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ABSTRACT The saturating relationship between phytoplankton growth rate and 
environmental nutrient concentration has been widely observed, yet the mechanisms 
behind the relationship remain elusive. Here, we use a mechanistic model of phyto­
plankton and show that the saturating relationship between growth rate and phospho­
rous concentration can be interpreted by intracellular macromolecular allocation. At 
low nutrient levels, the diffusive nutrient transport linearly increases with the phospho­
rous concentration, while the internal phosphorous requirement increases with the 
growth rate, leading to a non-linear increase in the growth rate with phosphorous. This 
increased phosphorous requirement is due to the increased allocation to biosynthetic 
and photosynthetic molecules. The allocation to these molecules reaches a maximum 
at high-phosphorous concentration, and the growth rate no longer increases despite 
the rise in phosphorous concentration. The produced growth rate and phosphorous 
relationships are consistent with the data of phytoplankton across taxa. Our study 
suggests that the key control of phytoplankton growth is internal, and nutrient uptake is 
only a single step in the overall process.

IMPORTANCE The Monod equation has been used to represent the relationship 
between growth rate and the environmental nutrient concentration under the limitation 
of this respective nutrient. This model often serves as a means to connect microorgan­
isms to their environment, specifically in ecosystem and global models. Here, we use a 
simple model of a marine microorganism cell to illustrate the model’s ability to capture 
the same relationship as Monod, while highlighting the additional physiological details 
our model provides. In this study, we focus on the relationship between growth rate 
and phosphorus concentration and find that RNA allocation largely contributes to the 
commonly observed trend. This work emphasizes the potential role our model could 
play in connecting microorganisms to the surrounding environment while using realistic 
physiological representations.

KEYWORDS Monod kinetics, phytoplankton, macromolecular allocation, nutrient, 
growth, protein, carbohydrate, lipid, DNA, RNA, nutrient storage

P hytoplankton are responsible for most primary production and photosynthesis in 
the ocean (1, 2). They are also at the core of global biogeochemical cycles and the 

oceanic, biological carbon pump (3, 4), the magnitude of which is strongly influenced 
by the phytoplankton growth rate (5, 6). Nutrient fluxes of nitrogen (N) and phosphorus 
(P) are often the major limiting factor in phytoplankton growth (7–9). Due to the altered 
nutrient supply, environmental changes, including eutrophication and climate change, 
have had a significant effect on the growth rate and size of phytoplankton (7, 10–
12). Understanding the growth rate of phytoplankton and their response to respective 
nutrient concentrations provides insights into physiological responses at the cellular 
level (13). Therefore, the relationship between phytoplankton growth rate and nutrient 
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concentration in the ocean is critical to understand their role in marine ecosystems. 
One such model that quantifies this relationship is the Monod kinetic model which 
describes the growth rate of phytoplankton (μ) as a function of nutrient concentration 
following (Eq. 1) (14).

(Eq. 1)μ =  μmax SKs + S
Here, μmax is the maximum specific growth rate (day−1) of microorganisms at substrate 

saturation, S is the substrate concentration (µM), and KS is the half-saturation constant 
(µM) as a value of substrate concentration corresponding to half of μmax. The equation 
suggests that extracellular nutrient concentration is the limiting factor of phytoplankton 
growth rates. Subsequent studies illustrated these nutrient dependencies on growth 
rates by applying Monod’s theory to various marine plankton and substrates (15–17). 
Select studies demonstrated that the growth rate was affected by different phosphorous 
concentrations and uptake rates when testing the Monod kinetic model with various 
phytoplankton (18–20).

Still, the Monod equation is widely applied to predict the relationship of growth 
rate and nutrient concentrations, specifically phosphorous. Although the Monod model 
derives the maximum growth rate, it conveys limited physiological information. For 
example, it is still unclear what controls the maximum growth rate and the reason 
behind the saturating relationship between nutrient concentrations and the growth rate. 
Previous studies (21, 22) pointed to internal effects within phytoplankton as the cause of 
growth rate limitation, but a mechanistic model of cellular processes would offer further 
physiological-based predictions (23).

The Cell Flux Model of Phytoplankton (i.e., CFM-Phyto) was recently developed to 
explore the relationship between growth rate, elemental stoichiometry, and macromo­
lecular allocation (e.g., proteins, DNAs, RNAs, carbohydrate, and chlorophyll) in phyto­
plankton (24) (Fig. 1). Subsequent studies demonstrated that CFM-Phyto provides key 
insights of cellular physiology in the various environments. For example, CFM-Phyto was 
applied to predict C:P ratios in the ocean with the satellite remote sensing data (25) 

FIG 1 The Cell Flux Model of Phytoplankton (CFM-Phyto) under P limitation. The model allocates carbon (maroon) and phosphorus (olive) to four intracellular 

macromolecular pools: biosynthesis (teal), photosynthesis (pink), essential (purple), and storage (yellow). Each macromolecule requires varying levels of C and 

P (24), indicated by the bar below the macromolecule. When C is limited, there is no allocation of C to storage. The essential pool represents macromolecules 

needed for basic cell survival and structure and is assumed to remain constant with growth rate.
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and explore the temperature dependency of nutrient ratios in phytoplankton (26). A 
recent study also used the CFM-Phyto to understand the saturating relationship between 
phytoplankton growth rate and nitrogen concentration and provided macromolecular-
based interpretations (27). However, there is a lack of understanding of the relationship 
between growth rate and phosphorous concentrations in phytoplankton from a cellular 
perspective, although phosphorous is one of the key elements in aquatic ecosystems (28, 
29).

In this study, we focus on CFM-Phyto’s ability to provide physiological context and 
use it to interpret the saturating relationship between the growth rate and phosphorus 
concentration. We developed the model to address the following questions: (1) Can 
CFM-Phyto capture the saturating relationship between PO4

3− concentration and growth 
rate often modeled by Monod kinetics? (2) What leads to the saturating relationship 
between the growth rate and phosphorus concentration? (3) How does this relationship 
differ from that between growth rate and nitrogen concentration? Here, we focus 
on the relationship between the growth rate and the concentration of one of the 
major nutrients, PO4

3−, using data of phytoplankton across taxa. The model provides 
a macromolecular-based interpretation of the widely observed saturating relationship.

RESULTS AND DISCUSSION

We compared both the Monod mathematical model and the CFM-Phyto output to 
experimental data of the measured growth rates with increasing PO4

3− concentrations 
for 15 organisms (Fig. 2; Fig. S1). Here, we define two major phases from the model 
output: a rapidly increasing growth rate followed by a constant growth rate. During the 
sharp increase, P availability limits growth, while C availability limits growth during the 
second phase. Similar to an N-limited environment (27), the addition of C limitation to 
the model forces the growth rate to reach a saturation point rather than continuously 
increasing as illustrated in the Monod mathematical model, as shown in most data (Fig. 
2; Fig. S2). By imposing a maximum growth rate, and in turn, a maximum amount of 
cellular phosphorus, CFM-Phyto realistically represents nutrient dynamics within a cell. 
One mechanism that neither Monod nor CFM-Phyto captures is the growth inhibition 
at high concentrations of phosphorus observed in Sphaerocystis schroeteri (Fig. 2F) and 
Synedra radians (Fig. S1E). The mechanism behind the growth inhibition is unknown. A 
possible mechanism may include negative feedback. Also, the data are not based on the 
axenic culture, and the high phosphorus concentration might have induced the growth 

FIG 2 Measured (maroon points) and predicted growth rates with increasing PO4
3− using the Cell Flux Model of Phytoplankton (CFM-Phyto; black line) and 

the Monod formulation (dotted teal line) for various organisms (A) Microcystis (18), (B) Chorella sp. (20), (C) Nitzschia palea (20), (D) Oocystis pusilla (20), (E) 

Scenedesmus quadricauda (20), (F) Sphaerocystis schroeteri (20), (G) Synechocystis sp. PCC6803 (19), and (H) Pelagomonas capsulatus (17).
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of other organisms harmful to the measured organisms. Further studies need to be done 
to clarify the common mechanisms of such growth inhibition, which may eventually 
be incorporated into the modeling. In this study, the macromolecular allocation largely 
explains the saturating growth curve, as observed in most phytoplankton taxa.

Under P limitation, the cell prioritizes P use in biosynthesis, photosynthesis, and 
building essential biomolecules (Fig. 3) without accumulating any P in storage. Therefore, 
macromolecular allocation to RNA largely contributes to the observed increasing growth 
rate at low P concentrations. RNA ultimately controls protein synthesis which is necessary 
to create proteins that enhance key cellular reactions within photosynthesis and 
biosynthesis that produce energy for the cell, allowing it to grow. The initial investment 
in P uptake allows the cell to make these key biomolecules which contribute to high 
growth rates. As the growth rates increase, C storage depletes and eventually C limitation 
occurs which causes the increasing growth rate to slow to a constant value of 1.16 
d−1. When P is the most limiting factor, the cell uses available C in storage to create 
photosynthetic machinery and RNA, both integral to the central metabolism of the 
phytoplankton cell. Once the C stores are exhausted, the cell may not grow faster with 
additional PO4

3− availability.
Generally, phytoplankton follows these patterns of P allocation, but there are some 

variations species-to-species (Fig. 4; Fig. S2). Specifically, the higher maximum growth 
rates may require more P to build RNA and photosynthetic molecules and contribute to 
the variation in P dedication to these macromolecules among the different phytoplank­
ton species. Here, Synechocystis sp. PCC6803 (19) had the highest maximum growth rate, 
and accordingly, the model predicts the highest P:C value and fraction of RNA (Fig. 4G). 
Whereas we did not include P storage in this particular study, it is likely that such luxury 
uptake of P happens in many cases, when C becomes limited and thus P may no longer 
be limited. Data compilations so far suggest that eukaryotic cells tend to store more 
P for specific biomass (30–32). At the species level, however, the magnitude of the P 
storage varies, and additional measurements would be needed to constrain the P storing 
capacity of the individual species.

The framework of the CFM-Phyto allows for a strong connection between the 
phytoplankton cell and the environment by predicting maximum growth rates and 
macromolecular allocation of P in various environmental conditions, such as nitrogen 
limitation or changing light availability (Fig. 5). In reality, there are many factors that 
govern phytoplankton growth in the surrounding environment, and by limiting the 
external factors to a single stressor, the Monod model excludes other key influences. 
Using the CFM-Phyto illustrates that light intensity has impacts on maximum cellular 
growth in addition to nutrient limitations. With increasing light intensity, the maximum 
growth rate increases and requires a higher concentration of P to reach this maximum 
(Fig. 5A). Increasing light intensity, before the point of photoinhibition, allows for 

FIG 3 An example of simulated growth rate and macromolecular allocation produced by the cell flux model of phytoplankton (CFM-Phyto). (A) Growth rate. (B) 

Macromolecular allocation based on P (per cellular C). (C) C-based macromolecular allocation. The overall patterns of the relationships are conserved across the 

simulations.
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efficient photosynthetic activity (33–35), supporting fast growth in the cell, but increases 
the P requirement to build macromolecules such as RNA to maintain these higher 
growth rates. In addition to these external factors, the CFM-Phyto simulates macromolec­
ular allocation of P under P and N limitation (Fig. 4; Fig. 5B). Higher N availability (here 
NO3

−1) leads to higher photosynthetic and biosynthetic molecules (e.g., RNA), leading 
to higher allocation of P to these molecules, until the N switches to C limitation where 
N availability may no longer have an impact. Under both N and C limited cases, luxury 
uptake of P may occur, and the magnitude of the P storage would depend on multiple 
factors, including the availability of P, growth rate, and the individual capacity of P 
storage (32).

Macromolecular allocation explains the cellular dynamics of nutrient uptake and 
highlights the differences between N and P. Previously, we captured a similar saturating 
growth curve using CFM-Phyto for increasing N concentrations (27). In both nutrient 
limitations (N and P), there is an increasing phase of growth, followed by a constant 

FIG 4 Species-specific predictions of macromolecular allocation of P to three cellular pools: RNA (green), photosynthetic molecules (orange), and other (blue). 

Other molecules include DNA and remaining P. (A) Microcystis (18), (B) Chorella sp. (20), (C) Nitzschia palea (20), (D) Oocystis pusilla (20), (E) Scenedesmus 

quadricauda (20), (F) Sphaerocystis schroeteri (20), (G) Synechocystis sp. PCC6803 (19), and (H) Pelagomonas capsulatus (17).

FIG 5 The Cell Flux Model of Phytoplankton (CFM-Phyto) predicts growth rate (μ) with increasing phosphate concentration (PO4
3−) for various environmental 

conditions including light intensity. (A) Darker colors represent higher light intensity or temperature. CFM-Phyto also predicts macromolecular allocation of 

phosphorus under nitrogen limitation (B).
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growth rate. Similarly, the first part is characterized by P or N limitation, where the 
growth rate increases with the addition of each nutrient, and the stable part is due to C 
limitation. The subtle, yet noteworthy, difference between the two nutrients is the rate 
and nature of the increase during the N or P limitation. To compare the two nutrients 
(Fig. 6A), we normalized the N value to P by dividing N by 15, a commonly observed 
N:P value in oceanic organic matter and water (30). For each nutrient, we have a unique 
set of equations that highlight these differences and offer a physiological explanation 
for the discrepancies. On the macromolecular level, P allocation is dominated by RNA, 
whereas N is predominantly allocated to proteins. Proteins are mainly used as enzymes 
that catalyze biosynthetic reactions, whereas RNA is mainly involved in protein synthesis. 
This difference in biochemical roles leads to the difference in the relationship between 
these molecules and growth rate, leading to a linear relationship between growth rate 
and protein and a quadratic relationship between growth rate and RNA, respectively (24, 
36–38). Because the growth rate and the cellular content of limiting nutrient are inversely 
related, a quadratic relationship between the growth rate and P rich RNA leads to a more 
gradual change in growth rate toward C limitation relative to the initial slope under P 
limitation (Fig. 3B). This trend may contribute to more data points where growth rate 
increases with nutrient concentration under P limitation than N limitation (compare this 
study and reference 27).

Conclusion

Previously, the widely used Monod mathematical formulation modeled the saturating 
growth rate with increasing phosphorus concentration. Here, we illustrate the strength 
of using CFM-Phyto to capture this trend due to its predictions of macromolecular 
allocation, specifically for phosphorus and carbon allocation within the cell. Physiolog­
ically, the saturating relationship between P and growth rate can be attributed to a 
dedication to RNA molecules and a depletion of C storage, and thus, C allocation to 
growth-related and essential molecules. Moreover, the allocation to RNA, rather than 
to proteins, explains the subtle difference between P- and N-based growth. Due to the 
ease the Monod model provides of relating nutrient uptake and growth, it is often 
used in ecosystem models to connect nutrient consumption to lower trophic organisms. 
However, CFM-Phyto captures the trend as well as Monod and provides additional 
information about cellular physiology like macromolecular allocation and may be altered 
to simulate other environmental conditions such as light intensity. CFM-Phyto remains 

FIG 6 Comparison of growth with increasing nutrient concentrations (A) of PO4
3− (solid, teal line) and NO3

− (dashed, maroon line) for the respective nutrient 

limitation (i.e., P and N limitation) normalized to the cellular ratios of phosphorus using a typical nutrient ratio (30) (i.e., dividing N by 15). (B) Comparisons of 

intracellular P:C (teal) (Mol P mol C−1) and N:C (maroon) (Mol N mol C−1) for increasing growth rate.
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a simplistic representation of phytoplankton and thus can be used in larger ecosystem 
models while providing more cellular predictions based on the ever-changing, surround­
ing environment.

MATERIALS AND METHODS

The following details outline our use of both the Monod mathematical kinetics model 
and the CFM-Phyto to capture the trend between phosphorus concentration and growth 
rate. Not only this, but we also provide equations and assumptions that led to the 
physiological interpretation of this commonly observed trend. We used published data 
that spanned phytoplankton taxa to illustrate the versatility of the CFM-Phyto. Please 
see the supplemental material for a list of the data sets we used and notes about the 
experiments (Table S1).

Monod kinetics

To optimize the Monod kinetics mathematical model (Eq. 1), we used the Metropolis-
Hastings algorithm (39–41), a Markov Chain Monte Carlo (MCMC) method that intro­
duces perturbations to our initial estimates and eventually converges to parameter 
values that best fit the data. We gave initial estimates for the maximum growth rate 
(μmax) and the half-saturation constant (KP), converging on the best solution with visual 
trial-and-error. We recorded the resultant values of the maximum growth rate and the 
half-saturation constant for each data set (Table S2).

CFM Representation

The CFM-Phyto is a coarse-grained model that predicts nutrient allocation to 
four categories of macromolecules including molecules involved in photosynthesis, 
biosynthesis, essential cellular structure and survival, and storage of nutrients (Fig. 1). 
Additionally, it calculates the resulting elemental stoichiometry (C:N:P). A variety of 
environmental conditions can be simulated using this model. CFM-Phyto is based on 
key assumptions that include linear relationships between the RNA, protein, and growth 
rate (36, 37, 42, 43), a constant macromolecular composition of the photosynthetic 
machinery (44–47), and a saturating function between irradiance and photosynthesis 
(48, 49). These assumptions, in addition to the following macromolecular allocation 
equations, comprise the model.

Again, we grouped biomolecules into four categories: photosynthesis, biosynthesis, 
essential, and storage (Fig. 1). Phosphorus is primarily dedicated to RNA in biosynthesis, 
the thylakoid membrane lipids in photosynthesis, DNA, and structural lipids in essential 
biomolecules, and storage. Storage of either phosphorus or carbon only occurs when 
that nutrient is in excess. Here, we ran the model in phosphorus limitation and carbon 
limitation. Therefore, carbon is only stored during phosphorus limitation, and phospho­
rus is only stored during carbon limitation.

For an extensive list of all equations, parameters, their respective definitions, and 
derivations please refer to Tables S3 and S4 in the supplemental material. Here, we 
highlight some key equations that informed the model output. First, we describe the 
equations that quantify macromolecular allocation for carbon (Eq. 2), phosphorus uptake 
(Eq. 3–5), and phosphorus allocation (Eq. 6). We simplified these equations, along with 
those listed in the supplemental material, into two equations (Eq. 7–8) and solved them 
for the growth rate:

(Eq. 2)1 = QCPro + QCRN A + QCDN A + QCCℎl + QCPlip − Tℎy + QCCsto + QCOtℎer
The categories we used include proteins (QCPro), RNA molecules (QCRN A), DNA 

molecules (QCDN A), chlorophyll (QCCℎl), phospholipids in the thylakoid membranes 
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(QCPlip − Tℎy), phosphorus carbon storage (QCCsto), and all remaining carbon labeled as other 

(QCOtℎ). We describe the change of cellular phosphorus concentration over time (
dQPdt ) by 

subtracting the phosphorus dedicated to new cell growth (μQP) from the rate of nitrogen 
uptake (VP).

(Eq. 3)dQPdt = VP − μQP
We assumed there is no change in the cellular phosphorus concentration over time 

(
dQPdt = 0), or steady-state conditions, and (Eq. 3) becomes

(Eq. 4)VP = μQP
where the cellular phosphorus is defined by the macromolecular allocation of 

phosphorus (Eq. 6). This equation assumes the rate of diffusion limits the cellular 
concentration of phosphate; thus the uptake is linearly related to the phosphate 

concentration PO4
3 −  with an affinity constant AP (50):

(Eq. 5)VP = AP PO4
3 −

We calculated phosphorus allocation using a stoichiometric ratio (24, 51) between 
phosphorus and carbon to convert the above carbon calculations to a value representa­
tive of phosphorus (Eq. 6).

(Eq. 6)QP = QPTℎy + QPRN A + QPDN A + QPOtℎ + QPSto
The model allocates phosphorus to lipids in the thylakoid membranes (QPTℎy), RNA 

molecules (QPRN A), DNA molecules (QPDN A), and the remaining phosphorus (QPOtℎ). To 
obtain the growth rate, we solve the relationship for both C limitation under the steady 
state, (Eq. 7) and (Eq. 8), respectively:

(Eq. 7)0 = aCμ2 + bCμ + cC (Eq. 8)0 = aPμ3 + bPμ2 + cPμ + dP
Terms a, b, c, and d are defined by a suite of parameters from previously described 

biomolecule definitions. For an extensive description of terms a, b, and c, derivations, 
and parameter definitions, please refer to the supplementary material (Table S3 and S4). 
Here, the major difference between the two equations is that solving for phosphorus 
requires a cubic, rather than a quadratic, function. This occurs due to the additional 
growth rate factor (Eq. 4) necessary to quantify the uptake rate of phosphorus into the 
cell.

Similar to the Monod optimization, we used the Metropolis-Hastings algorithm with 
CFM-Phyto to converge to the best representation of the data, predicting the best values 
for the affinity to phosphorus (AP) and the stoichiometric ratio for the cellular photosyn­
thetic enzyme nitrogen to chlorophyll ratio (APho; Table S5). We also included the values 
for AP (or AN, affinity to nitrogen (27), for a specific case) and APho for the example cases 
in Table S5. Phosphorus concentration does not directly influence this parameter, APho, 
rather it indirectly affects the enzyme due to the changes in RNA concentration, which 
comprises a large fraction of intracellular phosphorus. Additionally, we defined a set light 
intensity (I) for the model runs which was equal to the respective light intensity used in 
each experiment.
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