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ABSTRACT 

 

 

Kutugata, Matthew D., The Application of Advanced Technologies for Agriculture and 

Rangeland Management. Master of Science (MS), August, 2020, 55 pp., 5 tables, 11 figures, 

references, 86 titles.  

This project demonstrates two applications of remote sensing in agricultural and 

rangeland environments.  In the first, an unmanned aerial system (UAS) equipped with a multi-

spectral sensor was used to estimate canopy cover across four different cover crop trials at four 

time periods. In the second, a local database of stationary camera trap images of wildlife was 

used to train a convolutional neural network to automatically catalogue images by identifying the 

animal in those images. Both projects aimed to provide an example of how remote sensing 

platforms and machine learning techniques can facilitate the rapid collection and processing of 

large-scale field data. In both projects, methods were developed that confirm the utility of 

advanced remote sensing and computer vision technologies.  
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Large Agricultural Image Data 

Advanced technologies in agriculture are being used to observe conditions of plants, 

animals, soils, or water across large geographic and temporal scales quickly and without 

disturbing systems. This becomes especially important in complex, multifactored, and 

unpredictable agricultural systems. Monitoring, measuring, and analyzing agroecological 

landscapes is a challenging task, however, deploying new data collection and analysis 

technologies for large scale agroecosystem management can facilitate this task and better 

informing management decision by context (Kamilaris and Prenafeta-Boldú 2018). Proximal 

sensing techniques like those that use unmanned aerial systems, or drones, collect images that 

provide a more complete picture of agricultural landscapes. Further, large data analysis 

techniques are becoming an increasingly important research area for classification, anomaly 

detection, and full-field observation (Teke et al. 2013, Saxena and Armstron 2014).  Decreases in 

the cost of sensors, open-sourced software, and inexpensive computing resources have given way 

increases in adoption across multiple disciplines (Hunt and Daughtry 2018). Further, state-of-

the-art algorithms and the amount of free-flowing information on the internet are further 

advancing application by making processing techniques more accessible. Large agricultural 

image data used to inform management practices and develop predictive relationships has 

become an important component of agricultural research (Kamilaris 2017, 
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Bauer et al. 2019, Chiu et al. 2020). Most notable, these techniques have major potential in 

capturing complex set of spatial and temporal dynamics within agricultural ecosystems (Tsouros 

et al. 2019, Tabak et al. 2019). Leveraging big data analytics is an important component of 

quantifying the impact of management practices in the real-world, in on-farm studies and as 

implementable tools in the field. Two important advances in the field come from the application 

of unmanned aerial systems (UAS) for agriculture, and trail-cameras for wildlife management. 

Both capture large amounts of data that can be used to scout for problems, monitor to prevent 

losses, and plan for best management practices (Hunt and Daughtry 2018). These two techniques 

are of particular interest because they capture large scale data that can be processed using state of 

the art techniques. More so, techniques that use images to extract meaningful information have 

untapped potential in their ability to address issues in conservation agriculture and rangeland 

management.   

Unmanned Aerial Systems 

Unmanned aerial systems (UAS), or drones equipped with sensors have facilitated a 

major shift in proximal sensing providing data at higher spatial, spectral, and temporal 

resolutions than ever before. This shift is especially noticeable in agriculture where UAS-based 

proximal sensing attempts to observe nuance in large-scale complex systems in a way that 

informs management decisions. Unmanned aerial systems are unique from satellite- or manned 

aircraft-based proximal sensing because they can fly low to capture high-resolution images, often 

to collect data multiples times throughout the season, and have become more accessible from 

lowered costs. Sensors equipped on UAS platforms range from consumer color cameras, to 

sensors that capture thermal images, to multi-spectral sensors that capture light beyond the 

visible portion of the light spectrum. Near-infrared (NIR) light is often included in the set of 
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bands (or regions of the electromagnetic spectrum) that come with multispectral sensors and is 

especially useful because healthy vegetation reflects large amounts. Common applications of 

UAS in agriculture include the detection of drought, pest, or weeds; assessment of nutrient 

status; monitoring growth variation within fields; and predicting yield.  

Understandably, most applications are used to understand the impacts of management 

strategies in cash crop systems. Conservation agriculture techniques like cover crops, however, 

are rarely considered as the main subject of study. Cover cropping is a conservation strategy that 

employs the use of non-harvested plants in a agroecosystem for a variety of benefits, such as soil 

improvement, weed control, carbon storage, or biodiversity conservation.  Little research exists 

that uses UAS-based proximal sensing to look at large-scale, on-farm cover crop trials. Large-

scale cover crops studies are thus primed for a technique that captures nuances across hectare 

and better informs complex cover crop management practices. Unmanned aerial systems 

equipped with multispectral sensors provide a useful approach for collecting high-resolution data 

that can be analyzed and used to inform management practices. While UAS-based proximal 

sensing approaches collect data from the sky, other techniques can be used to collect large 

amount of images data proximally, or from near-by on the ground.  

Camera Traps for Wildlife Management 

Camera traps, color cameras strapped to trees or fence posts triggered by motion, have 

shown to be successful and cost-effective for sampling populations of wildlife (Ahumada et al. 

2019). Their popularity among conservation organizations has grown dramatically (Steenweg et 

al. 2017). A common problem among adopters, however, is the stockpiling of uncatalogued 

images that are collected at a rate that outpaces a person’s ability to sift and label them for the 

species they contain. A recent survey showed that 61% of camera-trappers (Glover-Kapfer et al. 
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2019) report image cataloguing and analysis as a major barrier to effective implementation 

(Ahumada et al. 2019).  Unprocessed images make it difficult for conservation projects to gain 

meaningful insight or inform wildlife management decisions. This major barrier prohibits 

conservation projects from taking full advantage of an easy to use cost-effective tool. Advances 

in deep learning, a subfield of machine learning and artificial intelligence, however, have major 

potential in addressing the issues of camera trap image processing.  

Deep Learning 

Deep learning goes beyond machine learning by designing models that account for 

“depth” or complexity in systems. The models are designed in a way that transforms data 

hierarchically through multiple layers of abstraction (LeCun and Bengio 1995, Schmidhuber 

2015). Convolutional neural networks (CNN), a class of deep learning model, take input images 

and encodes or “learns” the discriminative features of the object in that image. An input image 

passes through multiple layers that filter, reduce, and pool features. Images dimensionality is 

reduced but becomes more specific and thus useful in discriminating between classes. The last 

layer of a CNN takes the concentrated features as input and outputs a single probability for each 

class. The class with the highest probability determines the prediction. Convolutional neural 

networks eliminate the need for feature engineering, or the hand-selection identification of 

characteristics that make an object in an image unique, which is time-consuming and requires 

expert knowledge. A major disadvantage, however, is the need for large amounts of labeled 

training data. This poses a major barrier to organizations looking to utilize camera trap data in 

conservation projects. Deep learning approaches that use camera trap images to train CNNs use 

enormous datasets of millions of images. Little research has been done that uses local sources of 

camera trap images to train a CNN to automatically label camera trap images. What is often 
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ignored is the applicability of these techniques to local problems. How can organizations with 

limited amount of images take advantage of DL techniques?  Further, how can communities of 

camera-trappers and researchers work together to build a library of shareable models trained on 

local wildlife? 

Proximal sensing allows location- and system-specific information to be collected by 

researchers and conservation practitioners who can use this data in a way that informs decision 

making and builds on the intuition of key stakeholders. This project aims to connect state-of-the-

art proximal sensing and data analysis techniques to researchers and technicians in the field. 

Further, the aim was not to develop new technologies but transfer well established techniques 

from the field of computer vision and robotics to conservation.  

Images collected by a UAS-multispectral platform and a local database of cameras traps 

images provided a source of large agricultural and rangeland data which was applied to provide 

meaningful insight into the impacts of management practices and to develop tools that reduce 

burden of data processing.  In chapter 2, UAS data was used to estimate canopy cover across 

~5.2 hectares of on-farm cover crop trials. This project aimed to help researchers collect full-

field data of four types of cover crop treatments across four time periods throughout the fall 2019 

season. The second project presented in chapter 3 used a local database of camera trap images to 

train a convolutional neural network that can be used to automatically group images if they have 

an animal and by species. This project was designed to establish a more efficient data collection 

techniques for conservation practitioners in the management of nilgia, an exotic ungulate 

implicated in the spread of a disease carrying tick, the southern cattle fever tick.  

I present both of these projects to demonstrate the utility of proximal sensing in 

informing and improving agricultural management in diverse settings.  Both of the projects 



 6 

presented in this thesis are robust pieces of scholarship that when taken holistically, demonstrate 

how big data and inclusive information can be leveraged to expand the precision of predictions 

in a way that is both accessible and cost effective.  The implications of these works are discussed 

in chapter 4 and point to new directions of work that have emerged from these projects.
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CHAPTER II 

 

 

UAS-BASED CANOPY COVER ESTIMATION OF ON-FARM COVER CROP TRIALS  

 

 

Abstract 

Canopy cover is an important agronomic plant metrics used to evaluate the efficacy 

covers crops to provide important agroecosystem benefits. Collecting this data by hand and 

across large field trials, however, is burdensome, subjective, and susceptible to sampling bias. 

This study provides an example of how unmanned aerial systems coupled with multispectral 

sensors can provide high-resolution canopy cover data across large-scale field trials. A UAS-

multispectral platform captured images across ~5.2 hectares of cover crop trials in the Lower Rio 

Grande Valley of south Texas. A Normalized Difference Vegetation Index was applied and used 

to calculate canopy cover of sunnhemp planted at high and low seeding rates, two cover crop 

mixes, and a control. The resulting canopy cover field map showed large amounts of 

heterogeneity across the study area and provided meaningful information about canopy dynamics 

throughout the season and among management strategies. Sunnhemp seeded at 3 times the 

prescribed rate did not provided increases in canopy cover and mixes stopped contributing to 

canopy cover after only 67 days after planting. High resolution data across large areas provided 

detailed information that has the potential to help researchers, extension agents, and farmers 

better understand large scale trials. 
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Introduction 

Cover crops, non-harvested plants left to decompose, have been well established for 

providing a diverse list of agroecosystem services. They protect soil from water and wind 

erosion (Dabney et.al. 2001), suppress weeds and pests (Creamer 1996; Teasdale 1996), increase 

soil organic matter via decomposition (Steenweth and Belina 2008), remediate soil compaction 

(Williams and Weil 2004), attract beneficial insects (Zang 2007), and enhance nutrients for cash 

crops (Tonitto 2006). Cover cropping as an agronomic practice has grown considerably in 

popularity with farmers planting more cover crops than previous years (CTIC 2017). Effective 

cover cropping over the short-term, however, is highly nuanced and like many conservation 

practices is knowledge intensive, relying on regionally specific information that determine best-

use management practices. Determining the proper cover crop, as either a stand-alone or mix of 

species, involves looking at their effectiveness in addressing the specific concerns of farmers. 

Participatory research is an especially valuable approach that allows researchers and 

farmers to work jointly using field-scales similar to those in farm operations. Applications and 

results from these studies are valuable for farmers, key stakeholders in design and management 

practices, and for researchers who are given the opportunity to study the diverse impacts in real-

world agroecosystems (Jackson et al. 2004).  However, observing basic plant traits across large 

scales and throughout the growing season is a difficult task. Fractional canopy cover (CC) is one 

such trait that has been related to weed suppression (Stivers-Young 1998, Creamer et al. 1996) in 

cover crops. Manually collecting CC data, however, is time consuming, biased by sampling 

design, and fails to capture the in-field crop variation often found in experimental studies. The 

weight of these downsides increases with scale. Collecting data across large-scale field trials 

without sacrificing resolution thus becomes increasingly important in evaluating cover crops 
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Recent advances in proximal sensing and cost-effective sensor technology have made it possible 

to collect full field high-resolution data.  

Proximal sensing offers an efficient way of mapping large extents of agriculture plant 

data (Ashupure et al. 2019). An extensive body of work exists that shows satellite and manned 

aerial sensor platforms successfully used to capture large-scale agronomic data (Scharf and Lory 

2002, Sripada et al. 2006, Trout et al. 2008, Kyveryga et al. 2012, Melin et al. 2017).  However, 

the lack of spatial resolution associated with these coarse-grained data products, in addition to 

limited revisit times (temporal resolution), and high costs, preclude its use for finer grade 

resolution required for farm-scale applications. 

Unmanned aerial systems (UAS) that couple consumer grade sensors with commercially 

available proximal-controlled drones overcome the limitations of satellite- and manned aircraft-

based proximal sensing. Flying low offers finer resolutions, lighter portable platforms give way 

to more frequent flights, and an expanding market has lowered costs.  Applications using UAS 

have shown significant utility in agricultural systems including soil mapping and assessment of 

nutrient needs (Lopez-Granados et al. 2005), irrigation monitoring and scheduling (Meron et al. 

2010), assessing crop ground cover (Rajan et al. 2014) and monitoring stress indicators stress 

indicators. UAS-based  leaf-area index (LAI) estimation have been applied in crop phenotyping 

(Makanza et al. 2018), yield estimation (Feng et al. 2020), and crop monitoring (Tu et al. 2019). 

Most importantly, a growing body of work has emerged that applies UAS-based CC estimations 

to detect the effects of no-till on cotton (Ashapure et al. 2019, Ashapure et al. 2019), to predict 

cover crop biomass (Roth and Streit 2017), and to measure canopy structure in orchard systems 

(Tu et al. 2019). Multispectral sensors play an important role in accurately estimating CC 

because they capture near-infrared (NIR) light which is highly reflected by vegetation. NIR is 
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necessary to create the normalized difference vegetation index (NDVI) that exploits differences 

in the reflective properties of vegetation and non-vegetation. It is thus an essential component in 

differentiating canopy from soil. NDVI-based CC estimations have been shown to be the most 

stable across changing environmental conditions and is consider the most reliable technique to 

measure CC (Rouse et al. 1974).   

Despite being an effective tool, the use of UAS-based CC estimations in cover crop 

research is relatively uncommon.  Roth and Steit (2017) used CC as a predictor of biomass and 

not as a source of evaluative data. While Ashapure et al. (2019) used it to detect the effect of 

tillage practices on cotton. There is much potential in the use of this technique to reduce 

sampling bias, subjectivity, and burden in collecting full-field data. This study presents an 

example of how UAS-based proximal sensing was applied to collect agronomic data across 

large-scale field trials and throughout the growing season. A UAS platform equipped with a 

multispectral sensor captured aerial images of four cover crop treatments and a control across 

four time periods. Canopy cover data alone is insufficient to evaluate efficacy of cover crop 

management strategies. This study considered CC as one of many important factors that should 

be considered when used to determine proper cover crop management strategies.   

Methods 

Study site 

This study was conducted in Hidalgo County, Texas where data was collected during fall 

2019 as part of a larger multi-year cover crop trial. The experimental design was replicated and 

randomized on ~5.2 hectares of non-irrigated Willacy fine sandy loam. An onsite weather station 

recorded 120.20 mm of rainfall from September 25th to December 17th with the largest single 

rain event (39.7 mm) occurring on November 11th, 2019 (Kasper et al. 2019). Five treatments – 
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two single species cover crops, two multispecies mixes, and one control - were replicated five 

times. Single species treatments were seeded at two different rates shown in Table 2.1. Each of 

the five experimental blocks contained five sub-plots. Each sub-plot was 70 m long and 1.02 m 

wide shown in Figure 2.1. Subplot boundaries were created by taking four sub-centimeter GPS 

points at each plot corner. Cover crops were planted on September 18th, 2019 using a sunflower 

seeder and terminated on December 15th, 2019 using a roller-crimper.  

Data Collection and Preprocessing 

As a FAA certified UAS pilot, I flew four flights opportunistically within two hours of 

noon on sunny days. A DJI Matric 600 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) was 

used as the proximal-sensing platform and carried a Slantrange 4p+ multispectral sensor 

(Slantrange Inc, San Diego, CA). The sensor included an integrated incident light meter for 

frame-to-frame, radiometrically adjusted reflectance measurements (Ashapure et al. 2019). 

Images were captured in the blue, green, red, and near-infrared (NIR) bands. Ground control 

points were placed across the study area, were captured at each flight, and surveyed using a post-

processed kinematic (PPK) GPS system (Reach RS+ Emlid Ltd., Hong Kong, Hong Kong). 

The UAS flew autonomously along a pre-planned flight path at a speed of 4 m/s, took 

images every ~0.9 sec, and all but one flight was flown at ~88 m above ground level (AGL) 

achieving a ground sampling distance of ~1.5 cm (Table 2.2). The flight on November 11th was 

flown at 106m AGL. The speed of the UAS and rate of image capture created an image end-lap 

and side-lap of 75%. Flight heights were chosen to maximize spatial resolution while covering 

the full-field. Battery times, weather, and area had to be taken into account.  

Two software services were used in the aerial triangulation and ortho-mosaic generation 

processes: Slantview (analytics.slantrange.com) and Agisoft (Agisoft Metashape Professional 
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1.6.1, Agisoft LLC, Russia). Slantview, the sensor company’s proprietary software, applied its 

proprietary radiometric calibration adjustments to the raw images. Agisoft, a standard among 

drone-based imagery processing, was then used to stitch or ortho-mosaic the calibrated images. 

Coordinate information of ground control points were used to reinforce the ortho-mosaic 

construction process, a standard procedure that improves end-product accuracy.  

Canopy Cover Calculation 

Further image processing and analysis was done with the open-sourced Quantum 

Geographical Information System (QGIS 3.4.10, QGIS Development Team, Raleigh, NC, USA) 

software. The multi-band ortho-mosaic was used to calculate canopy cover percentage across 

study sites. A sampling grid of 6,830 cells per subplot was overlain on the multiband ortho-

mosaic and each grid cell (0.25 m2) was used as a sample location for CC calculation. 

Normalized difference vegetation index (NDVI) was calculated from the multiband ortho-mosaic 

and created for each capture event. The NDVI results were visually inspected for a thresholding 

value separating canopy from soil. This thresholding value was then used to create a binary 

image where 0 represented non-canopy and 1 represented canopy (Ashupure et. al. 2019). This 

binary image was used to calculate canopy cover by taking the percentage of vegetation in each 

grid or sampling area (Figure 2.2).  

Results 

Ground Truthing CC 

Ultra-high-resolution imagery was taken and used to ground truth lower resolution CC 

estimations. Images were taken from altitudes ranging from 18m to 30 m above ground level 

(AGL) which provided a ground sample distance of 0.38 to 0.58 cm/pixel. Low altitude images 

were taken of the eastern 1.2 hectares and included all treatments. CC estimations were 
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calculated on 30m AGL imagery using the same methods and results were compared by plotting 

the average of each sampling area. CC estimation were compared, and calculations followed a 

one-to-one comparison between the two heights plotted as a straight line resulting in a Pearson’s 

correlation r value of 0.9799 (Figure 2.3). Future work should investigate the difference of CC 

captured at both heights. R values for October 26th, November 16th, and 24th, were 0.6642, 

0.6855, 0.7458 respectively. The lower correlation values during the beginning of the season 

were likely due to smaller amounts of canopy cover.  

Treatments effect on canopy cover 

The CC field maps (Figure 2.4) shows considerable in-field heterogeneity in all four 

capture periods and an increase in CC as the season progressed. Summary statistics computed by 

taking mean CC of each subplot the means of subplots cells values show CC steadily increased, 

as expected, for all treatments across the four time periods. General trend of each treatment 

throughout the growing season show M1 with the highest amounts of CC throughout the season 

and leveling off after the 24th.  

A two-way mixed ANOVA was used to compare the means of CC cross-classified by 

treatment and time. Results indicated significant interactions among treatments and within time 

periods. Multiple pairwise comparisons were made to determine which treatments were different 

from another and within-subject time variable at each level of treatment (Figure 2.5 and 2.6).  

Various patterns emerged as CC was compared among treatments throughout time 

(Figure 2.5). As expected, 38 days after planting (October 26th, 2019) all treatments had 

significantly more CC compared to the control while cover crop treatments were not 

significantly different from another. Treatment M1 had significantly more CC than other 

treatments for the second, third, and fourth capture events. The mixes were only different for 
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capture event three (November 24th, 2019) where M1 was significantly higher than M2. Most 

striking is neither sunnhemp treatments differed despite a 250% increase in seeding rate.  

When looking at the progress of treatments throughout time, mixes and sunnhemp 

treatments behaved differently during the growing season (Figure 2.6). Neither of the mixes 

increased significantly after the third capture event (67 days post planting) while sunnhemp 

treatments did. Sunnhemp was slow to significantly increase in the early part of the season, 

however, continued to increase when the mixes did not. M1 and M2 made no significant 

improvements in canopy cover past November 24th.  

Discussion 

This project used UAS-based proximal sensing data to estimate canopy cover of four 

cover crop treatments across 5.2 hectares. Results showed M1, dominated by radish, was the 

most successful at generating large amounts of CC in a short amount of time. Results also 

verified industry standards that increased seeding rate in sunnhemp does not increase canopy 

cover. More is not better in this case. Canopy cover in mixes did not increase beyond 67 days 

after planting and found sunnhemp treatments, while slow to increase CC in the first half of the 

season, continued to increase when mixes stopped.  

Soil Moisture 

The ability to develop high amount of CC quickly and evenly throughout the field is an 

important factor to consider in understanding the effectiveness of many crops. CC, however, is 

one of many agronomic characteristics and when used alone does not fully capture the impact of 

management decision and nuance of complex agroecological system. Various sources of 

information and agronomic data should be used to inform decisions and evaluation management 

practices. Twenty-five in-ground moisture sensors placed at the cash crop root zone recorded 
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data throughout the study period. The collected data showed that cover crops did more to remove 

soil moisture while control (CO) treatments retained it throughout the season (Kasper et al. 

2019). Further, moisture data collected on December 7th, 2019, the same day as the last UAS 

flight, was compared to UAS-estimated CC data. A Pearson’s correlation coefficient of -0.776 

showed a negative relationship between canopy cover and soil moisture. The large canopy and 

root system of M1 and M2 used more moisture even after rainfall events (Figure 2.7). This aligns 

with the concerns of area farmer’s that cover crops take important soil of moisture from the 

preceding cash crop. Cover crops that create large amounts of CC and as a result provide 

benefits, like suppressing weeds and add soil organic matter, do so at the cost of leaving less 

moisture for the preceding cash crop. Further research is needed to investigate the relationship 

between canopy cover, moisture, and their role as proxies in identifying successful conservation 

management practices. 

It should be noted that this project did not directly calibrate for reflectance. An onboard 

incident light sensor was used to account for changes in irradiance during flight and was applied 

during the initial processing steps. Software developed by the sensor company applied 

proprietary reflectance corrections. While attempts were made to gather information about the 

applied correction, future work should consider the integration of other radiometric calibration 

techniques like reflectance panels or the use of spectrometer-based ground truth samples. 

Additional steps were taken to improve data collection process and account for incoming light 

including flying within two hours of solar noon, surveying 5-15 ground control points with sub-

centimeter RTK GPS, applying front and side overlap of 75%, and flying only under clear sky 

conditions. While these steps were considered sufficient for the rough binary segmentation that 

was used to discriminate vegetation from non-vegetation, resulting NDVI values could be 
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affected by the changing atmospheric conditions throughout the season. Further calibration steps 

should be used for problems that require the precise application of reflectance values such as 

land cover classifications or NDVI-based health assessments. Further work should be done to 

compare canopy cover estimations with and without the various forms of radiometric calibration 

that can be performed on UAS-based imagery. A thorough overview of the best practices for 

UAS multispectral sensor calibration can be found at Assmann et al. (2018).   

Conclusion 

This project proved to be useful in establishing the potential of UAS-based proximal 

sensing for providing CC estimations across large-scale cover crop trials. High-resolution data 

was captured by a multirotor UAS-sensor platform and applied to identify differences in CC 

among various cover cropping management strategies throughout the fall 2019 growing season. 

Multispectral sensor-based CC estimation provided useful information across 5.2 hectares of 

cover crop trials and accurately capture in-field heterogeneity often ignored through traditional 

by-sight CC estimations. Results showed that a mix made up of mustard, radishes, cowpea, and 

sunnhemp created the most CC which was expected given its morphological characteristics. 

Canopy cover estimations also showed that there were no differences in CC between sunnhemp 

varieties despite SH45 having 250% higher seeding rate. More is not better in this case. Further, 

results showed found that CC increased differently for the two types of treatments. Sunnhemp 

varieties continued to increase CC beyond 67 days post-planting while mixes did not. Taken with 

other sources of data, CC estimation via UAS-based proximal sensing provided information 

regarding the CC in various cover crop management strategies. My goal was to provide a simple 

example of how UAS-based proximal sensing could be applied to cover crop research adding to 

the broader body of information that is used to evaluate the efficacy of cover crops. 
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Opportunities and Challenges 

 UAS-based proximal sensing in precision agriculture is a new and exciting field. Despite 

the rapid improvements in sensor and drone technology, the process of collecting image data and 

turning it into actionable information continues to be a challenge. An understanding of the most 

relevant products on the market, flight controller and sensor systems, various pre-and post-

processing software, and experience working with geospatial systems is needed.  

Major issues involve the lack of standardized workflows for image collection and pre- and post-

processing of data. Advance knowledge and familiarity with products is needed to integrate 

sensors to payloads. and advances in technology and lowered costs A few major drone 

companies have The explosion of affordable drones, sensors, and associated tools has created a  

in  that applies advanced UAS and sensor technologies to the collection of field-scale data.  
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Tables and Figures 

 

 

Table 2.1 Cover Crop Treatment Information 

 

 

 

 

 

 

 

 

 

Treatment Seeding Rate 

(kilo./ha) 

 Abbreviation Common 

name 

Genus species Single 

species 

Mix 

total 

Sunnhemp  SH18 Sunnhemp Crotalaria juncea 20.2  

Sunnhemp SH45 Sunnhemp Crotalaria juncea 50.4  

Mix 1 M1 Mustard Brassica juncea 22.4  

   Tillage radish Raphanus sativus 22.4  

   Cowpea Vigna unguiculate 19.1  

   Sunnhemp Crotalaria juncea 19.1  

     82.9 

Mix 2 M2 Tillage radish Raphanus sativus 11.2  

   Hairy vetch Vicia villosa 11.2  

   Black oats Avena strigosa 5.6  

     28 

Control CO No cover crop     
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Table 2.2 UAS Flight Information 

Date Flight Altitude Peak Overlap (%) Ground resolution (cm/pix) 

10/26/2019 18 75 0.38 cm/pix 

10/26/2019 88 75 1.83 cm/pix 

11/16/2019 28 75 0.58 cm/pix 

11/16/2019 106 75 2.22 cm/pix 

11/24/2019 26 75 0.54 cm/pix 

11/24/2019 88 75 1.82 cm/pix 

12/07/2019 30 75 0.56 cm/pix 

12/07/2019 88 75 1.84 cm/pix 

 

Figure 2.1 Experimental Setup and Study Site
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Figure 2.2 Data Processing Workflow 
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Figure 2.3 Correlation Between Ground Truth and Sampled Values of Canopy Cover 

 

Figure 2.4 Canopy Cover Field Maps 
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Figure 2.5 Comparing Canopy Cover Between Treatments 
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Figure 2.6 Comparing Individual Treatments Throughout Time 
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Figure 2.7 Root Zone Soil Moisture 

Adapted with permission from Kasper et al. (2019). 
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CHAPTER III 

 

 

AUTOMATIC CAMERA TRAP CLASSIFICATION USING ANIMAL-SPECIFIC 

TRANSFER LEARNING FOR NILGAI MANAGEMENT 

 

Abstract 

Camera traps provide a low-cost approach to collect data and monitor wildlife across large 

scales. Hand-labeling images at a rate that outpaces accumulation, however, becomes 

increasingly difficult. Various studies have shown that deep learning and convolutional neural 

networks (CNN) can automatically classify camera trap images with a high degree of accuracy. 

Training CNNs, however, depend on large amounts of data and advanced knowledge in 

computer programming. Examples were given to show how a small dataset trained using transfer 

learning can drastically reduce the number of labor hours of hand-labeling camera trap images. 

CNN was trained to identify two groups, “Nilgai” a non-native game animal and “not nilgai”, 

with an overall accuracy of 97%. A second model was trained to identify 21 classes with an 

overall accuracy of 89%. This approach trained a model that could potentially reduce large 

amounts of labor hours needed to hand-catalogue camera trap images.  

Introduction 

Camera traps, wireless cameras placed on trees or fence posts activated via motion sensors, 

have been an important tool for wildlife studies. They have been used to estimate population 

densities (Howe et al. 2017), create species lists and inventories in dense tropical environments 
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(Srbek-Araujo and Garcia  2005; Azlan 2006; Tobler et al. 2008), understand population size 

and distributions (O’Connell et al. 2010),  and identify new species (Rovero and Rathbun 2006). 

Their relatively low-cost and ease make them scalable across large geographic regions. A 

common problem, however, is the rapid accumulation of images that outpace one’s ability to sort 

and label them (Swanson et al. 2015; Niedballa et al. 2016). When silos of images go 

unprocessed, valuable information is lost or goes unused to its potential. To address this issue 

state-of-the-art deep learning techniques, a subfield of machine learning, has been identified to 

automatically recognize what species is in an image and label them appropriately (Gomez et al. 

2016, Norouzzadeh et al. 2018; Tabak et al. 2019; Willi et al. 2019). Studies that demonstrate 

this, however, rely on enormous datasets like Snapshot Serengeti (~7 million images) (Swanson 

et al. 2015) or the North American Camera Trap dataset (3.3 million) (Tabak et al. 2018) that 

require robust computational resources. 

Given the widespread application of camera traps and the high-demand for an image 

labeling tool by conservation practitioners, my aim was to demonstrate by example how open-

sourced tools, pre-trained models, and a small but diverse dataset of 120,000 images can be used 

to train a CNN. Unlike previous studies whose pretrained model depends on ImageNet data, this 

example leveraged nature-specific pretrained models to train on a small dataset. The model was 

initially trained by Cui et al. (2018) first on ImageNet data then on iNaturalist data and acted as a 

base to further train a south Texas specific wildlife classifier. More specifically, a local database 

of camera trap images was used to demonstrate the capabilities of 1) a binary classifier that 

discriminates between a single species of interest and “other” and 2) a multilabel classifier for 21 

groups - 20 animal species and one “none” group.  
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Methods 

Study Area 

This study was meant to provide tools that wildlife managers could apply to build an 

automatic image labeling tool that detects nilgai antelope (Boselaphus tragocamelus (Pallas)), an 

exotic bovid with expanding populations in deep south Texas. Image data was collected from 

twenty-five motion-sensitive cameras placed in areas of known wildlife activity in Cameron 

county in the Lower Rio Grande Valley of Texas from 2018 to 2019.  This county is along the 

international border characterized by a mosaic of shrubby plants, mesquite, and semi-arid 

vegetation. Free ranging nilgai native to the Indian subcontinent were introduced into these areas 

in the 1930s (Leslie 2008).  Although there appears to be no competition with other native 

species (Schmidly 2004), nilgai inhabit areas that support federally listed endangered species of 

interest and worth monitoring such northern populations of ocelot (Leopardus pardalis) and 

perhaps the Gulf Coast jaguarundi (Puma yagouaroundi cacomitli)  (Leslie 2008). Furthermore, 

recent studies reveal that nilgai are optimal hosts for the southern cattle-fever tick, Rhipicephalus 

microplus (Cannestrini), and have exacerbated current efforts to eradicate this exotic pest of 

wildlife and livestock (Lohmeyer et al. 2018). As such, monitoring nilgai behavior, population, 

and distribution have important implications for both wildlife management and agriculture in the 

region (Foley et. al. 2017; Goolsby et al. 2019). 

Image Data and Preprocessing 

Images were drawn from a local database part of a multi-year field research aimed at treat 

cattle fever tick-infested nilgai at fence crossings. They were hand-labeled by research 

technicians with advanced experience in recognizing animals of interest. Images were labeled 

using the open-access Colorado Parks and Wildlife Photo Warehouse, a custom Microsoft 
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Offices Access application designed specifically to store, manage, label, and analyze wildlife 

camera trap data (Ivan and Newkirk et al. 2016). 

We created three types of datasets necessary for training deep neural networks: 1) a large 

training set (~85% of total images) for model learning, 2) a smaller validation set (~5% of total 

images) for frequent testing and adjustment of model settings, and 3) a test set to evaluate the 

final trained model (~10% of total images). Because two classifiers were trained, separate train, 

validation, and test sets were created for each.  

Balancing Training Set 

A balanced training set contains an even distribution of images across each group. The 

 original raw image set of more than 2.5 million images, however, was highly imbalanced with 

84% (~2 million images) having no wildlife which was labeled as “None”. Camera trap data is 

often imbalanced because of false capture events that occur from a sensor being easily triggered 

by wind, grass, or other non-target objects. Training on imbalanced data is problematic since 

models can favor groups with more examples while ignoring those with only a few 

(Norouzzadeh et al. 2018). The model could simply guess “None” for most images and still 

result in a high overall accuracy. To correct the imbalance, the training set was oversampled or 

sampled with replacement (He and Garcia 2009) so each group had roughly the same number of 

images. For example, if the “Dog” group only had 50 unique images, each was copied until the 

total number of images matched that of the most frequent occurring group. This oversampling 

technique, however, has its drawbacks. Since images in rare groups are repeated often, the model 

lacks the robustness to generalize on new examples in the future. This might be an issue for 

conservation projects that use camera traps to capture endangered species that are important to 

monitor but rarely occur. In this case, however, species with rare classes were considered less 
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important for classification and specific management objectives. The most important group, 

“Nilgai”, was one of the most frequently occurring.  

Still, to reduce the number of copies for oversampling, the total number of images was 

lowered from 2.5 million to 120,000 by taking slightly more than the next most frequent group 

“Human” which represented signs of human activity. Additionally, a dataset of 120,000 images 

instead of 2.5 million provided benefits beyond class balancing. Training times went from weeks 

to days and replicating a scenario closer to what conservation practitioners experience. Access to 

2.5 million labeled camera trap images of local wildlife is rare. Data was further altered by either 

combining or eliminating groups. Four groups were combined – “Feral cat”, “Ocelot”, “Bobcat”, 

and “Exotics, other” – as “Cat” while “Unknown” and “Squirrel” were eliminated. These groups 

either lacked sufficient examples or were mislabeled (e.g., an image of a “Bobcat” was labeled as 

“Ocelot”).  

Training sets for both models consisted of 100,000 images of balanced classes while 

validation and test sets were unbalanced. It should be noted that a single camera capture event 

consisted of three images taken in rapid successive order and contributed to the total dataset size 

and class count.  

We applied four types of data augmentation, a technique commonly used to strengthen 

model predictions by slightly altering images for each training cycle. Images were rotated, 

shifted, sheared, and flipped both horizontally and vertically. This procedure is done for each 

training epoch and randomly for each image. Preprocessing also included rescaling pixel values 

between 0 and 1 and resizing the image from 2,048 x 1,152 to 299 x 299 pixels – standard 

procedures done to reduce the computational expense of training. A sample of camera trap 

images for the top-7 most common classes can be seen in Figure 3.1.  
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Deep Learning 

Deep learning, a subfield of machine learning, aims to extract information from large-

scale data by learning from successive layers of increasingly meaningful representations called 

features (Chollet 2018). A deep learning model, typically a neural network, is made up of many 

layers and contribute to its depth. A neural network organizes layers and is trained on labeled 

data to learn important features which are stored and used to make predictions on unlabeled data. 

A CNN, a class of neural networks, is designed to learn three-dimensional input data like images 

and has two main parts: a base made of convolutional layers and a classifier known as the fully 

connected layer (FC). Convolutional layers apply filtering and pooling operations that distill 

input data to its defining features that ultimately inform the final classification results. This 

multi-stage transformation process is parameterized by weights, stored filter values that extract 

features. Learning occurs by adjusting these weights in such a way that the model maps input 

data to its correct label. As images pass through a CNN, weights are initialized, and features pass 

from one layer to the next going from simple to more complex. The early layers are trained to 

react strongly to simple features like edges, lines, and sharp color gradients. Following layers use 

cues from the previous to extract more advanced features. This process occurs until the feature 

outputs of the last convolutional layer are flattened to reduce computation and serve as input data 

for the FC. Here, the FC infers the probabilities of input features where a particular class like 

“Nilgai” or “Deer” is decided. The network takes the predicted versus actual label to calculate an 

error score which is propagated back throughout the network to adjust various filter values or 

weights. High intensity output values shown in yellow in Figure 3.2 represent the extracted 

features. The first shallow layers highlight edges and changes of color in fur while final layers 

are more complex and difficult to interpret.  
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In practice, CNNs are rarely trained from scratch from a lack of sufficiently large dataset 

and/or computational resources. Instead, an approach especially useful for small datasets called 

transfer learning is applied that transfers knowledge gained from training a model on large-scale 

generic data which then acts as a base for future learning on more specific tasks. Knowledge is 

transferred in the form of saved weight files that contain weight parameters, complete or partial 

model architectures, and model settings. They are portable, can be easily downloaded from open-

source libraries, and loaded into a new training instance. The portability of learned features 

across different problems makes this approach highly effective for small-data problems (Chollet 

2018).  

Pretrained models can be used in two ways: as a feature extractor and for fine-tuning. 

Feature extraction involves training only a newly added fully connected layer using examples of 

new images. The convolutional portion of the network is frozen – preventing weights from being 

updated during training - and representations learned in the original model extract features which 

are then used as input into a newly added fully connected layer. Feature extraction takes less 

time and computational resources and is a necessary step for fine-tuning. Fine-tuning involves 

jointly training the unfrozen convolutional base and the newly added fully connected layer. This 

process slightly adjusts convolutional layer weights of the model making it more specific to the 

problem at hand. Feature extraction must occur first since the trained fully connected layer 

restricts weight adjustments from being too large which would drastically change and eliminate 

feature representations learned from pretraining (Chollet 2018).  

We looked to previous work done by Cui et al. (2018) who used a large dataset and 

transfer learning to classify images of plants and animals. They first trained a model on 

ImageNet data which is comprised of 1,281,167 images of 1,000 common every-day objects and 
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widely used in transfer learning (Cui et al. 2018). The model was then trained on iNaturalist 

2017 dataset (iNat) which was made up of 579,184 nature-specific objects (insects, mammals, 

amphibians, etc.) (Cui et al. 2018, Vanhorn et al. 2018). The iNat data was taken from 

www.inaturalist.org, collected and verified by citizen scientists, and originally described in Van 

Horn et al. (2018).  

This approach leverages the accumulated knowledge of previous training instances by 

applying the pretrained model as a feature extractor and for fine-tuning. A model pretrained on 

larger, generic datasets was used to refine classification results by training on a smaller but 

domain-specific dataset of south Texas wildlife (Figure 3.3).  

Training and Evaluation 

The model was trained using the InceptionV3 model architecture (Szegedy et al. 2016) - defined 

by its unique sequence and type of layers. Transfer learning was applied by loading iNat weights, 

froze the convolutional layers from updating its filter values, and retrained the model on a fully 

connected layer customized to the unique number of classes. After each training cycle (epoch), 

the validation set was used to monitor performance and adjust model settings, known as 

hyperparameters. For the second part, the trained model was fine-tuned by unfreezing 

convolutional layers and allowing all ~21-million weight parameters to be updated. This process 

was done for both the multi-label and binary classifier. The model was evaluated on the 

validation set throughout the training process and after making adjustments. 

After training and model adjustments were made, the test set was used to evaluate 

prediction results – the number of true positives (𝑇𝑝), true negatives (𝑇𝑛), false positives (𝐹𝑝), 

and false negatives (𝐹𝑛) - for each classifier. Five major metrics were calculated - overall 

http://www.inaturalist.org/
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accuracy (𝐴𝑐𝑐), precision (𝑃), recall (𝑅), F1 score (𝐹1), and the Matthews correlation 

coefficient (MCC) shown in Table 3.1. 

Results 

Binary Classification 

The trained binary classifier, results seen in Table 3.2, achieved an overall accuracy 

(ACC) of 97.03%, F1 score of 97.05% and MCC of 0.9407 indicating the classifier was able to 

generalize on new images and accurately predict whether there was or was not a nilgai. The 

model validation accuracy improved by ~15% by going from the first to second stage of training. 

Recall (97.84%) was slightly higher than precision (96.28%) which is favorable for this unique 

problem. The occasional misclassified image of deer or cattle is preferred since these mistakes 

can be easily caught. A misclassified image of a nilgai, however is more detrimental to the 

overall goals of eradication efforts and is less likely to be caught since the pool of images in the 

unimportant “Not Nilgai” class is significantly larger.  

Multiclass Classification 

The multigroup classifiers achieved an overall accuracy of 84.77%. Group-wise test 

results and evaluation metrics found in Table 3.3 show that three of the most highly correlated 

classes - squirrel, skunk, and tortoise - were the most imbalanced with each having less than 20 

images. Figure 3.4 shows a random sample of predictions made on test results. The three most 

common groups in the dataset – “Nilgai”, “Deer”, and “None” – were strongly correlated with 

MCC of 0.76, 0.79, and 0.80 respectively.  

Discussion 

We looked at how a small amount of hand-labeled camera trap images can be used to 

train a CNN to automatically detect wildlife. In the case of binary classification, evaluation 
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results showed an accuracy of 97% . The limitations of training a multigroup classifier was 

explored. Results found that class imbalance played a role in skewing the accuracy of rare 

classes. Despite containing fewer than 50 images, the classification accuracies for rare classes 

like skunk, tortoise, and squirrel were high. Upon further inspection, the test images were found 

to be very similar to training images. For example, the tortoise’s slow movement was enough to 

trigger camera sensor multiple times which resulted in many nearly identical images. Ultimately, 

because rare groups contained even fewer number of images in the test set, it was difficult to 

evaluate their accuracy. Addressing the class imbalance issue is an important factor in improving 

results and includes classifying capture events or exploring other sophisticated balancing 

techniques. One such technique is emphasis sampling (Norouzzadeh et al. 2018) where 

misclassified images are repeated, or emphasized during training, more so than correctly 

classified images. Alternatively, one could simply add images to rare classes from other camera 

trap datasets (e.g. Snapshot Serengeti or other online databases). However, this approach risks 

introducing too dissimilar images and class types. Lastly, adopting a trained model into an 

automatic camera trap classification workflow should be closely monitored by inspecting 

important and rare groups for anomalies or by testing on a subset of new images. An emphasis 

should be placed on inspecting groups with environments not initially used during training. New 

camera angles, species, or locations could pose challenges to accurate classifications.  

Deep learning approaches have become a ubiquitous tool among major industries 

(Ahmed and Islam 2020). Training neural networks, however, is no small task. Moreover, 

maintaining a growing database of camera trap images develops an evolving demand for refined 

classification results. An important component of any data-intensive conservation project thus 

includes interdisciplinary collaborations that connect technologists with researchers, students, 
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and field technicians. These collaborations help define real-world problems that in turn facilitate 

successful development and long-term application of these tools (Lamba et al. 2019).  

Conclusion 

This study showed how nature specific transfer learning has the potential to save 

enormous amounts of time and resources typically required to hand-label camera trap images. A 

trained classifier making predictions on 3,000 raw images saves roughly 12 personnel hours 

(Goolsby, pers. communication) that can then be transferred to other tasks. Automating this time-

intensive process dramatically reduces the cost that can then be redirected to enable future 

studies of population dynamics in conservation ecology (Norouzzadeh et al. 2018). More 

importantly, results showed the possibility of open-sourced tools, datasets, and the developing 

global library of pre-trained models can be leveraged to implement state-of-the-art deep learning 

techniques on a small dataset of local camera trap images. 
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Tables and Figures 

 

 

Table 3.1 Evaluation Metrics  

   

Acc: Accuracy 𝑇𝑝 +  𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 ∙ 100 

Calculates the ratio of all correct 

predictions out of all instances. 

P: Precision 𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 ∙ 100 

Calculates the ratio of true positives to 

total test positives.  

R: Recall  𝑇𝑝

𝑇𝑝 + 𝐹𝑛
  ∙ 100 

Calculates the ratio of true positives to 

all conditional positives. 

F1 Score 
2 ∙

𝑇𝑝

𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛
 ∙ 100 

Uses precision and recall calculating 

the harmonic mean that applies a 

harder penalty when one measure 

improves at the expense of another. 

 

MCC: Matthews 

correlation coeff. 

𝑇𝑝 ∙ 𝑇𝑛 − 𝐹𝑝 ∙ 𝐹𝑛

√(𝑇𝑝 + 𝐹𝑝) ∙ (𝑇𝑝 + 𝐹𝑝) ∙ (𝑇𝑝 + 𝐹𝑝) ∙ (𝑇𝑝 + 𝐹𝑝)
 

Measures the correlation between true 

and predicted results of the classifier 

using values between -1 and +1.  

 

Table 3.2 Binary Model Testing Results 

Metric  

Population 10,000 

Condition positive – nilgai 5,000 

Condition negative - not nilgai 5,000 

Total predicted Positive - nilgai 5,081 

Total test Negative - not nilgai 4,919 

Tp: True Positive 4,892 

Tn: True Negative 4,811 

Fp: False Positive 189 

Fn: False Negative 108 

TPR: Recall (true pos recall) 97.84% 

PPV: Precision (pos pred value) 96.28% 

ACC: Accuracy 97.03% 
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F1 score 97.05% 

MCC: Matthews correlation coefficient 0.9407 

 

Table 3.3 Multigroup Model Testing Results  

Class # Imgs. Tp Tn Fp Fn Acc. Recall Precision F1 MCC 

Armadillo 262 241 9717 21 21 91.985 91.985 99.580 91.985 0.918 

Birds 856 781 9070 74 75 91.345 91.238 98.510 91.292 0.905 

Cat 449 366 9508 43 83 89.487 81.514 98.740 85.315 0.848 

Cattle 1325 1142 8589 86 183 92.997 86.189 97.310 89.463 0.880 

Coyote 489 421 9444 67 68 86.270 86.094 98.650 86.182 0.855 

Deer 867 743 8998 135 124 84.624 85.698 97.410 85.158 0.837 

Dog 99 88 9900 1 11 98.876 88.889 99.880 93.617 0.937 

Horse 12 12 9983 5 0 70.588 100 99.950 82.759 0.840 

Humans 869 784 9101 30 85 96.314 90.219 98.850 93.167 0.926 

Mouse 683 582 9277 40 101 93.569 85.212 98.590 89.195 0.886 

Nilgai 805 700 9057 138 105 83.532 86.957 97.570 85.210 0.839 

None 857 770 8984 159 87 82.885 89.848 97.540 86.226 0.850 

Opossum 201 182 9759 40 19 81.982 90.547 99.410 86.052 0.859 

Pig 788 713 9144 68 75 91.293 90.482 98.570 90.886 0.901 

Rabbit 561 524 9367 72 37 87.919 93.405 98.910 90.579 0.900 

Raccoon 584 535 9374 42 49 92.721 91.610 99.090 92.162 0.917 

Rat 537 501 9384 79 36 86.379 93.296 98.850 89.705 0.892 

Skunk 21 20 9979 0 1 100 95.238 99.990 97.561 0.976 

Spider 19 17 9977 4 2 80.952 89.474 99.940 85.000 0.851 

Tortoise 12 12 9987 1 0 92.308 100 99.990 96.000 0.961 

Turkey 153 150 9827 20 3 88.235 98.039 99.770 92.879 0.929 
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Figure 3.1 The Seven Most Common Animal Classes  
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Figure 3.2 Inside A Convolutional Neural Network  
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Figure 3.3 Nature Specific Transfer Learning 
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Figure 3.4 Model Predictions 
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CHAPTER IV 

 

 

CONCLUSION, LESSONS LEARNED, AND FUTURE STUDIES 

 

 

Conclusion 

Proximal sensing are two important tools that can be used by researchers and 

conservation practitioners. These techniques extend the capabilities of researchers to gather and 

analyze large amount data that better inform decision-making. UAS-based proximal sensing was 

used to capture full-field plant data of 5.2 hectares of cover crops trials while proximal proximal 

sensing, or camera-trapping, was used to collect images that were used to train CNN that could 

automatically catalogue images. 

 Monitoring agroecological systems is a challenging task. Small sample sizes of 

traditional techniques drastically reduce the complexity of problems and fail to capture the 

nuance within complex systems. This study proved useful in establishing the potential of 

proximal sensing to provide insight into large-scale agroecosystems. Images, either taken 

proximally from a UAS or proximally by camera trap, were used to develop methods that reduce 

the need for burdensome data collection and analyses.  

The goal was to provide examples of how proximal sensing can aid in the collection of 

data by researchers and conservation practitioners on the ground. The first example used UAS-

based proximal sensing to capture the variability of canopy cover across large-scale cover crop 

trials. A UAS equipped with a multispectral sensor gathered images that 
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to estimate canopy cover across ~5.2 hectares of on-farm cover crop trials and throughout the 

falls 2019 season. Images of each capture event were processed and combined to make a 

multiband orthomosaic. A normalized difference vegetation index was used to differentiate soil 

from vegetation and grid-wise samples were taken across the field. Canopy cover estimations for 

each treatment were averaged, analyzed, and compared across treatments and through time. 

While, canopy cover alone is insufficient to evaluate the efficacy of certain cover crops, it is one 

of many important agronomic plant metrics used to assess a cover crops benefit. Results showed 

that a mix dominated by radish and cowpea created the most canopy cover while sunnhemp 

treatments provide the least (except control treatments) which further bolstered visual 

assessments made on the ground. Most striking was the fact that sunnhemp treatments planted at 

50.4 kilos. per hectare showed no difference in canopy cover compared to sunnhemp planted at 

18 kilograms per hectare--more was not better in this case. Results also showed that for both 

mixes, canopy cover did not increase past 67 days after planting, while both sunnhemp 

treatments continued to increase beyond this point. While canopy cover alone is not enough to 

determine the efficacy of certain cover crops, it can be used with other important plant and 

environmental data to improve management strategies.  

The second project provided an example of how open-sourced tools and shared models 

can be applied to address the common problem among wildlife monitoring – cataloging the many 

images that accumulate from camera trap platforms. More specifically, results showed how 

models pretrained on nature specific data and a small set of local camera trap images can be used 

to train a CNN that automatically catalogues images of wildlife. A CNN was trained on 110,000 

images pulled from a local database containing 20 classes of species and one class labeled 

“None”. This approach was used to train two models, a multigroup classifier that identified 21 
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classes with an accuracy of 89% and a binary classifier able to discriminate images with animal 

of interest, “Nilgai”, and “Not Nilgai” with an accuracy of 97%.  

The goal was to provide examples of how proximal sensing data could aid in data 

collection and analysis processes. Future work should consider integrating UAS-based proximal 

sensing data with deep learning. Potential exists in integrating UAS big agricultural data to train 

CNN and leverage the accumulated knowledge of pretrained models. This is especially true for 

addressing problems that involve counting plants, detecting weeds, and measuring surface 

temperature. Major obstacles, however, exists that limit the potential of deep learning techniques 

to be used in addressing these problems. For example, training CNN on images requires a large 

amount of computational resources and knowledge in computer vision, the discipline of using 

computers to perform human-level visual task and in  image segmentation, the process of 

partitioning an image into multiple segments with the aim of simplifying its contents in a way 

that makes it easier to analyze.  Though segmenting individual weed species from cash crops has 

been done and proven to be helpful in understanding management practices (citations), 

segmenting multiple species in a cover crop mix could provide meaningful information about 

weed suppressing abilities and perhaps additional selection criteria when investing in these 

conservation approaches  

Proximal sensing and deep learning can be used as tool to investigate changes in local 

agricultural industries.  For example, training a CNN on multitemporal satellite imagery of citrus 

orchards can help identify changes from the introduction of large-scale stakeholders on an 

industry traditionally dominated by small-scale farms. The collection and utilization of large 

agricultural data has untapped value in assessing the spatial and temporal impacts of 

conservation practices on wildlife and in agricultural systems. One of the key objectives of this 
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work was to demonstrate how these technological advances can be employed in different 

settings. This work shows that proximal sensing data could be helpful for researchers and 

conservation practitioners in the identification of wildlife and assessment of agricultural 

management strategies.  

Lessons Learned 

Out of 22 flights, 4 were used for this research. Weather played a major role in negatively 

impacting the end mapping product. Even a small but dense cumulus cloud mid-flight can create 

a large blotch on the end orthomosaic product. Finding a day without clouds in the fall in south 

Texas is a challenging task along with scheduling flights. Other issues arose concerning the 

integration of sensor to drone. Flights were often canceled at the study site due to an inability to 

properly connect to GPS units or from poor WIFI connection between sensor, drone, and remote 

control tablet. An important lesson learned was to check firmware updates for the flight 

controller, batteries, and other associated equipment. In the end, it was particularly helpful to 

develop a system where we could easily remove the drone to update software every couple of 

months. Future users should plan to fly often with the expectation that a limited number of 

realized flights will occur.  

A number of important mistakes were made. Initially, cover crops were to be further 

evaluated using crop height models where photogrammetry techniques can estimate the height of 

vegetation. This approach depends on accurate and precise location information that should be 

gathered by correcting for error using Continually Operating Reference System (CORS) data. 

Unfortunately, this process was not done correctly in time to gather data of the bare non-

vegetated field required to perform the analysis. The second mistake occurred after the cover 

crops were terminated and the field was bare again. This time an uncalibrated inertial 
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measurement unit, or IMU, located in the multispectral sensor and responsible for measuring 

orientation kept the drone from flying - a safety response put in place to keep from damaging the 

sensor, drone, or pilot.  

Further, without a background in robotics or software development, the largest obstacle 

to overcome was a lack of time to learn and understand the many details that were needed to 

either operate a UAS or train a model. My experience with this project has given way to some 

concerns about the transferability and accessibility of these techniques. Without the resources 

and time to experiment it would be difficult to utilize these techniques in an efficient manner. 

Concerns about accessibility, however, are a testament to the increased need for institutions to 

invest in students and continue to provide them with the opportunities of time to develop their 

own base of knowledge.  
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