2sin2θ
∂
∂ r

(r2sin2θ) =
1

r
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Γ4
14 = Γ4

41 =
1

2
g44∂ig44 =

1

2
(− 1

c2
e−β )

∂
∂ r

(−c2eβ ) =
1

2
β ′

Γ1
22 =

1

2
g11∂ig22 =

1

2
e−α ∂

∂ r
(r2) = re−α

Γ3
32 = Γ3

23 =
1

2
g33∂2g33 =

1

2
(

1

r2sin2θ
)

∂
∂θ

(r2sin2θ) = cotθ

Γ1
33 =

1

2
g11∂1(−g33) =

1

2
e−α ∂

∂ r
(−r2sin2θ) =−re−αsin2θ

Γ2
33 =

1

2
g22∂2g33 =

1

2

1

r2

∂
∂θ

(−r2sin2θ) =−sinθcosθ

Γ1
44 =

1

2
g11∂1g44 =

1

2
e−α ∂

∂ r
(c2eβ ) =

1

2
c2β ′eβ−α

All other Γ’s are zero. Now we can calculate the non-zero components of the Ricci tensor

Ri j = ∂lΓl
i j−∂ jΓl

il +Γm
i jΓ

l
lm−Γm

il Γl
jn

We obtain the following non zero components of the Ricci tensor.

R11 =
1

2
β
′′
+

1

4
β
′2− 1

4
α
′
β
′ − 1

r
α
′

R22 = e−α(
1

2
rβ

′ − 1

2
rα

′
+1)−1

R33 = R22sin2θ
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R44 = c2(β −α)(−1

2
β
′′ − 1

4
β
′2
+

1

4
α
′
β
′ − 1

r
β
′
)

Schwarzschild solution. When all space outside our spherically symmetric object is empty, we

get Ti j = 0 and R = 0 ; therefore, Rc - 1
2Rg = 0 =⇒ Rc = 0. Subtracting R44 - R11 ; α + β = a

constant. At infinity , in the absence of a gravitational fields

α +β = 0

Going to equation R22 = 0 and eliminating β , we obtain

rα
′
= 1− eα

This is a separable differential equation, easily solved

a = eα(1−2m/r)−1

where m= constant of integration, therefore

b = eβ = 1−2m/r

Finally, we arrive at the metric for a spherically symmetric body in empty space

ds2 = (1− 2m
r
)−1dr2 + r2(dθ 2 + sin2θdφ 2)− c2(1− 2m

r
)dt2 (10.1.1)

Remarks.

(1) The metric is not valid for r = 2m. We will show next that r = 2GM/c2. This is the

Schwarzschid radius. For Earth, this radius is 9 mm

(2) We know from above calculation that g44 = -bc2= - (1 - 2m
r )c2. We know the potential

U at a distance r from a spherical body of mass M is U = - GM/r, where g44 = 1+ 2U/c2= 1−
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2GM/c2r. Comparing, we get m = GM/c2

(3) Note again that all components of the metric are time independent

(4) When m = 0 , the metric reduces to flat Minkowski space.

Theorem. Birkhoff’s Theorem. For a spherically symmetric distribution of matter, Ein-

stein’s field equations have a unique solution.

If space is empty Ti j = 0, in some region that includes the point of symmetry, the solu-

tion in this empty space is the flat spacetime of special relativity, with a line element that can be

written as

ds2 =−dt2 +dx2 +dy2 +dz2 =−dt2 +dr2 + r2(dθ 2 + sin2θdφ 2)

Newton’s Theorem says the Newtonian gravitational acceleration inside a hollow spherical mass

vanishes.The relativistic generalization states that spacetime is flat in a hole centered inside a

spherically symmetric distribution of matter. A consequence of Birkhoff’s theorem is that a

spherically symmetric pulsating star cannot emit gravitational waves.

At this point, we will introduce the concept of a Killing vector field. A Killing vector

field on a semi-Riemannian manifold is a vector field X for which the Lie derivative of the metric

tensor vanishes.

LX g = 0

Thus, under the flow of X , the metric does not change. We need the concept of a local isometry.

A local isometry from one pseudoReimannian manifold to another is a map which pulls back

the metric tensor on the second manifold to the metric tensor on the first.When such a map is a

diffeomorphism, it is also known as an isometry. In simple terms, the flow generates a symme-

try. Flows generated by Killing fields are continuous isometries of the manifold. Geometrically

speaking, moving each point on an object in the direction of the Killing vector does not distort

distances on the object. As stated above, a vector field X is a Killing field if the Lie derivative

with respect to X of the metric vanishes; LX g= 0. In terms of the Levi-Civita connection
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g(∇Y X ,Z)+g(Y,∇ZX) = 0

In local coordinates, we get the Killing equation

∇μXν +∇νXμ = 0 (10.1.2)

Example. (1) The vector field rotating clockwise on a circle , with same length at each

point, is a Killing vector field,

(2) In general relativity, the gravitational field distorts the 4-manifold. In the absence of a

gravitational field, in which nothing changes with time, the time vector will be a Killing vector.

The Lie derivative of a metric g along the vector V is

(LV g)μν =V ρ ∂gμν

∂xρ +
∂V ρ

∂xμ gμν +
∂V ρ

∂xν gμρ

LV g= 0, means that the metric g is invariant under the flow of V . Paraphrasing, if we travel

along the flow of a Killing vector field, the metric, and hence spacetime in our 4-manifold, is

unchanged. It is a way of expressing translational invariance of the metric g, in a coordinate in-

variant way. I will illustrate the machinery of Killing vectors by explicitly working out the metric

for the 2-sphere

ds2 = dθ 2 + sin2θdφ 2

The metric components a

gϑθ = gθθ = 1,gφφ = sin2θ =
1

gφφ
,gφθ = gθφ = 0
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Next, we calculate the Christoffel symbol

Γi
kl =

1

2
gim(gmk,l +gml,k−gkl,m)

We obtain

Γθ
θθ = Γφ

φφ = Γφ
θθ = Γθ

θφ = Γθ
φθ = 0

Γθ
φφ =

1

2
gθθ (

∂
∂ϕ

gθθ +
∂

∂φ
gθφ − ∂

∂θ
(gφφ ) =−sinθcosθ

Γφ
φθ = Γφ

θφ = cotθ

The Killing equations are then

∇θ Kθ = ∂θ Kθ −Γα
θθ Kα = ∂θ Kθ = 0

∇φ Kφ = ∂φ Kφ −Γα
φφ Kα = ∂φ Kφ + sinθcosθKθ = 0

∇θ Kφ +∇φ Kθ = ∂θ Kφ −Γα
θφ Kα +∂φ Kθ −Γα

φθ Kα = ∂θ Kφ +∂φ Kθ −2cotθKφ

Kθ and Kα components of the Killing vector are functions Kθ (θ ,φ ) and Kφ (θ ,α). Note Kθ does

not depend on θ ; therefore, ∂ θ Kθ = 0 =⇒ Kθ = Kϑ (φ ). Take the derivative of the third equality

of the above equation with respect to φ ;

∂θ (∂φ Kφ )+∂ 2
φ Kθ −2cotθ(∂φ Kφ ) = 0

Substituting;
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∂θ [−sinθcosθKθ ]+∂ 2
φ

Kθ −2cotθ [−sinθcosθKθ ] = 0

, from which we derive

∂ 2
φ Kθ +Kθ = 0

, which is the harmonic oscillator equation, with solution

Kθ = Asinφ +Bcosφ

, where A and B are constants. Next, we need to find Kφ ; by substituting

∂φ Kφ =−sinθcosθ [Asinφ +Bcosφ ]

The solution of this differential equation is;

Kθ = Asinθcosθcosφ −Bsinθcosθsinφ +F(θ)

, where F(θ ) is the solution of the homogeneous equation ∂ φ Kφ = 0. Substitute our solutions , we

arrive at

∂θ F−2cotθF = 0

Dividing by sin2θ , we arrive at

∂θ [
F

sin2θ ] = 0

Hence

F(θ) =Csin2θ ,

where C is a constant. Therefore, we arrive at the following solutions for the Killing vectors;
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Kθ = Asinφ +Bcosφ

Kφ = Asinθcosθcosφ −Bsinθcosθsinφ +Csin2θ

Noting that the constants A,B and C are independent. Setting A= 0, B =1 and C = 0, we get

K1θ = cosφandK1φ =−sinθcosθsinφ

Also set A = -1, B = C= 0 and A = B = 0, C = 1. But we will not show the results here (easy

exercise).

A solution is stationary if it is time independent. A metric is stationary if there is a coordi-

nate system in which the metric is time independent

∂xab

∂x0
= 0

, where x0 is a timelike coordinate.

10.2 Reissner-Nordstrum Metric

If Q is the total charge and J the angular momentum , then blackholes can be classified as

follows,[35] ;

A non- rotating, uncharged blackhole is a Schwarzschild blackhole.

A rotating uncharged charged blackhole is a Kerr blackhole.

A charged non-rotating blackhole is a Reissner-Nordstrum blackhole.

A rotating charged blackhole is a Kerr-Newman blackhole.

Next, we explore the charged, non rotating solution of the field equation.

The Field of a Charged Mass Point. Our goal is to find a static, asymptotically flat, spheri-

cally symmetric solution of the Einstein-Maxwell field equation;
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Gab = 8πTab

, where Tab is the Maxwell energy-momentum tensor. This tensor, it turns out, is trace free

.Therefore, taking the trace ;

R− 1

2
R(4) = 0

Therefore, R = 0, and the scalar curvature vanishes. Hence, Rab = 8πTab. We need to make sev-

eral observations. Firstly, Maxwell’s equation in a source-free region states that the divergence of

the energy momentum tensor, Tab = Fab is zero.

∇Fab = 0

Secondly, we assume spherical symmetry and the line element reduces to

ds2 = eνdt2− eλ dr2− r2(dθ 2 + sin2θdφ 2),

where ν and λ are functions of t and r. Thirdly, we dictate that ν and λ are functions of r only,

that is, a static field only. I will now take a little survey of the electromagnetic energy tensor. As

we noted earlier, in the language of differential forms, the divergence of a vector is the exterior

derivative of a 2-form on R3. The curl of a vector is the exterior derivative of a 1-form on R3. So,

we treat the magnetic field, not as a vector, but as a 2-form and the electric field as a 1-form, so

B = B1dx2∧dx0 +B2dx3∧dx0 +B3dx1∧dx2

E = E1dx1 +E2dx2 +E3dx3

The electric and magnetic fields are considered inhabitants of spacetime and as before, the mani-
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fold M is assumed to be a semi-Riemannian manifold equipped with the Minkowski metric, that

is a Lorentzian 4 -manifold, spacetime. We assume spacetime can be split into a 3-manifold S,

space with a Riemann metric and another space R for time. Then,

M = R×S

Let xi(i = 1,2,3) denote local coordinates on an open interval U ⊆ S, and let x0 denote the coordi-

nate on R . We can then combine the electric and magnetic fields into a unified electromagnetic

field F, which is a 2-form on R × U ⊆M, defined by

F = B+E ∧dx0

In components

F =
1

2
Fαβ dxα ∧dxβ

Explicitly, we have

F = E1dx1∧dx0 +E2dx2∧dx0 +E3dx3∧dx0 +B1dx2∧dx3 +B2dx3∧dx1 +B3dx1∧dx3

In the traditional way of formulating Maxwell’s equation, the homogeneous and inhomogeneous

versions are related by reversing the roles of E and B. In the language of differential forms, this

reveral is done by using the Hodge star operator, by treating E as a 2-form and B as a 1-form;

∗F =−B1dx1∧dx0−B2dx2∧dx0−B3dx3∧dx0 +E1dx2∧dx3 +E2dx3∧dx1 +E3dx1∧dx3
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(∗F)αβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
In our radially symmetric electrostatic field of charged point particle, the Maxwell tensor reduces

to

Fab = E(r)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, since it only depends on r. Therefore, applying ∇Fab = 0, plugging into it Fab and the metric

tensor gab which is diag (eν ,e−λ ,−r2,−r2sin2θ); we first compute the Christoffel symbols Γk
i j =

1
2gkl(∂ ig ji + ∂ jgil - ∂ lgi j). Note coordinates are (r,θ ,φ , t) = (0,1,2,3). We get

(e−
1
2 (ν+λ )r2E)

′
= 0

Integrating,

E = e
1
2 (ν+λ )ε/r2

, ε being a constant of integration. As ν ,λ → 0 , E = ε/r2 , the inverse square law. As r → ∞ , we

have an asymptotically flat solution. Next, we calculate the Ricci tensor

Ri j = ∂lΓl
i j−∂ jΓl

il +Γm
i jΓ

l
lm−Γm

il Γl
jm

And we apply Rab = 8πTab , by plugging in Tab = 1
4π (-gcdFacFbd + 1

4gabFcdFcd); the T00 and T11

equation lead to
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ν
′
+λ

′
= 0

as ν ,λ → 0 as r → ∞ , ν = -λ . The T22 equation leads to

(reν)
′
= 1− (ε2/r2)

Integrating

eν = 1− 2m
r

+
ε2

r2

, m is a constant of integration. Therefore,

ds2 = (1− 2m
r

+
ε2

r2
)dt2− (1− 2m

r
+

ε2

r2
)−1dr2− r2(dθ 2 + sin2θdφ 2)

When ε = 0, this reduces to the Schwarzchild line element. Before we analyze the Reissner-

Nordstrom equation, let us introduce the concept of a nullcone. In Minkowski space time, the

norm of a vector is

X2 = gabXaXb

The vecor is said to be timelike if X2 > 0, spacelike if X2 < 0 and null or lightlike if X = 0. Two

vectors Xa and Xb are orthogonal if their inner product is zero;

gabXaY b = 0

Hence, a null vector is orthogonal to itself. The set of all null vectors at a point P in a Minkowski

manifold forms a double cone called the null cone or light cone (see figure 4 below). In Minkowski

coordinates, the null vectors at P satisfy
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Figure 10.1: Light cone

ηabXaXb = 0,

That is,

−(X0)2 +(X1)2 +(X3)3 +(X4) = 0

This is the equation of a double cone. This null cone lies in the tangent space TpM at P. If we

define the timelike vector as Ta in Minkowski coordinates by Ta = (1,0,0,0) then a timelike or

null vector is said to be future-pointing if ηabXaT b > 0 and past-pointing if ηabXaT b < 0. See

Figure 10.1 below.

10.3 Kerr Solution

The Kerr metric tensor is in terms of the coordinates t,r,θ ,φ on R4 = R3 × R1, the time

coordinate t on R1. Kerr spacetime depends on two paramaters M > 0, its mass, and a �= 0, its

angular momentum per unit mass. By setting a= 0, the Kerr spacetime reverts to Schwarzchild

spacetime. By setting M = 0, empty space, Minkowski spacetime remains,[35]. The two most

commonly encountered functions in Kerr spacetime are
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ρ2 = r2 +a2cos2θ

and

Δ = r2−2Mr+a2

Therefore,

Δ
r2

= 1−2
M
r
+

a2

r2

When a = 0, the Kerr metric reduces to the Schwarzschild metric. Thus, ρ2 → r2 and

Δ
r2

= h(r) = 1− 2M
r

The Boyer Lindquist coordinates fail when (a) sinθ = 0, z-axis; (b) ρ2 = 0 and (c) Δ = 0; this

gives the horizon of Kerr spacetime.

The Kerr metric in Boyer-Lindquist coordinates is as follows

ds2 =−dt2 +ρ2(
dr2

Δ
+dθ 2)+(r2 +a2sin2θ)dφ 2 +

2M
ρ2

(a.sin2θ .dφ −dt)2 (10.3.1)

where Δ(r) = r2−2Mr+a2 and ρ2(r,θ) = r2 +a2cos2θ . The coordinate (t,r,θ ,φ)are known as

Boyer-Lindquist coordinates. M = mass of blackhole, a = its angular momentum per unit mass.

Remarks.(1) The metric is stationary, meaning none of the coefficient terms depend on

time, t

(2) The metric is axisymmetric, none of the coefficient are dependent on φ

(3) Not static ; not invariant under time reversal t → -t

(4) Invariant for simultaneous inversion of t and φ . The double sign change t → -t and φ

→ -φ gives an isometry. Running time backwards reverses the rotation

(5) The Kerr metric is asymptotically flat ; as r → ∞, the Kerr metric reduces to the
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Minkowki metric. This means that far from the blackhole, the gravitational field is weak

(6) If a, angular velocity,→ 0, with M �= 0 ; ρ2 → r(r−2M), ρ2 → r2, the metric reduces

to the Schwarzschild metric; ds2 = -(1 -2M
r )dt2 + (1 - 2M

r )−1dr2 + r2(dθ 2 + sin2θdφ 2)

(7) Let x =
√

(r2 + a2). sinθcosφ y=
√

(r2+ a2).sinθsinφ and z = rcosθ . Then dx2 +

dy2+dz2 = r2+a2cos2θ

r2+a2 dr2 + (r2+a2cos2θ)dθ 2 + (r2+a2)sin2θdφ 2. As M→ 0, with a �= 0,ds2 =

−dt2 +dx2 + dy2 +dz2

(8) As noted above, the metric is singular for Δ = r2−2Mr+a2 = 0 and ρ2 = r2 +a2cos2θ

= 0 , r = 0, θ = π
2

(9) Since the line element is independent of both t and φ we conclude that there are two

killing vector fields, ∂ t and ∂ φ . These isometries express time invariance and axial symmetry

espectively.

The Boyer-Linquist form of the line element is

ds2 = gttdt2 +grrdr2 +gθθ dθ 2 +gφφ dφ 2 +2gφ tdφdt

where gtt = -(1 + 2 M
ρ2 ), grr =

ρ2

Δ , gθθ = ρ2, gφφ = r2 + a2sin2θ + 2M
ρ2 asin2θ and gφ t = gtφ =

−2Mrasin2θ
ρ2 . It is easy to show that for the Boyer-Lindquist coordinates; (1) gttgφφ − g2

tφ =

−∇sin2θ and (2) det(gi j) =−ρ4sin2ϑ

10.4 Kerr-Newman Metric

There is a modification of the Kerr metric for a source that carries an electric charge,

e,[35]. Replacing the previous definition ∇ by

Δ = r2−2Mr+a2 + e2

leads to the Kerr-Newman metric.

Theorem.If (M,g) is an asymptotically flat, stationary axisymmetric vacuum spacetime,

non-singular on and outside a connected horizon, then (M,g) is a member of the two-parameter

Kerr family of solutions. The parameters are mass M and angular momentum J, where J = aM, the
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total angular momentum.

(1) The final state of gravitational collapse is stationary. The initial state is complicated,

with many independent multipole moments of the gravitational

field. All information about the initial state is radiated away during collapse except M and

J.

(2) The Einstein-Maxwell generalization is; (M,g) belongs to the Kerr-Newman family of

solutions with four parameters (M.J,Q,P).

In Boyer-Lindquist coordinates, the Kerr Newman solution is

ds2 =−Δ−a2sin2θ
ρ2

dt2−2asin2θ
r2 +a2−Δ

ρ2
dtdφ +

(r2 +a2)2−Δa2sin2θ
ρ2

sin2θdφ 2+
ρ2

Δ
dr2+ρ2dθ 2

where ρ2 = r2 +a2cos2θ , Δ =r2−2Mr+a2 + e2, and e =
√

(P2 +Q2)

Remark. (1) The metric is asymptotically flat as r → ∞

(2) If a = 0, the metric reduces to the Reissner Nordstrom solution

(3) The transformation φ → -φ has the same effect as a→−a

(4) The metric has a discrete isometry t →−t and φ → -φ
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CHAPTER XI

GRAVITATIONAL WAVES

11.1 Linearizing the Field Equation

Einstein’s field equation is a non-linear partial differential equation. In 1916, Einstein

linearized his field equation

Rc− 1

2
Rg = κT

by assuming that the metric gμν is a perturbed Minkowski metric ημν , [24].

gμν = ημν + εhμν (11.1.1)

He linearized his field eqaution to O(ε) and obtained

h̃μν = hμν − 1

2
ημνhαβ ηαβ

�h̃μν = 2κTμν

and

� = ημν∂ μ∂ ν

When Tμν = 0 ;

1

2
ημν∂ μ∂ νhμν = �hμν = 0 (11.1.2)
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This allowed Einstein to conclude that solutions to this equation are plane waves traveling with

the speed of light. He called these waves gravitational waves. He was haunted by the fact that

these waves may be fictitious, an artefact of the linearization process. The gravitational plane

wave is a spacetime that

(a) satisfies the vacuum field equation, Rμν = 0,

(b) has a 5-dimensional group of isometries as plane electromagnetic waves do,

(c) has to carry energy.

The Metric and the Gravitational Wave Equation. This involves three topics.

(1) Linearization of the field equation

(2) Demonstration of gauge transformations in the linearized regime

(3) Writing of a wave equation for small deviations from the background spacetime.

As opposed to Newton gravity, action at a distance is not allowed in Special and General

Relativity. Instead variation in gravitational attraction is transmitted via gravitational waves. The

traditional approach assumes that the waves are described by a small perturbation to flat space

ds2 = gμνdxμdxν = (ημν +hμν)dxμdxν

where ημν is the Minkowski metric for flat spacetime and hμν is the small perturbation known as

the wave metric. If one makes the linear approximation above, then the Einstein wave equation

can be reduced to a vacuum wave equation for the metric perturbation hμν

�hμν = (− ∂ 2

∂ t2
+Δ2)hμν = 0−→ ηαβ hμν

,αβ = 0 (11.1.3)

� is the wave operator and ∇ is the Laplacian. This is a wave equation, hence assume the plane

wave solution

hμν = Aμνexp(ikαxα)

where Aμν is a tensor with constant components and kα is a 1-form with constant components.
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Taking a first derivative

hμν
,α = kαhμν

Taking a second derivative, we get back the wave equation

ηαβ hμν
,αβ = ηαβ kαkβ hμν = 0

This is true if kα is a null vector

ηαβ kαkβ = kαkα = 0

kα is the k-vector and has components kα = {ω ,�k}. Null normalization gives

kαkα = 0−→ ω2 = k2

The wave equation above has a gauge condition known as de Donger gauge or Lorentz gauge or

Lorentz gauge or Hilbert gauge.

hμν
,ν = 0.

Next, we will take a brief detour and discuss gauge transformations in detail after which we will

return to gravitational waves.

Gauge Invariance . The gauge principle was first recognized in electromagnetism. We first

define the electromagnetic 4-current density, jμ = {ρ , j}, where ρ is the electric charge density,

and j is the 3 dimensional electric current .The electromagnetic 4-potential Aμ (x) = {φ (x),A(x)}

is a 1-form, where φ is the electric potential and A is the magnetic potential. The electromagnetic

field tensor is a 2-form

Fμν = ∂μAν −∂νAμ
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Using the above definitions, Maxwell’s equations can be expressed in tensor form

∂[αFμν ] = 0

, where [ ] denote anti-symmetrization

∂μFμν = jν

If we take the transformation

Aμ(x)−→ A
′
μ(x)+∂μα(x)

, for any differentiable function α(x). Fμν remains unchanged due to equality of mixed partials.

Thus, Maxwell’s equations are unaltered by adding a gradient. Such a transformation is known as

a gauge transformation. It turns out that these transformations form an Abelian group for single

continuous parameter α(x).

Gauge Invariance in General Relativity. The gauge transformations are rigid motions in

spacetime. We begin with our connection and line element

Γλ
μν =

1

2
gλσ (∂νgμσ +∂μgνσ −∂σ gμν)

ds2 = gμνdxμdxν

When a covector is parallel transported a distance dxν , its components vary as

dvλ =−vμΓλ
μνdxν

or

dvμ = vλ Γλ
μνdxν
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Hence,

dv2 = d(vνvν) = dvνvν + vνdvν

= vλ Γλ
μνdxμvν − vνvμΓν

μλ dxλ = 0

So , the length is invariant under parallel transport. Next, how can derivatives remain gauge

invariant under a transformation ? With change of coordinates from unprimed to primed

∂μ ′v
ν ′ = (∂μ ′x

μ∂νxν ′∂μ +∂μ ′x
μ∂μνvν ′ )vν

The first term is tensorial, the second is not. As before, we remedy this by defining our covariant

derivative through a connection

(∇μ)
λ
ν = δ λ

ν ∂μ +Γλ
μν

so that the covariant derivative transforms tensorially. Through covariant derivatives, global in-

variance is preserved locally. The Riemann curvature tensor is expressed in terms of a connection,

or a covariant derivative, as before

Rλ
σ μν = ∂μΓλ

σν −∂νΓλ
σ μ +Γλ

αμΓα
σν −Γλ

ανΓα
σ μ

= [∇σ ,∇μ ]
λ
ν

This second expression highlights the non-commutativity of parallel transport, which tells us

about the curvature of spacetime. Gauge freedom in relativity means the freedom to choose

coordinates. Returning to gravitational waves, the de Donder gauge does not use up all the gauge

freedom because small changes in coordinates
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x̄α = xα +ξ α

preserves the gauge if ξ αβ
,β = 0. For the wave amplitude, Aμν , we state, without proof the de

Donder gauge

Aμνkν = 0

, which implies Aμν is orthogonal to kα . The transverse traceless gauge are the 3 conditions:

(1) Aμνkα = 0

(2) Aα
α = 0 and

(3) Aμνuν = 0, where uν is the 4-velocity. By restricting the gauge freedom in the wave

equation, we are removing waving of the coordinates, and what is left is the waving of the curva-

ture of spacetime.The Transverse Traceless Gauge has 2 independent components of Aμν

AT T
μν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
To observe the effects of the gravitational waves, we imagine two test particles. Both begin at rest

xα
1 = (0,0,0,0) and xα

2 = (0,ε,0,0) . The proper distance between them is

l =
ˆ √

ds2 =

ˆ
|gαβ dxαdxβ | 1

2

l =
ˆ ε

0

|gxx| 1
2 � |gxx(x = 0)| 1

2 ε � [1+
1

2
hT T

xx (x = 0)]ε

Our imposed solution for hT T
μν is a travelling plane wave which depends on time, which is a

geodesic deviation. The gravitational wave is distorting spacetime by geodesic deviation, which
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we calculate by computing the components of the Riemann curvature tensor Rα
βγδ in the TT

gauge in the presence of hT T
αβ .

RT T
j0k0 =−

1

2
∂ 2

t hT T
jk

, j,k = 1,2,3. When Axx �= 0 and Axy = 0 −→ + polarization state ; compression of geodesics

in one direction and stretching in orthogonal direction( during half-cycle) and vice vera during

second half cycle. When Axx = 0 and Axy �= 0 −→ ×, cross polarization. This area of mathemat-

ics is a very fertile field of research in the study of detection of gravitational waves, and further

treatment of this matter will be deferred for the interested reader to pursue.

11.2 Multipolar Moments

In studying fields, such as electromagnetism and gravitation, a very important concept

is the idea of multipole moments,[16] ,[40]. This idea will be initially illustrated for an electric

charge source. Let the charge density be ρ(x). We want to know what the potential is at a point x

from the source x0. The general solution for the potential is

V (x) =
1

4πε0

ˆ
ρ(x)

x−x0
dx3 (11.2.1)

, where x and x0 are vectors, x= rr̂ and x0= r0r̂0. Let the angle between the vectors x and x0 be θ ,

then by cosine similarity

x− x0 =
√

(x2 + x2
0−2xx0cosθ) = r

√
(1+

r2
0−2r0rcosθ

r2
)

The reciprocal of this difference is nothing but a Legendre polynomial and it can be expressed as

1

|x− x0| =
∞

∑
l=0

rl
0

rl+1
Plcosθ (11.2.2)

A quick note on Legendre Polynomials.
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(1) The series converges when r > r0;

(2) The expression gives gravitational potential at a point mass or Coulomb potential

associated with a point charge

(3) They occur as solutions of Poisson’s equation ∇2φ = 0. Substituting into V(x), we get

V (x) =
1

4πε0

∞

∑
l=0

1

rl+1

ˆ l

0

ρ(x0)Pl(cosθ)d3x (11.2.3)

We let Ql = 1
4πε0

´
rl
0ρ(x)Pl(cosθ )d3x, be the moments. We separate the Ql’s and obtain our poten-

tial

V (x) =
∞

∑
l=0

Ql

rl+1
(11.2.4)

The Zeroth Moment Q0

Q0 =
1

4πε0

ˆ 0

0

ρ(x)P0(cosα)d3x =
1

4πε0

ˆ
ρ(x)d3x =

1

4πε0
Qtotal

Remarks.

(1) Qtotal is independent of observation point x. It characterizes only the source

(2) The potential of a monopole is given by Coulomb’s Law for a single point charge V (x)

= Q
4πε0r0

(3) For any source , at a large distance r >> r0, the dominant term is the Coulomb potential

of the total charge V(x) ∼= Qtotal
4πε0r . Higher multipole moments give corrections to this.

Dipole Moment Q1

Q1 =
1

4πε0

ˆ
ρ(x)P1(cosθ)d3x

=
1

4πε0

ˆ
ρ(x)cosθd3x

=
1

4πε0

ˆ
ρ(x)d3x

The dipole moment is defined as p =
´

xρ(x)d3x

Quadrupole Moment. For the quadrupole moment, we need to compute
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Q2 =
1

4πε0

ˆ
d3xr2ρ(x)P2(cosθ)

P2(cosθ) = 3x2−1

, is the Legendre polynomial, where

r2(3x2−1) = 3(r̂0.r̂)2− r.r

In tensor notation,

Qi j =

ˆ
d3xρ(x)(3xix j− r2δi j)

The trace Qi j is

tr(Qi j) =
3

∑
i=1

Qii =

ˆ 3

i=1

d3xρ(x)∑(3xixi− r2δii)

=

ˆ
d3xρ(x)(3r2−3r2) = 0

Therefore, the quadrupole moment tensor is a rank 2 tensor and is traceless.

Gravitational Quadrupole. The mass quadrupole is analagous to the electric charge

quadrupole. The mass monopole represents the total mass energy in a system, which is conserved,

hence it gives off no energy. The mass dipole corresponds to the center of mass of a system, and

its first derivative is the momentum, which is also a conserved quantity, so the mass dipole also

emits no radiation. The mass quadrupole, however, can change in time, and is the lowest order

contribution to gravitational radiation. The simplest example of a radiating system is a pair of of

mass points, as in binary blackholes. Since the dipole moment is constant, we can place the coor-

dinate origin between the two points. So the dipole moment is zero. If we scale the coordinates
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such as the points are a unit distance from the center, the quadupole moment will be

Qi j = M(3xix j−δi j) (11.2.5)

Now that we have laid out the bare skeletons of gravitational waves, we will dive into the trenches

of tensor calculus and demonstrate the linearized Einstein tensor in its full glory. As before, we

consider a metric that differs from the flat Minkowoski metric, ηab, by a small perturbation, hab.

Let |ε | << 1. Then

gab = ηab + εhab

, working to O(ε2). Next, we compute the Christoffel symbol Γa
bc = 1

2gad(gbc,d+ gcd,b - gdb,c) . Let

us begin the computation;

gbc,d = ηbc,d + εhbc,d = εhbc,d

gcd,b = εhcd,b

and

gdb,c = εhdb,c

Next, we need to calculate gab, noting that gabgbc = δ c
a. Then

(ηab + εhab)(ηbc + kεhbc) = δ c
a

, where k is a constant to be determined. So

ηabηbc + εhabηbc + kεηabhbc +O(ε2) = δ c
a
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Hence

δ c
a + ε(habηbc + kηabhbc = δ c

a

Therefore,

habηbc =−kηabhbc (11.2.6)

Note kηabhbc = kηabηbeηc f he f = kδ e
aηc f he f = kηc f ha f = kηcbhab = kηbchab = -habηbc( from

above). Therefore k = - 1 and gab = ηab - εhab. Returning to our Christoffel symbol

Γa
bc =

ε
2
(ηad− εhad)(hbc,d +hcd,b−hdb,c)

Computing to O(ε2);

Γa
bc =

ε
2

ηad(hbc,d +hcd,b−hdb,c) (11.2.7)

Next, we calculate the Riemann tensor

Ra
bcd = ∂cΓa

bd−∂dΓa
bc +Γe

bdΓa
ec−Γe

bcΓa
ed

The last two terms contain ε2, so we can ignore. Hence, our Riemann tensor looks like

Ra
bcd = ∂cΓa

bd−∂dΓa
bc

Plugging in our Christoffel symbols;

Ra
bcd = ∂c[

1

2
εηae(hbd,e +hde,b−heb,d)]−∂d[

1

2
εηa f (hbc, f +hc f ,b−h f b,c)]

Ra
bcd =

1

2
ε(ηaehbd,ce +ηaehde,cb−ηaeheb,cd)− 1

2
ε(ηa f hbc,d f +ηa f hc f ,db−ηa f h f b,dc)
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Re-indexing e−→ f in the first expression

Ra
bcd =

1

2
ε(ηa f hbd,c f +ηa f hd f ,cb−ηa f h f b,cd)− 1

2
ε(ηa f hbc,d f +ηa f hc f ,db−ηa f h f b,dc)

Ra
bcd =

1

2
εηa f (hbd,c f +hd f ,cb−hbc,d f −hc f ,db)

Now

Rab = Rc
acb,R

a
bcd = ∂cΓa

bd−∂dΓa
bc ⇒ Ra

b = ∂cΓc
bd−∂dΓc

bc

Define the d’Alembertian operator, �

� =−∂ 2

∂ t
+

∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
= ηab∂a∂b

Noting h = ηcdhcd and summing over a and c ;

Ra
bad = Rbd =

1

2
εηa f (hbd,a f +hd f ,ab−hba,d f −ha f ,db)

Now we have ordinary derivatives, so they commute, and relabeling indices; b−→ a , d −→ b

Rab =
1

2
εηa f (hab,a f +hb f ,aa−haa,b f −ha f ,ab)

Rab =
1

2
ε(h f

b,a f +ha
b,aa−h f

a,b f −h,ab)

f , being a dummy index;

Rab =
1

2
ε(hc

a,bc +hc
b,ac−�ab−h,ab)
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The Ricci tensor becomes

Rab =
1

2
ε(hc

a,bc +hc
b,ac−�ab−hab)

And the Ricci scalar is

R = ε(hcd
,cd−�)

Plugging into the Einstein tensor, we get

Gab =
1

2
ε(hc

a,bc +hc
b,ac−�hab−h.ab−ηabhcd

,cd +ηab �h)

The Trace Reverse. Let ψab = hab - 1
2ηabh and noting ψab = ηacψc

b , hab = ηachc
b and ηabh =

ηachc
b .. Substituting into ψab;

ηacψc
b = ηachc

b−
1

2
ηacδ c

b h

=⇒ ψc
b = hc

b−
1

2
δ c

b h

Setting b = c and summing;

ψc
c = hc

c−
1

2
δ c

c h

Setting ψ = ψc
c and h = hc

c, noting δ c
c = 4

ψ = h− 1

2
(4)h =−h

This is why ψab is known as the trace reverse of hab. Substituting ψ and ψab into Gab and using

the trace reverse, we get

Gab =
1

2
ε(ψc

a,bc +ψc
b,ac−�ψab−ηabψcd

,cd)

To obtain the wave equation, we perform a gauge transformation. This is a transfromation that
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leaves Ra
bcd and Rab and R unchanged. Define the coordinate transformation xa

′
= xa+εφ a, where

φ (a) is a function of position and |φ a
,b| << 1. It can be seen that this coordinate transfomation

changes hab as

h
′
ab = hab−φa,b−φb,a

And, the derivative ψab changes as

ψ
′a
b,a = ψa

b,a−�φ

We are free to choose φ as long as the Riemann tensor retains the same form. We demand that

�φ = �ψb
a,b =⇒ ψ ′a

b,a = 0. Substitute this into Einstein tensor Gab and into the full field equa-

tion, we get

1

2
ε �ψab =−κTab (11.2.8)

In a vacuum , �ψab = 0. The d’Alembertian operator is nothing more than the wave equation

for waves traveling at the speed of light. The choice of gauge is known as de Donder or Einstein

gauge. Hence,

�ψab = �(hab− 1

2
ηabh) = �hab− 1

2
ηab �h = 0

Recalling ψ = -hand multiplying above by ηab

ηab
�ψab = �(ηabψab) = �(ψb

b ) = �ψ =−�h = 0

Therefore,

�hab = 0 (11.2.9)

Therefore the study of gravitational waves reduces to the study of �hab = 0. Two Nobel prizes

were awarded for observations on gravitational waves. The first for indirect observations of grav-
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itational waves of Taylor-Hulse neutron star binary system. Einstein predicted that the orbiting

period should decrease, the stars speed up due to loss of gravitational energy. This was confirmed

by measuring the beam of light emitted by the binary system. In 2017, this year, the Nobel prize

was awarded for direct observation of gravitational waves, the LIGO experiment, by measuring

the deflection of a laser beam. For this reason, I will spend extra time summarizing gravitational

waves, as presented above.

Important definitions and concepts.

Hypersurface. A hypersurface Σ is an n-dimensional subspace (submanifold) of a n+ 1

dimensional manifold M, Σ ⊂M. There are two ways of describing hypersurfaces; by

(1) Embedding Φ : Σ ↪→M ; if Σ has coordinates ya and M coordinates xa, then Φ: xα =

xα(yα ),

(2) Subspace of M ; Σ ⊂M, such that Σ = {x ∈M; S(x) = 0}, for real valued function S on

M.

Example. Standard 2-sphere S2 of radius r0 in R3. In the first prescription, xα = (x1,x2,x3)

∈ R3 and yα= (θ ,φ ) ∈ S2. Then xα(yα ): x1(θ ,φ ) =r0sinθcosφ , x1(θ ,φ ) =r0sinθsinφ and x3(θ ,φ )

= r0cosθ . In the second prescription S(xα ) =(x1)2 +(x2)2 +(x3)2− (r0)
2 = 0

Retarded Time - Minkowski Space Time- A photon emitted at time t = t0 reaches an

observer located at a distance r ≥ 0, from the source at time t = t1. Then

t = t0 +
r
c
= t0 + r

, c = 1. The time t0 = t− r is defined as the retarded time. Setting u = t− r = k, a constant is a

hypersurface, the future directed null cone with vertex r= 0, t = k.

11.3 Spherical Harmonics and Blackhole Perturbation Theory

The mathematical techniques of spherical harmonics allow us to study blackhole pertur-

bation theory in spherically symmetric spacetime,[16], [36]. A blackhole’s horizon is sphere-like

and well adapted to spherical coordinates. As these are isolated systems in general relativity, the
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exact boundary conditions are imposed at infinity, which requires a compactification of space,

which is achieved with the compactification of the radial coordinate only. Spherical coordinates

can simplify the Poisson-like equations. However, there is the issue of coordinate singularities.

The transformation from spherical (r, θ ,φ ) to Cartesian coordinates (x,y,z) is obtained by x =

rsinθcosφ , y = rsinθsinφ and z = rcosθ . Note r = 0 if and only if x = y = z =0 is singular in

spherical coordinates because neither θ or φ can be uniquely defined. The same happens for

the z-axis, where θ = 0 or π , and φ cannot be defined. Let us analyze the Laplace operator in

spherical coordinates

∇ =
∂ 2

∂ 2r
+

2

r
∂
∂ r

+
1

r2
(

∂ 2

∂θ 2
+

1

tanθ
∂

∂θ
+

1

sin2θ
∂ 2

∂φ 2
)

r = sinθ = 0 gives singularities on the z-axis. This is not the case in Cartesian coordinates. An

analytic function in Cartesian coordinates looks like

f (x,y,z) = ∑
n,p,q

anpqxnypzq

Substituting for spherical coordinates, and re-arranging in terms of φ , we get

f (r,θ ,φ) = ∑
m,p,q

bmpqr|m|+2p+qsin|m|+2pθcosqθeimφ

Setting l = |m|+2p+q and with transformations of trigonometric functions in θ , we can express

the angular parts in terms of the spherical harmonics Ym
l (θ ,φ )

Y m
l (θ ,φ) =

√
(
2l +1(l−m)!

4π(l +m)!
Pm

l (cosθ)eimφ (11.3.1)

, where l ≥ 0, |m| ≤ l. Pm
l (cosθ ) are the associated Legendre functions defined by

Pm
l (x) =

(l +m)!

(l−m)!

1

2l l!
1√

(1− x2)m

dl−m

dxl−m (1− x2)l

163



, m ≥ 0, and

P−m
l (x) =

(l−m)!

(l +m)1
Pm

l (x),m < 0

For a given couple (l, m), we obtain the following regularity conditions for l ≥ 2 and m ≥ 2. By

Taylor expansion;

(1) near θ = 0, f (θ ) ∼ sin|m|θ and

(2) near r= 0, f (r)∼ rl . This family of functions have three very important properties;

(a) They represent an orthogonal set of regular functions defined on the sphere. Any

regular scalar field f (θ ,φ ) defined on the sphere can be decomposed into spherical harmonics;

f (θ ,φ) =
∞

∑
l=0

m=1

∑
m=−1

flmY m
l (θ ,φ)

(b) Since the harmonics are regular, they take care of the coordinate singularity on the z-axis and

(c) They are eigenfunctions of the angular part of the Laplace operator

∀(l,m)∇φθY m
l (θ ,φ) =−l(l+1)Y m

l (θ ,φ),

the associated eigenvalues being -l(l+1) .

Tensorial Components. For vector or tensor fields, a vector basis, triad, must be specified

to express the components. The choice of basis is independent of choice of coordinates. We have

2 options:

(1) The Cartesian triad, (∂x,∂y,∂z) and

(2) Orthonormal spherical basis ( ∂
∂ r , 1

r
∂

∂θ , 1
rsinθ

∂
∂φ ). Let us analyze the pros and cons of

these options with an example.

Consider the gradient Vi = Viφ of the scalar field φ = x. The gradient in Cartesian coordi-

nates is a regular vector field

V x = 1,V y = 0
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and

V z = 0

The spherical components of V are

Vr = sinθcosφ

V θ = cosθcosφ

V φ =−sinφ

We have several problems with spherical coordinates, which are not good for a scalar field.;

(a) all components are multi-defined at the origin

(b) Vθ and Vφ are multi-defined on the z-axis and

(c) If Vθ is set to zero; the square of the norm is multi-defined . We begin by considering

a small perturbation, hab, of the Schwarzschild geometry. Then;

gab = gS
ab +hab

where

gS
abdxadxb = (1− 2M

r
)dt2− (1− 2M

r
)−1dr2− r2(dθ 2 + sin2θdφ 2)

Plugging gab = gS
ab +hab into the field equation with Tab = 0 and applying Schwarzschild metric

and Rab - 1
2gabR = 0 and keeping only terms linear in hab , we obtain,

Eab =−1

2
∇c∇chab− 1

2
∇a∇bhc

c +∇c∇(ahb)c +
1

2
gab(∇c∇chd

d−∇c∇dhcd) = 0

where ∇a is the derivative operator compatible with the background geometry. The indices are

raised and lowered with the background metric. Next, we need to fix our gauge, our equation is

invariant under the transformation
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hab −→ hab +Lξ gab = hab +∇aξb +∇bξa

where ξ a is an arbitrary vector and Lξ is our Lie derivative. Next, we decompose the components

of the metric perturbation into s,v, t; scalar, vector and tensor harmonics respectively;

hab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 v1 v1

s2 s3 v2 v2

v1 v2 t + s4 t

v1 v2 t t− s4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Consider the metric of the 2-sphere

γabdxAdxB = dθ 2 + sin2θdφ 2

Since the scalar harmonics, Ylm, define a complete set of functions on the 2-sphere, we can use

them to construct two types of vectors;

(1) Even parity, ∇AYlm , where ∇lm is compatible with γAB and

(2) Odd parity, γBCεAB∇AYlm , where εAB is the Levi-Civita symbol. To define a tensor

harmonic, we take the derivatives of (1) and (2)

(3) Even parity tensors, ∇A∇BYlm

(4) Odd parity tensors, γACεCD∇D∇BYlm. Under a parity transformation θ −→ π - θ

and φ −→ π + φ , even parity picks up a minus sign according to (-1)land odd parity picks up a

minus sign according to (-1)l+1. The two sectors of the metric perturbation are

hodd
ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 v1 v1

0 0 v2 v2

v1 v2 t t

v1 v2 t t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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, all terms odd.

heven
ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 v1 v1

s2 s3 v2 v2

v1 v2 t + s4 t

v1 v2 t t− s4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, all terms even, except s1 , s2 , s3 and s4. Taking the odd-parity sector , the Regge-Wheeler gauge

vector is

ξ a = (0,0,ΛεAB∇BYlm)

Λ is chosen such that the odd parity part of the metric perturbation is

hodd
ab =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 v1

0 0 0 v2

0 0 0 0

v1 v2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, all terms odd. The Regge Wheeler Zerrili equation is

−∂ 2φ o,e
l.m

∂ t2
+

∂ 2φ o,e
lm

∂ t∗2
−V o,e

l (r)φ o,e
l,m = 0

, where r∗ = r+ ln( r
2M −1) , pushes the horizon to infinity.

Regge-Wheeler Approach to the Stability of the Schwarzschild Metric. Our usual Schwarzschild

Metric

ds2 =−(1− 2m
r
)dt2 +(1− 2m

r
)−1dr2 + r2(dθ 2 + sin2θdφ 2) = gμνdxμdxν

If the metric is perturbed, we have two possible states;

(1) Stability - undamped oscillations about the equilibrium state represented by the
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Schwarzschild background

(2) Instability - oscillations grow exponentially with time.

For perturbations; Regge and Wheeler have given the normal modes into which any ar-

bitrary perturbation on a spherically symmetric background can be decomposed. These modes

can be expressed in the form of products of four factors each of which is a function of t,r, θ and

φ . This is achieved by the use of generalized tensor spherical coordinates. These modes are asso-

ciated with angular momentum , l, and its projection on the z-axis of the mass M. For any given

value of l, there are two independent classes of perturbation characterized by their parities; (-1)l

- even parity and (-1)l+1 - odd parity. Then a perturbation matrix is generated by suitable gauge

transformations. The time dependence of the perturbation is given by e−ikt . Why ? We will il-

lustrate with a hydrodynamic analogy - an oscillating charged liquid drop. Assume we have a

spherical liquid drop of incompressible fluid of radius R, mass M, mass density ρ , charge density

ρe and total charge q. Let us analyze the surface vibrations, ignoring gravity. The variables are

(1) restoring force - surface tension,

(2) Disruptive - Coulomb repulsion, φ e.

In the equilibrium state, the Coulomb potential φ e is related to the charge density ρe by

Poisson’s equation

∇2φe =−4πρe, (11.3.2)

which has solution φ e = q
r , r ≥ R and φe = 2πρe(R2− 1

3r2), r ≤ R. Note this equation is indepen-

dent of time. We will now perturb the drop from the equilibrium position, so that the surface of

the drop varies slightly from the sphere

rs = R+ εξ (θ ,φ , t)

This is the process of linearizing, ε is a very small constant, to order O(ε). The perturbed Poisson

Equation is,
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∇2φ
′
e =−4πρ

′
e

, φ ′
e and ρ ′

e are the perturbed Coulomb potential and charge density. Now, we also have a velocity

potential φ v at every point on the surface. As the variables describing the initial equilibrium state

are independent of time, the time dependence of the perturbations can be expressed as

exp(−iωt)

, where ω is the angular frequency of a particular mode of oscillation. Because of spherical sym-

metry, we can assume that

ξ = e−iωtYlm(θφ)

, where Yml(θφ ) is the spherical harmonic of angular momentum l, with projection on z-axis

given by m. The equation governing the velocity potential φ v is

∇2φv = 0

, whose solution is

φv =Ce−iωt rlYlm

where C is determined by equating the normal gradient of φ v to the time derivative of the dis-

placement ξ at r = R. Next we return to the Schwarzschild metric.

Perturbing the Field Equation. Let the background Schwarzschild metric be gμν and the

superimposed perturbation by hμν . The Einstein field equation for the Schwarzschild exterior

metric is given by

Rμν(g) = 0
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,g = gμν is the background Schwarzschild metric. For the perturbed spacetime

Rμν(g+h) = 0

, the total metric is gμν +hμν . We are assuming the perturbed spacetime is still empty. Expanding

to first order of h

Rμν(g)+δhμν(g) = 0

Since Rμν (h) = 0, δRμν (h) = 0, where

δRμν =−δΓβ
μν ;β +δΓβ

μβ ;ν

Boundary Conditions. The two boundaries are spatial infinity and r = 2m. We know that the

Schwarzschild metric is asymptotically flat. Since the blackhole metric contains a singularity

at r = 2m, the behaviorof the perturbation is liable to be unphysical.We must then employ a

coordinate system which is singularity free at r = 2m. Hence, we employ Krukal coordinates.

Perturbation Analysis in Kruskal Coordinates. Let us use coordinates u and v instead of r

and t. The metric takes the form

ds2 =−(1−2
m
r
)dudv+ r2dΩ2

, where r = r(u,v) , where u and v are the Eddington-Fingelstein coordinates (v,r,θ ,φ ) or (u,r,θ ,φ),

u = t− r∗ is the retarded time coordinate ,v = t + r∗ is the advanced time coordinate, where r∗ = r

+ 2mlog| r
2m−1 |is a solution of dr∗

dr = f (r)−1. Since the metric does not explicitly depend on t, dt

can be substituted using

dt = dv−dr∗ = dv− dr
f (r)

, like wise for u. With these coordinates, the horizon is still infintely far away, noting 2r∗ = v−u,
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so we introduce new coordinates

U =−e−u/4m (11.3.3)

and

V = ev/4m (11.3.4)

so the horizon is at U = 0 or V = 0.

A Brief Historical Tour of Spherical Harmonics. Laplace in 1782 determined that the

gravitational potential at a point x associated to a set of point masses mi located at xi is given by

V (x) = ∑
i

mi

|x− xi|

Legendre then showed the expansion of the Newtonian potential in powers of r = |x| andr1 = |x1|.
He showed for r≤ rl

1

|x− x1| =
∞

∑
l=0

Pl(cosγ)
rl

rl+1
1

, where γ is the angle between the vectors x and x1. The functions Pl are the Legendre polyno-

mials, a special case of spherical harmonics. Lord Kelvin in 1867 introduced solid spherical

harmonics which are homogeneous polynomial solutions of Laplace’s equation

∇2u = 0

In simple terms, spherical harmonics represent the fundamental modes of vibrations of a sphere.

Compare this to a Fourier series,which represents the fundamental modes of vibration of a string.

Also compare to the eigenfunctions of the square of the orbital angular momentum operator

-ıh̄r×∇, which represent the different quantized configuration of atomic orbits. Spherical harmon-

ics are defined as the eigenfunctions of the angular part of the Laplacian in three dimensions, the

Laplacian on the sphere. In spherical coordinates, the Laplacian is
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∇2 =
1

r2sin2θ (
∂
∂ r

r2sinθ
∂
∂ r

+
∂

∂θ
sinθ

∂
∂θ

+
∂

∂φ
cscθ

∂
∂φ

)

The Laplacian ∇2 f = 0 can be solved via separation of variables. We make the ansatz below to

separate the radial and angular parts of the solution

f (r,θ ,φ) = R(r)Y (θ ,φ)

We obtain two eigenvalue functions

l(l+1)R(r) =
∂
∂ r

(r2 ∂
∂ r

R(r))

and

−l(l+1)Y (θ ,φ) =
1

sinθ
∂

∂θ
(sinθ

∂Y (θ ,φ)
∂θ

+
1

sin2θ
∂ 2Y (θ ,φ)

∂φ 2

, where l(l + 1) is the separation constant. Multiplying the first equation on both sides by Y(θ ,φ )

and the second equation by R(r) on both sides, and adding them up, yields the original solution to

Laplace’s equation in spherical coordinates. The separation constant reflects the two eigenvalue

functions of different signs. The angular equation can also be solved by separation of variables.

We make the ansatz

Y (θ ,φ) = Θ(θ)exp(imφ)

, based upon analogy to two dimensional angular Laplacian, where m is a separation constant,

which can take on negative values. We arrive at

sinθ
∂

∂θ
(sinθ

∂Θ(θ)
∂θ

) = m2Θ(θ)− l(l +1)sin2θΘ(θ)

The solution for Θ(θ ) can be found by putting the equation into a canonical form, the solutions of

172



which are given in terms of the Legendre polynomial

Pm
l (x) =

(−1)m

2l l!
(1− x2)

m
2

dl+m

dxl=M (x2−1)l

, l ≥ 0 , |m| ≤ l. The general solution for each linearly independent Y(θ ,φ ) are the spherical

harmonics,with

Y m
l (θ ,φ) =

√
2l +1(l−m)!

4π(l +m)!
Pm

l (cosθ)exp(imφ)

Every spherical harmonic is labelled by the integer l and m , the order and degree of a solution.

The following low lying spherical harmonics; Y0
0(θ ,φ ) is spherically symmetric, monopole mo-

ment of a function on the sphere and Ym
1 (θ ,φ ) are axially symmetric, represent the dipole mo-

ment. Armed with all the preliminaries, we will now complete our task of perturbing Schwarzschild

metric.

Perturbation of Schwarzschild Metric. We begin with our metric gS
μν

ds2 =− f dt2 + f−1dr2 + r2dΩ2

, where f = 1 - 2M
r . Our perturbations is

gμν = gS
μν +hμν ,hμν << gS

μν

Which is effected by a perturbation of the energy-momentum tensor of the blackhole,

Tμν = T S
μν +δTμν

Then, we have

δGμσ = δ (Rμν − 1

2
gμνR) =−8πGδTμν

173



We are looking at a solution outside the blackhole, where TS
μν = 0. The question we ask; what

is hμν for δTμν ? Next, we deploy multipole expansion and execute the following algorithm.

Decompose hμν by tensorial spherical harmonics into even and odd parity modes. The even

parity mode gives us the Zerrili-Moncrief function ψZM(r, t) and the odd parity mode gives us

the Regge-Wheeler function ψRW (r, t). Both solutions give us a total solution ψ(r, t). Because of

spherical symmetry, we drop the odd parity solution. The two dimensional spherical space S2 is

denoted by θ A = (θ ,φ ). Orthogonal to this, we have the two dimensional Lorentzian space

xa = (x0,x1) = (t,r)

Hence, the line element of the Schwarzschild metric is

ds2 = gabdxadxb + r2ΩABdθ Adθ B,

where ΩABdθ Adθ B = dθ 2 + sin2θdφ 2. The covariant derivative, symbolized as lis calculated

from ΩAB and not gab. It can be shown that ΩAB|C = 0. Using these properties and symmetry of

the perturbation tensor, hμν can be split as follows

hμν =

⎛⎜⎝hab haA

haA hAB

⎞⎟⎠
Remarks

(1) hab behaves as a scalar - no angular dependence of indices

(2) haA behaves as a vector - angular dependence of one of the indices and

(3) hABbehaves as a tensor - angular dependence of both indices

Next, we expand all three parts in spherical harmonics. Let us first look at the scalar

spherical harmonic function Ylm, a standard function defined as

Y lm
θφ = Neimφ Plm(cos(θ))
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l is called the degree and, m, the order of the function, both integers that satisfy l ≥ 1 and |m| ≤
l. N is the constant normalization factor, a function of l and m. Plm is associated with Legendre

functions. It is known that l = 0, and l = 1 modes are non-radiative.Why ? Energy conservation

makes monopole radiation impossible, while conservation of momentum makes dipole radiation

impossible. A changing dipole moment corresponds to the motion of the center of density in

the case of gravitation. An isolated system will never change its center of density because of

conservationof momentum.In electromagnetism, dipole radiation is possible because because

negative and positive charges exist, wheres in gravitation, we only have positive mass. Because

of axial symmetry, in the problem of radial infall, only m = 0 modes are excited. Quadrupole

radiation is the lowest possible radiation mode for gravitational waves. The quadrupole moment

measures the shape of the system, and there is no conservation law that forbids a change in shape

of an isolated system, for instance, a particle falling into a blackhole.

The Quadrupole Formula. A solution to the wave equation can be found by integrating

over the source. In electromagnetism, the vector potential Aμ , can be expressed as an integral

over the source, the current, Jμ . Similarly, in general relativity, the wave tensor hμν may be ex-

pressed as an integral over the stress-energy tensor Tμν

hμν(t,�x) =
4G
c4

ˆ
Tμν(�x′,t−|�x−�x′|/c)

|�x− �x′|
d3x′ (11.3.5)

Let I jk =
´

d3xρ(t,�x)x jxk and the reduced quadrupole moment tensor be I jk = I jk - 1
3δ jkδ lmIlm .

Not all sources nned to be treated relativistically. If they are slow motion, then the expressioncan

be treated in the weak field limit and reduces to

hT T
jk =

2G
c4

1

r
IT T

jk (t− r
c
)

Einstein solved the quadrupole formula for gravitational radiation by solving the linearized field

equations with a source term
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�hμν(t,�x) =−κTμν(t,�x)

Illustration - The Two-Body Problem. The quadrupole formula can be used for any system as

long as we can compute I jk. Let us consider the circular binary system - two stars , point masses

m1 and m2 on the x− y plane:

xi
1 = r(θ)

μ
m1

.(cosθ ,sinθ ,0)

xi
2 = r(θ)

μ
m2

.(−cosθ ,−sinθ ,0)

where, θ = anomaly, angular position of star with orbit, which changes with time, μ is the re-

duced mass m1m2
m1+m2

, r(θ ) is the radius of the orbit defined in terms of the semi-major axis, a, and

eccentricity e ; r(θ ) =
a(1−e2)
1+ecosθ , a = semi-major axis. For circular orbits; θ = ωt = 2πft = 2π t

T and

e = 0, so r(θ ) = a = a constant. The mass density is expressed in terms of the delta function

ρ = δ (z)[m1δ (x− x1)δ (y− y1)+m2δ (x− x2)δ (y− y2)]

We now calculate the components of the quadrupole tensor

Ixx =

ˆ
d3xρ(x2) = m1x2

1 +m2x2
2

= (
μ2a2

m2
1

m1 +
μ2a2

m2
1

m2)cos2(ωt)

= μ2a2(
1

m1
+

1

m2
)cos2(ωt)

= μa2cos2(ωt)

176



=
1

2
μa2(1+ cos(2ωt)

Note from cos(2ωt) - the gravitational wave frequency in a circular binary is twice the orbital

frequency. That is, for each cycle made by the binary motion, the gravitational wave signal goes

through two full cycles. There are two maxima and two minima per orbit. For this reason, grav-

itational waves are called quadrupolar waves. The other components of the quadrupole tensor

are

Iyy = μa2sin2ωt =
1

2
μa2(1− cos(2ωt)

Ixy = Iyx = μa2cos(ωt)sin(ωt) =
1

2
μa2sin(2ωt)

Next, the trace subtraction

1

3
δ i jδlmIlm =

1

3
δ i jμa2[

1

2
(1+ cos(2ωt)+

1

2
(1− cos(2ωt)]

=
1

3
δ i jμa2

Hence, we can write down the components of Ti j

Ti j =
1

2
μa2

⎛⎜⎜⎜⎜⎝
cos(2ωt)+ 1

3 sin(2ωt) 0

sin(2ωt) −cos(2ωt)+ 1
3 0

0 0 −2
3

⎞⎟⎟⎟⎟⎠
T̈ can easily be calculated.
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CHAPTER XII

ADM FORMALISM AND NUMERICAL RELATIVITY

12.1 Introduction to ADM Formalism

First, we apply the 3+1 (space and time) decomposition of space time, [8],[11]. Realize

that the Einstein field equation consists of 10 partial differential equations (elliptic and hyper-

bolic) for 10 metric components and they are not easy to solve. Direct numerical integration of

the Einstein equation is the most robust way of finding solutions. The formulation we discuss is

the Arnowitt, Deser and Misner, or ADM , system. This formulation divides the Einstein equa-

tions into (1) Constraint Equations, and (2) Evolution Equations. Before embarking on ADM

formalism, we will take a brief tour of partial differential equations, PDEs.

The Cauchy problem. For a PDE defined on Rn and a smooth manifold S ⊂ Rn of dimen-

sion n−1, the Cauchy problem consists of finding a solution u of the differential equation of order

m that satisfies

u(x) = f0(x)

, for all x ∈ S

∂ ku(x)
∂xk = fk(x)

, for k = 1,2, ...,m and al l x ∈ S, where fk are given functions defined on the surface S, known as

Cauchy data. S is known as a Cauchy surface and n is a normal vector to S.

Theorem. Cauchy-Kowalevski Theorem . Cauchy problems have unique solutions under

certain conditions; (a) Cauchy data are real analytic functions and (b) The coefficients of the
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Figure 12.1: Time evolution of space-time; α or N is the lapse function or β i or Nt is shift vector

PDEs are real analytic functions. However, the existence and uniqueness problem is not settled.

Pathological behavior can arise.

Pathology. An example of pathology is the sequence of Cauchy problems for the Laplace

equation

∂ 2u
∂x2

+
∂ 2u
∂y2

= 0

, with boundary conditions u(x,0) = 0 and ∂u
∂y (x,0) =

sin(nx)
n , n an integer. The derivative of u with

respect to y approaches 0 uniformly in x as n increases, but the solution is

u(x,y) =
sinh(ny)sin(nx)

n2

The solution approaches infinity if nx is not an integer multiple of π . The Cauchy problem for

the Laplacian equation is said to be not well posed. The ADM formulation gives the fundamental

idea of time evolution of space and time; such as foliations of 3-dimensional hypersurface, Σ. See

Figure 12.1 below.

The metric is expressed as

ds2 = gμνdxμdxν =−α2dt2 + γi j(dxi +β idt)(dx j +β jdt)

, where α ≡ 1/
√
−g00 , is the lapse function and β j ≡ g0 j , is the shift vector. The projection
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operator or intrinsic 3-metric gi j is defined as

γμν = gμν +nμnν

, where nμ = (−α,0,0,0), nμ = gμνnν = (1/α ,-β i/α) is the unit normal vector of the hypersurface

Σ .

Hamiltonian Field Theory. Next, we will introduce Hamiltonian field theory. The Hamil-

tonian density is the continuous analogue for fields; it is a function of the fields, the conjugate

momentum fields, and the space and time coordinates. For a one scalar field, φ(x, t), the Hamilto-

nian density is defined from the Lagrangian density by

H (φ ,π,x, t) = φ̇π−L (φ ,∇φ ,∂φ/∂ t,x, t)

,where x is the position vector, φ (x, t) has a conjugate momentum field , π(x, t) = ∂L
∂ φ̇ , φ̇ =

∂φ
∂ t .

See appendix A.

The Action. The time integral of the Lagrangian is called the action denoted by S. In field

theory, a distinction is made between

(1) The Lagrangian, L, of which the time integral is the action

S =

ˆ
Ldt

(2) The Lagrangian density, which one integrates over all spacetime to get the action

S =

ˆ
L (φ ,∇φ ,∂φ/∂ t,x, t)d3xdt

The spatial volume integral of the Lagrangian density is the Lagrangian, in 3d

L =

ˆ
L d3x
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12.2 Extrinsic Geometry and Codazzi - Gauss Equations

The intrinsic geometry of space is described by the metric and its derivatives, connections

and Riemann curvature tensor,[8],[13] ,[31]. However, the hypersurface Σ, is embedded in the

ambient space M. How Σ bends inside M can only be captured by the extrinsic geometry of Σ.

We define the extrinsic curvature of Σ in M by

Kαβ =
1

2
hγ

αhδ
β LNgγδ = hγ

αhδ
β ∇γNδ (12.2.1)

where LNgαβ is the Lie derivative of the metricgαβ along the normal direction N. See appendix

D

LNgαβ = ∇αNβ +∇β Nα

and hα
β = δ α

β - εNαNβ ;Nα is the normalized normal vector, ε = ±1. With Σ being the space-

like or timelike hypersurface Σ, we can construct the induced metric from the metric gαβ on the

ambient space M. With NαNα = ε = ±1, we construct the tensor hαβ defined on or in a neigh-

bourhood of Σ by

hαβ = gαβ − εNαNβ

The tensor has the following properties:

(1) It is orthogonal to Nα ; Nαhαβ = 0,hαβ Nβ = 0 , very easy to show,

(2) For vectors V α orthogonal to Nα , i.e. tangential to Σ, the scalar product with respect

to hαβ is identical to that with respect to gαβ

V β Nβ = 0⇒ hαβV β = gαβV β

Properties (1) and (2) imply that hαβ restricted to Σ is the metric induced on Σ by gαβ . The in-
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duced metric, hαβ , is known as the First Fundamental Form of Σ. The extrinsic curvature tensor,

Kαβ , is known as the second fundamental form of Σ.

Gauss and Codazzi Equations for a Hypersurface. Given vectors X and Y on Rn, the

Euclidean covariant derivative is the same as the directional derivative

DXY = X(Y )

Euclidean space has zero Riemann curvature tensor

Rm(X ,Y )Z = DX(DY Z)−DY (DX Z)−D[X ,Y ]Z = 0

This boils down to

[X ,Y ](Zi) = X(Y (Zi)−Y (X(Zi)

A subset Mk ⊂ Rn is an embedded submanifold if for each p ∈Mk, there exists a neighbourhood

U of p in Rn and a diffeomorphism φ : U −→ φ (U) onto an open subset of Rn such that φ (M ∩
U) is the intersection of a k-dimensional plane with φ (U). Ifk = n−1, then Mn−1 is an embedded

hypersurface. Let Mn ⊂ Rn+1 be an embedded hypersurface.

First Fundamental Form. The induced Riemannian metric I on M, also called the first

fundamental form is defined as

I(U,V )�<U,V >Rn+1

for U,V ∈ TpM, where p ∈M. This is the restriction of the Euclidean inner product to the tan-

gent spaces TpM. We identify TpM with an n-dimensional subspace of Rn+1. The first fundamen-

tal form gives us information about the intrinsic curvature of the surface.

At each p ∈M, there are exactly two unit vectors perpendicular to TpM, called unit

normals. If M is orientable, then there are exactly two choices of C∞ unit normal vector fields

defined at all point of M. Let N : M −→ Rn+1 be such a choice. Given U ∈ TpM, we have the
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directional derivative DU (N) = U(N), which represents the change in the normal.

The Second Fundamental Form. Given p ∈M, the second fundamental form at p,

II : TpM×TpM −→ R

is defined by,

II(U,V )�< DU N,V >

, for U,V ∈ TpM. The second fundamental form gives us information about the extrinsic curva-

ture. It is the interior product of the directional derivative of N along U with V.

Remarks. (1) < DU N,N > = U |N|2 = 0, |N| ≡ 1, so DU N ∈ TpM, (2) Given U,V ∈ TpM,

extend U and V to vector fields Ū and V̄ in a neighborhood of p in M. Then

II(U,V ) =< DU N,V >

=U < N,V̄ >−< N,DUV̄ >

=−< N,DUV̄ >=< N,V̄ >= 0

Hence, it can be shown that II(U,V ) = II(V,U). The normal component of V ∈ TpR
n+1 is V N � <

V,N > N. The tangential component of V is V T � V−<V,N > N. The induced affine connection

on M is ∇(X ,Y ) = ∇XY , where

∇XY � (∇XY )T

= DXY−< DXY,N > N
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= DXY − II(X ,Y )N

Next, we need the Weingarten map, L

L : TpM −→ TpM

, defined by L(U) = DU N. By definition, II(U,V) = < DU N,V > = < L(U),V >. Since II is sym-

metric, the linear map L is self-adjoint, i.e. < L(U),V >=<U,L(V )>. We now derive the Gauss

and Codazzi equations, which are a pair of fundamental equations for hypersurfaces. We begin

with

DXY = ∇XY − II(X ,Y )N (12.2.2)

If II(X ,Y )N = 0, then DXY = ∇XY . Take directional derivative of both sides of (12.2.2)

DX(DY Z) = DX(∇Y Z− II(Y,Z)N)

= ∇X(∇Y Z)− II(X ,∇Y Z)N−X(II(Y,Z))N− II(Y,Z)DX N

Anti-symmetrizing X and Y and inserting (12.2.2) into Riemann curvature tensor equation (12.2.3)

DX(DY Z)−DY (DX Z)−D[X ,Y ]Z = Rm(X ,Y )Z = 0 (12.2.3)

∇X(∇Y Z)− II(X ,∇Y Z)N−X(II(Y,Z))N−X(II(Y,Z)N− II(Y,Z)L(X)

−∇Y (∇X Z)+ II(Y,∇X Z)N +Y (II(X ,Z))N + II(X ,Z)L(Y )
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−∇[X ,Y ]Z + II([X ,Y ],Z)N = 0

We collect like terms;

∇X(∇Y Z)−∇Y (∇X Z)−∇[X ,Y ]Z− II(Y,Z)L(X)+ II(X ,Z)L(Y )

+(−X(II(Y,Z)+ II(Y,∇X Z)+ II(∇XY,Z))N

+(Y (II(X ,Z))− II(X ,∇Y Z)− II(∇Y X ,Z))N = 0

, where L is the Weigarten map. By applying the definition of the Riemann curvature tensor and

the covariant derivative of a 2-tensor,

(∇X T )(Y,Z) = X(T (Y,Z)−T (∇XY,Z)−T (Y,∇X Z)

, we get

Rm(X ,Y )Z− II(Y,Z)L(X)+ II(X ,Z)L(Y )+(−(∇X II)(Y,Z)+(∇Y II)(X ,Z)))N = 0

Taking the tangential and normal components of this equation, we get the Gauss’s Equation :

Rm(X ,Y )Z = II(Y,Z)L(X)− II(X ,Z)L(Y ) (12.2.4)

and the Codazzi Equation :

(∇X II)(Y,Z) = (∇Y II)(X ,Z) (12.2.5)

Before Einstein’s equations can be solved numerically, they need to be cast into a suitable initial

value form. We will explore the original ADM formulation, which we introduced above. There
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are more robust models, which we will not introduce here. The gravitational fields are described

in terms of the spatial metric and the extrinsic curvature, a method symbolised as ġ -K̇. These

equations satisfy some initial constraints and they can be integrated forward in time. As before,

we describe our metric as

ds2 =−α2dt2 + γi j(dxi +β idt)(dx j +β j)dt

where α is the lapse function , β i is the shift vector and γ i j is the spatial metric .The two evolu-

tion equations are: the extrinsic curvature, Ki j , which can be defined by the equation

d
dt

γi j =−2αKi j

, where d
dt = ∂

∂ t - Lβ , where Lβ is the Lie derivative with respect to β iand, the evolution equation

for the extrinsic curvature Ki j

d
dt

Ki j =−DiD jα +α(Ri j−2KilKl
j +KKi j−Mi j)

where Di is the covariant derivative associated with γ i j, Ri j is the three dimensional Ricci tensor ,

Ri j =
1

2
γkl(γk j,il + γil.k j− γkl,i j− γi j,kl)+ γkl(Γm

il Γmk j−Γm
i jΓmkl)

R = γ i jRi j

ρ , Si and Si j are matter sources,which are projections of the stress energy tensor with respect to

the unit normal vector nα

ρ = nαnβ T αβ
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Si =−γiαnβ T αβ

Si j = γiαγ jβ T αβ

Mi j = Si j +
1

2
γ i j(ρ−S)

, whereS = γ i jSi j

12.3 Hamiltonian Formulation and General Relativity

Einsteins equation can also be split into the Hamiltonian and momentum constraints; see

appendix A . The Hamiltonian constraint is

R−Ki jKi j +K2 = 2ρ (12.3.1)

The momentum constraint is

D jK
j

i −DiK = Si (12.3.2)

Ingredients of ADM formalism

(1) The formalism assumes time is foliated into a family of spacelike surfaces Σt , with

coordinates on each slice given by xi

(2) The dynamic variables are the metric tensor of three dimensional spatial slices, γ i j(t,xk)

and their conjugate momenta π i j(t,xk). These provide 12 variables

(3) Conjugate momenta; the canonical coordinates, qi and pi in phase space are used in

the Hamiltonian formalism. The canonical coordinates satisfy the Poissson bracket relations

{qi,q j} = 0, {pi,p} = 0 and qi p j = δ i j. See appendix B.

(4) There are four Lagrange multipliers; the lapse function α and the shift vector β i.
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Figure 12.2: Foliation of spacetime

These describe how the leaves Σt of the foliation of spacetime are welded together

(5) Greek indices are spacetime indices ; (0,1,2,3), Latin infices are spatial indices;

(1,2,3). A quantity suspended with a superscript (4) has a 3 and 4 dimensional version

such as the metric tensor for 3d slices gi j and and the metric tensor for for the 4d space-

time (4)gμν

(6) As usual, the trace is π = gi jπ i j

(7) The starting point for the ADM formalism is the Lagrangian

L =(4) R
√

(4)g

where g is the determinant of the four dimensional metric tensor for the full spacetime

(8) The desired outcome is to define an embedding of the three dimensional spatial slices

in the four dimensional spacetime. The metric of the three dimensional slices, gi j =
(4) gi j will be

the generalized coordinates for a Hamiltonian formulation.

(9) Foliation of space time is the breaking of the spacetime manifold into a one-parameter

family of three dimensional spacelike hypersurfaces parametrized by a time function t. The hy-

persurfaces have timelike normal vectors and spacelike tangent vectors. Let na be a unit normal

vector field to the hypersurface Σt and ta be a vector field on the spacetime manifold. See Figure

12.2 below.

tacan be seen as the flow of time through spacetime, and hab is the induced spatial metric

on every surface Σt .The spatial metric is related to the spacetime metric by
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hab = gab +nanb

tais decomposed into a normal and tangential components with respect to the surfaces Σt ,where

ta∇a = 1

The lapse function, α , measures the rate of flow of proper time τ with respect to coordinate time t

as one moves normally to Σt along na

α =−gαβ tanb

The shift vector, β a, measures how much the local spatial coordinate system shifts tangential to

Σt when moving from Σ1 to Σ2 along na From Figure 10.2, we see that

αna +β a = ta

⇒ na =
ta−β a

α

So

gab = hab−nanb = hab−α−2(ta−β a)(tb−β b)

(10) As we move from one hypersurface to the next along the time flow of ta,the compo-

nents of hab change on each successive hypersurface in accordance with Einstein’s field equation.

In the ADM formalism, we need hab and its time derivative ḣab as initial data.

(11) We obtain the Hamiltonian density, H , from the Lagrangian density, L = R
√−g

where g = detgab

(12) We require our Lagrangian, L , in terms of variables that describe Σt we have
√−g =
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αh , h = dethab

(13) Multiply Einstein tensor Gab by nanb

Gab = Rab− 1

2
Rgab

2Gabnanb = 2Rabnanb−Rgabnanb

2Gabnanb = 2Rabnanb−R

R = 2(Rabnanb−Gabnanb)

(14) From the Gauss-Codacci equation, we get the following constraint relation

Gabnanb =
1

2
[(3)R−KabKab +K2]

, where Kab is the extrinsic curvature of Σt and K it’s trace

(15) From the definition of the Ricci tensor Rab

Rab = Rc
acb

Rabnanb = Rc
acbnbna

=−(∇a∇c−∇c∇a)ncna

=−na(∇a∇c−∇c∇a)na
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=−(∇ana)(∇cnc)−∇a(na∇cnc)+(∇cna)(∇anc)+∇c(na∇anc)

=−K2 +KacKac

, the second and fourth term are divergences and can be neglected

(16) The Lagrangian density in terms of the variables of the hypersurface becomes

L =
√

(−g)R

= α
√

hR

= 2α
√

h(Gabnanb−Rabnanb)

= 2α
√

h(
1

2
[(3)R−KabKab +K2]−K2 +KabKab)

L = α
√

h((3)R+KabKab−K2)

(17) Hamiltonian Dynamics. See appendix B for the basics.

The Lagrangian density, L , is the kinetic energy minus the potential energy of a system.

L is expressed in terms of generalized coordinates qi and q̇i. The moments, pi, can be defined by

pi =
∂L

∂ q̇i

The resulting systems of equations can be solved to obtain q̇i as a function of pi.

The Hamiltonian density, H , is then defined as
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H = ∑ piq̇i−L (qi, q̇i)

Hamilton’s equations are

q̇i =
∂H

∂ pi

and

ṗi =−∂H

∂qi

For general relativity, qi is replaced by hab and pi is replaced with pab. Therefore,

H = pabḣab−L (qi, q̇i)

What we need is a variation of H with respect to α and β a. By the definition of momentum

pab =
∂L

∂ ˙hab
=
√

hα[
∂ (3)R
∂ ˙hab

+
∂ (KabKab)

∂ ˙hab
− ∂K2

∂ ˙hab
]

=
√

hα(Kab−habK),

where ∂Kab
∂ ḣab

= 1
2α , ∂ (3)R

∂ ḣab
= 0, ∂K2

∂ ḣab
= habK

α . The extrinsic curvature of a surface Σ is defined as

Kab = ∇anb,

where nb is a field orthogonal to Σ and tangent to timelike geodesics that do not intersect. Our

goal is to link Kab in terms of α , β a and hab. Noting gab = hab - nanb , the Lie derivative of gab can

be expressed as

Lgab = 2∇anb

and

α =−gabtanb
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and

β = ha
btb

Therefore,

Kab =
1

2
Lgab

=
1

2
L(hab−nanb)

=
1

2
Lnhab

=
1

2
[nc∇chab +hcb∇avc +hac∇bvc]

=
1

2α
[αnc∇chab +hcb∇aαvc +hac∇bαvc]

=
1

2α
hc

ahd
b[Lthcd−Lβ hcd]

=
1

2α
hc

ahd
b[ḣab−Daβb−Dbβa]

(18) The Hamiltonian, H .

H = pabḣab−L (qi, q̇i)

Substituting L = α
√

h((3)R+KabKab−K2) and Kab above, we get

H =−
√

hα(3)R+
α√

h
[pab pab− 1

2
p2]+2pabDaβb
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, where p is the trace of p

=
√

hα[−(3)R+h−1 pab pab− 1

2
h−1 p2]−2βb[Da(h−1 pab)]+2Da(h−

1
2 βb pab)

We neglect the boundary term in the last line as we assume a sufficiently large spatial surface.

(19) Constraint Equations. We determine the Hamiltonian H by integrating H over the

hypersurface Σt using the fixed spatial element, (3)e , where (3)e
√

h = ε , ε is the natural volume

element associated with the metric hab

H =

ˆ

∑

H (3)e

We then perform a variation of H with respect to α and β . and then obtain two constraint equa-

tions

−(3)R+
pab pab

h
− p2

2h
= 0

, hence the Hamiltonian is constrained, and

Da(
pab
√

h
) = 0, pab

cannot change with respect to a

(20) Evolution Equations. We expand the Hamiltonian equations, as is done in Classical

mechanics

Lthab = ḣab =
δH

δ pab =
2α√

h
(pab− hab p

2
)+Daβb +Dbβa

Lt pab = ṗab =− δH
δhab

=−α
√

h((3)Rab−
(3)Rhab

2
)+

αhab

2
√

h
(pcd pcd− p2

2
)−2

α√
h
(pac pb

c− p
pab

2
)+
√

h(DaDbα−habDcDcα
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+
√

hDc(
β c pab
√

h
)−2pcaDcβ b

(21) The two contraint and two evolution equations constitute a Hamiltonian formulation of

general relativity. Given initial conditions that satisfy the constraint equations, the universe at any

point in spacetime, can be modelled by an evolving system using the evolution equations.
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CHAPTER XIII

HOYLE NARLIKAR THEORY AND CONCEPT OF MASS IN GENERAL RELATIVITY

13.1 Hoyle - Narlikar Theory

In 1964 Fred Hoyle and Jayant Narlikar proposed a gravitational theory that incorporated

the idea of Mach’s theory that the inertia of a particle is due to the rest of the particles in the

universe,[22],[23]. Let a,b,c... be the particles of the universe. Let gik be the metric tensor of

the Riemannian spacetime manifold. Let da be an element of the proper time of the world line of

particle a, and dai be the coordinate differentials along the worldline of a. Then

da2 = gikdaidak

Let A, B, C,... be world points on the world lines of a,b,c,... and let X be a typical point in the

spacetime manifold. Hoyle and Narlikar derive their theory from the action S,

S = ∑ ∑
a�=b

ˆ ˆ
G(a,b)dadb

where the integration is over the worldlines of particles a,b,c,...; G is a Green’s function that

satisfies the wave equation

�+
1

6
R =

δ 4

√−g

where R is the scalar curvature of the Riemann spacettime manifold, g is the determinant of gi j, δ

is the Dirac delta function and � f = gi j f;i j for any function f
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δ (X ,X
′
) = δ (X1−X

′
1)δ (X2−X

′
2)δ (X3−X

′
3)δ (X4−X

′
4)

where X1,X2,X3,X4 are the coordinates of the point X . Since the double sum in the action S is

symmetrical between all pairs of particles a, b, only that part of G(a,b) that is symmetrical be-

tween a and b will contribute to the action of S. Hence, the action can be written as

S = ∑∑
a�=b

¨
G∗(a,b)dadb

where G∗(a,b) = 1
2G(a,b) + 1

2G(b,a). Thus G∗ must be the time symmetric Green function, and

can be written as G∗ = 1
2Gret + 1

2Gadv , where Gret and Gadv are the retarded and advanced Green

functions. The Hoyle-Narlikar theory makes the following assumptions; for the mass at position

xa, m(xa), to become a direct particle field, it must arise from all the other mass in the universe.

Since mass is scalar, it can be expressed through a scalar Green function. Furthermore, the action

must be symmetric between any pair of particles. Let each particle b give rise to a mass field at a

point x, be given by m(b)(x). Let xa be the path of particle a. The contribution of particle b to the

mass of particle a at position xa and summing for all particles b

m(xa) = ∑
b

m(b)(xa) = ∑
b

=

ˆ
G∗(xaxb)dxb

This gives the mass at point xa due to all particles including those at position xa . The full mass

field is the sum of half retarded and half advanced fields, where

G∗(xa,xb) =
1

2
(G(xa,xb +

1

2
G(xb,xa))

is a time symmetric Green’s function.

In 1965, Stephen Hawking’s argued in his PhD thesis that the Hoyle - Narlikar theory

was incompatible with an expanding universe, since the advanced mass field would be infinite.

However, with emerging observational data of an accelerating expanding universe with a cosmic
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event horizon, we will show that Hawking’s argument is not entirely true. We begin with the

FRW metric

ds2 = dt2−R2(t)[
dr2

1− kr2
+ r2(dθ 2 + sin2θdφ 2)]

The geometric factor k = +1 for a closed universe, 0 for flat and -1 for an open universe. R(t) is

the scaling factor. By computing the Ricci scalar, Ricci tensor using Christoffel symbols and

substituting into Einstein’s field equation( see Appendix K), we obtain Friedmann’s equations;

RR̈+2Ṙ2 +2k = 4πG(ρ− p)R2

3R̈ =−4πG(ρ +3p)R

Eliminating R̈ and seting H = Ṙ
R ;

H2 = (
Ṙ
R
)2 =

8πG
3

ρ− k
R2

(13.1.1)

For Einstein de Sitter flat space, k = 0, where ημν is the flat space metric. We define a new con-

formal function given by Ω(t) = R(t). We define a new time coordinate τsuch that

ds2 = Ω2[dτ2−dr2 + r2dθ 2 + r2sin2θdφ 2] = Ω2ημνdxμdxν

Mass ,m∗, in the new Minkowski frame is Rm. Let n be the particle density in the original

frame, then the corresponding density in the new frame is n∗isR3n = L−3. Writing ρ = nm and

using 8πG= 6
m2 ,from Hoyle-Narlikar Theory, substituting into (45.1);

Ṙ2

R2
=

2ρ
m2

=
2n
m
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Ṙ2 =
2nR3

mR
=

2n∗

mR
= (

2L−3

m
)

1

R

The term in brackets is a constant. Integrating, using the boundary condition R = 0 at t = 0,

ˆ t

0

R
1
2 dR =

ˆ t

0

(
2L−3

m
)

1
2 dt

R(t) = (
2L−3

m
)

2
3 (

3

2
)

2
3 t

2
3 (13.1.2)

Now τ is defined as

τ =

ˆ t

0

dt
R(t)

= 3(
2

3
)

2
3 (

m
2L−3

)
1
3 t

1
3

1

2
τ = (

m
2L−3

)
1
3 (

3t
2
)

1
3

Substituting into (45.2);

R(τ) =
1

4
τ2(

2L−3

m
)

Since m∗ = mR(t); we obtain

m∗ =
1

2
τ2L−3 = mR(t)

R(t) =
1

2m
τ2L−3

Let T2 = ( 2m
L−3 ), we get

R(τ) =
τ2

T 2

As shown above, the scale factor R(t) ∝ t
2
3 and Ω = R(τ) = ( τ

T )2. As mentioned above, Green’s
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function obeys the wave equation

G∗(xa,xb)+
1

6
RG∗(xa,xb) =

δ 4(xa,xb)√−g

The mass field , m, is given by

m(τ1) =
1

2
(mret +madv) =

ˆ
G∗N

√−gΩ(τ2)4πr2drdτ2

, where N = nR−3. For the retarded mass field,

mret(τ1) =
1

Ω(τ1)

ˆ
Nδ (r+ τ2− τ1)Ω3(τ2)

4πr
4πr2drdτ2

The r integral is performed using the delta function to give

mret(τ1) =
T 2

τ12

ˆ τ1

0

n(τ1− τ2)dτ2 =
1

2
nT 2 =

n
L−3

m

where τ1 is the current age of the universe and the integral is over the past light cone. For the

advanced wave, we have

madv(τ1) =
1

Ω(τ1)

ˆ
Nδ (r− τ2 + τ1)Ω3(τ2)

4πr
4πr2drdτ2

We then integrate over the future light cone

madv(τ1) = (
T
τ1
)2

ˆ ∞

τ1

n(τ2− τ1)dτ2 −→ ∞

where τ1 is the present time (age of the universe) and τ2 is a future time, which can go to infinity.

This is the divergence problem described by Hawkings.

Solution for a non-divergent advanced mass. The particle horizon, Hp , is the distance

beyond which an observer cannot see at the current time. Let t0 be the current age of the universe,
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Hp = R(t0)
ˆ t0

0

cdt
R(t)

The event horizon is due to an accelerating universe and is the distance beyond which the ob-

server will never see.

He = R(t0)
ˆ ∞

t0

cdt
R(t)

Consider a scale factor which allows for acceleration

R(t) = (
t
T
)

3
2

The proper time in comoving coordinates becomes

τ =

ˆ t

0

dt
R(t)

= 2T
3
2 t
−1
2

and so

t
3
2 = 8

T
9
2

τ3

Hence

R(τ) = 8
T 3

τ3

The event horizon is given by

He = R(τ1)

ˆ ∞

τ1

cdt
R(t

= T
3
2 (

τ1

T
)

3
2

ˆ ∞

τ1

ct
−3
2 dt = 2cτ1

Hence He/c = 2τ1 is the upper limit of for the madv integral. The advanced mass field integral

over the future light cone can be written with limits from τ1 to He/c = 2τ1
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madv(τ1) =
1

R(τ1)

ˆ
Nδ (r− τ2 + τ1)Ω3(τ2)

4πr
4πr2drdτ2

=
nτ3

1

8T 3

ˆ τ2

τ1

(τ2− τ1)ndτ2

nτ3
1

8T 3
[
τ2

2

2
− τ2τ1]

2τ2
τ1

nτ3
1

8T 3
(
τ2

1

2
) =

n
L−3

m

where n = L−3 is the density of particles in the universe. Hence, the advanced mass component is

not infinite. Noteworthy, is that Hoyle Narlikar theory deploys the action at a distance principle.

13.2 The concept of mass in general relativity

Newton’s second law states that , the force, F , is mass times acceleration

F = m
d2x
dt2

It states how an external foce interferes wth the movement of an object. It does not tell us about

the origin of forces. Newton’s law of Gravitation does, two masses m1 and m2 separated by a

distance r, are mutually attracted to each other by a force F, with gravitation constant G, where

F = G
m1m2

r2

However, this theory does not tell us how the gravitational forces are transmitted. In 1895, Maxwell

showed that electromagnetic waves always travel at constant speed c in a vacuum

∇×E =−1

c
∂B
∂ t
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According to Newton, the speed of light measured by an inertial frame travelling at constant

velocity v should be c± v. According to Maxwell, the speed of light should be c in any referential

frame. In 1905, Einstein solved this conundrum by ntroducing the spacetime manifold, where the

line element is the Minkowski metric

ds2 = c2dt2− (dx2 +dy2 +dz2)

For light, a null geodesic ds2= 0, then

c2dt2 = dx2 +dy2 +dz2

Then,

c2 = ẋ2 + ẏ2 + ż2

This equation tells us that time ticks at the speed of light. Since c is a constant, the faster we

travel, that is, the more distance we cover , the slower time ticks.This still does not tell us how

gravitational forces are transmitted. However, Einstein’s general theory of relativity does explain

it. The universe is modelled by an N4 (= M3×R) spacetime manifold, where 3 dimensions cor-

respond to space and 1 dimension corresponds to time. The metric is gi j and the field equation

relates the geometry of space, curvature, to the energy- momentum tensor; as before

Ric− 1

2
Rgi j = Ti j

In 1916, K. Schwarzchild provided the first solution; it the metric

gi j = (1+
m
2r

)4ηi j

, where M3 = RR3 - Bm/2(0), m ≥ 0 and ηi j is the standard Euclidean metric on R3. This is the

blackhole solution with a mass m placed at the origin 0. The 2-dimensional sphere ∂Bm/2(0) of
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radius m/2 is an event horizon. The parameter m ≥ 0 is identified with the mass of a blackhole;

the deviation of a geodesic, curvature, is proportional to m. This raises the question; can we

define a notion of mass of arbitrary space-time ?

13.3 ADM Mass in General Relativity

The definition of mass in general relativity becomes a delicate issue, that is, a notion

which becomes invariant under change of coordinates. It is easier to conceptualize the mass of a

point or the mass of the entire universe, but the issue becomes trickier for a local mass between

these two trivial extremes. In order to define a notion of this local mass, we need to make a few

assumptions:

(1) whatever definition we propose has to coincide with the notion of the mass of a

Schwrazchild blackhole, the parameter m,

(2) the mass of the whole universe or the mass of very large objects are confined to a

bounded, compact region, so that the gravitational effects tend to decay at infinity. that is, the

metric gi j is asymptotically flat. That is , there is a comapct set K ⊂M3 such that M3\ K is diffeo-

morphic to R3\ B1(0) and gi j tends to the Euclidean metric at infinity. Under these assumptions,

in 1960, Arnowitt, Deser and Misner,[1], introduced the following definition of mass, the ADM

mass

m(gi j) =
1

16π

ˆ
S∞

(gi j, j−g j j,i)dν

where S∞ is the sphere at infinity, ν is the area element of S∞ . Bartnik showed that the ADM

mass is independent of choice of coordinates and m(gi j) = m, in the case of a Schwarzchild

blackhole.

Theorem. Positive Mass Theorem. Let (M3,gi j) be an asymptotically flat Riemannian

manifold of scalar curvature R(gi j) ≥ 0, at every point. Then m(gi j) ≥ 0 . Furthermore, m(gi j)

= 0 if and only if M3 = R3and gi j = ηi j ; that is, the ADM mass is zero exactly for the vacuum

spacetime.
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Remark. The term gi j, j − g j j,i has a negative sign when the potential energy surpasses

the kinetic energy, so that the positivity of ADM mass is not obvious. However, the positive

mass theorem states that m(gi j) ≥ 0, when the local density of energy( as measured by the scalar

curvature, R) is non-negative everywhere R(gi j)≥ 0.

Re-iterating; general relativity models the world by a four-dimensional spacetime mani-

fold with a Lorentz metric gi j. The metric represents the gravitational field and it features in two

major ways;

(1) the metric determines the dynamics; the trajectories or worldlines of free falling point

particles are geodesics

(2) the metric tensor satisfies the field equation Ric - 1
2Rgi j = Ti j, where gi j is analagous

to the gravitational potential and the energy-momentum tensor Tμν is analagous to the mass

density. The Schwarzchild metric is the famous solution and represents the gravitational field

of a static point particle - a blackhole - of mass m. It is a singular Lorentz metric on R4, when

restricted to any constant time three plane , is asymptotically flat of order 1 and has the form

gi j(z) = (1+mρ−1)δi j +O(ρ−2)

in suitable coordinates, ρ = 2r and δi j is the Euclidean metric. More realistic solutions of the

Einstein field equation model isolated gravitational systems like a binary star in an otherwise

empty universe. When such a system is observed at a great distance, its gravitational field should

resemble that of a point mass. Thus the spacetime modelling the system should be asymptotically

Schwarzchild, and should admit spacelike hypersurfaces which are asymptotically flat Rieman-

nian 3-manifolds. In this contect, the study of solutions of the field equations on asymptotically

flat manifolds began. One way to do this is via the Hilbert action integral;

A(gi j) =

ˆ
X

SdV

where X is our manifold, S is the scalar curvature and dV is the volume form of gi jand A(gi j) is
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the first variation.

A quick note on geometric notations. If g is a Riemannian metric, dVg denotesits Rieman-

nian density, which is defined wether or not the manifold M is oriented. In local cordinates dVg

= (detg)
1
2 |dx|, where dx is the Euclidean volume form dx1∧dx2...∧dxn on Rn. The divergence

operator is the formal adjoint ∇∗ of ∇, given on 1-forms by ∇∗ = - ωi
i. On a compact manifold

with boundary, it satifies the divergence theorem;

ˆ
M

∇∗ωdVg =−
ˆ

∂M
ω(N)dVg̃

where g̃ is the induced metric on ∂M and N is the outward unit normal.

Lemma. Let (X, g) be a Riemannian or pseudo-Riemannian manifold. Let h be a smooth

symmetric 2-tensor. Let gt be a one-parameter family of metrics, with h = dgt
dt |t=0 . Let St and dVt

be the scalar curvature and volume form of gt , then

d
dt
(StdVt)|t=0 =−h(h jkG jk +∇∗ξ )dVg (13.3.1)

where G is the Einstein tensor G jk = R jk - 1
2Sg jk and ξ is the 1-form ξ = - ( ∇∗ h + ∇(trgh)) =

(h jk,
k - hk

k, j)dx j.

Proof. The variation of the volume form dV =
√

detgtdx is

d
dt

dVt |t=0 =
1

2

√
detgtg jkh jkdx =

1

2
g jkh jkdVg (13.3.2)

The scalar curvture S = gt
jk(R jk)t . And, since R jk = ∂iΓi

k j - ∂kΓi
i j + Γi

ilΓ
l
jk - Γi

klΓ
l
i j and ∂lΓk

i j =

1
2gkm∂l (∂ jg jm + ∂ jgim - ∂mgi j). In g-normal coordinates ∂i(g jk) = 0, we have

∂lΓk
i j =

1

2
gkm(∂ jgim−∂mgi j)

and

206



R jk =−∂kΓi
i j =−∂k[

1

2
gil(∂ jgil +∂igl j−∂lg ji)] =−∂k[

1

2
gil(∂ jgil−∂lg ji)]

Therefore,

d
dt

St |t=o =
d
dt
[g jk

t (R jk)t ]t=o = g jk
t

d
dt
(R jk)|t=0 +

d
dt
(g jk

t )R jk|t=0

d
dt
(R jk)|t=0 =−

1

2

d
dt
[∂kgil∂ jgil +gil∂k∂ jgil−∂kgil∂lg ji−gil∂k∂lg ji]|t=0

By using property of normal coordinates;

d
dt
(R jk)|t=0 =−

1

2

d
dt
[gil∂k(∂ jgil−∂lg ji)] =−1

2
gil∂k(∂ jhil−∂lh ji)

Therefore,

d
dt

St |t=o = hik
t R jk|t=0

− 1

2
g jkgil∂k(∂ jhil−∂lhi j)

Since ξ = (hk
jk,− hk

k, j)dx jand since h jk,l = ∂lh jk - Γm
klh jm - Γm

jlhmk , then at the origin of normal

coordinates, we have

−∇∗ξ = hk
k, j j−hk

jk, j = ∂ j∂kh jk−∂ j∂ jhkk +(∂kΓm
jk−∂ jΓm

kk)h jm

= ∂ j∂kh jk−∂ j∂ jhkk−R jmh jm (13.3.3)

Combining ; we get the result.

Applying lemma above and the divergence theorem; at t = 0, we have

d
dt

A(gt) =

ˆ
X

h jkG jkdVg
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The Lorecntz metric is a critical point of A if it satisfies the vacuum equation Gi j = 0. For com-

pactly supported variations, the second divergence term disappears. However, for a an asymp-

totically flat Riemannian manifold (N,g), we can then look for metrics that are critica l for A(g)

under all variations that maintain the asymptotically flat structure, not just the compactly sup-

ported ones. The second divergence term then comes into play. If we integrate Eq 11.3, over a

large sphere SR and take the limit as R−→∞

d
dt

A(gt)|t=0 =

ˆ
N

h jkG jkdVg− limR→∞

ˆ
SR

ξ (N)dVg

where ξ j = ( ∂ihi j - ∂ jhii)( 1 + O(ρ−1).This boundary term , second term ) is the variation of a

geometric invariant called the mass.

Definition. Given an aymptotically flat Riemannian manifold (N,g) with asymptotic coor-

dinates {z j}, we define the mass as

m(g) = limR→∞ω−1

ˆ
SR

μdz

where μ is the mass density vector field defined on N∞;

μ = (∂igi j−∂ jgii)∂ j

From the previous discussion, the family gt of asymptotically flat metrics

d
dt
(A(gt)+m(gt))|t=0 =

ˆ
N

h jkG jkdVg

13.4 Energy in General Relativity

An isolated system aasume that the sources are confined to a finite region and assume

that the fields are weak far from the sources. This kind of system is assumed to have a finite

total energy. One way of defining isolated systems is by setting initial conditions for Einstein’s

equations. The notion of total energy has been discovered and formulated using a Hamiltonian
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formulation, which involves the study of initial conditions,[8],[11].

Initial Data Set. This is given by S, a connected 3-dimensional manifold ; hi j, a positive

definite Riemannian metric; Ki j, a symmetric tensor field, the second fundamental form; μ , a

scalar field; and ji, a vector field on S. D is the Levi-Civita Connection and R is the scalar curva-

ture. These satisfy the following constraint equations on S ;

D jKi j−D jK =−8π ji

R−Ki jKi j +K2 = 16πμ

where K = Ki jhi j ; i and j are 3-dimensional indices that are raised and lowered with the metric hi j

and its inverse hi j. The matter fields are assumed to satisfy the dominant energy condition

μ ≥
√

ji ji

Energy Conditions. Weak energy condition:

Tμνξ μξ ν ≥ 0

where Tμν is the energy-momentum tensor and ξ μ are timelike vectors. This is the energy density

measured by the observed ξ μ .

Dominant energy condition. For all future directed timelike vectors ξ μ , the vector T μ
ν ξ ν ,

should be future directed timelike or null vector. This is the energy momentum current density.

It implies that the speed of the energy flow is less than or equal the speed of light. An equivalent

formulation is;

T μνξ μkν

, where kν is the null vector.The initial data model an isolated system if the fields are weak far
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away from the sources. Let BR be a ball of finite radius R in R3. The exterior region U = R3 BR is

called an end. On U we consider Cartesian coordinates xiwith Euclidean radius r = (∑i=3
i=1(xi)2)

1
2

and let δi j be the Euclidean metric.

A 3-dimensional manifold S is called Euclidean at infinity, if there exists a compact sub-

set K of S such that S\K is the disjoint union of a finite number of ends Uk. The initial data

set ( S,hi j,Ki j,μ, ji) is called asymptotically flat if S is Euclidean at infinity and at every end the

metric hi j and the tensor Ki j satisfy the following fall off conditions

hi j = δi j + γi j

and

Ki j

where γi j = O (r−1) , ∂kγi j = O(r−2) , ∂l∂kγi j = O(r−3) and ∂ kKi j= O(r−3). The most important

case is when S = R3, we only have one end U = R3 /BR. Initial data for standard configurations of

matter like stars, galaxies and gravitational collapse are modelled with S = R3. However, initial

conditions with multiple ends and non-trivial interior K also appear in blackhole initial data.

The total energy known as ADM energy is defined as an integral over 2 -spheres at infinity at

every end by the following formula

E =
1

16π
limr→∞

˛
Sr

(∂ jhi j−∂ih j j)s jds0

and

Pi =
1

8π
limr→∞

j
Sr

(Kik−Khik)skds0

where si is its exterior unit normal and ds0 is the surface element of the 2-sphere . For every end

Uk, we have a corresponding energy Ek, and linear momentum Pi
k, which can have different
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values. The total mass of the spacetime is defined by

M =
√

E2−PiPjδi j

Theorem. Positive Energy Theorem. Let ( S,hi j,Ki j,μ, ji) be an asymptotically flat , with

possible many asymptotic ends, complete, initial data set. such that the dominant energy condi-

tion holds. Then the energy and linear momentum (E,Pi) satisfies

E ≥
√

PiPjδi j ≥ 0

at every end. Moreover, E = 0 at any end if and only if the initial data correspond to the Minkowski

spacetime.

Remarks. A complete Riemannian manifold ( S,hi j) means no singularities are present on

the initial conditions. The theorem is non-trivial where S = R3; when no matter field is present ,

that is μ= ji = 0, this corresponds to the positivity of the energy of the pure vacuum gravitational

waves. A remarkable feature of the asymptotic conditions is that they imply that the total energy

can be expressed exclusively in terms of the Riemannian metric hi j of the initial data and the

linear momentum in terms of hi j and the second fundamental form Ki j. In the literature, E is

known as the total mass and is denoted as m or M. The definition of the total energy has three

main ingredients; the end U, the coordinate system xi and the Riemannian metric hi j. Critical

to the definition of E is the fall off conditions of the metric. We need to elaborate further on this

point. Given an end U with coordinates xi, and an arbitrary real number α , we say that the metric

hi j on U is asymptotically flat of degree αif as r −→∞

hi j = δi j + γi j

falls off in U as γi j = O(r−α ), ∂kγi j = O(r−α−1). The trick is to determine the appropriate α decay.

It turns out the energy can only be coordinate independent if we impose that α > 1
2.

Theorem. Let U be an end with a Riemannian metric hi jsuch that it satisfies the fall off
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condition with α >1
2 . Assume that the scalar curvature R is integrable in U , that is

ˆ
U
|R|dv < ∞

Then the energy is unique and it is finite.

This means if we calculate the energy in any coordinate system for which the metric

satisfies the decay condition with α> 1
2, we obtain the same result. This theorem ensures that the

energy is a geometric invariant of the Riemannain metric in the end U. Historically, this theorem

was proven after the positive energy theorem.

Positivity. The model example is given by the initial data for the Schwarzchild blackhole,

with metric on U given by

hi j = ψ4δi j

where ψ = ( 1 + C
2r ) , C is a constant. To ensure positivity of the energy, two conditions

need to be imposed;

(1) positivity of the local energy given by the dominant energy condition

(2) the manifold should be complete or should have black hole boundaries

Time symmetric initial data fulfill the following criteria:

(1) Ki j = 0

(2) Characterized only by a Riemannian metric hi j

(3) Satisfy the dominant energy condition, and

(4) R ≥ 0

Corollary. Riemannian positive mass theorem. Let (S,hi j) be a complete, asymptotically

flat, Riemannian manifold. Assume that the scalar curvature is non-negative. Then the energy

is non-negative at every end and it is zero at one end if and only if the metric is flat. The inter-

esting aspect of this corollary is that it does not appeal to the constraint equations, the second

fundamental form or to the matter fields. This theorem appeals only to Riemannian geometry.
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Multiple Ends. Take out a point in R3, then the manifold S = R3\ 0 is asymptotic Eu-

clidean at two ends, U0 and U1. Let B2and B1 be two balls centered at the origin; B1⊂ B2. Then,

U1 = B1\ {0} and U0= R3\ B2. In the same way, R3 minus a finite number N of points ik is a Eu-

clidean manifold with N + 1 ends. For each ik, take a small ball Bk of radius rk centered at ik,

where the Bk’s are disjoint. Take BR with large R, such that BR contains all points ik. Let the com-

pact set be K = BR\ ∑N
k=1Bk, and the open sets Uk = Bk\ ik, for 1≤ k ≤ N, , then U0 is given by

R3\ BR.

Example. Consider the manifold S = R3\ {0} and the metric given by

hi j = ψ4δi j

and

ψ = 1+
C
2r

The function is smooth for anu value of C except at r= -C
2 . That is, hi j is smooth on S only when

C ≥ 0. S has two asymptotic ends. On U0 = R3\ B2, the metric is aymptotically flat in the coordi-

nates xi. But not so at the end U1 = B1\ {0} in the neighbourhood of r = 0. The components are

singular at r = 0. We apply the following coordinate transformations

yi = (
C
2
)

2 1

r2
xi

and

ρ = (
C
2
)

2 1

r

In terms of these coordinates, the metric has the form

h
′
i j = (1+

C
2ρ

)4δi j
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We have two energies, one for each end.The two are equal and given by the constant C. The pos-

itivity of the mass is guaranteed by the completeness of the metric. When C < 0, the metric is

defined on a manifold with boundary S \ B− 2
C

and the metric vanishes at the boundary ∂B− 2
C

.Proof of the positive mass theorem is complicated. The Schoen-Yau proof employs the prop-

erties of minimal surfaces in Riemannian manifolds. Consider a 2-surface on a 3-dimensional

Riemannian manifold ( S,hi j), with unit normal vector ni. The surface is minimal if its mean cur-

vature H = Dini vanishes. This is equivalent to saying that the area of the surface is an extremum

under variation.Examples of a minimum surface are a helicoid (x1,x2,x3) = (tcoss, tsins,s) and a

catenoid, revolve acosh( z
a) around the z-axis. A minimal surface Σ is stable if its area is a local

minimum under variations. This is equivalent to the following condition

ˆ
S
(R−K +

1

2
‖ A ‖2) f 2 ≤

ˆ
S
‖ ∇ f ‖2

where all functions f have compact support in the surface Σ, R is the scalar curvature of the Rie-

mann manifold ( S,hi j) , K is the Gaussian curvature of the surface Σ, and A is the second funda-

mental from of Σ.
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CHAPTER XIV

QUANTUM GRAVITY

14.1 Background

General relativity is a classical macroscopic theory. For a microscopic description, we

need to combine general relativity with quantum mechanics. This is quantum gravity. Quantum

gravity is a union of general relativity with quantum mechanics, with the Planck scale as its natu-

ral scale. The intersection of these two fields occurs at the event horizon of a blackhole.This was

described in 1975 by Stephen Hawking in the context of a quantum description of particle fields

in the background Schwarzchild geometry,[3], [19],[20],[21]. where he considered the quan-

tum fluctuation of creating a particle and anti-particle pair from a vacuum. Energy momentum

conservation requires that

pμ + p̃μ = 0

, where p is the angular momentum. We contract with the Killing vector -gμνK
μ
(t), we obtain the

constants of motion along their respective geodesics after creation,

κ + κ̄ = 0

or

E(∞)+ Ẽ(∞) = 0

If both particles could reach r = ∞, then E(∞) and Ẽ(∞) would be the energies measured by local
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observers at infinity. Such energies must be positive and the equality is not satisfied. However, if

this quantum fluctuation takes place close to the event horizon of a blackhole, one particle, say p

, travels to r = ∞ and E(∞) is positive and the other , say p̃, falls into the singularity and if Ẽ(∞)

is negative, then the energy relation is satisfied at the macroscopic time-scale. This latter energy

can be negative, because within the event horizon gtt is positive, so that the t coordinate is space-

like. The result is that to a distant observer, the blackhole emits a particle with positive energy.

This is known as the Hawking radiation. Hawking reasoned that inside the static limit (distance

from singularity at which particles can no longer escape via radially directed motion), the Killing

vector field Kμ that encodes time-translation symmetries is space-like,|Kμ | > 0. So inside the

static limit, particles can have negative energies,

E =−Kμ pμ

His intuition was that a blackhole should have a blackbody spectrum and emit radiation accord-

ing to Planck’s law,

Bν(ν ,T ) = (
2h̄ν3

c2
)

1

e
h̄ν
κT −1

where Bν is the spectral radiance, measured in power per unit area; ν is frequency at absolute

temperature T, h̄ is Planck’s constant , c is the speed of light and κ is the Boltzmann constant.

14.2 Schwarzschild Metric, Kruskal Coordinates, Rindler Coordinates and Event Horizon

The Schwarzchild metric describes the spacetime outside a gravitationally collapsed

non-spinning star with zero charge. It is a spherically symmetric static solution of the vacuum

Einstein field equation

Rμν − 1

2
Rgμν = 0

The line element is given by
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ds2 = gμνdxμdxν =−(1− 2GM
r

)dt2 +(1− 2GM
r

)−1dr2 + r2dΩ2

where t is the time, r is the radius and Ω is the solid angle on the 2-sphere. At r = 2GM, we have

a singularity. Both g00 and grr −→∞. The surface r−2GM is known as the event horizon. Let ξ =

r−2GM. The metric then looks like

ds2 =− ξ
2GM

dt2 +
2GM

ξ
dξ 2 +(2GM)2dΩ2

Introducing a new coordinate ρ , where ρ2 = ( 8GM ) ξ , and hence dξ 2 2GM
ξ = dρ2. The metric

takes the form

ds2 =− ρ2

16G2M2
dt2 +dρ2 +(2GM)2dΩ2

From the metric, one can see that ρ measures the geodesic radial distance. The geometry factor-

izes. One factor is a 2-sphere of radius 2GM and the other is the ( ρ , t) space

ds2
2 =−

ρ2

16G2M2
dt2 +dρ2 (14.2.1)

This 1 + 1 dimensional spacetime is a flat Minkowski space written in Rindler coordinates.

Rindler Coordinates. We begin with the 1 + 1 Minkowski space with a flat metric

ds2 =−dT 2 +dX2

In light cone coordinates,

U = T +XandV = T −X

The line element takes the form
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ds2 =−dUdV

We next change the coordinates to Rindler coordinates ( u,v).

U =
1

κ
eκu,V =− 1

κ
e−κv

In these coordinates, the line element looks like

ds2 =−dUdV =−eκ(u−v)dudv

We make further coordinate changes

u = t + x,v = t− x,ρ =
1

κ
eκx

The line element can be written as

ds2 = e2κx(−dt2 +dx2) =−ρ2κ2dt2 +dρ2 (14.2.2)

Comparing to (14.2.1); we obtain

κ =
1

4GM

κ is known as the surface gravity of the blackhole. This analysis demonstrates that Schwarzchild

radius near r = 2GM is not singular. The coordinates u,v of the Rindler metric do not cover all of

Minkowski space; when u and v vary over the full range

−∞≤ u≤ ∞,−∞≤ v≤ ∞

the Minkowski coordinates vary only over the quadrant
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0≤U ≤ ∞,−∞≤V ≤ 0

Kruskal coordinates cover the entire Schwarzchild spacetime. We introduce the ’tortoise coordi-

nate ’

r∗ = r+2GMlog(
r−2GM

2GM
)

In the (r∗, t) coordinate system , the metric is conformally flat

ds2 = (1− 2GM
r

)(−dt2 +dr∗2)

Near the horizon the coordinate r∗ is similar to x in (50.2). Hence u = t + r∗ and v = t− r∗ are like

the Rindler (u,v) coordinates. In U,V coordinates, the metric takes the form

ds2 =−e−(u−v)κdUdV =−2GM
r

e−
r

2GM dUdV

Now the metric is perfectly regular at r = 2GM which is the surface UV = 0 and there is no

singularity there.The singularity a tr = 0 cannpot be removed by a coordinate change because

tidal forces become infinite.

Event Horizon. In the metric of (14.2.1) ,

ds2 = e2κx(−dt2 +dx2) =−ρ2κ2dt2 +dρ2

near the horizon, the constant radius surfaces are determined by

ρ2 =
1

κ2
e2κx =

1

κ2
eκue−κv =−UV = constant

These surfaces are hyperbolas. We have three kinds of observers :

(1) For r >> 2 GM , an observer is inertial, free falling in flat space. The trajectory is
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timelike and is a straightline going upwards on a spacetimediagram. For r > 2GM, to stay at a

fixed disatnce from a blackhole, the observer must boost the rockets to overcome gravity. Far

away, the required acceleration is negligible, and the observer is almost free falling

(2) Near r = 2GM, the constant r lines are hyperbolas which are the trajectories of ob-

servers in uniform acceleration. The observer is definitely not free- falling. The acceleration is

substantial.

(3) At r = 2GM, these trajectories are lightlike. This means that an observer who wishes to

stay at r = 2GM has to move at the speed of light.

In summary, the surface defined by r = constant is

timelike;r > 2GM

spacelike;r < 2GM

null(lightlike);r = 2GM

An event horizon is a stationary, null surface;

(1) Stationary because it is a hypersurface r = 2GM that does not change with time. The

Killing vector ∂
∂ t leaves it invariant

(2) Null because grrvanishes at r = 2GM

Blackhole Parameters. A blackhole is an asymptotically flat spacetime that contains a

region which is not in the backward lightcone of future timelike infinity for r >> 2GM. The

boundary is a stationary null surface known as the event horizon. The fixed t slice of the event

horizon is a two sphere. For a blackholes the properties are specified mass mass, charge and

angular momentum. For a Schwarzchild blackhole;

(1) The radius of the event horizon is the radius of the 2-sphere. For a Schwarzchild black-

hole, the radius r = 2GM.
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(2) The area of the event horizon is 4πr2. For a Schwarzchild blackhole, A = 16G2M2

(3) The surface gravity κ = 1/4GM

14.3 Blackhole Entropy

The laws of blackhole entropy are similar to the laws of thermodynamics,[5], [6]:

(1) Zeroth Law. The surface gravity, κ , is constant on the event horizon. This is true for

stationary, spherically symmetric horizons and for non-spherical horizons of spinning blackholes.

(2) First Law. Energy is conserved

dE = T dS+μdQ+ΩdJ

where, E = energy, E = chrage with chemical energy = μ , J is the spin with chemical potential Ω.

For blackholes,

dM =
κ

8πG
dA+μdQ+ΩdJ

For a Schwarzchild blackhole, μ = Ω = 0, because there is no charge or spin.

(3) Second Law. The total entropy never decreases ΔS ≥ 0. Thus for a blackhole, the net

area in any process never decreases. For example, for two Schwarzchild blackholes, of masses

M1 and M2, that coalesce, we have

(M1 +M2)
2 ≥M2

1 +M2
2

Similarities between laws of thermodynamics and blackhole physics;

Laws of Thermodynamics. . .

1) Temperature is constant throughout a body at equilibrium

2) Energy is conserved: dE = TdS + μdQ + ΩdJ

3) Entropy never decreases; ΔS ≥ 0

Laws of Blackhole Mechanics. . .
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1) Surface gravity is constant on the event horizon.κ= constant

2) Energy is conserved: dM = κ
8π dA + μdQ + ΩdJ

3) Area never decreases; ΔA ≥ 0

A = area of horizon, M = mass of blackhole, κ is surface gravity

By the first law of thermodynamics, if a blackhole has energy E and entropy S, then it

must also have a temperature T given by

1

T
=

∂S
∂E

For a Schwarzchild blackhole, the area and entropy scale as

S∼M2

Therefore,

1

T
=

∂S
∂M

∼ ∂M2

∂M
∼M

Hawking reasoned that if a blackhole has temperature, then it must radiate. He calculated that

T =
h̄κ
2π

=
h̄

8πGM

Bekenstein argued heuristically that for the first law of blackhole mechanics , one might say that

T = εκ

where ε is a constant. And, entropy is a finite multiple η of area of event horizon

S = ηA

with 8πηε = 1. Bekenstein proposed that η is finite and and equal to ln2
8π . Then ε = 1

ln2 , and so
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T =
κ

ln2

Classic Thermodynamic Derivation of Blackhole Entropy. Blackbody radiation obeys the

Stefan- Boltzmann Law

E
V

= σT 4

and

S
V

=
4

3
σT 3

where E = energy, T = temperature , V = volume, S = entropy, σ = π2

15h̄3 , an integration constant

derived quantum mechanically.

For blackholes, the corresponding Bekenstein-Hawking formula is

T =
h̄κ
2π

and

S =
A
4h̄

These were first derived quantum mechanically. Here A = 4π(r2
+ + a2) = area; κ =

2π(r+−r−)
A =

surface gravity, r± = M ±
√

M2−a2−Q2 , a = J
M and M, J and Q are the mass, angular momen-

tum and charge of the blackhole.

Isolated blackholes evolve asymptotically toward a limit which is deecribed by 3 parame-

ters, the mass, angular momentum and charge

S = S(M,J,Q)
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Two blackholes of the same area have the same entropy. The entropy of a blackhole is onlya

function of its area

S = f (A)

Differentiating and substituting parameters,

dS = f
′
(A)dA =

8π
κ

f
′
(A)(dM−ΩdJ−ΦdQ)

where Ω = 4π
A and Φ = 4πr+Q

A . Setting τ= κ = κ
8π f ′(A)

and re-arranging, we get

dM = τdS+ΩdJ+ΦdQ

For the Schwarzchild blackhole, J = Q = 0. Hence,

T = τ =
κ

8π f ′(A)

Geroch suggested that if one adiabatically lowers a perfectly reflecting box filled with electro-

magnetic radiation at a temperature T >> TBH to a Schwarzchild radius r close to the event hori-

zon. One then exchanges radiation with the hole, then adiabatically raises the box, then the local

temperature at which the exchange takes place must be

Tχ =
T√

1− 2M
r

where the factor χ =

√
1− 2M

r is the red-shift factor. The gravitational pull (geodesic deviation)

κχ felt by a local stationary observer is

κχ =−dχ
dr
� κ

χ

Combining the last three equations,
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Tχ =
1

8π f ′(A)
κχ

This says that the local temperature depends on the local pull felt by the observer and not by the

presence of the local blackhole. Therefore f
′
(A) is a universal constant.That is,

f
′
(A) = ξ

where ξ is a constant. Integrating,

f (A) = ξ A+C

, where C is a constant of integration. Since for M = 0, S = 0⇒ C = 0. Therefore,

S = χA

and

T =
κ

8πξ

One cannot evaluate ξ thermodynamically without quantum mechanics

14.4 Classic Field Theory

We describe the dynamics of classical fields, how they change with time, using the La-

grangian and the principal of least action. The evolution of a system progresses along the path of

least action, where the action S is defined in terms of the Lagrangian. Euler-Lagrange Equations

and the Principle of Least Action. The action is

S =

ˆ
L (φ ,∂μφ)d4x
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where L is the Lagrangian and the integration is over spacetime. The field will adopt the con-

figuration which reduces the action to a minimum. To find this configuration, we look for a field

configuration such that infinitesimally small variations of the field leave the action unchanged

φ(x)−→ φ(x)+δφ(x)⇒ S−→ S+δS,δS = 0

S =

ˆ
L (φ ,δμφ)d4x

δS = δφ
∂

∂φ

ˆ
L (φ ,∂μφ)d4x+δ (∂μφ)

∂
∂ (∂μφ)

ˆ
L (φ ,∂νφ)d4x

Since δ (∂νφ ) = ∂ μ (δφ );

∂μ(δφ
∂L

∂ (∂μφ)
) = ∂μ(δφ)

∂L

∂ (∂μφ)
+δφ∂μ(

∂L

∂ (∂μφ)
)

So,

δS =

ˆ
[δφ

∂L

∂φ
+∂μ(δφ

∂L

∂ (∂μφ)
)−δφ∂μ(

∂L

∂ (∂μφ)
)]d4x

The second term of the right hand side is a total derivative and it vanishes at the boundary. Hence,

the Euler Lagrange equation is

∂L

∂φ
−∂μ(

∂L

∂ (∂μφ)
) = 0

Consider the Lagrangian L = ∂μφ∂ μφ ; then

∂L

∂φ
= 0,

∂L

∂ (∂μφ)
= ∂ μφ =⇒ ∂μ(

∂L

∂ (∂μφ)
) = ∂μ∂ μφ

So the Euler Lagrange equation turns into the wave equation

∂μ∂ μφ = (
∂ 2

∂ t2
−∇2)φ = 0
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Noether’s Theorem. States that if the action is unchanged under a transformation, then

there exits a conserved current associated with the symmetry.

Consider infinitesimal transformations of the coordinates and the fields, parametrised by

the infinitesimal parameter ων ;

xμ −→ x́μ = xμ +δxμ = xμ +X μ
ν ων

φ −→ φ́ = φ +δφ = φ +Φνων

The change in the Lagrangian is

δL = ∂μL δxμ +
∂L

∂φ
δφ φ +

∂L

∂ (∂νφ)
δφ (∂νφ)

δL = ∂μL δxμ +∂ν(
∂L

∂ (∂νφ)
)δφ φ +

∂L

∂ (∂νφ)
∂ν(∂φ φ)

δL = ∂μL δxμ +∂ν(
∂L

∂ (∂νφ)
)δφ φ

The change in action is

δS = δ (
ˆ

d4xL )

The integration measure also changes due to tranformation via the Jacobian;

d4x́ = |∂ x́
∂x
|d4x = (1+∂μδxμ)dx4

The change in the action is

δS =

ˆ 4

x(δL +L ∂μδxμ)
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δS =

ˆ
d4x(δμL δxμ +∂ν(

∂L

∂ (∂νφ)
δφ φ)+L ∂μδxμ)

δS =

ˆ
d4x∂μ(

∂L

∂ (∂νφ)
δφ φ)+L δxμ)

Noting that δxμ = Xμ
νων , δφ = Φνων and δφ = δ φ φ + ∂μφδxμ ;

δφ φ = δφ −∂μφδxμ = (Φν −∂μφX μ
ν )ων

We can write the change in the action in terms of the divergence of a current

δS =−
ˆ

dx4∂μ jμ
ν ων

where

jμ
ν = (

∂L

∂ (∂μφ)
∂νφ −gμ

ρ L )Xρ
ν −

∂L

∂ (∂μφ)
Φν (14.4.1)

To ensure that the action is invariant under this transformation, this must be a conserved current;

∂μ jμ
ν = 0

This is Noether’s theorem.

Energy-Momentum Tensor. The most common application of Noether’s theorem is its

application to space-time translation.

xμ −→ x́μ = xμ +X μ
ν ων =⇒ X μ

ν = gμ
ν

φ −→ φ
′
= φ +δφ = φ +Φνων =⇒Φν = 0

Substituting into (52.1)
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T μν = (
∂L

∂ (∂μφ)
∂νφ −gμ

ρ L (14.4.2)

This is the energy-momentum tensor for the field φ .

Green’s Function Revisited. Imagine a field satisfies a differential equation of the form

Dφ(x) = ρ(x)

where D is a differential operator and ρ is a source. A great example is Poisson’s equation

∇2φ = ρ(x)

Let G(x,y) be a solution, but with a point source at x = y, so that

DG(x,y) = δ (x− y)

Then

D
ˆ

G(x,y)ρ(y)dy =
ˆ

δ (x− y)ρ(y)dy = ρ(x)

In other words,

φ(x) =
ˆ

G(x,y)ρ(y)dy

is a solution to the original equation. The function G(x,y) is a Green’s function. Green’s func-

tions let us convert the problem of solving a differential equation into the problem of doing an

interval.

Quantum Mechanics Synopsis,[10],[36]. A quantum mechanical state can be completely

described by a state vector in an infintely dimensional complex vector space known as a Hilbert

space. We use Dirac’s bra and ket notation. All information about the state is contained in the
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vector. A vector is written as

|ψ >

Its complex conjugate is written as

< ψ| ≡ |ψ >∗

Observables. Every observaable A has a corresponding linear Hermitian operator Â acting

on the Hilbert space

Â = Â†

for which there is complete set of orthonormal eigenvectors | a > with eigenvalue a

Â = |a >= a|a >

Since these eigenvectors span the space, they are complete, we can write

ˆ
|a >< a|da = 1

Any state vector can be written as

|ψ >=

ˆ
ψA(a)|a > da

The function ψA(a) is the wavefunction in the eigenspace of Â and can be obtained via

< a|ψ >=

ˆ
ψA(b)< a|b > db =

ˆ
ψA(b)δ (a−b)db = ψA(b)

, where we have used the orthonormality relation < a|b> = δ ( a− b ). A measurement of the

observable A will return a result with probability
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|< a|ψ > |2 = |ψA(a)|2

After the measurement, the state will no longer be | ψ > but will have collapsed onto the corre-

sponding eigenvector |a >.

The Position and Momentum Eigenbases. The position and momentum bases correpond

to the position x̂ and momentum p̂ operators. The position space wave function

< x|ψ >= ψx(x)

and the probability of finding the particle at position x is

|< x|ψ > |2 = |ψx(x)|2

Since | x> and | p> are not aligned bases, the state cannot be an eigenvector of position and mo-

mentum simultaneously. Also, since the measurements change the state of the system, the order

of measurement is important

x̂ p̂|ψ >�= p̂x̂|ψ >

Commutator . We postulate a commutator relation

[x̂, p̂]≡ x̂ p̂− p̂x̂ = ih̄

Note these operators are observables, hence Hermitian. If we operate on the vector < x, y >

[x̂, p̂]< x,y >=< x|[x̂, p̂],y >=< x|x̂ p̂|y >−< x|p̂x̂|y >= (x− y)< x|p̂|y >

231



ih̄δ (x− y) = (x− y)< x|p̂|y >

< x| p̂|y >= ih̄
δ (x− y)

x− y
= ih̄

∂
∂y

δ (x− y)

The last term follows from the property of the Dirac delta functions. However,

< x|p̂|ψ >=

ˆ
< x| p̂|y >< y|ψ > dy =

ˆ
(ih̄

∂
∂y

δ (x− y))< y|ψ > dy =−ih̄
∂
∂x

ψx(x)

Therefore,

p̂ =−ih̄
∂
∂x

is a suitable representation for the one-dimensional momentum operator.Thus, the position and

momentum operator are related in this way

p < x|p >=−ih̄
∂
∂x

< x|p >

Solving this differential equation gives

< x|p >=
1√
2π h̄

e
ipx
h̄

Taking the adjoint

< p|x >=
1√
2π h̄

e
−ipx

h̄

The bases are related by Fourier transformation

|p >=
1√
2π h̄

ˆ
e

ipx
h̄ |x > dx
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and

|x >=
1√
2π h̄

ˆ
e
−ipx

h̄ |p > d p

This embodies the Heisenberg Uncertainty principle.

The Schrodinger Equation. This is simply a statement about conservation of energy; Total

Energy, Ĥ= kinetic energy + potential energy

ih̄
∂ψ
∂ t

=− h̄2

2m
∇2ψ +V ψ

Multiply Schrodinger’s equation and its adjoint with ψ∗ and ψ respectively;

ψ∗ih̄
∂ψ
∂ t

=− h̄2

2m
ψ∇∗2ψ +V ψ∗ψ

ψih̄
∂ψ∗

∂ t
=− h̄2

2m
ψ∇2ψ∗+V ψψ∗

Subtracting;

ih̄
∂ [ψ∗ψ]

∂ t
=

h̄2

2m
[−ψ∗∇2ψ +ψ∇2ψ∗] =

h̄2

2m
∇.[−ψ∗∇ψ +ψ∇ψ∗]

∂ [ψ∗ψ]

∂ t
+

h̄
2im

∇.[ψ∇ψ−ψ∇ψ∗] = 0

Compare with the continuity equation

∂ρ
∂ t

+∇.J = 0

where ρ = |ψ |2 and J = h̄
2im [ψ∗∇ψ -ψ∇ψ] ; ρ the probability is conserved.

The Harmonic Oscillator and Ladder Operators. The quantum harmonic oscillator is

defined by the Hamiltonian, Ĥ
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Ĥ =
p̂2

2m
+

1

2
mω2x̂2

Define the ladder oprators

â =
1√
2
(

√
mω
h̄

x̂+ i

√
h̄

mω
p̂)

â† =
1√
2
(

√
mω
h̄

x̂− i

√
h̄

mω
p̂)

Then,

[â, â†] = 1

[Ĥ, â] =−h̄ω â

and

[Ĥ, â†] = h̄ω â†

The Hamiltonian can be written as

Ĥ =
1

2
h̄ω(ââ† + â†â) = h̄ω(ââ† +

1

2
)

Consider an eigenstate | n > with an eigenvalue En, so that

Ĥ|n >= En|n >

Then
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Ĥâ†|n >= ([ ˆH, â†]+a†Ĥ)|n >= (h̄ω â† + â†Ĥ)|n >= (h̄ω â† + â†En)|n >

= (En + h̄ω)â†|n >

Hence â† | n > is an eigenstate but with an eigenvalue En+1 = En + h̄ω . Similarly Ĥâ | n > = (

En - h̄ω)â | n >.â† is a creation operator - it creates one quantum of energy h̄ω - while â is an

annihilation operator. By definition, the ground state | 0 > has the lowest energy , so we must

have â|0 >= 0. The ground state energy is

Ĥ|0 >= h̄ω(ââ† +
1

2
)|0 >=

1

2
h̄ω|0 >

Therefore, the remarkable finding that the ground state has non-zero energy.

14.5 Scalar Field Theory

The simplest theory is that of a free real scalar field with Lagrangian

L =
1

2
∂μφ∂ μφ − 1

2
m2φ 2

The Euler Lagrange Equation gives us;

∂L

∂φ
=−m2

∂L

∂ (∂μφ)
= ∂ μφ =⇒ ∂μ(

∂L

∂ (∂μφ)
) = ∂μ∂ μφ

Hence, we obtain the Klein Gordon Equation

(∂ 2 +m2)φ = 0
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where ∂ 2 = ∂ μ∂μ = �,[10], [36].

The Klein - Gordon Equation. The Schrodinger equation for the quantum wave function

is based on the nonrelativistic expression for the energy of a particle. The Klein-Gordon equation

is the first step to more complex relativistic equations. For now, we will restrict ourselves to a

spinless particle in empty space. If there is no potential energy, classical physics says that the

energy E is just the kinetic energy of the particle

p2

2m

, p is the linear momentum, m is the mass. Quantum mechanics replaces the energy E by the

operator

ih̄
∂
∂ t

and the momentum p by

−ih̄∇

Then it applies the resulting operators on the wave function Ψ. This then produces the Schrodinger

equation

ih̄
∂Ψ
∂ t

=− h̄2

2m
∇2Ψ

Solutions with a definite value E for the energy take the form

Ψ = ce−
iEt
h̄ ψ

Substituting into the Schrodinger equation produces the Hamiltonian eigenvalue problem

− h̄2

2m
∇2ψ = Eψ
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ψ is called the energy eigenfunction. The energy E of a particle in empty space is the kinetic

energy plus the rest mass energy mc2. According to special relativity, the mass in motion mv is

related to the mass at rest m by

mv =
m√

1− v2

c2

The true knietic energy T is

T =
m√

1− v2

c2

c2−mc2

Quantum mechanics does not use the speed of a particle, but its momentum, p = mvv. The total

kinetic energy, kinetic plus rest mass energy , after substituting for p ,then mv gives

E = T +mc2 =

√
(mc2)2

+ p2c2

Square both sides and substituting into the Schrodinger equation yields the Klein Gordon equa-

tion

− 1

c2

∂ 2Ψ
∂ t2

+∇2Ψ = (
mc2

h̄c
)2Ψ

In empty space,

∇2ψ =−k2ψ

where for The Klein-Gordon equation

k =

√
E2− (mc2)2

h̄c

and for the Schrodinger equation
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k =

√
2mE
h̄

k is the wave number. Schrodinger’s equation, non-relativistic, does not include the rest mass. It

is an approximation of the Klein-Gordon equation. Relativistic or not, the magnitude of linear

momentum is given by the de Broglie relation

p = h̄k

Note, the momentum operator is

p̂ =−ih̄ =⇒ p̂2 =−h̄2∇2

Relativistic or not, the energy E is associated with the operator

ih̄
∂
∂ t

This means that the the time-dependent factor in states of definite energy is

e−
iEt
h̄

Hence the energy can be associated with an angular frequency ω by writing the exponential as

e−iωt

The relationship between energy and frequency is then given by the Planck-Einstein relation

E = h̄ω

The wave number k is the quantum number of linear momentum and ω is the angular frequency

of energy. The Schrodinger equation is square integrable
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ˆ
|Ψ|2d3r = 1

The integral represents the probability of finding the paricle. It is 1 wherever you look. It must

be somewhere. Because the integral stays at 1, whenever you look, the particle must be some-

where. This ensures that the particle cannot disappear and no second particle can show up out

of nowhere. The Klein Gordon equation is not square integrable. Therefore, the number of parti-

cles is not necessatily preserved. In relativity, the mass-energy equivalence allows particles to be

created or destroyed.The integral that the Klein Gordon Equation preserves is

ˆ
|1
c

∂Ψ
∂ t
|2 + |∇Ψ|2 + |mc2

h̄c
Ψ|2d3r

Even though the square energy E2 is positive, the energy E is positive or negative. The negative

energy solutions represent anti-particles. Ant-particles have positive energy and move backwards

in time. They cannot have negative energy because there is no ground state, no lower limit to the

energy. Consider two hypotehtical wave functions of the form

e−
iEt
h̄ ψ1

and

e
iEt
h̄ ψ2

The first wave function is a particle of positive energy E . The second wave function is an anti-

particle of positive energy that moves back in time. We will next explore these ideas with the

quantum mechanics formalism. The vector r represnts ( x,y,z). d3r is omitted for brevity. We wll

first show that

ˆ
|Ψ|2 = 1
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is a constant. In index notation, the Schrodinger equation in free space is

ih̄
∂Ψ
∂ t

+
h̄2

2m
∇2Ψii = 0

Note that any solution of the Schrodinger equation takes the form

Ψ = cne−iEntψn(r)

, the Einstein summation convention applies.Since ψn is an energy eigenfunction, we can apply

the orthonormality of eigenfunctions. Then

ˆ
|Ψ|2 =

ˆ
Ψ∗Ψ = c∗ncn

This does not depend on time, and the normalization requirement makes it 1. For the Klein=Gordon

equation, the solution is

Ψ = cne−iEntψn(r)+dneiEntψn(r)

The first sum is the particles states and the second sum is the anti-particle states.

ˆ
|Ψ|2 = c∗ncn +d∗nd + c∗ndne2iEnt(r)+d∗ncne−2iEnt

The final two terms in the sum oscillate, so the integral is no longer constant. If dn = 0, we only

have particle states, if cn= 0 , we only have anti-particle states ; only then is the integral con-

stant.The Klein Gordon equation preserves the sum of integral

ˆ
|1
c

∂Ψ
∂ t
|2 + |∇Ψ|2 + |mc2

h̄c
Ψ|2

As before, multiply the Klein Gordon equation by ∂Ψ∗
∂ t and add to the complex conjuagte of the

obtained equation; let us analyze the three terms;
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ˆ
1

c2
(
∂Ψ∗

∂ t
∂ 2Ψ
∂ t2

+
∂Ψ
∂ t

∂ 2Ψ∗

∂ t2
) =

1

c2

d
dt

ˆ
∂Ψ∗

∂ t
∂Ψ
∂ t

= 0

The second and third terms also reduce to zero.

Heisenberg Uncertainty Principle. For non-commuting Hermitian operators, we estab-

lish a bound on the uncertainty in their expectation values. Given a state |ψ > , the mean square

uncertainty is defined as

(ΔA)2 =< ψ|Û2ψ >

and

(ΔB)2 =< ψ|V̂ 2ψ >

where the operators

Û = Â−< ψ|Âψ >

and

V̂ = B̂−< ψ|B̂ψ >

Next, we take the scalar product of Û | ψ > + iλ V̂ | ψ >

[Û |ψ >+iλV̂ |ψ >][Û < ψ|− iλV̂ < ψ|]

Since these are Hermitian operators,

< ψ|Û2ψ >+λ 2 < ψ|V̂ 2ψ >+iλ < Ûψ|V̂ ψ >−iλ < V̂ ψ|Ûψ >≥ 0

Hence,
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(ΔA)2 +λ 2(ΔB)2 + iλ < ψ|[Û ,V̂ ]|ψ >≥ 0

Minimising expression with respect to λ

2λ (ΔB)2 + i < ψ|[Û ,V̂ ]|ψ >= 0

Therefore,

λ =
−i
2

< ψ|[Û ,V̂ ]|ψ >

ΔB2

Substituting λ back into the inequality;

(ΔA)2(ΔB)2 ≥−1

4
< ψ|[Û ,V̂ ]|ψ >2

Therefore, for non-commuting operators , the uncertainities obey the following inequality

ΔAΔB≥ i
2
< [Û ,V̂ ]>=

1

2
< [Â, B̂]>

since < Â > and < B̂ > are just constants. If the commutator is a constant, as in the case of the

conjugate operators

[p̂,x] =−ih̄

the expectation values can be dropped and we obtain the relation

(ΔA)(ΔB)≥ i
2
[Â, B̂]

For momentum and poistion, this result recovers the Heisenberg Uncertainty Principle

ΔpΔx≥ i
2
< [p̂,x]>=

h̄
2
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For time and energy , [ Ê , t ] = ih̄;

ΔEΔt ≥ h̄
2

Density Matrices. These are density operators - they encode all the accessible informa-

tion about a quantum mechanical system. The stste vectors | ψ > on a Hilbert space describe ’

pure ’ states which are idealized descriptions that cannot characterize incoherent mixtures which

commonly occur in nature.

General properties of density matrices: Consider n observable A in the pure state | ψ >

with the expectation value given by

< A >ψ=< ψ|A|ψ >

Definition. The desnity matrix ρ for the pure state is given by

ρ := |ψ >< ψ|

The density matrix has the following properties

(1) projector ρ2 = ρ

(2) hermicity ρ† = ρ

(3) normalization Tr ρ = 1

(4) positivity ρ≥ 0

The trace of an operator D is given by

TrD := ∑
n
< n|D|n >

where { | n> } is a basis .

Example.Take the operator
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D = |ψ >< φ |

and let us calculate the trace

TrD = ∑
n
< n|ψ >< φ |n >= ∑

n
< φ |n >< n|ψ >=< φ |ψ >

Theorem. The expectation value of an observable A in a ttate, represented by a density

matrix ρ , is given by < A >ρ = Tr ( ρA}.

Proof. Tr (ρA) = Tr ( | ψ > < ψ | > ) = ∑n ( < n | ψ > < ψ | > n > = ∑n ( < ψ | > n > < n |

ψ > = < ψ | A | ψ > = < A >

14.6 Complex Structure

Definition. Suppose we have a real vector space V. A linear operator J : V −→ V is called

a complex structure if J2 = -1 . Note that V has to be even or∞-dimensional for there to exist a

complex structure onV.

Choosing a J amounts to choosing a decomposition into positive and negative frequencies.

Suppose we have a decomposition

VC =V ⊕ iV =V (+) +V (−)

and projection operators

P± : VC −→V (±)

such that

P++P− = I

and
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P+ = (P−)∗

It easily follows that

P+P− = P−P+ = 0

Given such a decomposition, we can define

Jϕ = iP+ϕ− iP−ϕ

We must show that J is a linear map V −→ V. We embed V into VC by

v �−→ (v,0)

where

J(ϕ ,0) = iP+(ϕ,0)− iP−(ϕ,0)

It can be easily shown that J2 = - I. Conversely, if we have a J, we can define projectors P+, P−.

Suppose we have J : V −→ V with J2 = - I. Extend J to VC as above. Define

P+ϕ =
1

2i
[iϕ + Jϕ]

and

P−ϕ =
1

2i
[iϕ− Jϕ]

It is easy to check that thesehave the required properties. Thus, we have a decomposition of the

vector space of complex solutions into two components; equivalent inro positive and negative fre-

quency components. This way, we gave a complex structure on the real vector space of classical

245



solutions. We begin with the classic theory. Our phase space V consists of real solutions to the

Klein-Gordon equations

(�−m2)ϕ = 0

Suppose we have an n-dimensional manifold M, and a smooth (n−1) dimensional submanifold S.

Given ϕ ,

ϕ̇ =−→n .∇ϕ

on S, and a partial differential equation. The Cauchy problem consists of finding solutions ψ to

the partial differential equation on M, which agree with ϕ on S. The symplectic structure on our

manifold is a hypersurface integral

Ω(ϕ1,ϕ2) =

ˆ
Σ
(ϕ1∇ϕ2−ϕ2∇ϕ1).dσ

where Σ is the Cauchy surface. Using this we can write a solution of the Cauchy problem as

ϕ(x) =
ˆ

Σ
dσ(y)[ϕ(y)∇G(x,y)−G(x,y)∇ϕ(y)]

where G is the Green’s function . So we have a real vector space V and a symplectic 2-form Ω

on V. The traditional approach was to use Fourier transforms to decompose the real solutions into

positive and negative frequency components. Instead, here we complexify the complex space of

solutions

Vc =V ⊕ iV

Scalar multiplication on this space is defined by

(a+ ib)(u,v) = (au−bv)(av+bu)
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with the Klein-Gordon inner product

< ϕ,ϕ >= i
ˆ

Σ
(ψ∗∇ϕ−ϕ∇ψ∗)dσ

14.7 Symplectic Geometry

Motivation. Firstly, as will be seen later, symplectic geometry is an even dimensional

geometry . It lives on even dimensional spaces and measures the size of even dimensional objects.

It is naturally associated with the field of complex numbers. The concept arose in the study of

classical mechanical systems. The trajectory of a system is determined by its poistion q and its

momnetum p. This pair of real numbers ( p , q ) give a point in the plane R2. In this case the

symplectic structure ω is an area form in the plane

d p∧dq

It measures the area of each open region S in the plane. We think of this region as oriented. We

choose a direction in which we traverse the boundary ∂S. Hence the area is signed. By Stokes

Theorem

ˆ
S

d p∧dq =

ˆ
∂S

pdq

We think of pdq as the action around the boundary. It has been shown that this area is preserved

under time evolution . That is, for a set of particles with position and momentum in the region S1

at time t1, the position and momentum of the particles at time t2 will form a region S2 of the same

area, see Figure 14.1 below.

In quantum mechanics, area has another meaning. Heisenberg’s uncertainty principle

states that position and momentum can be known simultaneously with a certain degree of ac-

curacy. We can think of a particle as lying not at asingle point in a plane, but rather lying in a

region of the plane. The quantization principle says that the area of this region is quantized. One
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Figure 14.1: Signed symplectic areas; S1has positive sign , S2 negative sign

can think of the symplectic area as a measure of the entaglement of position and momentum.

Suppose we are given a particle of mass m in Rn acted upon by a conservative force F(x)

F(x) =−∇U(x)

where U(x) is the potential energy.Then the Lagrangian of the system is

L =
1

2
mẋ2−U(x)

Applying the Euler - Lagrange equation;

d
dt
(mẋ)+∇U = mẍ−F(x) = 0

We define the Hamiltonian system as

H(t,x, p) = ∑ p jẋ j−L

where p is the momentum. As shown in appendix C , Hamilton’s equations become
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∂H
∂ p

= ẋ,
∂H
∂x

=− ṗ

If we take the coordinates z = (xi, pi) ∈ R2n , then the Hamilton equations become

dz
dt

=

⎛⎜⎝pi
dxi

dt

xi d pi
dt

⎞⎟⎠=

⎛⎜⎝ pi
∂H
∂ pi

−xi ∂H
∂xi

⎞⎟⎠=−

⎛⎜⎝0 −1

1 0

⎞⎟⎠
⎛⎜⎝∂

∂

⎞⎟⎠H(t,z) =−ω0∇H(t,z)

where ω0 =

⎛⎜⎝ 0 −idRn

idRn 0

⎞⎟⎠. The time evolution of the system is given as the flow along the

Hamiltonian vector field - ω0∇H(t,z). It is to be noted that our geometry is always even dimen-

sional, as each positional coordinate is accompanied by a momentum coordinate. Poistion and

momentum are intertwined by a skew-symmetric non-degenrate bilinear from ω0.

An object in the plane has two position coordinates q1 and q2and two velocity coordinates

p1and p2. So it is described by a point

(q1,q2, p1, p2) ∈ R4

The symplectic form ω measures the signed area of 2-dimensional surfaces S in R4by adding the

areas of the projections of S to the (x1,x2) and the ( x3,x4) plane; see Figure 14.2 below.

ω = area(pro j12S1)+area(pro j34S2)

ω is a differential 2-form written as

ω = dx1∧dx2 +dx3∧dx4

The area is evaluated by integrating the form over the surface S

249



Figure 14.2: Symplectic area projection; ω(S) is the sum of proj12 and proj34

ω(S) =
ˆ

S
ω

For particles moving in n dimensions, the symplectic area form is the sum of contributions from

each of the n pairs of directions

ω0 = dx1∧dx2 +dx3∧dx4 + ......+dx2n−1∧dx2n

Definition. A symplectic form ω on any even dimensional smooth manifold M is a closed

non-degenerate 2 -form, where the non-degeneracy condition is that for each non-zero tangent di-

rection v, there is another direction w such that the area ω(v,w) of the infinitesimal parallelolgram

spanned by these vectors is non-zero.

Formalism. Symplectic geometry is the geometry of a closed skew-symmetric form. Its

concepts are expressed in differential forms. It is a two dimensional geometry that meaures the

area of complex curves instead of the length of real curves. Let M2n be a smooth closed manifold,

that is , a compact smooth manifold without a boundary. A symplectic structure ω on M is closed
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dω = 0

and a non-degenerate smooth 2-form

ωn = ω ∧ ......∧ω �= 0

Thus, the intrinsic measurements one can make on a symplectic manifold are 2-dimensional. If S

is a little piece of 2-dimensional surface then one can meaure

ˆ
S

ω = areaωS

By Stokes’ theorem, the closedness of ω is equivalent to saying that this integral does not change

when one deforms S keeping its boundary fixed.

ˆ
S

ω =

ˆ
∂S

dω = constant

The non- degeneracy condition is equivalent to the fact that ω induces an isomorphism

TxM −→ T ∗x M

vector f ields−→ 1− f orms

X �−→ ιX ω = ω(X , .)

Example. The linear form ω0 = dx1 ∧ dy1 .......... dxn ∧ dyn on Euclidean space R2n . The isomor-

phism is given by

X =
∂

∂x j
�−→ ιX ω0 = dy j

251



Y =
∂

∂y j
�−→ ιY ω0 =−dx j

In Riemann geometry, one identifies the tangent space TxR
2n of vectors and the cotangent space

T∗xR2n of covectors ( 1-forms) by making the following identification

∂
∂x j

= dx j

∂
∂y j

= dy j

The isomorphism given by a symplectic form differs from this by a rotation through a quarter of a

turn. If z j = xi + y j , then this quarter turn correspnds to multiplication bi i.

Theorem. Darboux’s Theorem. Every symplectic form is locally diffeomorphic to ω0 =

dx1 ∧ dx2 .......... dx2n−1 ∧ dx2n . Paraphrasing; given a symplectic form ωon a manifold M and

any point on M, one can always find coordinates ( x1,x2, ...,x2n ) defined in an open neighbou-

hood U of this point such that in this coordinate system ω is given on the whole open set U by ω0

=dx1 ∧ dx2..........dx2n−1 ∧ dx2n

Darboux’s theorem says that all symplectic structures are locally indistinguishable. Thus,

locally all symplectic forms are the same. In other words , all symplectic invariants are global in

nature. This local uniqueness of symplectic structures gives them a rich group of automorphisms.

A symplectic form ω has an important invariant ω , called its homology class [ω ]. This class

is determined by the areas ω(S) of all closed surfaces S in M. For compact M, the class [ ω]

is determined by a finite number of these areas ω( Si) and so contains only a finite number of

information. An important theory of Moser says that one cannot change the symplectic form in

any important way by deforming it, provided that the homology class is unchanged. If ωt , where

t ∈ [0,1] , is a smooth path of symplectic forms such that [ ω0 ] = [ ωt ] for all t , then these forms

are the same. The idea is that we cannot find new structures by deforming the old ones, provided

that we fix the the integrals of our forms over all closed surfaces. This Moser’s stabilty theorem.
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Symplectomorphism . There are many ways to move the points of the underlying space M

without changing the symplectic structure ω . Such a movement is a symplectomorphism ;

(1) φ is a diffeomorphism ; a bijective and smooth map φ : M −→M , giving rise to the

movement x �→ φ ( x) of the points x of the space M

(2) it preserves symplectic area, that is , ω(S) = ω( φ (S) ) for all little pieces of surface S.

(3) since ω ∧ ω is a volume form, symplectomorphisms preserve volume.

Example. In 2 - dimensions, a symplectomorphism φ is an area preserving transformation.

For example ψ ( x1,x2) = ( 2x1,
1
2x2) . In 4 -dimensions, the situation is different. Let B be round

ball of radius 1 in R4 ;

B = (x1,x2,x3,x4 : x2
1 + x2

2 + x2
3 + x2

4 ≤ 1

Note that φ has to preserve pairs (x1,x2) and (x3,x4 ) and is made by combining area preserving

transformations in each of these two planes. There are symplectomorphisms that mix pairs. If B

is our unit ball above , then let Z(r) be a cylinder

Z(r) = D2(r)×R2 = (x1,x2,x3,x4 : x2
1 + x2

2 ≤ r2 ⊂ R4

Gromov showed that one cannot squeeze a ball into a cylinder .

Theorem. Gromov’s Non-squeezing Theorem. If r < 1 , there is no symplectomorphism

φ such that φ ( B ) ⊂ Z ( r ). In order to sketch a proof of this theorem, we need to go further.

Almost Complex Structures and J Holomorphic Curves. There is connection between

symplectic forms and complex numbers. As a quck recap , we first we survey manifolds as we

did in Chapters 1 and 2. A differentiable manifold is a space in which one can do calculus. Lo-

cally, it looks Euclidean and globally, it has interesting properties. As in calculus, one approxi-

mates curves or surfaces near a point x ∈M by the closest linear objects, tangent lines or planes.

The collection of all possible tangent directions at a point x is called the tangent space Tx M to M

at x. It is a vector space of the same dimension as M. As the point x varies over M, the collection
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Ux∈MTxM of all these planes forms a tangent bundleof M. If M = R2n , a Euclidean space, then

one can identify each of its tangent spaces TxR
2n with R2n. However , most manifolds, such as a

sphere, curve around and do not contain their tangent spaces.

Almost complex structure. An almost complex structure at a point x of a manifold M is a

linear transformation Jx of th tangent space TxM at x whose square is -1.Geometrically Jx rotates

by a quarter turn . Thus the tangent space TxM becomes a complex vector space. We can think of

Jx as playing the role of multiplication by i. An almost complete structure J on M is a collection

Jx of such transformations , one for each point x. Jx varies smootly as a function of x. One can

choose J to be compatible with the symplectic form ω , so that at all points x ∈M

ω(Jxv,Jxw) = ω(v,w)

This tells us that rotation by Jx preserves symplectic area. And,

ω(v,Jxv)> 0

This tells us that every complex line has a positive symplectic area. We can think of ω ( v,w )

as the symplectic area of a small infinitesimal parallelogram spanned by the vectors v and w.

Associated to each J there is a Riemannian metric, a symmetric inner product gJ on the tangent

space TxM , for any v,w ∈ TxM

gJ(v,w) = ω(v,Jw)

This gives a way of measring lengths nd angles and depends on the choice of J, not just ω . Note

that one dimensional measurements vanish since ω(v,v ) = - ω( v,v )., by skew symmetry. Hence

symplectic geometry is a 2-dimesnional geometry that measures the area of a complex curve

instead of the length of a real curve.

Formalism. In Riemann geometry, we have a family of complex structures J . J is an

automorphism that turns TM into a complex vector bundle
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J : T M −→ T M

and

J2 =−I

We also have the compatibility condition

ω(x,y) = ω(Jx,Jy)

and

ω(x,Jx)> 0,x �= 0

This implies that the bilinear form

gJ : gJ(x,y) = ω(x,Jy)

is a Riemann metric. A symplectic manifold has the form ω and then there is a family of J im-

posed at the tangent space level. The only intinsic measurements that one can make on a symplec-

tic manifold are two-dimensional. If S is a little piece of two-dimensional surface , then one can

measure

ˆ
S

ω = areaωS

J-Holomorphic curves. A real curve in a manifold M is a path in M ; it is the image of a map f

f : U −→M

where U is a subinterval of the real line R. A J− holomorphic curve in an almost complex mani-
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fold ( M , J) is the complex analogue of this It is the image of a complex map f

f : Σ−→M

for some complex curve Σ ∈ ( M , J ). The domain Σ is either a 2-dimensional disc D or the 2-

sphere S2 = C U { ∞ } , which is the complex plane completes by adding a point at ∞. Given any

symplectic submanifold Q of ( M , ω ) , one can find and ω- compatible J on M that restricts to

an almost complex structure on Q, that is

J(T Q) = T Q

If Q = C , is 2 -dimensional, it will be a complex submanifold with respect to any J such that

J(TC) = TC

Such a C is known as a J - holomorphic curve. Gromov realized that J-holomorphic curves are

equivalent to geodesic curves in Riemannian geometry. The simplest holomorphic map f , from C

to C is a holomorphic function. The condition of holomorphicity is charcaterized by the Cauchy

Riemann equation

∂ f
∂ z

= 0

This tells us that the derivative of f is a complex linear map fron C to C . There always is a Rie-

mann surface ( Σ , j ) that maps onto C by a map u

u : Σ −→M

that satisfies the generalized Cauchy Riemann equation

du◦ j = J ◦du
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j is the complex structure on the Riemann surface. This tells us that, if we complexify du, then

du takes up the complex structure of the Riemann surface.

Example. A simple example. Suppose you have a single particle. Then the phase space

has coordinates ( p,q). The symplectic form ω is

ω = d p∧dq

which means that in terms of this basis, the symplectic form is given by the skew symmetric

matrix, ω

ω =

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
Note

ω2 =

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
⎛⎜⎝ 0 1

−1 0

⎞⎟⎠=

⎛⎜⎝−1 0

0 −1

⎞⎟⎠=−I

When we apply to two vectors in the phase space v1 = (p1q1) and v2 = (p2q2), we get

ω(v1,v2) =

(
p1 q1

)⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
⎛⎜⎝p2

q2

⎞⎟⎠=

(
−q1 p1

)⎛⎜⎝p2

q2

⎞⎟⎠= p1q2−q1 p2

Compatibility condition ω (v1,v2 ) = ω(Jv1,Jv2 )

(
−q1 p1

)⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
⎛⎜⎝−q2

p2

⎞⎟⎠=

(
−p1 −q1

)⎛⎜⎝−q2

p2

⎞⎟⎠= p1q2−q1 p2

and non degeneracy ω (v1,Jv1) > 0
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(
p1 q1

)⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
⎛⎜⎝−q1

p1

⎞⎟⎠=

(
−q1 p1

)⎛⎜⎝−q1

p1

⎞⎟⎠= p2
1 +q2

1 > 0

14.8 Hamiltonian Mechanics and Symplectic Geometry.

For the case of a single particle of mass m moving in a potential V , where the poistion qi

and momenta pi , i - 1,2,3 ; the time evolution of the system is dtermined by the Hamiltonian, H

H =
1

2m
p2

i +V (qi)

The Hamiltonian equations describe the time evolution of the state of the system

d pi

dt
=−∂H

∂qi

dqi

dt
=

∂H
∂ pi

A quick note on interior product. Usually written as ıX ω or X�ω , the interior product is defined

to be the contraction of a differential form with a vector field. If X is a vector field on a manifold

M, then

ıX : Ωp(M)−→Ωp−1(M)

is the map which sends a p−form ω to the (p−1) form ιX (ω) defined by the property that

(ıX ω)(X1, .....,Xp−1) = ω(X ,X1, .....,Xp−1)

for any vector fields X1,......, Xp. The interior product on 1 - forms α

ιX α = α(X) =< α,X >
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where < , > is the duality pairing between α and the vector. If β is a p -form and γ is a q-form

then

ιX(β ∧ γ) = (ιX β ∧ γ)+(−1)pβ ∧ (ιX γ)

By anti-symmetry of forms

ιX ιY ω =−ιY ιX ω

and so

ι2
x = 0

The interior product relates the exterior derivative and Lie derivative of differential forms by

Cartan’s identity

LX ω = d(ιX ω)+ ιX dω

If we choose a function f , we use a symmetric non- degenerate 2 -form, the inner product < , > ,

to produce a map from functions to vector fields

f −→ ∇ f ;< ∇ f , . >=−d f

Starting with the symplectic form ω

ω =
n

∑
i=1

d pi∧dqi

the Hamiltonian function H produces a vector field XH , symplectic gradient of H , with the

symmetric 2-form coming from the inner product replaced by the anti-symmetric 2-form ω .

Starting with a Hamiltonian function H, one produces a vector field XH as follows
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H −→ XH : ω(XH ,) = ıXH ω =−dH

Whereas the flow along a gradient vector field of f changes the value of f as fast as possible, flow

along XH keeps the value of H constant since

dH =−ω(XH ,)

dH(XH) =−ω(XH ,XH) = 0

since ω is anti - symmetric . Now dH is

−dH =−∂H
∂qi

dqi− ∂H
∂ pi

d pi

and

dH = ıXH (d pi∧dqi)

Therefore

−∂H
∂qi

dqi− ∂H
∂ pi

d pi = ıXH (d pi∧dqi) = (d pi∧dqi)(XH) =−(dqi∧d pi)(XH)

Which implies that

XH =−∂H
∂qi

∂
∂ pi

+
∂H
∂ pi

∂
∂qi

Using Cartan’s formula

LXH ω = d(ιXH ω)+ ιXH dω

260



Since dω= 0 and d2( f ) = 0,

LXH ω =−d(dH) = 0

Definition. Hamiltonian Vector Field. A vector field X that satisfies

LX ω = 0

is called a Hamiltonian vector field and the space of such vector fields on R2nwill be denote by

Vect ( R2n , ω). The flow of X is a family of maps

φ X
t : M −→M

where t ∈R, such that the path φ X
t (p) is everywhere tangent to the vector field X . A vector field

X is said to be symplectic if its flow φ X
t : M −→M consists of symplectomorphisms

(φ X
t )∗ω = ω,∀t

Note that ω is closed and dω = 0, closed 1 -forms . Every function H on M gives rise to a vector

field XH via the correspondence

dH = ιXH ω

and hence to a flow φ M
t on M called the Hamiltonian flow of H. Note that

dH(XH) = ω(XH ,XH) = 0

the orbits φ H
t (p) of this flow lie entirely in the level sets H = constant of the Hamiltonian. H is

the energy of the system and it is conserved.

Penrose Diagram
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These conformal diagrams gave us an idea of the causal structure of the spacetime, wether

the past or future light cones of two specified points intersect, as in Figure 14.3 below. In Minkowski

space, this is always true for any two points. Not so in curved spacetime. Let us analyze the case

for the Schwatzchild solution which describes the spherically symmetric vacuum spacetime.

Schwarschild metric is given by

ds2 = gμνdxμdxν =−(1− 2GM
r

)dt2 +(1− 2GM
r

)−1dr2 + r2dΩ2

As M−→ 0, we recover the Minkowski space. As r−→ ∞, the metric becomes progressively

Minkowskian ; asymptotic flatness. Next, we explore the causal structure as defined by light-

cones. Consider radial null cones, where θ and φ are constant and ds2 = 0

ds2 =−(1− 2GM
r

)dt2 +(1− 2GM
r

)−1dr2 = 0

from which we get

dt
dr

=±(1− 2GM
r

)−1

This measures the slope of the light cones on a spacetime diagram of the t− r plane. For large

r, the slope is ±1, as expected in flat space. As r approaches 2GM, we obtain dt
dr−→±∞ and

the light cones ’ close up’ and do not allow causality. What we do here is switch to Eddington-

Finkelstein coordinates which are adapted to radial null geodesics or a Schwarzchild geometry.

Distant spacetimes are crunched into the diagram, so that they converge at points in the corners of

the diagram and staright lines become hyperbolas. Two lines drawn at 45 degrees sholud intersect

in the diagram only if the corresponding two light rays intersect in the actual spacetime. The

diagonal boundaries orrespond to the infinity or to the singularities where light rays must end. An

infinite static Minkowski universe, coordinates (x, t) is related to penrose coordinates (u,v ) by

tan(u± v) = x± t
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Figure 14.3: Penrose diagram for Schwarzchild blackhole

14.9 Statistical Mechanics

Consider an observable x that takes with probability p(xi) the value xi. In total there are N

such possible values , i = 1,2, ......,N. We have

i=N

∑
i=1

p(xi) = 1

The mean value of x is given as

< x >=
i=N

∑
i=1

p(xi)xi

For an arbitrary function f (x)

< f (x)>=
i=N

∑
i=1

p(xi) f (xi)

If f (x) = xn, the n− th moment of the distribution function is

< xn >=
i=N

∑
i=1

p(xi)xn
i

The variance of the distribution is the mean square deviation
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< x2 >−< x >2

Partition Function. Consider a system T embedded into a heat bath B. Let E be the total

energy of both systems. Let pibe the probability of microstate of energy Ei.Assuming that all

microstates are equally probable Then pi is proportional to the number of microstates of the heat

bath with energy E−Ei. Then

pi =
Ωb(E−Ei)

ΩB(E)

Then

klnp1 = klnΩB(E−Ei)− klnΩB(E)

Assuming E >> Ei and Taylor expanding ΩB to first order in Ei

klnpi �− ∂
∂E

[klnΩB(E−Ei)]Ei

Noting tha S = klnΩB(E) and using the thermodynamic identity ∂S
∂E = 1

T

klnpi �− ∂S
∂E

Ei =−Ei

T

=⇒ pi ∝ e
−Ei
kT = e−βEi

where S = entropy , k= Boltzamnn constant , β = 1 / kT.Note that the sum of all pi = 1. The parti-

tion function is defined as the normalization constant Z

Z = ∑
i

e−βEi

In quantum mechanics , where H = Hamiltonian
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Z = trexp(−βH) = ∑
n
< n|exp(−βH)|n >= ∑

n
< n|n > exp(−En) = ∑

n
exp(−βEn)

Hence we define the density operator ρ

ρ =
1

Z
exp(−βH)

where Z = tr exp(-βH)

The Unruh Effect

In section 12.6 , we chose a complex structure to define the positive and negative energy

frequency solutions of our theory. Next, we analyze how two different observers view this. As-

sume we have two complete and orthonormal solutions to the Klein Gordon equation , { fi} and {

g j};

< fi, f j >=−< f ∗i , f ∗j >= δi j

< gi,g j >=−< g∗i g∗j >= δi j

If φ̂ (x) is the field operator, then the creation and annihilation operators are defined by

φ̂(x) = ∑
i
(â fi + â† f ∗i )

The vacuum | 0 > is defined as the unique state that is killed by all the annihilation operators

âi|0 >= 0

Since we are dealing with complete stes, we can write fi and gi in terms of each other;
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g j = ∑
i
(αi j fi +βi j f ∗i ;g∗j = ∑

i
(α∗i j f ∗i +β ∗i j fi)

fi = ∑
j
(α jig j +β jig∗j); f ∗i = ∑

j
(α∗jig

∗
j +β ∗jig j)

where αi j = < g j, fi > . We could equally expand the field operator in the g-basis. Then,

φ̂(x) = ∑
j
(b̂ j fi + b̂ j

†
f ∗j )

for some for some other creation and annihilators b̂ j and b̂†
j . We also have another vacuum de-

fined by b̂ j | 0 >
′
= 0.

Bogoliubov Transformations. The next step is to see how one vacuum looks like in an-

other basis. Expressing an annihilator in terms of another basis, we obtain the Bogoliubov trans-

formations;

âi = ∑
j
[α jib̂ j +β jib̂

†
j ]; â†

i = ∑
j
[α∗jib̂

†
j +β ∗jib̂ j]

b̂ j = ∑
i
[αi jb̂i +βi jb̂i

†
; b̂† = ∑

i
[α∗i jb̂i

†
+β ∗i jb̂i

The number operators are

N̂i = âi
†âi

and

N̂ j
′
= b̂ j

†
b̂ j

We then take one vacuum and calculate the expectation value of the other number operator
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< 0|′N̂i|0 >
′
=< N̂i >=< âi

†âi >�= 0 = ∑ |βi j j|2

Under the Bogoliubov transformation, the annihilation operator picks up a creation part, and

the expectation value of the number operator is non-zero. It is this mixing of the creation and

annihilation operators that is responsible for particle creation.

WKB Ansatz. The wave function for a particle of energy E moving in a potential V is

ψ = Ae
i
h̄ pq

where A is the amplitude, λ is the wavelength = 2π
k , where k = p

h̄ , and the momentum

p =±
√

2m(E−V )

Here the potential varies slowly over many wavelengths - this is the semi-classical WKB ap-

proximate solution of the Schrodinger equation. It fails at turning points , where the particle

momentum , p = 0. Consider the time indepedent Schrodinger equation in 1 dimension

− h̄2

2m
∂ 2ψ(q)

∂q2
+(V −E)ψ(q) = 0

The potential V(q) grows fast as q−→ ±∞. For any E, the classical particle motion is confined .

See Figure 14.4 below.

The variable wave number form of the Schrodinger equation is

∂ 2ψ
∂q2

+ k2ψ = 0

An ansatz solution is

ψ = Ae
i
h̄ S
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Figure 14.4: 1- dimensional potential ; location of two turning points at fixed energy E

where A and S are real functions of q, the position. Substituting yields two solutions; one real

and one imaginary. We will use prime ’ as derivative with respect to q;

(S
′
)2 = p2 + h̄2 A

′′

A
(14.9.1)

and

S
′′
A+2S

′
A
′
=

d
dq

(S
′
A2) = 0 (14.9.2)

The WKB - Wentzel - Kramers - Brillouin - semiclassical approximation consists of dropping the

h̄2 term. Since p = h̄k, this amounts to assuming that

k2 =
p2

h̄2
>>

A
′′

A

This implies that the phase of the wavefunction is changing much faster than the amplitude. Set-

ting h̄ = 0 and integrating (14.9.1) yields
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S =

ˆ q2

q1

pdq

This is the action of a particle trajectory at constant energy. Integrating (14.9.2) yields

A =
C√

p
,C =

√
p(q1)ψ(q1)

The integration constant C is fixed by the value of the wave function at the initial value q1. The

WKB or semi-classical ansatz wave function is given by

ψ =
C√

p
e

iS
h̄

The WKB ansatz generalizes the free motion wave function

ψ = Ae
i
h̄ S

with the probablity density | A |2 for finding a particle at q , now inversely proportional to the

velocity at that point. The phase

1

h̄
qp

is replaced by the action

1

h̄

ˆ
pdq

This is all fine except at tuening points where all the energy is potential. So the assumption that k

>> A
′′

A does not hold.

14.10 Hawking Blackbody Spectrum - Hawking Radiation - Quantum Tunnelling

There are many approaches to show that blackholes radiate. We will demonstrate the tun-

neling mechanism approach,[2],[4]. The idea is that a particle-antiparticle pair forms close to the
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event horizon. The ingoing mode is trapped inside the horizon. The outgoing mode can quan-

tum mechanically tunnel through the event horizon. This is observed at infinity as a Hawking

flux. We will demonstrate the blackbody spectrum of a spherically symmetric geometry that is

asymptotically flat.

Klein Gordon Solution. We will first briefly review the Klein Gordon field. This is the

simplest relativistic classic field. It is a scalar field, ϕ , simply a function on spacetime , xα =

(t,x,y,z)

ϕ : R4 −→ R

With � as the d’ Alembertian operator, the Klein Gordon equation is given by

�ϕ−m2ϕ = 0

m is the mass of the Klein Gordon field. When m= 0 , we simply get the wave equation. Here

we set c = h̄ = 1. This field equation is characterized by particles with rest mass m and no other

structure such as spin or charge. One way to solve this is by Fourier expansion

ϕ(x) = (
1

2π
)

3
2

ˆ
R3

d3kϕ̂k(t)eik.r

where k = ( kx,ky,kz) ∈ R3 and since ϕ is a real function

ϕ−k = ϕ∗k

The Klein Gordon equation implies the following equation for the Fourier transform ϕ̂k(t) of ϕ

¨̂ϕk +(k2 +m2)ϕ̂k = 0

The solution to this equation is
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ϕ̂k(t) = ake−iωkt +bkeiωkt

where ωk =
√

k2 +m2 and ak and bk are complex constants for each k . The reality condition on ϕ

implies that

bk = a∗−k

Hence ϕ solves the Klein Gordon equation if and only if it takes the form

ϕ(x) = (
1

2π
)

3
2

ˆ
R3

d3k(akeikr−iωkt +a∗ke−ikr+iωkt)

The Gordon Klein equation is just an infinite collection of uncoupled harmonic oscillator equa-

tions for the real and imaginary parts of ϕ̂k(t) with natural frequency ωk. The Klein Gordon field

is akin to a dynamical system with an infinite number of degrees of freedom. We first note that

ϕ = ϕ++ϕ−

where

ϕ+ = (
1

2π
)

3
2

ˆ
R3

d3kakeikr−iωkt

and

ϕ− = (
1

2π
)

3
2

ˆ
R3

d3ka∗ke−ikr+iωkt

These are the positive frequency and negative frequency solutions to the Klein Gordon equations.

The Meaning Behind Positive and Negative Frequencies. Let us begin with a classic

electromagnetic plane wave travelling along the z-axis. The electric field
−→
E is expressed as
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−→
E = E0x̂(coskz−ωt)

We break up this equation into positive and negative frequency parts.

−→
E = E0x̂(e−iωt+ikx) + eiωt−ikx)

By convention, e−iωt is the positive frequency component, ω>0. eiωt is the negative frequency

component. The important point is that in physics, everything is real, so the positive and negative

components have to exist in equal measure. Next, we turn to massive particles . These show

wave phenomena, such as interference, diffraction etc., whose wavelengths are determined by De

Broglie

λ =
h̄
p

or

k =
p
h̄

A single material particle travelling along can only have positive energy. The Einstein - Planck

formula states

E = h̄ω

E > 0 =⇒ ω > 0

The conclusion is that a wave function for a single material particle can only have a positive

frequency part. So Ψ, whatever it represents, must vary as follows
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Ψ∼ e−iωt+ikx

The fact that eikz goes with e−iωt tells us that the particle is travelling along the + z-axis. If it was

travelling in the opposite -z-axis, we would then have e−ikz. Regardless of the direction of travel,

the time dependence must be of the form

e−iωt

with

ω =
E
h̄
> 0

Hence complex numbers allow wave-like phenomena and positive frequencies only for free

particles, that can only be allowed to have positive energies.

Formulation of Problem. One bit of information is associated with the knowledge of

existence of one particle. 1 bit of information correspnds to ln2 of entropy. This can be derived

from the Shannon formula for entropy H and pk which denotes the probability of the system

being in the k-th state.

H =−∑
k

pklnpk

For the particle entropy, ln 2 arises if the chances of the particle existing or not are both equal

to 1/2. We will later analyze the explicit forms of quantum mechanical modes of the states in-

side and outside the blackhole horizon. This yields the probabilities of individual ingoing modes

being trapped inside the blackhole horizon, which is unity, or tunnelling out of the blackhole

horizon and escaping to infinity to be perceived as Hawking radiation. The effective field theo-

ries become two dimensional near the event horizon of a blackhole. Upon transforming to the

tortoise coordinates and performing the partial wave decomposition, it can be shown that the ef-
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fective radial potentials for partial wave modes of the scalar field vanish ecponentially fast near

the horizon.Thus physics near the horizon can be described using an infinite collection of ( 1 +

1 ) - dimensional manifolds This allows us to use the metric below in the ( t− r) sector. We first

consider, as before, a blackhole that is spherically symmetric, with static spacetime and asymptot-

ically flat metric of the form

ds2 =−F(r)dt2− dr2

F(r)
− r2dΩ2

where the event horizon is defined by F(r) = 0. We next consider the massless Klein Gordon

equation

gμν∇μ∇νφ = 0

In the (r− t) sector, this reduces to

1

F(r)
∂ 2

t φ +F
′
(r)∂rφ +F(r)∂ 2

r φ = 0 (14.10.1)

Taking the standard WKB ansatz

φ(r, t) = e
−i
h̄ S(r,t)

Substituting the expansion for S(r, t) into (58.1) and let h̄−→ 0 ;

S(r, t) = S0(r, t)+
∞

∑
i=1

h̄Si(r, t)

we obtain

∂tS0(r, t) =±F(r)∂rS0(r, t) (14.10.2)
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Since the metric is stationary, it has a timelike Killing vector. We choose an ansatz for S0(r, t)

S0(r, t) = ωt + S̄0(r) (14.10.3)

where ω is the conserved quantity corresponding to the timelike Killing vector. Substituting this

into (14.8 .2) and integrating

S̃0(r) =±ω
ˆ

dr√
F(r)

(14.10.4)

The limits of integration are chosen so that the particle just goes through the horizon r= rH . The

(+) sign in front of the integral indicates that the particle is ingoing (L) and the (-) sign indicates

the particle is outgoing (R) . Therefore,

S0(r, t) = ωt±ω
ˆ

dr√
F(r)

The key idea behind quantum particle production in curved spacetime is that the definition of a

particle is vacuum dependent. It depends on the choice of the reference frame. Since the theory is

generally covariant, any time coordinate defined locally within a patch, is a legitimate choice with

which to define positive and negative frequency modes. Hawking considered a massless quantum

scalar field moving in the background of a collapsing star. If the quantum field was initially in the

quantum state, no particle state, defined in the asymptotic past, then at late times, it will appear as

if particles are present in that state. Hawking showed, by calculating the Bogoliubov coefficients

between the two sets of vacuum states defined at asymptotic past and future respectively, that the

spectrum of emitted particles is that of a blackbody. The idea is that pair production occurs inside

the event horizon of a blackhole. One member of the pair corresponds to the ingoing mode and

the other member corresponds to the outgoing mode. The outgoing mode is allowed to follow

classically forbiden trajectories, by starting just behind the horizon. This mode travels back in

time, since the horizon is locally to the future of the external region.The classical one particle

action becomes complex and so the tunnelling amplitude is governed by the imaginary part of

this action for the outgoing mode. However, the action for the ingoing mode must be real, since
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classically a particle can fall behind a horizon. Since this is a near horizon theory and the tun-

nelling occurs radally, the phenomenon is dominated by the two dimensional (t− r) metric.This

follows from the fact that near the horizon all the angular part can be neglected and the solution

of the field equation corresponds angular quantum momentum number l= 0, which is known as

the s-wave. The essence of tunnelling based calculations is the computation of the imaginary part

of the action for the process of s-wave emission across the horizon, which in turn is related to the

Boltzamnn factor for the emission at the Hawking temperature. Therefore the ingoing, left mode ,

φ (L), and outgoing , φ (R), right mode ,solutions of the Klein Gordon equations are

φ (L) = e
−iω

h̄ (t+
´ dr√

F(r)
)

φ (R) = e
−iω

h̄ (t−´ dr√
F(r)

)

A mode will be called ingoing if its radial momentum eigenvalue is negative and outgoing if

its radial momentum eigenvalue is positive. For a wavefunction φ , the momentum eigenvalue

equation is

p̂rφ = prφ

where p̂r = -ih̄ ∂
∂ r . Applying momentum operator to φ (L), we get p(L)r = - ω√

(F(r)
, which is neg-

ative and p
(L)
r = - ω√

(F(r)
which is positive. For the tunnelling of a particle across the horizon,

the nature of the coordinates change. The timelike coordinate t outside the horizon changes to a

spacelike coordinate inside the horizon. This indicates that the t coordinate may have an imagi-

nary part upon crossing the horizon. There will be a temporal contribution to the probabilities for

the ingoing and outgoing particles. The ingoing and outgoing probabilities of the particle are

P(L) = |φ (L)|2 = e
2ω
h̄ (Imt+Im

´ dr√
(F)r)

)
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P(R) = |φ (R)|2 = e
2ω
h̄ (Imt−Im

´ dr√
(F)r)

)

The ingoing probability P(L) has to be unity in the classic limit, h̄−→0 , when there is no reflec-

tion and everything is absorbed. Thus P(L) = 1 leads to

Imt =−Im
ˆ

dr√
F(r)

To find Im t for the outgoing particle we deploy Kruskal coordinates which are well behaved

throughout spacetime. The Kruskal time, T, and space, X, coordinates inside and outside the

horizon are defined in terms of Schwarzchild coordinates.

Tin = eκ(r∗in)cosh(κtin);Xin = eκ(r∗in)sinh(κtin)

Tout = eκ(r∗out)sinh(κtout);Xout = eκ(r∗out)cosh(κtout)

where κ=
F
′
(rH)
2 is the surface gravity of the event horizon and r∗ =

´ dr√
F(r0

. Next, we introduce

the null tortoise coordinates which are defined as

u = t− r∗

v = t + r∗

Substituting S0 with r∗ expressed in terms of u and v into φ (r, t ), we obtain the right and left

modes of both sectors

φ (R)
in = e

−i
h̄ ωuin;φ (L)

in = e
−i
h̄ ωvin
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φ (R)
out = e

−i
h̄ ωuout ;φ (L)

out = e
−i
h̄ ωvout

Next, we express

S0(r, t) = ωt±ω
ˆ

dr√
F(r)

in null tortoise coordinates

(S0)
(R)
in = ω(tin− r∗in) = ωuin

S0)
(L)
in = ω(tin + r∗in) = ωvin

(S0)
(R)
out = ω(tout− r∗out) = ωuout

S0)
(L)
out = ω(tout + r∗out) = ωvout

Substituting these equations into

φ(r, t) = e
−i
h̄ S(r,t)

yields the right and left modes for both sectors

φ (R)
in = e−(

i
h̄ )ωuin;φ (L)

in = e−(
i
h̄ )ωvin

φ (R)
out = e−(

i
h̄ )ωuout ;φ (L)

out = e−(
i
h̄ )ωvout

In the tunnelling formalism, a virtual pair of particles is produced in thr blackhole. One of this
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pair can quantum mechanically tunnel through the horizon. This particle is observed at infinity

while the other goes to the center of the blackhole. While crossing the horizon the nature of the

coordinate changes in the following way. The Kruskal time, T, and space , X , coordinates inside

and outside the horizon are defined by

Tin = eκ(r∗in)cosh(κtin);Xin = eκ(r∗in)sinh(κtin)

Tout = eκ(r∗out)sinh(κtout);Xout = eκ(r∗out)cosh(κtout)

These two sets of coordinated are connected by the following relations

tin = tout− i
π

2κ
(14.10.5)

r∗in = r∗out + i
π

2κ
(14.10.6)

This indicates that when a particle travels from inside to outside the horizon, the t coordinate

picks up an imaginary term −π
2κ . The Kruskal coordinates get identified as

Tin = Tout

Xin = Xout

For the Schwatzchild metric, the surface gravity, κ , is

κ =
1

4M

and thus the extra term cnnecting tin and tout is given by

−2πiM
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Deploying u = t− r∗ and v = t + r∗, and (14.10.5) and (14.10.6) ; we get

uin = tin− r∗in = tout− i
π

2κ
− r∗in = tout− i

π
2κ
− r∗out− i

π
2κ

= uout− i
π
κ

and by similar reasoning

vin = vout

Under these transformations the modes which are travelling in the in sector and out sectors of the

blackhole horizon are connected through the expressions

φ (R)
in = e−

πω
h̄ω φ (R)

out

φ (L)
in = φ (L)

out

Since the left moving mode travels towards the center of the blackhole, its probability to go in-

side, as measured by an external observer is unity;

P{L) = |φ (L)
in |2 = |φ (L)

out |2 = 1

and the tunnelling probability as seen by an external observer through the event horizon is

P(R) = |φ (R)
in |2 = |e−

πω
h̄κ φ (R)

out |2 = e−
πω
h̄κ (14.10.7)

Next we apply the method of detailed balance to derive the Hawking temperature.

Method of Detailed Balance. Einstein coefficients measure the probability of absorption

or emission of light by an atom or molecule. The A coefficient is related to the rate of sponta-

neous emission of light and the B coefficient to the absorption and stimulated emission of light.
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Let ni be the number of particles in state i; then in thermal equilibrium

dni

dt
=−emission+absorption =−B12n1ρ(ν)+B21n2ρ(ν)+A21n2 = 0 (14.10.8)

where ρ(ν) is the spectral energy density at the frequency of transition. From the Boltzmann

distribution, we have for the excited number of atomic species

ni

n
=

gie−
EI
kT

Z

where n is the total number density of atomic species , k is Boltzmann constant, T is tempera-

ture, gi is degeneracy of state i, Z is the partition coefficient. From Planck’s law of black body

radiation at temperature T , we have the spectral energy density at frequency ν

ρ(ν) =
8π h̄ν3

c3

1

e
h̄ν
kT −1

By substituting ρ(ν) into equation above, dn1
dt and re-arranging, we obatin

A21

B21
=

8π h̄ν3

c3
;
B21

B12
=

g1

g2

By the method of detailed balance

P(R) = e
−ω
TH P(L) = e

−ω
TH

Comparing this to PR above, we arrive at the Hawking temperature

TH =
h̄κ
2π

Note that

Pout

Pin
= e

−ω
T
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is the outgoing/ingoing probability where ω is the observed energy at that point , also

Pout/in = |wave f unction|2

Note if h̄−→ 0, the tunnelling probability goes to 0, which is expected , since classically a black-

hole cannot radiate.

Blackbody Spectrum from Tunneling Mechanism. To find the blackbody spectrum and

Hawking flux, we consider an n number of non-interacting virtual particles that are created inside

the blackhole. Each of these pairs is represented by the modes derived above and re-listed below.

φ (R)
in = e−

πω
h̄κ φ (R)

out

φ (L)
in = φ (L)

out

Then the physical state of the system observed from outside is given by

|Ψ >= N ∑
n
|n(L)in >⊗|n(R)in >= N ∑

n
e
−πnω

h̄κ |n(L)out >⊗|n(R)out >

N is the normalization constant, determined by the normalization condition

< Ψ|Ψ >= 1

Hence

N =
1

(∑n e
−2πnω

h̄κ )
1
2

For bosons; n runs from 0 −→ ∞

|Ψ >=
n=∞

∑
n=0

N|n(L)in >⊗|n(R)n >= N
n=∞

∑
n=0

e
−πnω

h̄κ |n(L)out >⊗|n(R)out >
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|Ψ|2 = N2(
n=∞

∑
n=0

e
−2πnω

κ h̄ ) = 1

=⇒ N = (1− e
−2πω

κ h̄ )
1
2

By the Pauli exclusion principle , for fermions , n can only be 0 or 1

N = (1− e
−2πω

κ h̄ )−
1
2

We will next do the analysis for bosons only, the analysis is similar for fermions.Therefore, the

normalized physical states of the bosons is

|Ψ >= (1− e−
2πω
h̄κ )

1
2 ∑

n
e
−πnω

h̄κ |n(L)out >⊗|n(R)out >

For bosons, the density matrix operator for the system is

ρ̂ = (1− e−
2πω
h̄κ )

1
2 ∑

n,m
e
−πnω

h̄κ e
−πmω

h̄κ ||n(L)out >⊗|n(R)out > |m(R)
out >⊗|m(L)

out >

The ingoing modes are completely trapped, they do not contribute to the emission spectrum from

the blackhole event horizon. Hence we trace out the ingoing L modes, and we obtain the density

matrix for the outgoing R modes

ρ̂ = (1− e−
2πω
h̄κ )

1
2 ∑

n,
e
−2πnω

h̄κ ||n(R)out >⊗|n(R)out >

The average number of particles detected at asymptotic infinity is given by

< n >= trace(n̂ρ̂(R)) = (1− e−
2πω
h̄κ )

1
2 ∑

n,
e
−2πnω

h̄κ = (1− e−
2πω
h̄κ )

1
2 (
−h̄κ
2π

)
∂

∂ω
(∑

n,
e
−2πnω

h̄κ )
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= (1− e−
2πω
h̄κ )

1
2 (− h̄κ

2π
)

∂
∂ω

(
1

1− e
−2πnω

h̄κ
)

=
1

e
2πnω

h̄κ −1

This is the Bose distribution. A similar analysis or fermions leads to the Fermi distribution

< n >=
1

e
2πnω

h̄κ +1

Both these distributions correspond to a black body spectrum. Hence, from the density matrix

constructed from the modes, we were able to reproduce the black body spectrum.

14.11 An Introduction to String Theory

Single Particle Dirac Equation. Turning the relativistic equation

E2 = p2 +m2

into a partial differential equation by the usual substitution

p =−i∇,E = i
∂
∂ t

results in the Klein-Gordon Equation

(�+m2)ψ(x) = 0

The problem is that this wave equation has a negative energy solution. In order to overcome this

problem, Dirac tried the ansatz

(iβ μ∂μ +m)(iγν∂ν −m)ψ(x) = 0 (14.11.1)
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To overcome this problem, Dirac set

γμ = β μ

and

γμ∂μγν∂ν = ∂ μ∂μ

which implies the following identities

(γ0)2 = 1

(γ i)2 =−1

and the anticommutation relation for μ �=ν

γμ ,γν = γμγν + γνγμ = 2gμν = 0

where

gμν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
At least one of the factors in the Dirac equation is equal to zero. By convention, the second term

is set to zero. We obtain the Dirac spinor and ψ (x) is called the Dirac spinor;

(iγμ∂μ −m)ψ(x) = 0

The originial Dirac representation for γ matrices is
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γ0 =

⎛⎜⎝1 0

0 −1

⎞⎟⎠ ;γ i =

⎛⎜⎝ 0 σ i

−σ i 0

⎞⎟⎠
where σ i are the Pauli matrices ;

σ1 =

⎛⎜⎝0 1

1 0

⎞⎟⎠ ,σ2 =

⎛⎜⎝0 −i

i 0

⎞⎟⎠ ,σ3 =

⎛⎜⎝1 0

0 −1

⎞⎟⎠
Properties of the Pauli matrices

σ i† = σ i

σ i∗ = (iσ2)(σ i)(iσ2)

[σ i,σ j] = 2iε i jkσ k

σ i,σ j = 2δ i j

σ iσ j = δ i j + iε i jkσ k

where ε i jk is the anti-symmetric Levi-Civita tensor, ε123 = ε231 = ε312 = 1 and ε213 = ε321 = ε132

= -1, all other components are zero.

Euler B Functions and the Origins of String Theory

The definition of the gamma function proposed by Euler is

Γ(x) =
ˆ 1

o
[−lnσ ]x−1dσ
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where Re(x) > 0. Setting σ = e−t , we get

Γ(x) =
ˆ ∞

0

e−ttx−1dt

where R(x) > 0 . The notation Γ(z) is due to Lagrange. If Re ( z ) > 0, then

Γ(z) =
ˆ ∞

0

e−xxz−1dx

Γ ( z ) converges absolutely. Integrating by parts, we get

Γ(z+1) = zΓ(z)

This is known as the Euler function of the second kind. The gamma function has many interest-

ing properties with many applications in many branches of mathematics. It will take a whole

chapter to summarize these properties. For string theory, we will need the beta function, which is

defined as

B(x,y) =
ˆ 1

0

tx−1(1− t)y−1dt

where Re x and Re y > 0. The beta function is related to the gamma function

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

This is known as the Euler function of the first kind. It can be proven easily by substitution and

change of variable.

In the 1960s, analysis of experimental data showed the surprising finding that the spins of

elementary particles are proprtional to the sqaures of their masses. See Figure 14.5 below. This

plot for meson resonances (fermion) also holds for baryon resonances and they can be adjusted

on linear trajectories, with a universal slope, whose value can be fixed around 1 GeV−2. These

trajectories are known as Regge trajectories.

287



Figure 14.5: Regge Trajectory; a plot of spin vs mass2; a linear relation

Figure 14.6: Meson resonance composed of a rotating string,; where v(r) = rotating velocity and
v(r)

c = r
R

Limiting the discussion to the case of the meson, it is asssumed that the meson is com-

posed of two quarks linked by a string, see Figure 14.6 below. The string is characterized by a

linear energy density k

The total energy of the rotating string is

E = mc2 = 2

ˆ R

0

kdr√
1− ( v

c)
2
= 2

ˆ R

0

kdr√
1− ( r

R)
2
= πkR

Therefore,
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R =
mc2

πk

The total angular momentum is

J = 2

ˆ R

0

kdr√
1− ( v

c)
2

rvdr =
1

2
πkR2

Substituting R into J, we get

J = (
c4

2πk
)m2

Therefore

J ∝ m2

Hence, the string-like potential is adequate to explain the phenomenon underlying the Regge

trajectory. If we set α∗ = c4

2πk , the force binding the quark is independent of the radius

F = ∂RE = πk =
c4

2α

14.12 Elastic Scattering.

We examine the case of two ingoing mesons yielding two outgoing mesons and no other

particle is produced, hence the term elastic. See Figure 14.7 below.

Mandelstam Variables. These are numerical quantities that encode the energy, momentum,

and angles of particles in a scattering process in a Lorentz-invariant fasshion. They are used for

scattering processes of two particles to two particles. If the Minkowski metric is (1,−1,−1,−1),

the Mandelstram variables s, t,u are defined as

s = (p1 + p2)
2 = (p3 + p4)

2
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Figure 14.7: Elastic scattering of two mesons. Two incoming particles ( 1, 2 ) form two outgoing

particles ( 3, 4 )

t = (p1− p3)
2 = (p4− p3)

2

u = (p1− p4)
2 = (p3− p2)

2

where p1, p2, p3 and p4 are the four-momenta. s is known as the square of the center of mass

energy (invariant mass) and t,u are the aquare of the four momenta transfer. The letters s, t,u are

also used in the terms -channel (space channel), t - channel (time channel) and u- channel. These

channels represent different Feynman diagrams or different possible scatttering events where

the interaction involves the exchange of an intermediate particle whose squared four- momenta

equals s, t and u respectively. See Figure 14.8 below.

The s− channel corresponds to the particles 1,2 joining into an intermediate particle that

eventually splits into 3,4; the s-channel is the only way that resonances and new unstable particles

may be discovered provided their lifetimes are long enough that they are directly detectable. The

t - channel represents the process in which particle 1 emits the intermediate particle and becomes
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Figure 14.8: Feynman diagrams of possible particle interaction

the final particle 3, while particle 2 absorbs the intermediate particle and becomes particle 4.

The u- channel reverses the role of particles 3 and 4 in the t-channel.In the relativistic limit, the

momentum is large, the energy E becomes essentially the momentum norm

E2 = p.p+m2
0

E2 ∼= p.p

Setting c = 1 ,

p2
i = m2

i

s = (p2
1 + p2

2)
2 = p2

1 + p2
2 +2p1 p2 ≈ 2p1 p2 ≈ 2p3 p4

Similarly,

t ≈−2p1 p3 ≈−2p2 p4

u≈−2p1 p4 ≈−2p2 p3
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It can also be shown that

s+ t +u =
4

∑
i=1

m2
i

The scattering amplitude depends on the trajectories α , which can be defined in the various chan-

nels. The poles in this model play the role of resonances. The constraint is that the poles can oc-

cur in one or the other chaneel , say s or t , but not simultaneously. The amplitude is constructed

using the beta function

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)−α(t))

This way, the Euler B function reproduces the scattering amplitude in terms of the Regge trajecto-

ries.

Regge Field Theory

Regge theory is concerned with the classification of elementary particles and resonances

and with the collisions of elementary particles at high energies. It forms a basis for the study of

strong interactions of elementary particles. To understand this theory we will take a brief survey

of the lingo of high energy physics, introduce some of the experimental results, and the basic

theoretical ideas, hence culminating in the idea of duality and the Veneziano representation. A

Regge pole is a singularity of the form

1

J−α

where J is the angular momentum and α is a function of the energy of colliding particles, in a

suitably chosen scattering amplitude. Regge models are phenomenonological in nature, they are

developed nd modified under the stimulus of experimental results. Regge theory is based on the

use of complex angular momentum combined with relativistic collision theory.

Basic Definitions. Certain quantities are conserved absolutely in interactions of elemen-

tary particles. Total energy, momentum and charge are conserved. Total strangeness is conserved
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in strong but not in weak interactions. Pions are represented as ( π+, π0 , π− ) , kaons ( K− , K0 ,

K0 , K+) , nucleons ( n, p) , hyperons ( Λ0, Σ−, Σ0, Σ+, Ξ0, Ξ−, Ω−)

Spin J.

(1) A fermion ( eg, proton or neutron ) has half-odd- integer spin , in units h̄ = h
2π . These

particles obey the Pauli Exclusion Principle and the Fermi-Dirac statistics.

(2) A boson has integer or zero spin, e.g. pions have J = 0, the ρ meson have J = 1 . They

obey Bose- Einstein statistics.

Strangeness S. A strangeness quantum number is associated with each particle

. π mesons and nucleons have S = 0

. Λ and Σ baryons have S = -1

. K+ mesons have S = + 1, K− mesons have S = -1.With the rules of strangeness conserva-

tion, the following reaction is not allowed

π−+ p−→ Σ++K−

S = 0 on the left hand side, and S = -2 on the right hand side.Let us consider the pion-nucleon

elastic scattering

π1 +N1 −→ π2 +N2

The corresponding four vectors will be written q1 and q2 for the incoming and outgoing pions

and p1, p2 for the ingoing and ougoing nucleons. See Figure 14.9 below. Energy and momentum

must be conserved

q1 + p1 = q2 + p2

In the πN system, conservation of energy gives

k2 = k
′2
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Figure 14.9: Pion - nucleon interaction ; (a ) N1 at rest , ( b) Momenta for CM = center of mass

system

where k , k
′
denote the initial and final monenta in the CM system and the total energy W is

W =
√

s =
√

μ2 + k2 +
√

M2 + k2

where μ is the mass of the pion . s is the square of the total energy in the CM system. The scatter-

ing angle θ in the CM system is related to the three momenta k and k
′
by

k.k
′
= |k||k′ |cosθ

The momentum transfer from nucleon to pion in the CM collision is

k
′ − k

t is defined to be minus the momentum transfer squared

t =−(k′ − k)2 =−2k2(1− cosθ)

As in section 12.13, the relativistic invariants s and t are given in terms of the four -vector equa-

tions
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s = (q1 + p1)
2 = (q2 + p2)

2

t = (q1−q2)
2 = (p1− p2)

2

Scattering Amplitude. This is the probability anplitude of the outgoing spherical wave

relative to the incoming plane wave in a scattering process. The latter is described by the wave

function

ψ(r) = eikz + f (θ)
eikr

r

where r ≡ (x,y,z) is the position vector, eikz is is the incoming plane wave with the wave number k

along the z-axis: eikr

r is the outgoing spherical wave , θ is the scattering angle and f (θ ) is the scat-

tering amplitude. The dimension of the scattering amplitude is length. The scattering amplitude is

a probability amplitude and the differential cross-section as a function of scattering angle is given

as its modulus squared

dσ
dΩ

= | f (θ)|2

Differential Cross Section. Consider scattering process, as in Figure 14.10 below;

The impact parameter b and the scattering angle ,θ , have a one-to-one functional depen-

dence on each other. The differential size of the cross section is the area element of the plane of

the impact parameter

dσ = bdbdϕ

The solid angle dΩ is

dΩ = sinθdθdσ
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Figure 14.10: Scattering process; single particle scattered by a stationary target. Cylindrical

coordinates azimuthal angle ϕ , the target at the origin, incident beam aligned with z-axis, θ is the

scattering angle, measured between incident and scattered beam and the impact parameter b is the

perpendicular offset of the trajectory of incoming particle

The differential cross section is the quotient of these quantities dσ
dΩ ,

dσ
d(cosθ)

=
1

2π

ˆ 2π

0

dσ
dΩ

dϕ

It is a function of the scattering angle θ and the impact parameter b, plus observables such as the

momentum of the incoming particle. In cylidrically symmetric situations, about the beam axis,

the azimuthal angle, ϕ, is not changed by the scattering process and the differential cross section

is as above.

Quantum Scattering. In the time- dependent formalism of quantum scattering, the initial

wave function, before scattering is taken to be a plane wave ith definite momentum k;

φ−(r) =r→∞
−→ eikz

where z and r are the relative coordinates between the projectile and the target. The arrow indi-

cates that this only describes the asymptotic behavior f the wave function when the projectile and

the target are too far apart for the interaction to have any effect. After the scattering takes place,

the wave function takes on the following asymptotic form

296



φ+(r) =r→∞
−→ f (θ ,φ)

eikr

r

where f is the scattering aomplitude, a function of the angular coordinates. This is valid for a

short range energy-conserving interaction. The full wave function of the system behaves asymp-

totically as the sum

φ(r) = φ−(r)+φ+(r)

The differential cross section is related to the scattering amplitude

dσ
dΩ

(θ ,φ) = | f (θ ,φ)|2

This can be interpreted as the probability density for finding the scattered projectile at a given

angle.

The Scattering Matrix. The transition of a closed system of particles from an inital state

of | k> to a final state | f > is described in quantum theory by the S - matrix

| f >= S|k >

The matrix elements of the S - matrix

S f k =< f |S|k >

where we have Hermitian conjugacy

| f >∗=< f |

S f k can be represented in the form
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Figure 14.11: Two particle elastic collision ; (a) energy-momentum four vectors for reaction

ab−→ cd , ( b) s, t plot for two body collision, shaded areas are allowed physical regions, - 1 ≤
cos θ ≤ 1 , s ≥ ( M + μ)2, - 4k2≤ t≤ 0

S f k = δ f k + i(2π)4δ (4)(Pi−Pk)Tf k

Remarks.

(1 ) δ f k = 1 if the state does not change , that is , | f > = | k > ; no interaction

(2 ) δ (4)( Pi - Pk ) represents the conservation of energy and momentum

(3) T f k is the transition scattering amplitude from the state | k> to the state | f > .

Relativistic Kinematics of Two- Body Collisions. If we neglect the spin of the nucleon,

the whole result of the scattering process can be expressed in terms of s and t. The scattering

amplitude F is a function of s and t only, F (s, t). We next introduce the concept of relativistic

crossing symmetry. we re-label the ingoing and outgoing momenta as in Figure14.11 below

For process I; The outgoing momenta are −pc, - pd and their energies are −pc
2 , -p2

d .

Conservation of total energy and momentum requires that

pa + pb + pc + pd = 0

As outlned in section 12,13
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s+ t +u = 4m2

assuming all particles have equal mass. In the CM system for particles a and b, we write k2 for

the square momentum and θ for the scattering angle. Then

s = 4(k2 +m2)

t =−2k2(1− cosθ)

u =−2k2(1+ cosθ)

The physical values of s and t for process I are shown in the shaded region I. The shaded region

II and III correspond to the values s and t (or u) for which the following processes are physically

allowed

II.b+ d̄ −→ ā+ c

III.b+ c̄−→ ā+d

where ā amd d̄ are the anti-particles of a and d respectively. t is the energy sqaured of particles

b and d̄ and u is the energy squared of b and c̄. The principle of crossing symmtery asserts that

the same scattering amplitudes F(s, t) describes all three processes I, II , and III, provided suit-

able values of s and t are chosen in each case. It applies when the particles have zero spin. The

Mandelstam variables have a simple physical meaning. In the center- of - mass system , cms ,

a+ b −→ c+ d, the s -channel, s is the square of the total energy of the colliding particles and

t = −(pa− pc)
2 is the square of the momentum transfer from a to c . In the cms reaction II, the
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roles of t and s are reversed. The variables u and t play similar roles in the t and u channel. Then

, we can represent the physical region of any reaction on the Mnadelstam plane. For instance,

reaction II, coresponds to

t ≥ 4m2,s≤ 0,u≤ 0

Threshold Singularities. Let us consider the singualrities of the amplitude. For an illustration, we

can consider elastic scattering of neutral pions;

π0 +π0 −→ π0 +π0

It is assumed, in accordance with experiments, that pions are the lightest stable hadrons and that

there is no bound state of two neutral pions. Then the amplitude has no singularities at s< 4μ2.

The first threshold lies at s = ( 2μ )2. It corresponds to the two-particle intermediate state. The

next three particle threshold could have appeared at s = ( 3μ )2 . However, the second thresh-

old in the pion scattering amplitude is situated a t s = ( 4μ )2 - the four particle state, since the

transition of two pions into three is forbidden by G-parity conservation.

Collision Amplitude. Differential cross sections are measured in the lab. The counter

records the number of pions elastically scattered into a solid angle dΩ per unit time. The elastic

differential cross section for scattering of pions on protons is defined by

dσ
dΩ

=
Nout

Nin

where the numerator enotes the number of elastically scattered pions per unit time crossing the

area r2dΩ. The denominator denotes the number of pions in the incident beam per unit area per

unit time divided by the number of protons per unit area in the hydrogen target. See Figure 14.12

as an illustration.

If φ is the azimuthal angle, then
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Figure 14.12: Solid angle of elastic scattering process; (a) differential cross section (b) scattering

into solid angle dΩ in the CM system

dΩ = d(cosθ)dφ

Ignoring proton spin, there is no dependence of the differential section on φ . Hence

ˆ
φ

dσ
dΩ

= 2π
dσ
dΩ

=
dσ

d(cosθ)

From t =−2k2(1− cosθ)

dt = 2k2d(cosθ)

Hence

dσ
dt

= (
π
k2
)

dσ
dΩ

If we neglect nucleon spin, this invariant differential cross section may be expressed in terms of a

single invariant scattering amplitude F(s, t)

dσ
dt

=
1

64πsk2
|F(s, t)|2

Total cross sections are equal to the sum of all allowed elastic and reaction cross sections includ-

ing those involving many- body productios
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Figure 14.13: Measuring particle scattering angle; (a) Counters C 1 to C5 for measuring total

cross sections , ( b) Extrapolating to zero solid angle Ω to give a total cross section σT

σT (π+p)≡ σT (π+p, total) = ∑σ(π+p−→ anything)

In practice, σT (π+p) is obtained experimentally by measuring the number of particles removed

from the incident prion beam. This is achieved by extrapolating to zero angle as illustrated in

Figure 14.13 below.

The counters Ci subtend an angle Ωi at the target. They detect the passage of charged

particles. From the flux through these counters, and from the flux through the incident beam, one

can obtain the number of particles removed from the incident beam by collision with the target.
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For each solid angle Ωi one obtains, per unit time

σ(Ωi) =
π+(notΩi)

π+(target)

where the numerator is the number of π+ not going through angle Ωi and the denominator is the

number of π+ in incident beam per proton per target. Extrapolating to Ωi = 0, one obtains the

total cross sectional area as in Fig (b);

σT (π+p,s) = limΩ→0σ(Ω)

Total cross sections are are related to elastic scattering amplitudes by the optical theorem

σT (π+p) =
ImF(s,0)

2k
√

s

where ImF(s,0) denotes the imaginary part of the π+pforward elastic scattering amplitude.

Analyticity and Crossing Symmetry. Even for the simplest case of identical spinless par-

ticles, it is necessary to regard F(s, t), a function of complex variables s and t. As an illustration,

we will consider the case of forward scattering , t = 0 , for process I. One finds that the forward

amplitude F( s,0) is an analytic function of the complex variable s throughout the complex s

plane, exccept for branch cuts along the real axis. The complex s plane for F (s,0) is illustrated in

Figure 14.14 below. There is a branch cut at the real value,

s = (2m)2 = 4m2

which is a the threshold at which process I is a physical process allowed by the kinematic condi-

tions, along the line t = 0. There are other branch points in the s plane, for example at the thresh-

olds for production of new particles, s = (4m)2, (6m)2, ......, in the case of pion-pion scattering.

These all lie along the real axis.

In addition, there are branch points at the corresponding values of u for process III, of
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Figure 14.14: The complex s plane for t = 0; branch cut along the real axis, and the path of ana-

lytic continuation from I to III

which the leading branch point is at u = 4m2. In this case, with t = 0 , the threshold u = 4m2

corresponds to s = 0 , and the attached branch cut is drawn along the left hand real axis. Between

the branch points s = 0 and s = 4m2, the amplitude F (s,0) is real. This means that the amplitude is

Hermitian , hence

F(s∗,0) = F∗(s,0)

where the star denotes complex conjugation. The physical amplitude for process I is obtained by

taking the limit on top of the right hand branch cut. When s is real and greater than 4m2, we have

F(s,0) = limε→0F(s+ iε,0)

The physical amplitude for process III.where u is the energy, is obtained in the s plane by taking

the limit on to the real axis below the left hand branch cut. The analytic properties of F(s,0) per-

mit us to derive dispersion relation provided that F ( s,0) −→ 0 as | s| −→ ∞ in any direction in

the s complex plane. Since F (s,0) is regular inside the closed contour C, we can apply Cauchy’s

theorem

F(s,0) =
1

2πi

ˆ
C

F(s
′
,0)

s′ − s
ds

′
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Scattering Amplitudes and The S Matrix. The state of a particle at time |ψ(t) > is

|ψ(t)>=U(t)|ψ >

where | ψ > is the state at time zero and U(t) is the evolution operator;

U(t) = e
−iHt

h̄

where

H = H0 +V

H0 =
√

p2c2 +m2c4

In non-relativistic mechanics,

H0 =
p2

2m

where p2 = p.p and V = (xi, pi) , i = 1,2,3 ; xi are position cocordinates and pi the momenta. The

potential V specifies the interaction of the particle with the fixed target. The physical system is a

spinless particle of rest mass m interacting with a target fixed at the origin of the coordinate sys-

tem. The Cartesian coordinate system and momenta satisfy the fundamental quantum conditions

[xi,xk] = 0

[pi, pk] = 0

[x j, pk] = ih̄δ jk
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where j,k= 1,2,3 .

In- and Out- Asymptotes. The essential feature of scattering is that the particle behaves as

a free particle well before and well after collision with the target. A scatterung state satisfies

U(t)|ψ >−→U0(t)|ψin >; t −→−∞

U(t)|ψ >=U0(t)|ψout >; t −→+∞

for some | ψin > and | ψout >, where U0( t) is the free particle evolution operator. The Moller

Operators are define by

Ω± = limt→∓U†U0(t)

where U† is the Hermitian conjugate. The Moller operators relate the actual state of the system

with the free particle particle in- and out-states ;

|ψ >= Ω+|ψin >

|ψ >= Ω−|ψout >

Scattering Operator/Matrix S. The scattering operator S relates the out-state with the

in-state without direct reference to the actual state. It follows that

|ψout >= S|ψin >

where

S = Ω†
−Ω+
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The main goal of scattering theory is to express the out-asymptote U0(t)| ψout> in terms of

the in-asymptote U0(t)| ψin> without further direct reference to the experimentally indeterminate

details of the scattering state U(t) | ψ >. The main goal of scattering theory is to determine the

scattering operator S.

Unitarity.

S†S = SS† = I

This can be easily derived by using the Moller operators. Unitarity has a simple physical mean-

ing; the sum of probabilities of all processes which are possible at a given energy is equal to unity.

If S = I + A,t hen

i(A−A†) =−AA†

Representing the amplitude A as the sum of real and imaginary parts , A = ReA + iImA, the

unitarity condition can be expressed as

2ImA = AA†

Conservation of Energy. It can also be shown that

U0(t)SU†
0 (t) = S

and therefore, the energy is conserved in the scattering process

[S,H0] = 0

H0 corresponds to the fact that the particle is asymptotically free. The conservation of energy in

the scattering process may be expressed as
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< ψin|H0|ψin >=< ψout |H0|ψout >

Scattering Amplitude. The momentum representation of the scattering operator, < q | S | p

> , the S matrix, which corresponds to the scattering of a particle with initial momentum p to final

momentum q has the form

< q|S|p >= δ (p−q)−2πiδ (εp− εq)t(p,q)

Not all states of the system are scattering states. If the potential is attractive and sufficiently

strong, there may also be bound states

|1 >, |2 >,......, |nb >

which satisfy

H|b >= εb|b >;b = 1,2, ......,nb

No in- or out-asymptotes exist for the states

|ψb(t)>=U(t)|b >= e−
iεbt

h̄ |b >;b = 1,2, , ...,nb

Spectral Decomposition of the Free Particle Hamiltonian. The free particle Hamiltonian is

a function of momentum , where

H0 =

ˆ
d3 p|p > εp < p|

where

εp =
√

p2c2 +m2c4
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Lorentz Factor γ .

γ =
εp

mc2
=

ω
cμ

=

√
1+

k2

μ2
=

1√
1− v2

c2

where εp = h̄ω and μ = mc
h̄ , the inverse of the Compton wavelemgth.

Green’s Operators. These are defined as

G0(z) =
1

z−H0

G(z) =
1

z−H

where H0 is the free-particle Hamiltonian, H is the Hamiltonian including interaction, V is the

inetraction potential and z is a complex number, which has the dimensions of energy, for which

the inverses exist. It follows fromd H0 and εp above that

G0(z) =
ˆ

d3 p|p >
1

z− εp
< p|

The function < φ | G0(z) | ψ > has branch points at mc2 and ∞.

Preliminary Scattering Theory - Partial Wave Analysis. This is a technique for solving

scattering problems by decomposing each wave into its constituent angular momentum com-

ponents and solving using boundary conditions. The sccenario is as follows; a steady beam of

particles scatters off a spherically symmetric potential V(r) . This is short ranged, meaning as

r−→∞, the particles behave like free particles. The particle is described as a plane wave travel-

ling along the z-axis

eikz

It is assumed that the beam is switched on for times longer than the times for particle interaction

with the scattering potential. . Hence, we solve the wave function Ψ(r) for the particle beam
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[− h̄2

2m
∇2 +V (r)]Ψ(r) = EΨ(r)

We make the following ansatz

Ψ(r) = Ψ0(r)+Ψs(r)

where Ψ0( r) ∝ eikz is the incomng plane wave and Ψs( r ) is the scattered part. It is the asymp-

totic form of the latter that is of interest because detection of particles occurs far away from the

origin. At these distances, particles are free and Ψs( r ) is a solution of the free Schrodinger equa-

tion. We therefore investigate the plane wave expansion

eikz =
∞

∑
l=0

(2l +1)il jl(kr)Plcosθ

The spherical Bessel function jl(kr) asymptotically behaves like

jl(kr)−→ 1

2ikr
(ei(kr− lπ

2 )− e−i(kr− lπ
2 )

This corresponds to an outgoing and and an incoming spherical wave. For the scattered wave

function, only outgoing parts are expected. We therefore expect at large distance

Ψs(r) ∝
eikr

r

and set the asymptotic form of the scattered wave to

Ψs(r)−→ f (θ ,k)
eikr

r

where f (θ , k) is the scattering amplitude, which is dependent on the elevation angle θ , and the

energy. For the entire wave function
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Ψ(r)−→Ψ+(r) = eikz + f (θ ,k)
eikr

r

Partial Wave Expansion. In case of spherically symmetric potential V(r), the scattering

wave function may be expanded in spherical harmonics which reduce to Legendre polynomials

because of azimuthal symmetry, no dependence on φ ,

Ψ(r) =
∞

∑
l=0

ul(r)
r

Pl(cosθ)

In the standard scattering problem, the incoming beam is assumed to take the form of a plane

wave of wave number k, which can be decomposed into partial waves using the plane wave ex-

pansions in terms of spherical Bessel functions and Legendre polynomials. Consider equal mass

spinless particles having a single scattering amplitude F(s, t) . The partial wave expansion tahes

the form

F(s, t) =
8πW

k

∞

∑
l=0

(2l +1) fl(s)Plcosθ

where W2 = s = 4 ( m2 + k2) and cos θ = z

fl(s) =
1

2

ˆ 1

−1

d(cosθ)
kF(s, t)
8πW

plcosθ

The unitarity of the S- matrix corresponds to conservation of probability. As outlined in the sec-

tion on unitarity

i( f ∗l − fl) = 2| fl|2

Hence,

fl(s) =
e(2iδl)−1

2i
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where the phase shift δl is real in the elastic collisions. It is convenient to analyze the amplitude

as a partial wave series. This is how resonances are derived from experimental differential cross -

sections. The resonance would occur as a pole in the partial wave amplitude f l corresponding to

angular momentum l. Near s = a - ib, we have a resonance pole

fl(s)� g
s−a+ ib

a and b are both dependent on l and s. Writing

s0(l,s) = a− ib

we get

fl(s)� g
s− s0(l,s)

Yukawa Potential. This is a potential of the form

V (r) =−g2 e−kmr

r

where g is a magnitude scaling constant, m is the mass of the particle,r is the radial distance

of the particle and k is another scaling constant. The potential is monotone increasing in r and

is negative, implying the force is atractive. The Coulomb potential of electromagnetism is an

exapmle of a Yukawa potential with e−kmr =1 everywhere, interpreted as the photon mass equal

to zero. In interactions between a meson field and a fermion field, the constant g is equal to the

gauge coupling constant between those fields. Its Fourier transform is

V (r) =− g2

(2π)3

ˆ
eikr 4π

k2 +m2
d3k

The fraction 4π
k2+m2 is the propagator or Green’s function of the Klein Gordon equation.A com-

parison of the long range potential strength for Yukawa and Coulomb potential is shown in the
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Figure 14.15: Comparison of Yukawa and Coulomb Potential

Figure 14.15 below.

It can be seen that the Coulomb potential has effect over a great distance whereas the

Yukawa potential approaches zero rather quickly.

The Propagator Term. Consider the electrostatic potential about a charged point particle.

This is given by

∇2φ = 0

which has the solution

φ =
e

4πε0r

This describes the potential for a force mediated by massless particles, the photons. For a particle

with mass, the relativistic equation

E2 = p2c2 +m2c4

can be converted to a wave equation by the subtitutions

E −→ ih̄
∂
∂ t

; px −→−ih̄
∂
∂x

Hence,
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−h̄2 ∂ 2φ
∂ t2

= (m2c4− h̄2c2∇2)φ

Or, in the static, time-independent case, this leads to

(∇2− m2c2

h̄2
)φ = 0

which gives ∇2φ = 0, for the massless case. For a point source with spherical symmetry,

∇2φ −→ 1

r2

d
dr

(r2 dφ
dr

) =
1

r2
(2r

d
dr

+ r2 d2

dr2
)φ = (

2

r
d
dr

+
d2

dr2
)φ

Note

d
dr

(rφ) = r
dφ
dr

+φ

and

d2

dr2
(rφ) =

dφ
dr

+ r
d2φ

dr2
+

dφ
dr

= r
d2φ

dr2
+2

dφ
dr

1

r
d2

dr2
(rφ) =

d2φ

dr2
+

2

r
dφ
dr

= ∇2φ =
m2c2

h̄2
φ

Therefore

d2

dr2
(rφ) =

m2c2

h̄2
rφ

A solution of this differential equation is

φ = g2 e−
mcr

h̄

r

where g is a constant, the coupling strength. This is the Yukawa form of the potential. It was

originally introduced to describe the nuclear interaction between protons and neutrons due to
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pion exchange. For non-relativistic scattering on a Yukawa potential, Regge showed that a unique

analytic extension f (l,s) could be defined such that at integer values it is equal to the partial

wave amplitude

f (l,s) = fl(s); l = 1,2,3, ...

Using Regge’s analytic extension, the location s0( l,s) of the resonance pole becomes in fl(s)

becomes an analytic function. One can solve the equation

s = s0(l,s)

to give

l = α0(s)

We can re-write f (l, s) as

f (l,s) =
r

l−α0(s)

The pole in the partial wave amplitude is located in the complex l plane ans its position is a func-

tion of s. This is called a Regge pole, and the path as it follows as s moves through real values is

called a Regge trajectory. The Regge trajectory correlate sequences of particles and resonances.

The Regge pole model states that there exist complex Regge trajectory functions αn(s), depend-

ing on s =W 2 (the square of the center of mass energy), that correlate certain sequences of parti-

cles or resonances. In relativistic theory the particles associated with a given function αn(s) have

the same internal quantum numbers - baryon number, isospin, parity, strangeness etc. - but they

have spins that differ by units of two. In nonrelativistic potential scattering a given function αn(s)

correlates sequences of bound states or resonances, and, in the absence of exchange forces, the

spins ( angular momenta) will differ by only one unit.
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The Veneziano Representation. Veneziano considered the reaction

ππ −→ πω

We take all the particles to have the same mass. Then

s+ t +u = 4m2

The three channels s, t,u denote the energy squared;

s− channel;π+π0 −→ π−ω

t− channel;π−π− −→ π0ω

u− channel;π+ω −→ π+π0

In each of the three channels, the ρ meson represents an intermediate stage or resonance. In the

s-channel, the amplitude should be expressible in terms of a sum over successive resonances

A(s, t) = ∑
n

r
s− sn

where sn = m2
n and mn is the mass of the nth resonance on the ρ Regge trajectory. n = 0 gives the ρ

meson and

α(m2
n) = 2n+1

Next, we make a linear approximation for the trajectory and take ε(s) to be small

α(s)� α0 + s+ iε(s)
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At high energies, the amplitude will be dominated by the Regge pole exchange in the t-channel,

which is also the ρ-meson, thus as s−→ ∞

A(s, t)∼ β (t)sα(t)−1

The idea of duality asserts that A(s, t) above is the asymptotic form of the sum over resonances

∑
n

r
s− sn

−→ β (t)sα(t)−1

Veneziano made the important observation that the Euler beta function has the desired property

of giving both forms of A(s,t) that can be written symmetrically in s and t. He, therefore took as a

trial, a scattering amplitude

A(s, t) = B(1−α(s),1−α(t))

=
Γ(1−α(s))Γ(1−α(t))

Γ(2−α(s)−α(t))

Noting that the complex valued gamma function is undefined for non positive integers, but they

can be defined in the Riemann sphere as ∞. The reciprocal gamma function is well defined and

analytic at these values. Therefore, This function has poles at fixed s and at fixed t,

1−α(s) =−n

1−α(t) =−m

for m,n = 0, 1, 2, .... It also has lines of zeros, due to the poles of the gamma function in the

denominator, when

317



2−α(s)−α(t) =−l; l = 0,1,2...
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CHAPTER XV

STRING THEORY

15.1 Primer on String Theory

Infinite Momentum Boost (Light Cone Frame),[10]. We begin with a set of particles in a

spacetime coordinate system (x,y,z, t). We boost the system in the z-axis. Any axis will do. We

boost it to a great velocity, near the speed of light. We obtain a huge momentum in the z-axis.

The particles are Lorentz contracted and time dilated. The proper time is τ . The energy, E, of the

system is

E =
√

p2
x + p2

y + p2
z+m2

where p is the momentum and m is the rest mass (internal binding energy). pz is very large. Noth-

ing happens to px, py and m. We Taylor expand for large pz

E = pz

√
1+

p2
x + p2

y +m2

p2
z

E � pz(1+
p2

x + p2
y +m2

2p2
z

) (15.1.1)

For a system of particles ; ∑ pz is constant, by the Law of Conservation of Momentum . It can be

dropped off, as we are only interested in energy differences. Therefore,

E = ∑(
p2

x + p2
y

2pz
+

m2

2pz
)
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For simplicity of calculations , we will ignore py. Note, for large pz, the energy is very small in

the x− y plane. Since

H = E = ih̄
∂
∂ t

where H is the Hamiltonian, the time evolution operator. The system changes very slowly, when

the energy is very small. This is due to time dilation. In the plane perpendicular to the boost,

non-relativistic quantum mechanics applies. Let us next analyze a simple string, the energy of a

simple string can be expressed according to Hooke’s law as

E =
1

2
kx2

where x is the length of the string and k is the stiffness constant. The important point to note here

is that the energy of the string is proprtional the the mass squared

E ∝ m2

If the string is moving, we can express the energy as

E =
p2

2m
+B

where B is the binding energy, the internal energy of the system. Thinking of the string as a

collection of particles, the energy is the sum total of kinetic and potential energy.

E = m∑
i

ẋ2
i

2
+ k

(xi− xi+1)
2

2

If we parametrize the string with a parameter , σ , whose length ranges from 0 to π , the Hamilto-

nian can be expressed as

H =

ˆ π

0

dσ [
ẋ(σ)2

2
+

1

2
(

∂x
∂σ

)2]
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Noting that ẋ(σ) = ∂x
∂ t and ∂x

∂σ = L
π , we see that

L2 ∝ m2 =⇒ L ∝ m

Since we are dealing with a vibrating string, we apply Hooke’s Law , where the binding energy

is the potential energy. Here, the energy is proportional to the mass and not the mass squared.

At the quantum level , the energy is quantized and the Regge trajectory has no reason to end.

Furthermore, as we explained above, perpendicular to the boost, the physics is non-relativistic

with one less dimension. The binding energy does not depend on p. When p = 0, B = mc2. Re-

arranging Eq. 13.1;

H = ih̄
∂
∂ t

= (E− pz)pz =
p2

x + p2
y

2
+

m2

2

In the limit as pz −→ ∞, we have non - relativistic physics in the x− y plane. We see that the kine-

matics are independent of the state of motion. The binding energy, second term, is proportional to

m2. The left hand side is known as the light cone energy.

Strings in Two Dimensions. We think of a string as a collection of mass points, N mass

points. Parametrize with σ (τ) from 0 to π;

E = ∑
i
(μ

ẋi
2

2
+ k

Δx2i

2
)

where μis the non - relativistic, or analogue mass and μ = 1
N , k is the spring constant. We set k =

N
π2 and Δσ = π

N . Let us first analyze the kinetic energy, K.E.

K.E.= ∑
i

1

2N
ẋ2 =

1

2π ∑
i

Δσ ẋi
2

In the limit, we get

K.E =
1

2π

ˆ 2π

0

(
∂x
∂τ

)2dσ
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where τ is re-scaled time, proper time , moving with system. The potential energy P.E. is

P.E =
1

2π

ˆ π

0

(
∂x
∂σ

)2dσ

Therefore,

H =
1

2π

ˆ π

0

(
∂x
∂τ

)2 +(
∂x
∂σ

)2dσ

This is similar to the wave eqiuation, the energy of a wave field. Hence, we arrive at wave physics.

What about the boundary conditions ? This is determined by Newton’s law applied to mass

points. By Hooke’s law

F ∝ displacement

F ∝ kΔx =
N
π

Δx

In the limit,

F = N
∂x
∂σ

∂σ = N
∂x
∂σ

1

N
=

∂x
∂σ

By Newton’s second law,

F ∝
∂x
∂σ

= μ ẍ2 =
1

N
ẍ

Therefore

ẍ ∝ N
∂x
∂σ

Note ẍ−→ ∞ as N −→ ∞, which is not tenable. Therefore, we set the Neumann boundary condi-

tion
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∂x
∂σ

= 0

Next, we Fourier analyze xi and substitute into the Lagrangian. For Neumann boundary condi-

tions,

x(σ) =
∞

∑
n=0

xn(τ)cosnσ

Substitute into Lagrangian, L

L =
1

2π

ˆ π

0

(
∂x
∂τ

)2− (
∂x
∂σ

)2dσ

∂X
∂τ

= ẋ(σ) =
∞

∑
n=0

ẋncosnσ

(
∂x
∂τ

)2 = ∑
n=0,m=0

ẋmẋncosnσcosmσ

Using the trigonometric identity ;
´ π

0 cosnσcosmσdσ = δmn
π
2

(
∂x
∂τ

)2 =
ẋ2

0

2
+∑

n
+

1

4
ẋ2

n

where x0 is the average position, the center of mass and the second term is the internal relative

motion.

∂x
∂σ

=−
∞

∑
n=0

nxnsinnσ

(
∂x
∂σ

)2 =
1

2π ∑
n,m

xnxm

ˆ 2π

0

sinnσsinmσ
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=
1

2π ∑
n,m

n2x2
n.

π
2
=

1

4
n2xn

2

Therefore,

L =
ẋ2

0

2
+∑

n

1

4
ẋ2

n−
1

4
∑
n

n2x2
n

If we drop out the first term, which is a constant, we obtain the Lagrangian of a harmonic oscilla-

tor with frequency n. We have an infinite collection of harmonic oscillators which are not coupled

to each other. The frequency of the nth oscilltor is n. ωn = n. The center of mass has no oscilla-

tion, ω0 = 0. x0 has no restoring force. The third term is the restoring force. The second and third

terms are the internal energy which is proportional to m2. The frequencies are n = 1, 2, 3, ......

Constructing the Hamiltonian. Replacing ẋ by the momentum p, let p = ẋ
2 , then the

Hamiltonian H

H = p2 +
n2x2

4

In order to find the operators in the space of states, we use the identity

a2 +b2 = (a+ ib)(a− ib)

Hence

H = (
nx
2
+ ip)(

nx
2
− ip)

The commutator relations for the annihilation, a−, and creation a+ , operators are

[a+,a−] = 1

and
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[p,x] = i

Noting [nx
2 ,nx

2 ] = 0 and [ ip, ip ] = 0, only cross terms survive. Therefore,

(
nx
2
+ ip)(

nx
2
− ip) =

nxp
2

i− npx
2

i = 2
n
2

i[x, p] = n

Divide by n

1√
n
(
nx
2
+ ip)

1√
n
(
nx
2
− ip) = 1

Then, we have

a− =

√
n

2
x+

1√
n

p

and

a+ =

√
n

2
x− 1√

n
p

Each oscillation of a string has creation and annihilation operators with frequency n. Solving for

xn

xn =
a=+a−√

n

The spin number of a massless particle, such as a photon, is 2 because we cannot bring it to rest

and rotate out and boost in another direction. Polarization of light is linear or circular. The spin

is perpendicular to granslation. Linear polarization is a quantum superposition of left and right ,

with equal probability, on average no spin. When meaured, it collapses into left or right handed.

Linear polarization state
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|x >

For circular polarization

|r >= |x >+i|y >

and

|l >= |x >−i|y >

Energy of ground state

E −→ m0
2

Unexcited oscillator

|0 >

Excite by integer amount of energy

a+1 |0 >= m2
0 +1

Closed Strings. For closed strings, σ ranges from 0 to 2π . The direction of wave propagation is

with the direction of increasing or decreasing σ . For a closed string

x(0) = x(2π)

Because, we have neither Dirichlet nor Neumann boundary conditions, we are not restricted to

only cosnσ with Fourier decomposition, hence
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X(σ) = ∑
n

xneinσ

Since we have left and right propagating waves in the string

x(σ) = ∑
n>0

xneinσ + ∑
n>0

x−nne−inσ + x0

As before, we calculate the Lagrangian, and obtain

L =

ˆ 2π

0

(
∂x
∂τ

)2− (
∂x
∂σ

)2dσ

Note, integral limits are from 0 to 2. By a clever manipulation, we get the forward and backward

moving waves, which are expressed as

L =

ˆ 2π

0

1

2
(

∂x
∂τ

+
∂x
∂σ

)2 +
1

2
(

∂x
∂τ
− ∂x

∂σ
)2dσ

15.2 Nambu-Goto Action

A particle sweeps out a worldline in Minkowski space. A closed string sweeps out a

worldsheet. Let us parametrize the world sheet by the timelike coordinate τ and spacelike coordi-

nate σ . Let σ be periodic with range σ ∈ [ 0, 2π ). The two worldsheet coordinates are packaged

as σα= ( τ , σ ), α = 0, 1. See Figure 15.1 below.

The string sweeps a surface in spacetime which defines a map from the world sheet to

Minkowski space, Xμ ( σ , τ ) with μ = 0,1,2, ...,D−1.

σα −→ X μ(σ ,τ)

The worldsheet is a curved surface embedded in spacetime. For closed strings, Xμ ( σ , τ) = Xμ

( σ+ 2π , τ). The spacetime is referred to as the target space. Next, we need an action that de-

scribes the dynamics of the string. The action of the string should be proportional to the area A
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Figure 15.1: Worldsheet coordinates σα = ( σ , τ ) ; embedding coordinate Xμ ( σ , τ )

of the worldsheet, just as the action of the point particle is proportional to the length of the world-

line. The induced metric, γαβ , on this surface is the pull-back of the flat metric on Minkowski

space

γαβ =
∂X μ

∂σα
∂Xν

∂σβ ημν

Then, the action, which is proportional, to the area of the worldsheet isgiven by

S =−T
ˆ

d2σ
√
−det(γ)

where T is the constant of proportionality, the tension of the string, the mass per unit length. The

pullback of the metric is given by

γαβ =

⎛⎜⎝ Ẋ2 Ẋ X́

X́ Ẋ X́2

⎞⎟⎠
where Ẋ μ = ∂X μ

∂τ and X́ μ=∂X μ

∂σ . The action then takes the form

S =−T
ˆ

dσ2

√
−( ˙Ẋ)2(X́)2 +(

˙
Ẋ . ´X)2
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Figure 15.2: Area swept out by a worldsheet

This is the Nambu-Goto action for a relativistic string.The action is the area swept out by the

worldsheet, as illustrated below in Figure 15.2

dA = dτdσ |Ẋ ||X ′ |sinθ |

= dτdσ
√

X ′2Ẋ2sin2θ

= dτdσ
√

X ′2 ˙X2(1− cos2θ)

= dτdσ
√

X ′2Ẋ2− (X ′
. ˙X)2

= dξ 2
√−detγ

Writing the Minkowski coordinates as Xμ = (t, −→x ). Let X0 ≡ t = Rτ , where R is a constant. Let

the kinetic energy, d−→x
dτ = 0. We have dt = Rdτ . Then, the action is

S =−T
ˆ

dτdσ

√
(
d−→x
dσ

)2 +(
d−→x
dσ

)2 =−T
ˆ

dτdσ

√
(
d−→x
dσ

)2 =−T
ˆ

dt
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where the right hand equality is the spatial length of the string. Hence, when the kinetic energy

is zero, the action is proprtional to the time integral of the potential energy; potential energy =

T × ( spatial length of string ). So, T is the energy per unit length. The string’s energy increases

with length, quite unlike that of an elastic band whose energy increases quadratically with length(

Hooke’s law). To minimize energy, the string will want to shrink to zero. The tension , T, per unit

length , is expressed in terms of α ′
, the universal Regge slope

T =
1

2πα ′

Polyakov Action

This is a quantization friendly action for the string. It takes the form

Sp =
−T
2

ˆ
d2σ

√−ggαβ ∂αX μ∂β Xνημν

where g≡ detgαβ . Here gαβ is a new field.

Equations of Motion. Starting with the Nombu-Goto action of a closed string

S =−T
ˆ

d2σ
√
−det(γ)

Noting that

δ
√
−det(g) =

1

2

√
−det(g)gαβ δgαβ

Applying the Euler Lagrange equation to the Nambu-Goto equation, that is extremising ;

∂α(
∂
√−detγ

∂ (∂αX μ)
) = ∂α(

√
−det(g)gαβ ∂β X μ) = 0

Re-writing the Polyakov action as

S[h,X ] =− 1

4πα ′

ˆ
d2σ

√−hhαβ ∂αX μ∂β Xνημν
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where σα = ( τ , σ ) are coordinates on the string worldsheet, hαβ (τ,σ ) is an independent dy-

namical variable ( the worldsheet metric) and Xμσ are scalar fields that describe the embedding

of the worldsheet in a Minkowski target space with metric ημν .. The string tension T , the Regge

slope α ′
. and the string length ls are related by

T =
1

2πα ′ =
1

2πls

We will show that the Polyakov action is equivalent to the Nambu-Goto action. We vary the

action S[h, X] with respect to hab

1

2
hαβ hγδ ∂γX μ∂δ Xνημν = ∂αX μ∂β Xνημν (15.2.1)

Hence, the worldsheet metric is proportional hαβ is proportional to the induced metric ∂αXμ∂β Xνημν

. Then we can set as

hαβ = e2φ ∂αX μ∂β Xνημν (15.2.2)

We plug this ansatz back into the equation of motion

1

2
e2φ ∂αX μ∂β Xνημνhγδ e−2φ hγδ = ∂αX μ∂β Xνημν

Noting that

det(hαβ ) = e4φ det(∂αX μ∂β Xνημν)

From Polyakov action, we get

S[X ] =− 1

2πα ′

ˆ
dσ

√
−det(∂αX μ∂β Xνημν

which is the Nambu-Goto action. The fact that φ dropped out of the Polyakov action reflects an

underlying symmetry.
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Symmetries of the Polyakov Action.

Sidelights on Lorentz and Poincare groups. . Lorentz Invariance. Special relativity is a

theory of transformation rules. The allowed set of transformations are those that leave the interval

ds2 invariant. The interval is the same in all frames of refernce.

ds2 = ημνdxμdxν

Under the general transformation

dxμ −→ Λμ
ν dxν

the allowed Λ′
s satisfy the following conditions

η = ΛT ηΛ

They are separated into two classes - rotations and boosts, where det (Λ ) = 1. Most often, we

think of a Lorentz transformation as a boost, special Lorentz transformation, along an axis, say,

x-axis. the time and position coordinates between inertial frames S and S
′
are related as

x
′
= γ(x− vt)

t
′
= γ(t− vx

c2
)

where

γ =

√
1− v2

c2

The Rotation Group. A 3 - dimensional rotation may be expressed as

xi = x
′
i = Ri jx j (15.2.3)
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The rotation group may be considered to be the set of all 3 × 3 matrices R where the inverse R−1

is the same as the transpose RT

O(3) = R : Rkl ∈ R;RT = 1

Rotations , φ , around the x− , y− , and z−axis , are represented as

Rx =

⎛⎜⎜⎜⎜⎝
1 0 0

0 cosφ sinφ

0 −sinφ cosφ

⎞⎟⎟⎟⎟⎠

Ry =

⎛⎜⎜⎜⎜⎝
cosφ 0 −sinφ

0 1 0

sinφ 0 cosφ

⎞⎟⎟⎟⎟⎠

Rz =

⎛⎜⎜⎜⎜⎝
cosφ sinφ 0

−sinφ cosφ 0

0 0 1

⎞⎟⎟⎟⎟⎠
Rotations around an axis −→n constitute a subgroup

R−→n (φ1)R−→n (φ2) = R−→n (φ1 +φ2)

which follows from

cosφ1cosφ2− sinφ1sinφ2 = cos(φ1 +φ2)

cosφ1sinφ2 + sinφ1cosφ2 = sin(φ1 +φ2)

Such rotations about the same axis commute with each other and they constitute an Abelian sub-
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group. In general, rotations around different axes will not commute.

Lorentz Transformation. A Lorentz transformation of a 4-vector xμ = ( x0, −→x ) is in anal-

ogy with Eq. 13.3 given by

xμ −→ xμ
′
= Λμ

ν xν

where

(x
′
)2 = x

′μ
x
′
μ = xμxμ = x2

implies

Λμ
αxνΛα

μ xμxμ = gμ
ν xμxμ

Therefore,

Λμ
αΛα

μ = gμ
ν

Implying

(Λ−1)
μ
ν = Λμ

ν

The Lorentz group may be interpreted as the set of all 4 × 4 matrices where the inverse is

equal to the transpose.

L = {O(1,3) = Λ;Λμ
ν ∈ R;ΛT = Λ−1}

Poincare Group. This is a group of Minkowski spacetime isometries. It is a ten - gener-

ator non-Abelian Lie group. As noted above, a Minkowski spacetime isometry has the property

that the interval between events is left invariant. In Minkowski space, ignoring the effects of
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gravity, there are 10 degrees of freedom of the isometries, which are

Poincare Symmetry. This is the full symmetry of special relativity. It includes

(1) Translations or displacements in time and space , P, form an Abelian Lie group of

translations in spacetime

(2) Rotations in space , from a non-Abelian Lie group of 3-dimensional rotations J

(3) Boosts, transfromations connectiong two uniformly moving bodies, K

The symmetries J and K form the Lorentz group. The semi-product of the translation

group J and the Lorentz group form the Poincare group. The Poincare group is the group of

Minkowski spacetime isometries. It is a 10-dimenssional non-compact Lie group. The Abelian

group of translations is a normal subgroup, while the Lorentz group is also a sub-group, the

stabilizer of the origin. The Poincare group is the semi-product of the translations and Lorentz

group

R1,3 �O(1,3)

with group multiplication

(α, f ).(βg) = (α + f .β , f .g)
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CHAPTER XVI

ADVANCED QUANTUM MECHANICS

16.1 Feynman Propagators

The propagator gives the probability amplitude for a particle to travel from one place,

(x, t) to another (x
′
, t
′
) in a given time. In non-relativistic quantum mechanics, it is the Green’s

function for the Schrodinger equation,[10], [36]. If a system has a Hamiltonian, H, the propaga-

tor function is expressed as

G(x, t;x
′
, t
′
) =

1

ih̄
Θ(t− t

′
)K(x, t;x

′
t
′
)

where Θ(t − t
′
) is the Heaviside step function and K(x, t,x

′
, t
′
) is the kernel of the differential

operator, which is the propagator, This function satisfies

(ih̄
∂
∂ t
−H)G(x, t;x

′
t
′
) = δ (x− x

′
)(t− t

′
)

where δ (x− x
′
)(t− t

′
) is the Dirac delta function. This is equation is simply the definition of our

Green function for our operator. Note that

ih̄
∂
∂ t

= H

is the time-dependent Schrodinger equation. K(x, t;x
′
, t
′
) can also be written as

K(x, t;x
′
, t
′
) =< x|Û(t, t

′
)|x′ >

where Û(t, t
′
) is the unitary time evolution operator from a state at time t to a state at time t

′
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Û(t, t
′
) = e

i
h̄ iH(t−t

′
)

We can also apply the Lagrangian and obtain a path integral.

For the Lagrangian, L, and a parametrized distance function D[q(t)], with boundary condi-

tions q(t) = x and q(t
′
) = x

′
, the quantum mechanical propagator is

K(x, t;x
′
, t
′
) =

ˆ
exp{ i

h̄

ˆ t
′

t
L(q̇,q, t)dt}D[q(t)]

The propagator lets us find the state of a system, given an initial state and a time interval. The

new state is given by

ψ(x, t) =
ˆ ∞

−∞
ψ(x

′
, t
′
)K(x, t;x

′
, t
′
)dx

′

If K(x, t;x
′
, t
′
) depends only on the difference x− x

′
, then we have a convolution of the initial state

and propagator.

Next, we will compute the simplest case; the propagator for a one dimensional particle,

with Hamiltonian, H

H =
p̂2

2m

Since the system is time-independent, we will set t
′
= 0, and therefore

ˆU(t) = Û(t,0) = e−
itH
h̄

Hence,

K(x,x
′
, t) =< x|e− it p̂2

2mh̄ |x′ >

Inserting a momentum identity operator, we obtain
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K(x,x
′
, t) =

ˆ
d p < x|e− it p̂2

2mh̄ |p >< p|x′ >

By applying eigenfunction-eigenvalue property, we get

K(x,x
′
, t) =

ˆ
d pe−

it p2

2mh̄ < x|p >< p|x′ >

Since <x|p >< p|x′ >= p∗(x′)p(x) = e
ip(x−x

′
)

h̄ , since these are eigenfunctions.

K(x,x
′
, t) =

ˆ
d pe−

it p2

2mh̄
1

2π h̄
e

i(p(x−x
′
)

h̄

Therefore

K(x,x
′
, t) =

ˆ
d p

2π h̄
e

i
h̄{p(x−x

′
)− p2t

2m )

Integrating, we get

K(x,x
′
, t) =

√
(

m
2π h̄t

)e
i
h̄

m(x−x
′
)2

2t

Next, we compute the path integral for a particle moving in one dimension. The Hamiltonian H

now has two components

H =
p2

2m
+V (x)

As before, the Hamiltonian is time independent and we get the unitary operator and propagator as

U(t,0) = e−
iHt
h̄

K(x,x
′
, t) =< x|U(t)|x′ >
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We next break up the time interval t into N number of smaller intervals, of duration ε such that

ε =
t
N

The unitary operator becomes

U(t) =U(ε)N

and the time evolution operator for time ε becomes

U(ε) = e−iε T+V
h̄

Taylor expanding

U(ε) = 1− iε
h̄
(T +V )+O(ε2) = e−

−iεT
h̄ e−

iεV
h̄ +O(ε2)

Raising both sides to the power of N

U(t) = (e−
iεT
h̄ e−

iεV
h̄ )N +O(

1

N
)

Therefore

K(x,x
′
, t) = limN→∞ < x|(e− iεT

h̄ e−
iεV
h̄ )N |x′ >

We have N−1 resolutions of identity. Let us compute one of them in the momentum space,

< x j+1|e− iεT
h̄ e−

iεV
h̄ |x j >=

ˆ
d p < x j+1|e−

iε p̂2

2mh̄ |p >< p|e− iεV (x̂)
h̄ |x j >

The operators x̂ and p̂ act on their own eigenstates as before for the free particle computation, we

get
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ˆ
d p

2π h̄
e{

i
h̄ (− ε p2

2m +p(x j+1−x j)−εV (x j)}=
√ m

2πiε h̄ e{
i
h̄ [m

(x j+1−x j)
2

2ε −εV (x j)]}

Hence we get a product of exponentials

K(x,x
′
, t) = limN→∞(

m
2πih̄ε

)
N
2

ˆ
dx1......dxN−1e{

iε
h̄ ∑N−1

j=0 [m
(x j+1−x j)

2

2ε2 −V (x j)]}

16.2 Second Quantization

First quantization is the quantization of particles due to the commutation relation between

position and momentum, that is

[x̂, p̂] = ih̄

First quantization refers to using eigenvalues and eigenfucntions to solve the Schrodinger equa-

tion. Second quantization refers to the situation where the number of particles vary, such as an

electromagnetic field, where the number of photons vary. Here, the quantized field Ψ(r) is ex-

pressed via a different commutation relation

[Ψ(r),Ψ(r
′
)] = δ (r− r

′
)

Here, we introduce a formalism that deals with many interacting particles. No new theory is

introduced, just a new formalism.

(1) We deploy the symmetry and anti-symmetry properties for bosons and fermions

Ψ(r1,r2, , ......,rn) = νΨ(r2,r1, ......,rn)

ν = 1 for bosons and -1 for fermions. Ψ is thescalar field function, not to be confused with ψ , the

wave function
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(2) If we imagine filling up the states α1, ......,αn, we obtain

Ψα1,......,αn(r1, ......,rn) =
1√
n!

∑
n

νnφα1
(r1)......φαn(rn)

where the sum is over the number of permutations. N ia positive integer.

(3) The equation of state is given by

Ψα1,......,αn(r1, ......,rn) = ζ |α1, ......,αn >

One needs to think of the αi’s as fill -up states.

(3) Computations are done by deploying the creation and annihilation operators as in

Appendix O. We construct a Hilbert space H ⊗N
ν of N identical particles, where ν = 1 for bosons

and -1 for fermions. The vacuum state H 0 is

H 0 = λ |φ(0)>;λ ∈ C

where |φ(0)>= |0 > is a unit vector. The elements |φ > in the space F take the form

φ >= |φ(0), ......,φ(n)>,.....}= {|φ(n)>}n

The Fock space F where these state vectors exist is defined as

Fν(H ) = {|φ >∈F ;< φ |φ >< ∞}

Properties of the Foch space

(1) The Foch space is generated by |0 >

(2) Which is acted on by the creation operator, a∗|φ >

a∗(φ)|φ1, ......,φn >=
√

n+1|φ1, ......,φn >

341



and the annihilation operator a|φ > defined by

a|φ >= (a∗|φ >)∗

the asterisk * is the Hermitian conjugate.

(3) Occupation number representation Given a basis {|φi >} of one-particle space H , the

basis in the Foch space is

|n1, .....nr >

nr = 0,1,2..... for bosons, nr = 0,1 for fermions

(4) Scalar multiplication and addition

|φ >+|ψ >= {|φ >+|ψ >}n

(5) Inner product on the space F

< φ |ψ >=
∞

∑
n=0

< φ |ψ >

where < φ(n)|ψ(n)> is an inner product in H ⊗.

If A(n) is an observable for n particles, it acts on the Fock space as

A|φ >=
∞

∑
n=0

A(n)|φ(n)>

The particle number operator N is defined as

N|φ >=
∞

∑
N=0

n|φ(n)>

Formation of States from the Vacuum. All states of n independent particles can be obtained by

successive applications of the creation operators on the vacuum.
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1√
n

a∗(φ1)......a∗φn)|0 >= |φ1......φn >

Such states are typical of a scattering process, where have a determined number of particles.

For superposition of n particles

|φ >= e−
1
2<φ |φ>

∞

∑
n=0

[a∗(φ)]n

n!
|0 >

In terms of the creation and annihilation operators, the particle number operator N is

N = ∑
r

a∗ (ψr)a(ψr)

If the particle spin is σ and the particle density in X is

n(X) = ∑
σ

n(X ,σ)

then the density of particles with spin σ is

n(X ,σ) = a∗(X ,σ)a(X ,σ)

If Ek is the kinetic energy of free particles, the Hamiltonian H is

∑
kσ

Eka∗kσ akσ

k represents the configuration space. The momentum P of free particles

P = ∑
kσ

h̄ka∗kσ akσ

Consider an operator D acting on a two particle space H ⊗H

D|φ1, ......,φn >=
n

∑
i< j

Di j|φ1, ......, ,φn >
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We express D in terms of the creation and annihilation operators

D =
1

2
∑

r1r2s1s2

< r1r2|D|s1s2 > a∗r1
a∗r2

as1
as2

Consider a two-body potential V (x1− x2) which is invariant under translations and independent of

spin

< x1σ1,x2σ2|V |x′1σ1,x
′
2σ2 >=V (x1− x2)δ (x1− x

′
1)δ (x2− x

′
2)δσ1

δσ2

Since in the basis |Xσ >, for a one particle

V =

ˆ
dXV (X)n(X)

and in the basis of plane waves |kσ >

Ṽ (k) =
ˆ

dXe−ikXV (X)

V =
1

2
{
ˆ

dx
ˆ

dx2 ∑
σ1σ2

V (x1− x2)}a∗(x1,σ1)a∗(x2,σ2)a(x1,σ1)a(x2,σ2)

When expressed in the plane wave basis |kσ >, the momentum representation is best understood

via Feynman diagrams as in Figure 16.1 below;

We obtain

< kσ1,kσ2|V 1k1σ1
′
,kσ2

>
′
= δσ1,σ

′
2
δσ2σ ′2

1

L3 ∑
k

ṼL(k)δk1,k
′
1+kδk2,k

′
2

where

ṼL =

ˆ
dXe−ikXV (X)
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Figure 16.1: Feynman diagram, two particle interaction

Therefore

V =
1

2L3 ∑
k1k2k

∑
σ1σ2

ṼL(k)a∗(k1+k)σ1
a∗(k2−k)σ2

ak2σ2
ak1σ1

16.3 Lie Groups in Quantum Mechanics

Lie groups properties

(1) structure - algebraic - the Lie group, with the usual identity, inverse and associativity

(2) analyticity - smoothness- differentiability - manifold - this means that the components

of a matrix in the group can vary smoothly over a field, either C or R

(3) accompanied by a Lie algebra

A Lie algebra is a vector space over a field endowed with a Lie bracket operation, F ×
F −→ F . Let X and Y be smooth vector fields on a manifold, M. The Lie bracket [X ,Y ] of X and Y

is the vector field which acts on a function f ∈ F to give

[X ,Y ] f = [XY −Y X ] f

Lie brackets satisfy;

(a) Bilinearity
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[aX +bY,Z] = a[X ,Z]+b[Y,Z]

[Z,aX +bY ] = a[Z,X ]+b[Z,Y ]

for a,b ∈ F .

(b)The Jacobi Identity

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

and

(c) Skew-symmetry

[X ,Y ] =−[Y,X ]

The cross product is a Lie bracket for the real space R3. The Lie algebra is usually written in

lower case Fraktur.

Example 1.

General Linear Group of rank n, GLn(R). Matrix multiplication is the group operation,

matrix inversions gives the inverse elements, and the identity matrix gives the neutral element.

Example 2. Special Orthogonal Group, SO2. These are rotations in the two dimensional

space, R2. These are orthogonal matrices with determinant 1;

⎛⎜⎝a −b

b a

⎞⎟⎠
where

a2 +b2 = 1
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Example 3. Unitary matrices, U(n), over C. These are defined by

A∗A† = A† ∗A = I

where A† is the Hermitian(conjugate transpose).

Let G be a Lie group. Let x(t) be a smooth curve in G passing through the unit element 1

of G such that

x(0) = 1

Let T (G) be the tangent space of G at 1, that is, all matrices of the form

x
′
(0) = 1

Then T (G) is the Lie algebra of G and a vector space over R. Let y(t) = x(kt),k ∈ R. Then

y
′
(0) = kx

′
(0) = k ∈ R

So T (G) is closed under multiplication. Let z(t) = x(t)y(t); then

z
′
(0) = x(0)y

′
(0)+ x

′
(0)y(0) = k1.1+1.k2 = l;k1,k2, l ∈ R

Hence T (G) is closed under addition. Lie algebras arose from considering elements of G close to

1. Suppose ε is very small, then

x(ε)≈ 1+ εx
′
(0)

x(ε) is known as the infinitesimal generator of G. Let n be a large integer and t ∈ R. Settting ε=

t
n , we obtain
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x(ε)n ≈ (1+
tx
′
(0)

n
)n ≈ etx

′
(0)

Let x
′
(0) = v be a finite element of T (G). Then we have a map R×T (G)�−→G

(t,v) �−→ etv

Therefore, for any Lie group G with Lie algebra T(G), we have a mapping

exp : T (G)−→ G

such that exp(0) = 1 and

exp(t1 + t2)v = exp(t1v)exp(t2v)

for t1, t2 ∈ R and v ∈ T (G) .

Returning to SO(2), Differentiating the condition AtA = 1 and substituting A(0) = 1.

⎛⎜⎝a −b

b a

⎞⎟⎠=

⎛⎜⎝−a −b

b −a

⎞⎟⎠=

⎛⎜⎝0 −b

b 0

⎞⎟⎠
So the Lie algebra of SO(2) is so(2), of the form

⎛⎜⎝0 −b

b 0

⎞⎟⎠
We set up a one-to-one correspondence between

⎛⎜⎝a −b

b a

⎞⎟⎠⇐⇒ a+ ib

where a2 +b2 = 1. For so(2), , we have a correspondence with ic. We get a map from R × so(2),
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�−→ ( a+ ib;a = cosθ + isinθ), unit circle.

(t, ib)−→ eibt

Parametrizing the SO(2) group, with ϕ as the rotation angle of the transformation

R(ϕ) =

⎛⎜⎝cosϕ −sinϕ

sinϕ cosϕ

⎞⎟⎠
By using trigonometric identities for the sum of two angles,

R(ϕ1 +ϕ2) = R(ϕ1)R(ϕ2)

The idea behind the infinitesimal generator is that rather than considering the group as a

whole, we consider an infinitesimal transformation around the identity. Then, any finite transfro-

mation can be constructed by repeated application or integration of this infinitesimal transforma-

tion. By Taylor expanding R(ϕ), we obtain

R(ϕ) = R(0)+
dR
dϕ |ϕ=0

+
1

2

d2R
dϕ |ϕ=0

+ ......

By using the matrix R(ϕ) and by setting , X =
dR(ϕ1)

dϕ1 |ϕ1=0
=

⎛⎜⎝0 −1

1 0

⎞⎟⎠, we obtain

dR(ϕ)
dϕ |ϕ=0

= X

and

dR(ϕ)
dϕ

= XR(ϕ)

Differentiating n times
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dnR(ϕ)
dϕn |ϕ=0

= Xn

we obtain

R(ϕ) = 1+Xϕ +
1

2
X2ϕ2 + ......= eϕX

where X0 = I and X2 = I. Therefore,

eϕX = Icosϕ +Xsinϕ =

⎛⎜⎝cosϕ −sinϕ

sinϕ cosϕ

⎞⎟⎠
See section below on matrix rotation.

Operator Form of Generators.

To derive the operator associated with infinitesimal rotations, we expand R(ϕ) to first

order

x
′
= xcosϕ− ysinϕ = x− ydϕ

y
′
= xxinϕ + ycosϕ = xdϕ + y

An arbitrary differential function F(x,y) then transforms as

F(x
′
,y
′
) = F(x− ydϕ,xdϕ + y)

Retaining terms of order dϕ

F(x
′
y
′
) = F(x,y)+(−y

dF
dx

+ x
∂F
∂y

)dϕ

Since F is an arbitrary function, we can associate infinitesimal rotations with the operator
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X = x
∂
∂y
− y

∂
∂x

Turning to SO(3); consider rotation about z-axis by angle ϕ3 , rotation about x-axis by angle ϕ1

and rotation about y-axis by angle ϕ2;

R3(ϕ3)=

⎛⎜⎜⎜⎜⎝
cosϕ3 −sinϕ3 0

sinϕ3 cosϕ3 0

0 0 1

⎞⎟⎟⎟⎟⎠ ,R1(ϕ1)=

⎛⎜⎜⎜⎜⎝
1 0 0

0 cosϕ1 −sinϕ1

0 sinϕ1 cosϕ1

⎞⎟⎟⎟⎟⎠ ,R2(ϕ2)=

⎛⎜⎜⎜⎜⎝
cosϕ2 0 sinϕ2

0 1 0

−sinϕ2 0 cosϕ2

⎞⎟⎟⎟⎟⎠

X3 =
dR3

dϕ3 |ϕ3=0

=

⎛⎜⎜⎜⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎠ ,X1 =
dR1

dϕ1 |ϕ1=0

=

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 −1

0 1 0

⎞⎟⎟⎟⎟⎠ ,X2 =
dR2

dϕ2 |ϕ2=0

=

⎛⎜⎜⎜⎜⎝
0 0 1

0 0 0

−1 0 0

⎞⎟⎟⎟⎟⎠
It is easy to compute the commutator relations

[X1,X2] = X3, [X2,,X3] = X1, [X3,X1] = X2

More generally, using the Levi-Civita symbol

[Xi,Xj] = εi jkXk

Applying the same method for infinitesimal rotations, in SO(3), we obtain the transformation,

expanding to first order

⎛⎜⎜⎜⎜⎝
x
′

y
′

x
′

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
1 −ϕ3 ϕ2

ϕ3 1 −ϕ1

−ϕ2 ϕ1 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z

⎞⎟⎟⎟⎟⎠
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As before, substituting into a differentiable function F(x,y,z) and expanding to first order in ϕi,

we obtain the differential operators

X1 = y
∂
∂ z
− z

∂
∂y

X2 = z
∂
∂x
− x

∂
∂ z

X3 = x
∂
∂y
− y

∂
∂x

Since the angular momentum L is

L = r× p = r× (−ih̄∇)

we obtain the components of L

L1 =−ih̄(y
∂
∂ z
− z

∂
∂y

)

L2 =−ih̄(z
∂
∂x
− x

∂
∂ z

)

L3 =−ih̄(x
∂
∂y
− y

∂
∂x

)

for the x,y,z components of L. Hence the angular momentum relations are

Li =−ih̄Xi; i = 1,2,3

and

[Li,L j] = ih̄εi jkLk
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Therefore, the vector components of the angular momentum operator are associated with the

generators of infinitesimal rotations about the corresponding axis. Also, we have shown that the

exponential map is the bridge between a Lie group and a Lie algebra.

Next, we will review the mathematical background of rotation matices. We begin with

square matrices A and B, then

exp(A+B) = exp(A)expB)

This relation only holds if A commutes with B , that is, AB = BA. Since

I = exp(0) = exp(A+(−A)) = exp(A)exp(−A)

where I is the identity matrix, it follows that

exp(A)−1 = exp(−A)

It can also be easily shown that

exp(A)T = exp(AT )

The Cayley-Hamilton Theory

This theorem states that we can subsitute a square matrix M into its characteristic equa-

tion. If I is the identity and the characteristic equation is

det(M− I) = p0 + p1t + ......+ pntn = 0

Then this condition holds

det(M− I) = p0 + p1M+ ......+ pnMn = 0
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Next, consider a skew-symmetric matrix S,

ST =−S

Define R = exp(S); then

RT = exp(S)T = exp(ST ) = exp(−S) = exp(S)−1 = R−1

Hence R must be an orthogonal matrix. In fact, they are rotational matrices with detR = 1.

The set of all orthogonal matrices of size n with determinant +1 form SO(n), the special orthogo-

nal group. The set of all orthogonal matrices with det +1 or −1 form O(n), the general orthogonal

group; det +1, the rotation matrices, det−1, the reflection matrices. Each component, the rotation

and reflection matrices, are path connected. The curve of orthogonal matrices

exp(tS); t ∈ [0,1]

is a path connecting I(t = 0) and R = exp(S) for t = 1. So R and I must have the same determinant,

which is 1. Therefore, R is a rotation matrix.

Rotation Matrix in Two Dimensions. In this case, the skew-symmetric matrix S is

S = θ

⎛⎜⎝0 −1

1 0

⎞⎟⎠
where θ is a real number. The rotation matrix R is

R = exp(S)

The characteristic equation for S is

det(S− tI) = t2 +θ 2 = 0 =⇒ S2 =−θ 2I
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Substituting these into the power expansion of exp(S)

R = exp(S)

= I +S+
S2

2!
+

S3

3!
+

S4

4!
+

S5

5!
+ ......

= I +S− θ 2

2!
I− θ 2

3!
S+

θ 4

4!
I +

θ 5

5!
−

= (1− θ 2

2!
+

θ 4

4!
− ......)+(1− θ 3

3!
+

θ 4

5!
− ......)S

By defining Ŝ = S
θ

= Icosθ + Ŝ
sinθ

θ

=

⎛⎜⎝cosθ −sinθ

sinθ cosθ

⎞⎟⎠
By a similar method, we obtain the rotation matrix in three dimensions

R = I + Ŝsinθ − Ŝ2(1− cosθ)

16.4 Gauge Transformations

This is a field theory in which the equations of motion remain unchanged after a trans-

formation,[10],[36]. The ability to move from point to point in the coordinate system without a

change in the equation of motion is known as gauge invariance. A local gauge is a coordinate sys-

tem that can change from point to point. A simple example is adding a constant C to the potential.

For example, transform φ by adding C
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φ
′
= φ +C

to a system, with potential φ

F =−∇φ

Then

F =−∇φ
′
=−∇(φ +C) =−∇C

We can also add the gradient of a scalar function, χ , to the vector potential, A. Let A
′
= A+∇χ .

Then, in the case of a magnetic field, B = ∇×A, we get

B = ∇×A
′
= ∇× (A+∇χ) = ∇×A

Therefore, the gauge transformation leaves the magnetic field invariant. However, this gauge

invariance may not be the case for an electric field, E, where

E =−∇φ − ∂A
∂ t

Substituting A
′
,

E =−∇φ − ∂ (A+∇χ)

∂ t
= E− ∂∇χ

∂ t

This does not result in gauge invariance. To remedy the situation, we apply a gauge transforma-

tion to the scalar potential φ ; we apply the transformation

φ
′
= φ +

∂ χ
∂ t

E can be written as
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E =−∇(φ +
∂ χ
∂ t

)− ∂A
∂ t
−∇

∂ χ
∂ t

=−∇φ − ∂A
∂ t

= E

This way, the electric field is invariant. Taking the divergence of E,

∇.E = ∇2φ +
∂∇.A

∂ t

Substituting into Gauss’s Law; ∇.E =−μ0ρ

∇.E = ∇2φ +
∂∇.A

∂ t
=−μ0ρ

where μ0 is the permeability of free space and ρ is the total charge density. Substituting B and A

into Ampere’s Law; ∇×B = μ0J+μ0ε0
∂E
∂ t , where ε0 is the permittivity of free space and J is the

total current density

∇× (∇×A) = μ0J+
1

c2
(

∂
∂ t

(∇φ +
∂
∂ t

∂A
∂ t

))

Since ∇× (∇×A) = ∇(∇.A)−∇.(∇A) ; by re-arranging, we obtain

∇2A+
1

c2

∂ 2A
∂ t2

−∇(∇.A+
1

c2

∂φ
∂ t

) =−μ0J

By setting,

∇.A+
1

c2

∂φ
∂ t

= 0

we arrive at the Lorenz Gauge Condition. Note that what is left

∇2A+
1

c2

∂ 2A
∂ t2

=−μ0J

This is just the wave equation describing a wave travelling at the speed of light.

Yang-Mills Theory
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Let us first recall some basic differential geometry. We attach to each point x on a mani-

fold a vector space Vx, which is the fiber over x. The manifold plus plus fibers at each point is the

vector bundle, E We define a section s to be a function which takes each point on the manifold to

a vector s(x) in the fiber Vx. Put another way, to each point x on the manifold we define the fiber

Vx to be the tangent space TxM. The resulting vector bundle is the tangent bundle, T M. If the

fiber is T ∗x M, then the resulting bundle is the cotangemt bundle, T ∗M. The p
′
th exterior product

of a vector space V is the vectoe space Λp(V ) spanned by vectors of the form v1∧ ......∧ vp. By

convention Λ0(V ) = R, a one-dimensional vector space.

Yang-Mills theory is a gauge theory. We fix a manifold M and consider a vector bundle

E defined over M, known as G-bundle. We choose a fixed group G and a representation V of that

group. Then each fiber Vx is a copy of the representation. The resulting structure is a G-bundle.

A section of a G-bundle assigns to each point x on a manifold a group element g(x) acting on

Vx. The function g(x) is the gauge transformation or gauge symmetry. The group G is the gauge

group. Yang-Mill theories are invariant under such transformations. A simple example is to set

up a Yang-Mills theory for Maxwell’s equations. The steps are

(1) Pick a manifold; in this case; Minkowski space

(2) pick a gauge group; U(1); unit circle in the complex plane; z = eiθ , where |z|= 1

(3) pick a representation of that group to act as a fiber; choose Vx=C

So a gauge transformation is just a function eiθ(x) which acts by multiplication on a sec-

tion s(x). We have defined a G-bundle. Rather than choosing a certain section on the bundle (a

complex function in Minkowski space), we define a connection Dw and introduce the curvature.

The Yang-mills equations contrain the curvature. Given v and w are vector fields, s is a section

and D is a connection; we define the curvature F(v,w) as

F(v,w)s = DvDws−DwDvs−D[v,w]s

where [v,w] is the commutator of the vestor fields. The curvature F [v,w] inputs a section and

outputs another section. In local coordinate basis
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v = v j∂ j.w = wk∂k

F(v,w) = v jwkFjk

[∂ j,∂k] = 0

D0s = 0

We obtain,

Fjk(s) = (D jDk−DkD j)(s)

where D j = D∂ j . Since Dws = w j∂ js+A js, where A j is the connection matrix(Aα
β j), we obtain

Fjks = (∂ jAk−∂kA j +[A j,Ak]s

In electromagnetism, the matrices A j are 1 ×1 matrices, complex numbers, nd the commutator

vanishes, giving

Fjk = ∂ jAk−∂kA j

This is the Faraday tensor for electromagnetism. In the general Yang-Mills theory, the curvature F

plays a role analogous to the Faraday tensor in electromagnetism.

Next, we define a new vector bundle End(E), whose fibers consist of linear maps of the

fibers Vx onto themselves. A section v(x) of End(E) assigns to each point x a linear map v(x)

from Vx into itself. A section of End(E) is a gauge symmetry. Curvature is an End(E) -valued

2-form
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F = Fjk⊗dx∧dxk

Substituting v = v j∂ j and w = wk∂k and since Fjk =−Fk j

Fjk⊗dx∧dxk(v⊗w) =
Fjk(v jwk− vkw j)

2
= F(v,w)

By Leibniz’s rule, if s is a section of E and T is a section of End(E) , then

Dv(T s) = (DvT )(s)+T (Dvs)

Re-arranging

(DvT )(s) = Dv(T s)−T (Dvs) = [Dv,T ]

In coordinate notation,

(D jT )(s) = D j(T s)−T D js

= ∂ j(T s)+A jT s−T ∂ js−TA js

= (∂ jT +[A j,T ])(s)

Now, we can state the first of the Yang-Mills equations

dDF = 0

We have a connection D defined on sections of a G-bundle E. We use the connection to define

(1) curvature F , which is an End(E)- valued-2-form

(2) a connectionn End(E)
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(3) the latter connection is then used to define an exterior covariant derivative dD, which is

applied to F , giving rise to an End(E) valued 3-from, which is required to vanish.

The second Yang-Mills equation is

∗dD ∗F = J

∗ is a Hodge star operator. J is the current, an End(E)- valued-one-form, where

J = Jk⊗dxk

If v and w are one-forms, then the following relations hold

∗(v∧w) = v×w

∗(dv) = curlv

∗d ∗ v = divv

The Yang-Mills equations satisfy gauge symmetry. We will not prove this here.

16.5 The Standard Model of Particle Physics

In order to dive into this area, we need the mathematical background of the Faraday ten-

sor, the electromagnetic field tensor,[40]. This is a mathematical construct that describes the

electromagnetic field in spacetime. The electromagnetic tensor, F, is the exterior derivative of

the electromagnetic four potential, A, a differential 1-form. Hence, it is a differential 2-form, an

anti-symmetric rank 2 tensor field on Minkowski space

F = dA
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Fμν = ∂μAν −∂νAν

The relationsship between the electric, E, magnetic field, B, and the Faraday tensor is

Ei = cF0i

Bi =−1

2
εi jkF jk

where εi jk is the Levi-Civita ymbol. The Faraday tensor Hodge dual is

Gαβ =
1

2
εαβγδ Fγδ

Maxwell’s equations reduce to

∂αFαβ = μ0Jβ

∂[αFβγ] = 0

where Jβ is the 4-current. The first identity leads to the continuity equation, conservation of

charge;

∂αJα = 0

The second identity is the Bianchi identity;

∂γFαβ +∂αFβγ +∂β Fγα = 0

The inner product of the Faraday tensor is Lorentz invariant

362



FμνFμν = 2(B2− E2

c2
)

The equations of electromagnetism can be derived from the action S and applying the Euler La-

grange equations

S =

ˆ
(− 1

4μ0
FμνFμν − JμAμ)dx4

The Lagrangian density is

L =− 1

4μ0
FμνFμν − JμAμ

=− 1

4μ0
(∂μAν −∂νAν)(∂ μAν −∂ νAμ)− JμAν)

=− 1

4μ0
(∂μAν∂ μAν −∂νAμ∂ μAν −∂μAν∂ νAμ +∂νAμ∂ νAμ)− JμAμ

=− 1

2μ0
(∂μAν∂ μAν −∂νAμ∂ μAν)− JμAμ

Substituting into the Euler Lagrangian Equation

∂μ(
∂L

∂ (∂μAν)
)− ∂L

∂Aν
= 0

This becomes

−∂μ
1

μ0
(∂ μAν −∂ νAμ)+ Jν = 0

Hence, we arrive at

∂μFμν = μoJν
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Substituting Gauss’s Law

∇.E =
ρ
ε0

we arrive at

1

c
Ei =−F0i

Substituting Ampere”s Law

∇×B− 1

c2

∂E
∂ t

= μ0J

we arrive at

ε i jkBk =−Fi j

The Lagrangian of quantum electrodynamics incorporates the creation and annihilation of pho-

tons and electrons, where the first term containing the Dirac spinor, ψ , is the Dirac field

L = ψ̄(ih̄cγαDα −mc2)ψ− 1

4μ0
Fαβ Fαβ

where γα are the Dirac matrices.

A brief summary of quantum field theory ensues. A field is a function which depends on

spacetime coordinates.It could be a scalar function, a vector-based or tensor valued function of

any rank. Spinors are a special case of tensors. They are characterized by the way they respond to

rotation of coordinates. Spinor fields describe fields of half-integer spin particles. Spin is useful

for classifying particles. Integer spin particles are associated with bosons(Einstein-Bose statistics)

and half-integer spin particles are associated with fermions(Fermi-Dirac statistics). In classical

fields, the interaction between particles is done via forces. In quantum field theory, the interac-

tion is executed by force carrying virtual particles. The number of virtual particles exchanged is
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proportional to the product of charges in the interaction. Gauge theory is the foundation of the

Standard Model.

A gauge field theory has two main ingredients

(1) gauge invariance - the Lagrangian is invariant

(2) the invariance of the Lagrangian is under a Lie group of local transformations

Quantum Electrodynamics (QED) and U(1)

QED is an Abelian gauge theory with the symmetry group U(1), the circle group, which

has one generator. There is one gauge boson. We begin with the action of the Dirac field

S =

ˆ
dx4 < ψ|ih̄rcγμ∂μ −mc2|ψ >

Then consider the transformation of U(1)

|ψ >−→ eiΛ(x)|ψ >

with the covariant derivative

Dμ = ∂μ + ieAμ

Applying the gauge transformation of the vector potential

Aμ −→ Aμ − 1

e
∂μΛ

The interaction Lagrangian becomes

L = JμAμ =
e
h̄
< ψ|γμ |ψ > Aμ

=⇒ L =< ψ|ih̄cγμDμ −mc|ψ >
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Using the gauge principle and classical electrodynamics, we can write the classic Lagrangian and

the QED Lagrangian

Lclassical ==− 1

4μ0
FμνFμν − JμAμ

LQED =< ψ|ih̄cγμDμ −mc|ψ >−1

4
FμνFμν

, where Fμν=∂μAν - ∂νAμ , is the Faraday tensor. QED describes interactions between charged

particles and ones with dipole moments. However, quantum chromodynamics, QCD, strong

interactions and electroweak interactions are associated with non-Abelian symmetry groups.

SU(3) and the Quark Model; Quantum Chromodynamics, QCD

Hadrons are bound states of quarks that interact strongly via gauge boson exchanges.

Quarks are confined to hadrons and mesons. One cannot isolate a single quark, as energy flux

is formed between two quarks, as they are pulled apart, forming quark anti-quark production.

QCD is a gauge theory of the SU(3) gauge group obtained by taking the color charge to define

a local symmetry, a symmetry that acts independently at each point in space. This requires the

introduction of gauge bosons, called gluons. Since SU(3) has 8 generators, we get 8 gluons and

their fields. QCD is described by the Lagrangian

L = ψ†
i (i(γ

μDμ −mδi j)ψ j− 1

4
Gα

μνGμν
α

The gluon field strength tensor is given by

Gα
μν = ∂μAα

ν −∂νAα
μ +g f abcAb

μAc
ν

Weak Interaction

It is the only interaction capable of changing the flavor of quarks, changing one type of

quark to another. It si propagated by gauge bosons, that have significant masses. There are two
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types of weak interactions

(1) charged current interactions, such as, beta decay

(2) neutral current interaction, such as Z-boson decay

Electroweak Model and Higgs Mechanism

At energies of order of magnitude of 100GeV, electromagnetic and weak interactions be-

come indistinguishable. This interaction is described by the electroweak model. Mathematically,

(a) unification by SU(2)×U(1) group

(b) weak hypercharge is acquired from U(1)

(c) isospin from SU(2)

At lower energy, Higgs, Engler et all, postulated a 0-spin scalar field that forms a conden-

sate in all space, the Higgs field. Spontaneous symmetry breaking occurs when E < 100GeV as

follows

⎛⎜⎝ γ

Z0

⎞⎟⎠=

⎛⎜⎝ cosθW sinθW

−sinθW cosθW

⎞⎟⎠
⎛⎜⎝B0

W 0

⎞⎟⎠
where θW is the weak mixing angle, where sinθ =mW

mZ
. An analogy is refraction of ordinary light

by a prism into different color wavelengths.

In summary:

(1) There are two main types of particles - fermions and bosons

(2) The group

U(1)×SU(2)×SU(3)

has 12 generators - under local symmetry, we get 12 vector gauge fields and their quanta,

gauge bosons; force mediators.

(3) There is one scalar boson, the Higgs boson

(4) Only left handed particles interact weakly. Hence they are massless. They acquire

mass by coupling to the Higgs field. W± bosons and Z-bosons.
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(5) Fermions are matter particles. There are two types; quarks(strongly interacting) and

leptons(bind to the strong force). Another copy of fermions is anti-matter.

(6) Gravity is not included in this model.
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APPENDIX A

EULER LAGRANGE EQUATION

Euler Lagrange Equation - A heuristic approach. Much of physical theory can be formu-

lated in versions of this principle as this provides a general formulation. Newton’s law is stated in

Cartesian coordinates. The formulation of Hamilton’s principle can be stated in other coordinate

systems, such as cylindrical or spherical coordinate systems. Here, as will be seen later, we can

incorporate forces of constraint, which we do not know in advance. This is not possible with the

Newtonian formulation.

Let us consider a simple example; the one-dimensional motion of a single particle with

mass m, whose position is x(t) at time t. Let F(x) be a force acting on the particle, where V (x) is

the scalar potential and

F =−dV
dx

(1.0.1)

Newton’s law in one dimension states

mẍ−F(x, t) = 0 (1.0.2)

Substitute (1.0.1) into (1.0.2); and noting that the particle’s momentum is ṗ = mẋ;

ṗ+
∂V
∂x

= 0 (1.0.3)

Noting that the kinetic energy T = 1
2mẋ2, we can express ṗ as

ṗ =
d
dt
(mẋ) =

d
dt

∂
˙∂ ẋ
(
1

2
mẋ2) =

d
dt

∂T
∂ ẋ

(1.0.4)
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Combining (1.0.3) and (1.0.4);

d
dt
(
∂T
∂ ẋ

)+
∂V
∂x

= 0 (1.0.5)

Note that the kinetic energy T is a function of ẋ and not x, whereas V is a function of x and not ẋ.

We define the Lagrangian, L

L(ẋ,x) = T (ẋ)−V (x)

with the property that ∂L
∂ ẋ = ∂T

∂ ẋ and ∂L
∂x = - ∂V

∂x . Substituting the above identities into (66.5), we

obtain the Euler Lagrange Equation,

d
dt
(
∂L
∂ ẋ

)− ∂L
∂ ẋ

= 0

Notice how it all fits together; the first term is mẍ and the second term is F.
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HAMILTON’S PRINCIPLE

Hamilton’s Principle. The path x(t) that satisfies the Lagrange equation ia also the one

that makes the function S, called the action, a minimum.The action is

S[x(t)] =
ˆ t2

t1
L(x, ẋ)dt

Hamilton’s principle states

δS = δ
ˆ t2

t1
L(x, ẋ)dt = 0

. where L = T - V for the path x(t). This idea can be extended to multiple particles in three di-

mensions. For N particles with poistions r1, ...,rN and masses m1, ...,mN , the kinetic energy of the

system is the sum of the individual kinetic energies;

T =
N

∑
k=1

m ˙
kr2

k
2

The potential energy ,V , depends on the position of all the particles, V(r1, ...,rN). The Lagrangian

is

L(ṙ1, ..., ṙN ,r1, ...,rN) = T (ṙ1, ..., ṙN)−V (r1, ...,rN)

The System Euler Lagrange Equation is

d
dt

∂L(xk, ˙xk)

∂ ẋk
− ∂L(xk, ẋk

∂xk
= 0
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The system Hamilton Principle is

δS = δ
ˆ t2

t1
L(ṙ1, ..., ṙN ,r1, ...,rN)dt = 0
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HAMILTON’S EQUATIONS

Hamilton’s Equations . In Cartesian coordinates, the momentum p is

p = mẍ =
∂
∂ ẋ

(
1

2
mẋ2) =

∂L(x, ẋ)
∂ ẋ

For generalized coordinates qk, it is defined as

p =
∂L(q, q̇)

∂ q̇

This momentum p is known as the canonical conjugate of the corresponding position q. Hence,

ṗ =
d
dt
(
∂L
∂ q̇

)

Therefore, the Euler Lagrange equation

d
dt
(
∂L
∂ q̇

) =
∂L
∂q

can be written as

ṗ =
∂L(q, q̇)

∂q

The problem here is that L is a function of q and q̇ and not p. So, then we associate the function

H(q, p, t) with L(q, q̇, t) by the Hamiltonian relation, which in the one-dimensional case is

H(q, p, t) = q̇p−L(q, q̇, t) (3.0.1)
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If we sum over all (qi, pi),

H(qi, pi, t) = ∑
j

q̇ j p j−L(qiq̇i, t)

Differentiating (3.0.1);

dH = q̇d p+ pdq̇− ∂L
∂ q̇

dq̇− ∂L
∂q

dq− ∂L
∂ t

dt

Since p = ∂L
∂ q̇ ,

dH = q̇d p+ pdq̇− pdq̇− ∂L
∂q

dq− ∂L
∂ t

dt = q̇d p− ∂L
∂q

dq− ∂L
∂ t

dt (3.0.2)

However,

dH =
∂H
∂ p

d p+
∂H
∂q

dq+
∂H
∂ t

dt (3.0.3)

Therefore, equating the coefficients of equations (3.0.2) and (3.0.3), we obtain Hamilton’s one

dimensional equations

∂H
∂ p

= q̇ (3.0.4)

∂H
∂q

=−∂L
∂q

=−ṗ (3.0.5)

∂H
∂ t

=−∂L
∂ t

(3.0.6)

Returning to equation (3.0.3),

dH
dt

=
∂H
∂ p

ṗ+
∂H
∂q

q̇+
∂H
∂ t

(3.0.7)

Substituting equation (3.0.4) and (3.0.5) into (3.0.7), we get

dH
dt

=
∂H
∂ t

Remark. If dH
dt = 0, then H is time independent. Therefore, H is a constant of motion.
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Example. In Cartesian coordinates, pẋ = mẋ2 = 2T, where T is the kinetic energy. For a

conservative system. H= pẋ - L= 2T−L = 2T−(T−V )= T +V , the total energy of a conservative

system.

Poisson Brackets. These are important in the time evolution of functions of the variables

p and q.

Example. A one - dimensional Poisson bracket is defined for two functions A and B that

depend on canonically conjugate variables p and q as

{A,B}= ∂A
∂q

∂B
∂ p
− ∂A

∂ p
∂B
∂q

For a multi-dimensional Poisson Bracket

{A,B}= ∑
j
(

∂A
∂q j

∂B
∂ p j

− ∂A
∂ p j

∂B
∂q j

)

Example. Let us look at the time derivative of a function A (q, p, t);

dA
dt

=
∂A
∂q

q̇+
∂A
∂ p

ṗ+
∂A
∂ t

Applying Hamilton’s one dimensional equations;

dA
dt

=
∂A
∂q

∂H
∂ p
− ∂A

∂ p
∂H
∂q

+
∂A
∂ t

Hence, we get the Evolution Equation

dA
dt

= {A,H}+ ∂A
∂ t

(3.0.8)

Remark. If H is independent of time, let A= q, then q̇ = {q, H} and if A = p , then ṗ = - {p,H }

The Poisson Brackets can be applied to p and q;
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{q, p}= ∂q
∂q

∂ p
∂ p
− ∂q

∂ p
∂ p
∂q

= 1

and {q,q} = 0 . When a pair of variables satisfy the relation {r,s} = 1, r and s are said to be

canonically conjugate. For N variables, {qi,q} = 0 , {pi, p} = 0 and {qi, p} = δ i j

382



APPENDIX D

383



APPENDIX D

DIFFERENTIAL GEOMETRY OF CURVED SURFACES

Differential Geometry of Curved Surfaces. We want to analyze the connection between

ds2 and the curvature of a given manifold. We wll study a two-dimensional curved surface em-

bedded in a three dimensional Euclidean space. Equation of the surface is

z = F(x,y) (4.0.1)

where F is smooth. Let us fix a point P at the origin such that F(0, 0) = 0. Let the tangent plane at

P be the (x,y)-plane. Then (∂F
∂y )|x=y=0 = (∂F

∂x )x=y=0 = 0. Expanding Eq. (69.1) as a Taylor series

with P being the point of expansion

z =
1

2
fi jxix j + ...

where x1 = x,y1 = y and fi j = f ji = ( ∂ 2F
∂xi∂x j )|P .The derivatives fi j determine the degree of curvature

of the surface at the point P. The principal curvatures , κ1 and κ2, of the surface are determined by

the eigenvalues of the matrix fi j.The eigenvalue equation is

| fi j−Λδi j|= 0

where

Λ2−Λ( f11 + f22)+( f11 f22− f12 f21) = 0

Therefore,
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κ1 +κ2 = f11 + f22

and

κ1κ2 = f11 f22− f12 f21 = | fi j|= det( fi j)

If x1 and x2 are measured in the direction of the principal axes, then

fi j =

⎛⎜⎝κ1 0

0 κ2

⎞⎟⎠
then

z =
1

2
κ1(x1)2 +

1

2
κ2(x2)2 + ... (4.0.2)

The Gaussian Curvature, K, of the surface at a point P is defined as

K = κ1κ2 = det( fi j)

K represents an intrinsic property of the surface. For a cylindrical surface, the Gaussian curvature

is 0. κ1 = 1/R and κ2 is 0. Indeed a cylindrical surface can be unrolled onto a flat surface without

gaps or wrinkles. This is not possible for a sphere, which has a Gaussian curvature of 1/R2.

Relation of Gaussian curvature to the Metric. For our surface

ds2 = dxidxi +dz2; i = 1,2 (4.0.3)

Differentiating (4.0.2)

dz = κ1x1dx1 +κ2x2dx2 + ...= fi jxidx j + ...

Substituting above equation into (4.0.3)
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ds2 � dxidxi + fi jxidx j fi jxidx j + ...= (1+ fli fk jxlxk)dxidx j + ...= (δi j + fli fk jxlxk)dxidxk

What we need next are geodesics on the surface,

δ
ˆ B

A
ds = 0

where ds = [(δi j + fli fklxlxk)dxidxk]
1
2 .

Geometrical Interpretation of Curvature. Consider a geodesic polygon ABC...., which is

formed by geodesics AB, BC,... Let α ,β ,γ , denote the interior angles of the polygon, then the ex-

terior angles are denoted by α ′
= π - α , β ′

= π - β , etc. Let ξ i be a vector at the point A, parallel

to the geodesic AB. Let us parallel transport the vector along the geodesic AB, the inclination of

the vector with the geodesic BC will be -β ′
. Continue by parallel transport along the geodesics

BC, CD,..., the vector will finally arrive at the point A, where its inclination with the geodesic

AB will be - (....+γ ′+ β ′
+ α ′

) or 2π - ( α ′
+ β ′

+ γ ′+...). This is the inclination of the transported

vector with the original vector at the point A. When the surface is flat, parallel transporting the

vector along a closed contour brings the vector back to its original inclination, that is

α
′
+β

′
+ γ

′
+ ...= 2π

Therefore,

α +β + γ + ...= (n−2)π

For a curved surface, the transported vector is inclined to the original vector at an angle Δθ , ex-

pressed as

Δθ =

ˆ
KdS
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, dS is the area of the surface. For a curved surface

(α
′
+β

′
+ γ

′
+ ...)+

ˆ
KdS = 2π

Hence,

(α +β + γ + ...) = (n−2)π +

ˆ
KdS

For a geodesic triangle, n= 3,

α +β + γ = π +

ˆ
KdS

For a sphere, K = 1/R2, therefore

α +β + γ = π +(S/R2)

The interesting thing here is that one does not need to leave the surface in order to determine R,

an intrinsic feature.
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FIRST AND SECOND FUNDAMENTAL FORMS

First and Second Fundamental Forms

First Fundamental Form. Denoted by the Roman numeral I. Let X(u,v) be a parametric

surface. Then the inner product of two tangent vectors is

I(aXu+bXv,cXu+dXv)= ac<Xu,Xu >+(ad+bc)<Xu,Xv >+bd <Xv,Xv >=Eac+F(ad+bc)+Gbd

where E, F and G are the coefficients of the first fundamental form. When the first fundamental

form is written with only one argument, it denotes the inner product of the vector with itself.

I(v) =< v,v >= |v|2

In tensor notation,

gi j =

⎛⎜⎝g11 g12

g21 g22

⎞⎟⎠=

⎛⎜⎝E F

F G

⎞⎟⎠
The components of this tensor are calculated as the scalar product of tangent vectors X1 and

X2.The first fundamental form completely describes the metric properties of a surface. The line

element may be expressed as

ds2 = Edu2 +2Fdudv+Gdv2

389



The area element is

dA = |Xu×Xv|dudv =
√

EG−F2dudv

Second Fundamental Form. We begin with a parametric surface S in R3. Let z = f (x,y)

be a smooth surface . Let the plane z = 0 be tangent to the surface at the origin. Then f and its

partial derivatives with respect to x and y vanish at the origin (0,0). The two variable Taylor ex-

pansion of f at (0, 0) is

z = L
x2

2
+Mxy+N

y2

2

where the second fundamental form is written as

II = Ldx2 +2Mdxdy+Ndy2

Let r = r(u,v) be a smooth parametrization of a surface in R3. The unit normal vector n to the

surface is

n =
ru× rv

|ru× rv|

The second fundamental from is as above, where L = ruu.n , M = ruv.n and N = rvv.n In tensor

notation,

II = bαβ duαduβ

where bαβ = rγ
αβ nγ ; where the coefficients of bαβ are the projections of the partial derivatives of r

at that point onto the normal line to S. The Gaussian curvature of a surface is given by

K =
detII
detI

=
LN−M2

EG−F2
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Theorema Egregium of Gauss states that the Gaussian curvature of a surface can be expressed

only in terms of the first fundamental form and its derivatives, so that K is an intrinsic invariant of

surface. Alternative definitions.

K =
< (∇2∇1−∇1∇2)e1,e2 >

detg

where ∇i is the covarient derivative and gi j is the metric tensor. Also, at a point p in R3, the the

Gaussian curvature is given by

K(p) = det(S(p))

where S is the shape operator.

Gauss Map. This maps a surface in R3 to the unit sphere R2. Given a surface X lying in

R3, the Gauss map is a continuous map N: X−→S2, such that N(p) is a unit vector orthogonal at

p, the normal vector to X at p. The Gauss map can be defined globally if and only if the surface

is orientable. The Jacobian determinant of the Gauss map is the Gaussian curvature, and the

differential of the Gauss map is called the shape operator.

¨
R
|Nu×Nv|dudv =

¨
R

K|Xu×Xv|dudv =
¨

R
KdA

Shape Operator. Also known as Weingarten map. This is a type of extrinsic curvature.

We take the differential d f of a Gauss map f . For each point x on the surface S, we look at two

tangent vectors v and w and take the inner product,

< d f (v),w >

noting that both d f (v) and w lie in E3. d f (v) is written as Sx. Note the tangent space at each

point is an inner product space. Properties:

(1) The shape operator is self-adjoint
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< d f (v),w >=< v,d f (w)>

(2) The eigenvalues of Sx are the principal curvatures κ1 and κ2 at x, the eigenvectors are

the corresponding principal directions

(3) The determinant of the shape operator at a point is the Gaussian curvature.

(4) The mean curvature is half the trace of the shape operator. In tensor notation, the

Weingarten map can be expressed as

∂an = Kb
a rb

, where Kab are components of the surface’s curvature tensor. Paraphrasing, the rate of change of

the unit normal vector depends on the curvature of the surface for a given point.

Geodesic Curvature. The geodesic curvature kg at a point of a curve c(t), parametrized by

arc length, on an oriented surface, is defined as

kg = c̈(t).n(t)

where n(t) is the principal unit normal. The geodesic curvature at a point is an intrinsic variant

dependent only on the metric near that point. A unit speed curve on a surface is geodesic if and

only if

(1) the geodesic curvature vanishes on all points on the curve

(2) the acceleration vector, c̈ (t) is normal to the surface

Frenet - Serret Frame. We look at a curve in R3. Let T be the unit tangent vector to the

curve, N the unit normal vector (the derivative of T with respect to arc length) and B, the binor-

mal unit vector (the cross product of T and N). Let κ be the curvature and τ the torsion of the

curve. The formulas are

dT
ds

= κN
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dN
ds

=−κT + τB

dB
ds

=−τN

(1) Torsion can be defined as the rate of change T or B per unit arc length with respect to

N; by convention minus sign with respect to B, (2) The rate of change of N with respect to arc

length depends on the rate of change of T and B. In matrix form;

⎛⎜⎜⎜⎜⎝
T
′

N
′

B
′

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
0 κ 0

−κ 0 τ

0 −τ 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

T

N

B

⎞⎟⎟⎟⎟⎠
Intrinsic and Extrinsic Curvature - This a fundamental idea in differential geometry. As

the name implies, intrinsic curvature can be computed using parameters within a manifold. For

extrinsic curvature, we need to go outside our manifold.

Intrinsic curvature - depends on the metric - examples; Gaussian curvature and Riemann

curvature tensor. When we parallel transport a vector tangent to the path of translation around a

loop, if it fails to return to the same orientation, this is meaured by the intrinsic curvature.

Extrinsic curvature - depends on embedding in a higher dimensional manifold ; curvature

and torsion as in Frenet formulas. Here, we parallel transport a vector normal to the surface , the

difference in the two normal vectors δn , after making a loop , defines the extrinsic curvature δn

= Kδ , for a unit of translation δe around the curve.

Hessian. The Gaussian curvature of a surface at a point p is the determinant of the Hes-

sian matrix of f , where f is the function of two variables. Let S be the surface given by z = f (x,y),

where f : R2→ R is smooth. The first fundamental form of S is:

g(X ,Y ) = (1+(∂X f )2)X2 +2(∂X f )(∂Y f )XY +(1+(∂Y f )2)Y 2
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The second fundamental form is:

h(X ,Y ) =
1√

1+(∂X f )2 +(∂Y f )2
((∂XX f )X2 +2(∂X f )(∂Y f )XY +(∂YY f )Y 2)

The Gaussian curvature of S is, noting that at critical points ∂x f = ∂Y f = 0

K =
det(h)
det(g)

=
(∂X f )(∂Y f )− (∂XY f )2

(1+(∂X f )2 +(∂Y f )2

K = (∂X f )(∂Y f )− (∂XY f )2 = det(Hess f )
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BASICS OF SPHERICAL HARMONICS

Basics of Spherical Harmonics. Spherical harmonics are a complete set of orthogonal

functions on the sphere. They are organized by spatial angular frequency.They are also a basis

functions for SO(3), the group of rotations in three dimensions. They take their simplest form

in Cartesian coordinates, where they can be defined as homogeneous polynomials of degree l in

(x,y,z) and obey Laplace’s equation. In any spherically symmetric system, energy eigenstates can

be given by wave functions of the form

ψ(
−→
x) = R(r)Y m

l (θ ,φ)

where −→x is the position vector. It is best to understand spherical harmonics as deployed in orbital

angular momentum in quantum mechanics. The orbital angular momentum operator is defined as

−→
L =−→x ×−→p

where −→p is the momentum operator . The commutation relation among the components of the

angular momentum is

[Li,L j] = ih̄εi jkLk

We now use the quantum formalism to find the spherical harmonics

Y l
m(θ ,ϕ) =< θ ,ϕ|l,m >
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Here we are deploying the bra - ket notation. In quantum mechanics,

ĤY m
l (θ ,φ) = ElY m

i (θ ,φ)

where El = h̄2

2I l(l+1) , l and m are quantum numbers where l= 0,1,2,3,4,... and m = − j, ...,+ j;

where m = 2l+1

Anatomy of spherical harmonic: Ym
l (θ ,φ) = smN

|m|
l P

|m|
l (cosθ)eimφ

(1) By convention; sm = -1 for positive odd m , +1 otherwise

(2) Normalization constant
´ 2π

0

´ π
0 (Ym

l )∗Ym
l sinθdθdφ = 1

(3) P
|m|
l = Legendre polynomial

Let us look at the first few simple harmonics. These can be looked up in tables.

Y0
0 =

√
1

4π - this is a constant , no nodes, equally likely to see particle in any direction

Y0
1 =

√
3

4π cos θ , nodes at θ = ± π
2 , we get a dumbell shaped harmonic

Y±1
1 = ∓

√
3

8π sinθ .e±iφ , when m �= 0, φ appears and it gets more complicated, here we

get nodes at the north and south poles, and we get a bilobed harmonic

Y0
2 =

√
5

16π ( 3cos2θ - 1) , Y±1
2 = ∓

√
15
8π sinθcosθe±iφ , ... ; note double trigonometric

terms, making functions more complicated with multiple nodes
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3 + 1 FOLIATION OF SPACETIME

3 + 1 Foliations of Spacetime.

Let V4 be a smooth 4-dimensional manifold (Lorentzian spacetime). Let the metric g

have signature (−1,1,1,1). A hypersurface in V4 is an embedded submanifold if i is the mapping

i;M3 ↪→V 4

M is spacelike if the induced bilinear form γi j = i∗g is a Riemannian metric on M

M is spacelike if at each point x ∈M , there is a timelike future unit normal vector n. See

Figure G.1 for an illustration.

If X and Y are vector fields tangent to M, we can consider them as vectors in V and de-

compose the directional derivative DX Y into tangential and normal components

DXY = ∇XY + II(X ,Y )n

where ∇ is the Levi Civita Connection of the induced Riemmanian metric on M, II is the second

fundamental form (bilinear form, rank 2 tensor, extrinsic curvature). We know from the definition

of the second fundamental form that

II(X ,Y ) = g(DX ,Y )n

We also know that [X ,Y ], the Lie bracket of X and Y is tangent to M, [X ,Y ] ∈ TM and that II is

a symmetric from II(X ,Y ) = II(Y,X). X =Xi∂i is the shift vector. The lapse function is usually
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Figure G.1: Light cone, with normal vector n

donated as N or α and the time evolution vector field ∂t can be expressed as in Figure G.2 below;

∂t = αn+X

The metric can be expressed in terms of the lapse function and shift vector as

gi j =−α2dt2 + γi j(dxi +Xidt)(dxi +X jdt)

The second fundamental form II is given by

IIi j = II(∂i∂ j) =
1

2
α−1(∂tγi j−LX γi j)

where L X γ i j = ∇iX j + ∇ jX i is the Lie derivative in M of the spatial metric γin the direction X ∈
TM. Thus, we obtain the evolution of the spatial metric

∂tγi j = 2αIIi j +LXγi j
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Figure G.2: Hypersurface; relation between time evolution ∂y, normal vector, shift vector and

lapse function. Σ(t) is hypersurface at time t.
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GEODESICS

Geodesics. Consider a timelike curve C with a parametric equation xa = xa(u). Then, the

inetrval s, between two points, P1 and P2 on C is given by

s =
ˆ P2

P1

(gab
dxa

du
dxb

du
)

1
2 du (8.0.1)

The timelike metric geodesic is stationary under small variations of s, that vanish at endpoints.

By applying the Euler Lagrange equation, we get

ẍa +Γa
bcẋbẋc = (s̈/ṡ)ẋa (8.0.2)

where dot differentiation is with respect to u. If we choose u such that

u = αs+β

where α and β are constants, then the right hand side of (8.0.2) vanishes. This is an affine con-

nection. When u = s, we get from (73.1) that

gab
dxa

ds
dxb

ds
= 1

Similar results apply to spacelike geodesics. Geodesics for which the distance between any two

points is zero are called null geodesics. Here, the right hand side of (8.0.2) is also zero but
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Figure H.1: Lightcone

gab
dxa

du
dxb

du
= 0

For spacelike coordinates,

gab
dxa

du
dxb

du
=−1

A null geodesic is the path that a massless particle, such as a photon, follows. It’s interval in 4-

dimensional spacetime is equal to zero. It has no proper time attached to it. They are the edges of

a light cone on a lightcone diagram, projecting at 45 degrees to the horizontal. See Figure as an

illustration. It is also known as the light-like geodesic.

A null geodesic is a geodesic, whose tangent vector is a light-like vector everywhere on

the geodesic, that is, x(s) is a geodesic and

gμν .
dxμ

ds
dxν

dx
= 0
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for all s, where s is an affine parameter along the curve.

Timelike interval. For two events separated by a timelike interval, sufficient time passes

between them that there could be a cause-effect relationship. This holds true for particles travel-

ling at less than the speed of light.

Spacelike interval. When two intervals are separated by a spacelike interval, there is no

time between the two occurrences, and hence no causal relationship. The events are not located in

each other’s future or past cone.
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REVIEW OF NEWTONIAN THEORY

Review of Newtonian Theory. A free falling particle has the equation of motion in an

inertial coordinate system,

mi
d2x
dt2

= mpg(x, t)

where g is the gravitational field constant, mi, the inertial mass and mp, the passive gravitational

mass. Due to equality of inertial and gravitational mass, principle of equivalence, mi = mp.and

hence

d2x
dt2

= g(x, t)

This means that all particles fall with the same accelertaion in a gravitational field. Next, we

move to a non-inertial coordinate system

x̃ = x+b(t)

where

d2x̃
dt2

= g̃(x, t) = g(x, t)− b̈(t)

Here, we need to think of Einstein’s Gendaken - or thought experiments with “ lifts”. Next, we

analyze the motion of two neighbouring particles with position x and x̃ = x+N, then
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d2x
dt2

= g(x, t)

and,

d2x̃
dt2

= g(x+N, t)

So, subtracting and Taylor expanding,

d2N
dt2

= (N.grad)g+O(N2)

In tensor notation,

d2N
dt2

= (∂ jgi)Nj

The Tidal Tensor is

Ei j =−∂ jgi

Hence, we obtain the Geodesic Deviation Equation is

d2N
dt2

+Ei jNJ = 0

Since the gravitational field is consevative , ∇× g = 0, therefore, we can introduce the gravita-

tional potential U,

g =−∇U

or

gi =−∂iU
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Therefore, the tidal tensor can be thought of as the Hessian of the gravitational potential

Ei j = E ji = ∂i∂ jU

Poisson’s Equation states

Eii = 4πGρ

This is the field equation of Newtonian gravity . Note that since Ei j= -∂ ji, we have

∂kEi j = ∂iEk j

or

Ei[ j,k] = 0

This is the Bianchi identity.

Weak Equivalence Principle. All freely falling bodies, with same initial velocities, follow

the same path, if there are negligible mass - mass interactions.

Strong Equivalence Principle. Inertial mass is the same as gravitational mass.
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APPENDIX J

RETARDED AND ADVANCED POTENTIALS

Retarded and Advanced Potentials.

We begin with a light signal emitted from position r
′
. This would reach position r at time

t. We define the retarded time as

tr = t− r− r
′

c

The advanced time is defined as

ta = t +
r− r

′

c

The time-dependent Maxwell’s equations are

�
2φ =− ρ

ε0

and

�
2A =−μ0 j

where � is the d’Alembertian opertor

∇2− 1

c2

∂ 2

∂ t2

, φ is scalar potential, A is the general plane wave vector field
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A = A0ei(kr−ωt)

Green’s Function. Let D(x) be a linear differential operator. Let Ω be a subset of Rn. A

Green’s function at G = G(x,s) at the point s ∈ Ω is any solution of the form

DG(s,x) = δ (s− x)

where δ is the Dirac delta function.

Motivation. Multiplying the above identity by a function f (s) and integrating with respect

to s and since D acts only on x, we get

ˆ
DG(x,s) f (s)ds = D

ˆ
G(x,s) f (s)ds =

ˆ
δ (s− x) f (s)ds = f (x)

Set
´

G(x,s) f (s)ds = u(x), then

Du(x) = f (x)

Let us analyze Poisson’s equation

∇2u = v

where v = v(r) is the source function. The potential u(r) satsifies the boundary condition u(r)−→
0 as |r| −→∞. This is a linear partial differential equation. The Green’s function G(r,r

′
) is a

potential which satisfies these boundary conditions, generated by a unit amplitude point source

located at r
′
. Therefore,

∇2G(r,r
′
) = δ (r− r

′
)

The source function v(r) can be expressed as a weighted sum of point sources
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v(r) =
ˆ

δ (r− r
′
)v(r

′
)d3r

′

The generated potential u(r) is the weighted sum of point source driven potentials i.e. Green’s

functions

u(r) =
ˆ

G(r,r
′
)v(r,r

′
)d3(r

′
)

Since the Green’s function for Poisson’s equation is

G(r,r
′
) =− 1

4π
1

|r− r|′

This the point source driven potential. It is spherically symmetric about the source, and decreases

smoothly with increasing distance from the source. Therefore, the general solution for Poisson’s

equation is

u(r) =− 1

4π

ˆ
v(r

′
)

|r− r|′ d
3r
′

Next, we need to solve the wave equation

(∇2− 1

c2

∂
∂ t2

)u = v

where v(r, t) is a time-varying source function. The potential u(r, t) satsifies the boundary condi-

tion u(r) −→ 0, as |r| −→∞ and |t |→ ∞. This equation is linear, so a Green’s function method

of solution is again appropriate. The Green’s function G(r,r
′
; t, t

′
) is the potential generated by a

point impulse located at a position r
′
and applied at time t

′
. Therefore,

(∇2− 1

c2

∂
∂ t2

)G(r,r
′
; t, t

′
) = δ (r− r

′
)δ (t− t

′
)

Again, a general source v(r, t) can be built from a weighted sum of point impulses
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v(r, t) =
¨

δ (r− r
′
)δ (t− t

′
)v(r

′
, t
′
)d3r

′
dt
′

The generated potential can be written as the weighted sum of point impulse driven potentials

u(r, t) =
¨

G(r,r
′
, t, t

′
)v(r

′
, t
′
)d3r

′
dt
′

For Green’s function, it can be shown that

G(r,r
′
; t, t

′
) =− 1

4π
δ (t− t

′ − |r−r
′ |

c
|r− r′ |

Returning to the time- dependent Maxwell equation �
2φ = -

ρ
ε0

, where

φ(r, t) =
1

4πε0

¨ ρ(r′ , t− r−r
′

c }
|r− r′ | d3r

′

Every charge in the universe is continuously performing this integral. The information that the

charge receives from the rest of the universe is carried by spherical waves at the speed of light.

So the further the charge, the more out OF date the information, so our charge uses the retarded

charge density, as in our equation. However, we can also look at advanced time

ta = t +
|r− r

′ |
c

Here, Green’s function corresponding to the advanced potential solution is

φ(r, t) =
ρ(r′ , t ′)

4πε0

δ (t− t
′
+ |r−r|′

c )

|r− r′ |

This says that a charge density at position r
′
and t

′
emits a spherical wave in the scalar potential

which propagates back in time. The d’Alembertain equation �
2φ = − ρ

ε0
is invariant under trans-

formation t−→ -t and x−→ -x. However, Green’s function is asymmetric in time. So, then we use

the completely symmetric Green’s function
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φ(r, t) =
ρ(r′ , t ′)

4πε0

1

2
(
δ (t− t

′ − |r−r
′ |

c
|r− r′ | +

δ (t− t
′
+ |r−r

′ |
c

|r− r′ | )

In other words, a charge emits half of its waves running forward in time (retarded waves) and the

other half running backwards in time (advanced waves). Consider a charge interacting with the

rest of the universe. Assume that the rest of the universe is a perfect reflector of advanced waves

and a perfect absorber of retarded waves. The waves emitted by the charge can be written as

F =
1

2
(retarded)+

1

2
(advanced)

and the response of the rest of the universe is written as

R =
1

2
(retarded)− 1

2
(advanced)

If we add F +R = retarded, which fits with everyday experience.
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FRIEDMANN EQUATIONS FOR FLAT SPACETIME

Deriving Friedmann Equations for Flat Spacetime. To simplify the derivation, it is as-

sumed that space is flat (not spacetime), a zero cosmological constant. and a perfect fluid. We

also make the following assumptions;

Cosmological constant, Λ. Astronomical observations tell us that this constant is close to

0. To simplify Einstein’s equation, we will set this to 0.

Isotropy. The cosmic microwave background, CMB looks almost the same in every direc-

tion.

Homogeneity. The stress-energy tensor Tμν is the same at every point in space. This

assumption holds only at large scales.

Spatial flatness. This means that locally, space is Euclidean. This is useful only if the

time coordinates of two points are equal. If space is expanding or contracting, the spatial distance

function will depend upon time.. We assume that space is completely fat at every point of time,

but we will allow the distance function to change over time. For every point of spacetime, gμν is

the Minkowski metric, and varies smoothly within a neighbourhood of a point. The Minkowski

metric has the sign (−1,1,1,1);

ds2 =−dt2 +dx2 +dy2 +dz2

However, since space is expanding or contracting, to allow for this, we introduce a scale factor

a(t);
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ds2 =−dt2 +a2(t)(dx2 +dy2 +dz2)

Hence g00 = -1 , g11 = g22 = g33= a2(t)

Stress-Energy Tensor, Tμν . The modern universe is so empty that we can model it as a

perfect fluid

T μν = pgμν +(p+ρ)uμuν

where p is the pressure, ρ is the mass energy density and uμ= ( 1,0,0,0).

Hence, T00 = ρ and T11 = T22 = T33 = p
a2

We need the components of the covariant form; T00 = g0kg0λ Tkλ = g00g00T00 = ρ and

T11= T22= T33 = g3kg3λ Tkλ = g33g33T33 = a2 p

The Ricci scalar is defined by contraction of the mixed Ricci tensor; R = Rμ
μ = R0

0 + R1
1

+ R2
2 + R3

3

Only 3 of the 64 partial derivatives of the metric tensor are non-zero; ∂g11

∂x0 = ∂g22

∂x0 = ∂g33

∂x0 =

2a(t)ȧ(t)

Only 9 of the 64 Christoffel symbols are non-zero; Γ0
11 = Γ0

22 = Γ0
33 = a(t)ȧ(t) and Γ1

01 =

Γ1
01 = Γ2

20 = Γ2
02 = Γ3

03 = Γ3
30 =

˙a(t)
a(t)

For the Ricci tensor;
∂Γ0

ii
∂ t = aä(t) + ȧ2(t) and

∂Γi
0i

∂ t =
∂Γi

i0
∂ t = ä

a - ( ȧ
a)2, R 00 = -3 ä

a and Rii = aä

+ 2ȧ2, i = 1, 2, 3

The mixed Ricci scalar R0
0= g0kRok = 3 ä

a and R1
1 = R2

2 = R3
3= g1kR1k = 1

a2 (aä + 2ȧ2) =

ä
a + 2( ȧ

a )2, so the Ricci scalar R is R = Rk
k = 6( ä

a + ( ȧ
a )2)

Friedmann Equations. Substitute the above results into Einstein’s field equations

R00− 1

2
Rg00 = 8πT00

−3
ä
a
− 1

2
6(

ä
a
+(

ȧ
a
)2)(−1) = 8πρ
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3(
ȧ
a
)2 = 8πρ (11.0.1)

This is the first Friedmann equation.

R11− 1

2
Rg11 = 8πT11

aä+2ȧ2− 1

2
6(

ä
a
+(

ȧ
a
)2)a2 = 8πa2 p

−2(
ä
a
)− (

ȧ
a
)2 = 8π p (11.0.2)

Multiply (76.2) by 3 and add to (76.1), we get

3
ä
a
=−4π(ρ +3p)

This is the second Friedmann equation.

419



APPENDIX L

420



APPENDIX L

INTRODUCTION TO QUANTUM MECHANICS

Introduction to Quantum Mechanics.

Bra-Ket Notations. The rule to turn inner products into bracket pairs is

< u,v >=< u|v >

Also the bra - ket pairs are conjugate to each other

< u,v >=< u,v >∗

Two vectors for which

< u|v >= 0

are orthogonal. For the norm

|v|2 =< v|v >

The Schwarz inequality for any pair of vectors u,v reads

|< u,v > | ≤ |u||v|

Le ta = (ai) and b = (bi) be two vectors in a complex dimesnional space, then
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< a|b >= a∗i bi

Consider the complex vector space of functions f (x) and g(x) ∈ C with x ∈ [0,L]

< f ,g >=

ˆ L

0

f ∗(x)g(x)dx

A set of of basis vectors {ei} satisfies

< ei|e j >= δi j

and is orthonormal. An arbirary vector can be written as a linear superposition of basis states

v = αiei

The coefficients are determined by the inner product

< ek|v >=< ek|αiei >= αk < ek|ei >= αk

Therefore,

v = ei < ei|v >

Bras are different objects. They belong to the space V ∗ dual to V. Elements of V ∗ are linear maps

from V to C. If v ∈ V and a linear function φ ∈ V ∗ , such that φ (v) is the action of the function of

the vector v, which is a number, then in braket notation, we have the following replacements

v−→ |v >

φ −→< u|
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φuv−→< u|v >

If kets are viewed as column vectors, then the bras are row vectors. If a = (a1, ...,ai)and b =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

.

.

.

bi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Then,

< a|b >= a∗i bi

Viewed another way;

< u| : |v >−→< u|v >

Any linear map from V to C defines a bra and the corresponding underlying vector . Let v =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

.

.

.

vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. A linear map f (v) acting on a vector v gives a number

f (v) = α∗1 v1 + ...+α∗n vn

The bra vector is the row vector

< α|= (α∗1 , ...,α
∗
n )

and the associated ket vector is

423



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1

.

.

.

αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By construction;

f (v) =< α|v >

The rule to pass from kets to bras is

|v >= α1|a1 >+α2|a2 >←→< v|= α∗1 < a1|+α∗2 < a2|

The ket |ei > is simply called | i > and the orthonormal condition reads

< i, j >= δi j

The expansion of a vector now reads

|v >= |i > αi

The coefficeints are

αk =< k|v >

so that the ket vector is

|v >= |i >< i|v >

Introduction to Operators. Let Ω be an operator in a vector space V . Then

424



Ω : V −→V

Then, if | a > ∈ V , then Ω | a > ∈ V . The operator Ω is linear , then

Ω(|a >+|b >) = Ω|a >+Ω|b >

and

Ω(α|a >) = αΩ|a >

A linear operator on V is also a linear operator on V ∗

Ω : V ∗ −→V

This is written as

< a| −→< a|Ω ∈V ∗

The object < a | is the bra acting on the ket | b > to give the number

< a|Ω|b >

The object

Ω = |a >< b|

is a linear operator on V and V ∗.

Ω|v >≡ |a >< b|v >∼ |a >

since < b|v > is a number.

425



< w|Ω≡< w|a >< b| ∼< b|

since < w|a > is a number.

Operators as Matrices. Consider two vectors expanded in an orthonormal basis | n>

|a >= |n > an

and

|b >= |n > bn

and let | b > be obtained from | a> by the action Ω

Ω|a >= |b >=⇒Ω|n > an = |n > bn

Acting with bra < m | on both sides

< m|Ω|n > an =< m|n > bn = bm

We define the matrix elements

Ωmn =< m|Ω|n >

Therefore,

Ωmnan = bn

This is the matrix version of

Ω|a >= |b >
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We also claim that the operator Ω can be reclaimed from Ωmn

Ω = |m > Ωmn < n|

We can see this if we compute the following matrix

< m
′ |Ω|n′ >= Ωmn < m

′ |m >< n|n′ >= Ωmnδm′mδn′n = Ωm′n′

Identity operator, I. | b> - orthonormal set of basis vectors;

∑
i
|bi >< bk|= δi j

, where <bi|bk> = 0 , i �= k and 1 , when i= k.

Ket vector;

|V >=Vi|bi >=V1|b1 >+V2|b2 >+...+Vn|bn >

, Vi is a complex number. For example,

< b3|V >=< b3|[V1|b1 + ...+Vn|bn]>=< b3|V3|b3 >=V3

That is,

< bi|V >=Vi

and

V =Vi|bi >= |bi >< bi|V >

where the nose to nose > < is 1 or I, the identity.

Matrix representation of an operator with respect to orthonormal basis.

427



Ti j =< vi|T̂ |v j >

where < v j| is the bra , T̂ is the operator and | v j> is the ket. Let us take two orthonormal basis

vectors | vi> and | v2>, where

⎛⎜⎝< v1|T̂ |v1 > < v1|T̂ |v2 >

< v2|T̂ |v1 > < v2|T̂ |v2 >

⎞⎟⎠
where the linear operator T̂ is given by T̂ | v1> = 2 | v1> and T̂ | v2> = 3|v1> - i|v2> . Then,

⎛⎜⎝< v1|2v1|v1 > < v1|(3|v1 >−i|v2 >)

< v2|2|v1 > < v2|(3|v1 >−i|v2 >)

⎞⎟⎠=

⎛⎜⎝2 3

0 −i

⎞⎟⎠
Operator adjoint - adjoint of a matrix.

L̂|A >= |C >

< A|L̂T =<C|

< S|L̂ =< S|L̂|n >< n|=< S|D >< n >= α < n|

where < S | D > is an inner product, a number α .

Bra vector is complex conjugate of ket vector.

< B|C >=<C|B >∗

< B|L̂|A >=< A|L̂T |B >∗
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where L̂ = (L̂T )∗

Bra-kets in action. | α> represents a quantum state. This is a ket vector. We say that a

physical system is in quantum state α , where α is a physical quantity such as spin or momentum.

If we have two distinct quantum states | α1 > and | α2 > , then the following is a possible state of

the system

|ψ >= c1|α1 >+c2|α2 >

where c1 and c2 are complex numbers. The number of linearly independent kets required to

express any other ket is the dimension of a vector space known as the Hilbert space. The bra

vector < β | belongs to a different vector space. It is the dual of the ket vector | β >. We define the

anti linear relation

c1|α1 >+c2|α2 >= c∗1 < α1|+ c∗2 < α2|

The bra is the conjugate of the ket. The bra’s and ket’s can line up back to back < α | β > = a

complex number equal to the value of the inner product of ket | α> and ket | β >. Hence,

< α|β >=< β |α >∗

Let X , the outer product be

|α >< β |

Then the arbitrary ket

X |ψ >= |α >< β ||ψ >=< β |ψ > |α >

The outer product X is an operator in Hilbert space. It acts on ket | ψ > and turns it into another

ket. If we take an operator A and operate on a ket, then
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A|α >=< α|A†

A† is the Hermitian conjugate of the operator A. When A = A†, then A is called a Hermitian

operator.

Hermitian Operator.

< B|L̂|A >=< A|L̂T |B >∗

Compare with

Lmn = L̂T
nm

∗

If L̂ = L̂T , then

< A|L̂|A >=< A|L̂|A >∗

Then all diagonals are real; off diagonals are complex. Compare with L∗mn = LT
nm

Ĉ|A >= λa|A >

, where Ĉ is eigenfunction and λa is eigenvalue. If Ĥ | A > = λa | A >, then eigenvalues are always

real,

< a|Ĥ|a >=< a|λa|a >= λa < a|a >

λa’s are the observables - spin, angular momentum, position, energy etc. Hermitian eigenvalues

are the observables. If Ĥ | a> = λ a| a> and Ĥ | b > = λb | b >, and λa and λb are orthogonal , then

< b|Ĥ|a >= λa < b|a >
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and

< a|Ĥ|b >= λb < a|b >

Then since < b | Ĥ | a > and < a | Ĥ | b> are complex conjugates, then

< b|Ĥ|a >=< a|Ĥ|b >∗

Hermitian eigenvalues are linearly independent and orthogonal;

λb < a|b >= λ ∗a < b|a >∗= λa < a|b >

Therefore,

(λb−λa)< a|b >= 0

Thus,

λa = λbor < a|b >= 0

If λa �= λb , then | a > and | b > are orthonormal. In summary, if H | a> = λa | a> , H | b > = λb | b

> , and λa �= λb , then | a > and | b > are orthonormal.

Position Operator - Physical state of a system - Hilbert Space - infinite dimensional space

- inner product space.

Inner product of two functions

< A|B >=

ˆ d

c
A∗Bdx

Quantum mechanical particle←→ | B > , state vector , is a ket vector

Wave function of a particle ,ψ←→ | B >
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Probabilty of finding a particle at a particular location

ψxψ∗x

where x is the position. How do we pull out of state vector ?

< x|B >= ψx

Properties of position operator : Hermitian

< ψ|x̂|ψ >=

ˆ
ψ∗ψdx

xψx = λψx

(x−λ )ψx = 0

x = λ ;ψx �= 0

Everywhere else , ψx is zero.

Dirac Delta Function - eigenfunction for position operator

δ (x−λ ) = {∞,x=λ
0,x �=λ

Eigenvalue is any value of λ on x- axis, whole continuous spectrum. If λi �= λ j, at λ1, we have δ (

x - λ1); at λ2,we have δ (x- λ2) ; zero everywhere, that is, orthogonal eigenvectors.

ˆ ∞

−∞
δ (x−λ )dx = 1

´ ∞−∞ ψ∗i ψ j dx < ∞ , that is a square integrable function.
´ ∞
−∞ [ δ ( x - λ ) ]2 not a square
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integrable function , that is , does not lie in Hilbert space.

The dirac delta function is

(1) the eigenvalue of position operator

(2) eigenvalues are continuous functions

(3) eigenfunctions not part of Hilbert space.

Momentum Operator.

p̂x =−ih̄
∂
∂x

ψ∗ψ is probabibilty of finding particle at position x. When p̂x operates on a wave func-

tion ψ , it behaves as a Hermitian operaor and < ψ | Ĥ | ψ > must be real.

< ψ| p̂|ψ >=

ˆ ∞

−∞
ψ∗(−ih̄

∂ψ
∂x

)dx =−ih̄
ˆ ∞

−∞
ψ∗dψ

Integrating by parts

−ih̄
ˆ ∞

−∞
ψ∗dψ =−ih̄[ψ∗ψ]∞−∞ +

ˆ ∞

−∞
ψdψ∗

The first term on right hand side vanishes, symmetric function. We are left with an entity that is

its own conjugate. Therefore, it is a real entity. Hence the linear momentum operator is Hermitian

with real eigenvalues and eigenfunctions; orthogonal and complete.

Eigenfunctions of momentum operator. p̂x = -ih̄ ∂
∂x is a Hermitian operator. Therefore,

−ih̄
∂ψ
∂x

= pψ

where p is a constant. Integrating

ˆ
dψ
ψ

=
i
h̄

ˆ
pdx

Therefore,
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ψ = Ae
ip
h̄ x

Hence,

ih̄
∂ψ
∂x

= pψ

So

ˆ ∞

−∞
ψ∗ψdx =

ˆ ∞

−∞
e
−ip

′
h̄ x.e

ip
h̄ xdx =

ˆ ∞

−∞
e

i(p−p
′
)

h̄ xdx

We need Fourier transforms and the Dirac delta function to solve this integral.

Operator Methods in Quantum Mechanics. As a quick summary of the above, in the Dirac

notation, a state vector or wave function, ψ , is represented as a ’ ket ’. Just as we can express any

three-dimensional vector in terms of the basis vectors, r = xe1 + ye2 + ze3, so we can expand any

wavefunction as a superposition of basis state vectors

|ψ|= λ1|ψ1|+λ2|ψ2|+ ...

Alongside the ket, we can define the bra , < ψ |. Together, the bra snd ket, define the scalar prod-

uct

< φ |ψ >=

ˆ +∞

−∞
dxφ∗(x)ψ(x)

from which follows the identity

< φ |ψ >∗=< ψ|φ >

In this formulation, the real space representation of the wavefunction is recovered from the inner

product
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ψ(x) =< x|ψ >

The momentum space wavefunction is obtained from

ψ(p) =< p|ψ >

An operator Â is a mathematical object that maps one state vector, | Â > , into another, | φ > , that

is,

Â|ψ >= |φ >

If a is real and

Â|ψ >= a|ψ >

then | ψ > is said to be an eigenstate or eigenfunction of Â with eigenvalue of a. For any observ-

able A, there is an operator Â which acts on the wavefunction so that, if a system is in a state

described by | ψ > , the expectation value of A is

< A >=< ψ|Â|ψ >=

ˆ ∞

−∞
ψ∗(x)Âψ(x)dx

Every operator corresponding to an observable is linear and Hermitian. For any two wave func-

tion | ψ > and | ψ > and any two complex numbers α and β , linearity implies

Â(α|ψ >+β |φ >) = αÂ|ψ >+β Â|φ >

For any linear operator Â , the Hermitian conjugate operator or adjoint is defined by

< φ |Âψ >=

ˆ
dxφ∗(Âψ) =

ˆ
dxψ(Â†φ)∗ =< Â†φ |ψ >
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Operators are their own Hermitian conjugates

< ψ|Ĥ|ψ >∗= [

ˆ ∞

−∞
dxψ∗(x)Ĥψ(x)]∗ =

ˆ ∞

−∞
dxψ(x)(Ĥψ(x))∗ =< Ĥψ|ψ >

That is

< Ĥψ|ψ >=< Ĥ†ψ|ψ >=⇒ Ĥ = Ĥ†

Operators that are their own Hermitian conjugate are called Hermitian or self-adjoint. Eigenfunc-

tions of Hermitian operators

Ĥ|i >= Ei|i >

form an orthonormal complete basis

< i| j >= δi j

For a complete set of states | i> , we can expand a state function | ψ > as

|ψ >= ∑
i
|i >< i|ψ >

The expansion of vectors | φ > = ∑i bi| i > and | ψ > = ∑i ci| i > allows the dot product to be taken

< φ |ψ >= ∑
i

b∗i ci

Time-Evolution Operator. We can evolve a wavefunction forward in time by applying the

time-evolution operator. For a Hamiltonian, which is time-independent, we have

|ψ(t)>= Û |ψ(0)|
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, where the time evolution operator Û follow from integrating the time dependent Schrodinger

equation

Ĥ|ψ >= ih̄∂t |ψ >

By inserting the identity I = ∑i | i > < i | , where the states | i > are the eigenstates of the Hamilto-

nian with eigenvalues Ei, we get

|ψ(t)|= e
−iĤt

h̄ ∑
i
|i >< i|ψ(0) = ∑

i
|i >< i|ψ(0)e

−iĤt
h̄

The time evolution operator is an example of a Unitary opertor. They are transformations which

preserve the scalar product

< φ |ψ >=< Ûφ |Ûψ >=< φ |Û†U |ψ >

That is,

Û†Û = I
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APPENDIX M

FUNCTIONAL ANALYSIS - THE VERY BASICS

Functional Analysis - an introduction

Hilbert Space . An inner product space X is a vector space with an inner product < x,y >

defined on it. This is used to define a norm || - || by

||x||=< x,x >
1
2

and orthogonality by

< x,y >= 0

A Hilbert space is a complete inner product space. An inner product on X is a mapping of X×X

into the scalar field K of X , that is for every pair of vectors x and y there is associated a scalar

which is written as

< x,y >

and is called the inner product of x and y, such that for all vectors x,y and z and scalars α we have

< x+ y,z >=< x,z >+< y,z >

< αx,y >= α < x,y >

439



< x,y >=< y,x >

< x,x >≥= 0

< x,x >= 0⇐⇒ x = 0

An inner product on X defines a norm on X given by

||x||=< x,x >
1
2

and a metric on X is given by

d(x,y) = ||x− y||=√< x− y,x− y >

Hence inner product spaces are normed spaces and Hilbert spaces are Banach spaces.

Cauchy Sequence. A sequence ( xn) in a metric space X = ( X , d), is said to be Cauchy if

for every ε > 0, there is an N = N (ε) such that

d(xm,xn)< ε,∀m,n > N

The space is said to be complete if every Cauchy sequence in X converges, that is, it has a limit

which is an element of X .

The real line and the complex plane are complete metric spaces. Omission of a point a

from the real line yields an incomplerte space R \ {a}. Omission of all irrational numbers leads

to the rational line, which is incomplete. Let X = (0,1] with the metric d(x,y)= | x− y| and the se-

quence ( xn) , where xn = { 1
n } ; n = 1,2,.... This is a Cauchy sequence , but it does not converge

because 0 /∈ X.
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Normed Space is a vector space with a metric defined by a norm and a Banach Space

is a normed space which is a complete metric space. A mapping from a normed space X into

a normed space Y is called an operator. A mapping from from X into the scalar field C or R is

called a functional.

Euclidean space Rn and unitary space Cn. These are Banach spaces with norm defined by

||x||= (
n

∑
j=1

|ξ j|2) 1
2
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APPENDIX N

BESSEL FUNCTIONS

Bessel Functions. These are canonical solutions of y(x) of Bessel’s differential equation

for an arbitary complex number α , the order of the Bessel function.

x2 d2y
dx2

+ x
dy
dx

+(x2−α2)y = 0

the most important cases are when α is an integer or half-integer. Bessel functions for integer α

are also known as cylindrical harmonics because they appear in the solution to Laplace’s equa-

tion in cylindrical coordinates. Spherical bessel equations with half-integer αare obtained when

Helmholtz equation

∇2A+ k2A = 0

is solved in spherical coordinates.where k is the wave number and A is the amplitude. Bessel’s

equation arises when finding separable solutions to Laplace’s equation and the Helmholtz equa-

tion in cylindrical or spherical coordinates. Hence, Bessel functions are important in problems of

wave propagation and static potentials. In solving in cylindrical coordinates, one obtains Bessel

functions of integer order α = n; in spherical problems, one obtains half-integer order , α = n

+ 1
2. Because it is a second order differential equation, there must be two linearly independent

solutions. These solutions come in different formulations, depending on circumstances.

Bessel Functions of the First Kind. Jα (x) . These are solutions that are finite at the ori-

gin, x = 0, for integer or positive α . and diverge for negative or non-integer α . The function can

be defined by series expansion around x = 0 by applying the method of Frobenius to Bessel’s
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equation

Jα(x) =
∞

∑
m=0

(−1)m

m!Γ(m+α +1)
(

x
2
)2m+α

Method of Frobenius . This is a way to find an infinite series solution for a second order

ordinary differential equation of the form

z2u
′′
+ p(z)zu

′
+q(z)u = 0

where u
′
= du

dz , u
′′
= d2u

dz2 , in the vicinity of the regular singular point z = 0. Dividing by z2, we

obtain the differential equation

u
′′
+

p(z)
z

u
′
+

q(z)
z2

u = 0

which is not solvable with power series methods at z = 0, if
p(z)

z and
p(z)
z2 are not analytic. If p(x)

and q(z) are analytic, we can seek a power series solution of the form

u(z) =
∞

∑
k=0

Akzk+r;A0 �= 0

By differentiating and substtuting, we get the expression for the lowest power of z

r(r−1)+ p(0)r+q(0) = I(r)

I(r) is the indicial polynomial. The series solution ur(z) = ∑∞
r=0Akzk+r satisfies

z2ur(z)
′′
+ p(z)zur(z)

′
+q(z)ur(z) = I(r)zr

We choose one of the roots of the indicial quadratic equation for r in ur(z), we gain a

solution to the differential equation. If the difference in the roots is not an integer, we get another

linearly independent solution in the other root.
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Returning to Bessel functions of the first kind, this is an entre function if α is an integer.

Otherwise, it is a multi-valued function with singularity at zero. The graphs of Bessel functions

look roughly like sine or cosine functions that decay proportionally to 1√
x . For non-integer α ,

the functions Jα(x) and J−α(x) are linearly independent and are two solutions of the differential

equations. For integer order α , the following relationship is valid

J−n(x) = (−1)nJn(x)

This means that the two solutions are no longer linearly independent. In this case, the second

linearly independent solution is found by the Bessel function of the second kind.

Bessel Function of The Second Kind. Denoted by Yα(x) , they are solutions of Bessel’s

differential equations that have a singularity at the origin, x = 0, nd are multi-valued. For non-

integer α , Yα(x) is related to Jα(x) by

Yα(x) =
Jα(x)cosαπ− J−α(x)

sinαx

In the case of integer order n , the function is defined by taking the limit as a non-integer α tends

to n

Yn(x) = limα→nYα(x)

If n is a non-negative integer, we have a long and complicated series, which can be checked in

any advanced differential calculus textbook. Yα (x) is necessary as the second linearly-independent

solution of the Bessel’s equation when αis an integer. It can be considered as a natural partner of

Jα (x). Both Jα (x) and Yα (x) are holomorphic functions of x on the complex plane cut along the

negative real axis. When α is an integer, the Bessel functions J are entire functions of x. If x is

held fixed at a non-zero value, then he Bessel functions are entire functions of α .

Hankel Functions . H(1)
α and H(2)

α of the First and Second Kind. These are defined as
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H(1)
α (x) = Jα(x)+ iYα(x)
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ADVANCED QUANTUM MECHANICS

Advanced Quantum Mechanics

Preliminaries. Since |V > = Vi|bi> and < bi| V > = Vi,

|V >=< bi|bi > |V >

The outer product < bi|bi > = I , the identity operator. In integral form;

ˆ
dk|k >< k|

The inner product of two vectors φ and ψ is defined as

< φ |ψ >=

ˆ
dxφ∗(x)ψ(x)

For positions x and y

< y|ψ >=

ˆ
dxψ(x)δ (x− y) = ψ(y)

where δ is the Dirac delta function.

Probability, P, of finding the particle at a position y is

P(y) = |< y,ψ > |2 =< ψ|y >< y|ψ >= ψ∗(y)ψ(y)

For the operator x, the eigenfunction is δ (x− y), the Dirac delta function, which means
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multiply by x.

For the operator p = - ih̄ ∂
∂x , the eigenfunction is e−ih̄x, where - ih̄ ∂

∂x , = kψ , ψ = e−ikx, h̄ = 1

Note that;

[x, p] = ih̄

Hermitian operators are the observables - eigenvalues different, eigenfunctions orthogo-

nal, form a basis.

Unitary Operators are evolution operators;

|ψ(t +T )>=U(T )|ψ(T )>

t = 0 =⇒U(0) = 1

Set

U(ε) = 1− iεH
h̄

,U �(ε) = 1+
iεH

h̄

U(0) = 1

U �U(ε) = 1

H � = H

H is Hermitian ; observable, orthonormal basis, real eigenvalues ( energy)

Time - dependent Schrodinger wave equation;

From
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|ψ(t + ε)>= (1− iεH
h̄

)|ψ(t + ε)

where U( ε ) = ( 1 - iεH
h̄ )|, we obtain to the limit of ε

∂ |ψ(t)>
∂ t

=− iH
h̄
|ψ(t)>

Substituting H = p2

2m and p = -ih̄ ∂
∂x into time dependent Schrodinger wave equation, we

obtain

∂ |ψ >

∂ t
=

ih̄
2m

∂ 2|ψ >

∂x2

Expectation Values

K= observable/ Hermitian , λn = Eigenvalues , |n > = eigenvectors, orthonormal basis

< ψ|K|ψ >= ∑
n
< ψ|K|n >< n|ψ >

K|n >= λn|n >

< ψ|K|ψ >= ∑
n
< ψ|n >< n > |ψ >= ∑

n
|< ψ|n > |2λn

Hamiltonian

H =
p2

2m
+V (x)

∂H
∂ p

= ẋ
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∂H
∂x

=− ṗ

Harmonic Oscillator

H =
p2

2
−+

1

2
ω2x2

x|ψ(x)−→ xψ(x)

p|ψ(x)−→−ih̄
∂ψ(x)

∂x

i
∂ψ
∂ t

= Hψ

i
∂ψ
∂ t

=−1

2

∂ 2ψ
∂x2

+
1

2
ω2x2ψ

Applying H | ψ > = E | ψ >

ψ(x) = e−
ω2

2 x2

Annihilation and Creation Operators

H =
1

2
(p2 +ω2) =

1

2
(p+ iωx)(p− iωx)+

ω
2

b+ =
1

2
(p+ iωx)

b− =
1

2
(p− iωx)
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[b+,b−] = 2ω

a+ =
b+√
2ω

,a− =
b−√
2ω

[a+,a−] =−1

H =
1

2
b+b−+

ω
2

Applying the creation operator at the ground state; energy is quantized as follows

|0 >−→ 1

2
ω

a+|0 >−→ 3

2
ω

a+a+|0 >−→ 5

2
ω

etc.

Scalar Fields, Ψ(x).

Ψ(x) = ∑
i

a−i ψi(x)

Ψ�(x) = ∑
i

a�iψ∗(x)

Since < i|x> ψ (x) , < x|i> = ψ∗( x ) and | i > = a+i | 0 > , we get
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|x >= ∑
i
|i >< i|x >= ∑

i
Ψ�

i(x)|i >= ∑
i

Ψ�
i(x)a

+
i |0 >= Ψ�(x)|0 >

The Number Operator

ˆ
dx = Ψ�(x)Ψ(x) =

ˆ
dx∑

i, j
a+i ψ∗i a− jψ j(x) = ∑

i, j
a+i a−j δi j = ∑

i
a+i ai
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APPENDIX P

FOURIER TRANSFORMS

Fourier Transforms. The Fourier transform decomposes a function into a sum of sinu-

soidal basis functions, each of which is a complex exponential of different frequency. The Fourier

transform works for both periodic and non-periodic functions. The Fourier transform of a func-

tion g(t) is defined by

F{g(t)}= G( f ) =
ˆ +∞

−∞
g(t)e−2πi f (t)dt

As a result, G( f ) gives how much power g(t) contains at the frequency f . Meanwhile, g can be

obtained from G by the inverse Fourier transform

F−1G( f ) =
ˆ +∞

−∞
G( f )e2π f tdt = g(t)

As an example, we will compute the Fourier transform of the box function (square wave,

square pulse) ; we define g(t) of amplitude, a , where |t | > T
2 = 0. The Fourier transform is

F{g(t}= G( f ) =
ˆ ∞

−∞
g(t)e−2πi f tdt

=

ˆ T
2

−T
2

ae−2πi f tdt =− a
2πi f

[e−2πi f t ]
T
2

− T
2

=
a

π f
[
eπi f T − e−πi f T

2i
] =

a
π f

sin(π f T ) = aT sinc( f T )

where sinc( f t) =
sin(πt)

πt . By L’ Hopital’s rule sinc(0) = 1. The Fourier transforms for T = 10 and T

= 1 are illustrated in Figure P.1
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Figure P.1: Fourier transforms for box function; T = 10 and T = 1

The wider pulse, T = 10, produces a higher frequency Fourier spectrum, with more energy.

The thinner pulse, T = 1, produces a wider spectrum, with less energy. We will next list proper-

ties of Fourier transforms without proof. The proofs are relatively simple and can be obtained

from any standard textbook of mathematical methods.

Linearity

If c1 and c2 are complex or real

F{c1g(t)+ c2h(t)}= c1G(F)+ c2H( f )

Shift property

For g(t−a). where a is a real number

F{g(t−a)}= e−i2π f aG( f )

Time delay alters the phase, not the magnitude; noting |ei2π f a| = 1. The same holds for

position function g(x−a).
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Scaling property

For a constant, c

F{g(ct)}= 1

|c|G(
f
c
)

Derivative property

F{dg(t)}= i2π f G( f )

Convolution property

The convolution of two functions in time is defined as

g(t)∗h(t) =
ˆ +∞

−∞
g(τ)h(t− τ)dτ

Then

F{g(t)∗h(t)}= G( f )H( f )

Modulation property

A function is modulated by another function if they are multiplied in time. The Fourier

transform of the product is

Fg(t)h(t) = G( f )∗H( f )

Parseval’s Theorem

ˆ ∞

−∞
|g(t)|2dt =

ˆ ∞

−∞
|G( f )|2d f

The left hand side is the energy of the function. This identity says that the energy of g(t)is

the same as the energy contained in G( f ).
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Duality property

If G( f ) is the Fourier transform of g(t), then the Fourier transform of G(t) is

FG(t) = g(− f )

That is, its parity.
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MISCELLANEOUS

Miscellaneous.

A. A quick and non formal way to obtain gravitational waves from a perturbation of the

metric; omitting indices and ignoring O (h2)

R = ∂Γ+ΓΓ+ ...

Γ =
1

2
g−1∂g+ ...

R∼ ∂ [(η−h)∂h]+O(h2)

∂ 2h = 0

B. Newtonian physics

ma = F =−m∇φ(x)

Noting that g = a is a gradient of a potential φ , we arrive at Poisson’s equation

∇2φ = 4πGρ(x)

and
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φ =−GM
r

where φ is a solution of ∇2φ , we arrive at

F =−GMm
r2

C. Derivation of the Continuity Equation

Let σ be the charge density and j the flow of charge ( current )

σ̇ +∇.j = 0

∂σ
∂ t

+
∂ jm

∂xm = 0

where t = x0 , σ = j0 and ( σ , jm) = ( j0, j1, j2, j3)

∂ jμ

∂xm = 0

And for a non flat manifiold, the covariant derivative is

D jμ

Dxm = 0

D. Dimensions . Reeturning to the metric gμν

ds2 = gμνdxμdxν

gμν is dimensionless. ds2 has dimensions L2, where L is length. The connection is

Γm
i j =

1

2
gml(∂ jgil +∂igl j +∂lg ji)

The units of Γ are 1
L . The Riemann curvature tensor is
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Ri j = ∂lΓl
i j−∂ jΓl

il +Γm
i jΓ

l
lm−Γm

il Γl
jn

The units are 1
L2 .

E. Kruskal Coordinates - the easy way. Starting with the Schwarzchild metric

dτ2 = (1− 2MG
r′

)dt
′2− (1− 2MG

r′
)−1dr

′2− r
′2dΩ2

where dΩ2 is the 2-sphere dθ 2 + cos2θdφ . Note that r
′
= 2MG is the Schwarzchild radius,

Rs, the radius of the event horizon. Setting Rs = 2MG

dτ2 = (1− Rs

r′
)dt

′2− (1− Rs

r′
)−1dr

′2− r
′2dΩ2

Setting r = r
′

Rs
and t = t

′
Rs

dτ2 = [(1− 1

r
)dt2− (1− 1

r
)−1dr2− r2dΩ2]R2

s

This is analogous to 2MG = 1. Rescaling, and replacing r with ρ , the radial distance from

the event horizon, where θ and φ = 0; we obtain

ρ =

ˆ r

1

√
r

r−1
dr

and hence

dρ2 = (
r

r−1
)dr2

Re- scaling time ;ω= t
2 , we obtain

dτ2 = F(ρ)ρ2dω2−dρ2− r(ρ)2dΩ.

When ρ is small, we obtain the metric of flat space in hyperbolic polar coordinates
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ρ2dω2−dρ2

where

X = ρcoshω

Y = ρsinhω

X2−T 2 = ρ2

F. Minkowski Metric. The metric of flat spacetime in special relativity, Cartesian , with 1

negative time eigenvalue and 3 positive space eigenvalues.

ημν =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
However gμν is a function of space. Consider the metric of polar coordinates in two -

dimensional flat space

ds2 = r2dθ 2 +dr2

Note that the metric is not constant in curvilinear coordinates, but is a function of space

⎛⎜⎝r2 0

0 1

⎞⎟⎠
Minkowski metrc;
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dτ2 = dt
2−dx2−dy2−dz2 =−ds2 =−gμνdxμdxν

Time -like coordinates :

dτ2 > 0

Space - like coordinates

dτ2 < 0

Null - like coordinares

dτ2 = 0

G. Derivation of Geodesic Equation. Let the tangent vector along a parameterized curve

be

tm =
dxm

ds

where s is the length of the parametrized curve. The covariant derivative of a vector along

the curve is

DmV m =
∂V m

∂xm +Γn
mrV

r

Multiplying by displacement dxm we get

DmV mdxm =
∂V m

∂xm dxm +Γn
mrV

rdxm = 0

dV m +Γn
mrV

rdxm = 0
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Replacing V by t

dtm +Γn
mrt

rdxm = 0

Divding by ds

dtm

ds
+Γn

mrt
r dxm

ds
= 0

d2x
ds2

+Γn
mr

dxr

ds
dxm

ds
= 0

H. Tensor Algebra

Contravariant Vector

(V
′
)m =

∂ym

∂xp V p

Covariant Vector , where S(x) is a scalar

∂S
∂ym =

∂S
∂xp

∂xp

∂ym

W
′
m =

∂xp

∂ymWp

Relationship between Contravariant and Covariant Basis Vectors

∂ym

∂xq
∂xp

∂ym = δ p
q

Tensor Addition

T m...
...p ±Sm...

...p = (T ±S)m...
...p

Tensor Product (Outer Product)
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V m⊗Wn = T m
n

V m⊗W n = T mn

Transformation of Rank 2 Contravariant Tensor

T
′nm =

∂yn

∂xα
∂ym

∂xβ T αβ

Transformation of a (1,1) Tensor

T
′n
m =

∂yn

∂xα
∂xβ

ym T α
β

Tensor Contraction

∂xb

∂ym
∂ym

∂xa
=

∂xb

∂xa = δ b
a

V
′mW

′
n =

∂ym

∂xa
∂xb

∂ynV aWb

V
′mW

′
m =

∂ym

∂xa
∂xb

∂ymV aWb =V aWa = scalar

Raising and Lowering Indices

T ngmn = Tm

Tngmn = T m

Metric Tensor, gmn
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ds2 = gmndxmdxn

1) varies from point to point

gmn = emen

2) in spacetime 4 × 4 metric, 10 independent components

⎛⎜⎜⎜⎜⎜⎜⎜⎝

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

⎞⎟⎟⎟⎟⎟⎟⎟⎠
3) non- zero eigenvalues - invertible ; gmn

4) if metric tensor can be transformed to Minkowski metric, ηmn, then space is flat

g
′
mn =

∂xa

∂ym
∂xb

∂yn ηab

5) always 1 negative eigenvalue and 3 positive eigenvalues
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