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Abstract
Objective: In 2000, the Laguna Atascosa National Wildlife Refuge acquired the 
Bahia Grande (Texas) management unit, a space that had lain barren and arid for 
70 years. A large cooperative partnership launched a restoration project to replen-
ish the basin and recover its original tidal hydrology. In 2005, the construction 
of a pilot channel successfully restored water throughout the basin, and plans 
to eventually widen the channel were developed. Our study aims to evaluate an 
estuarine habitat restoration by assessing ecological drivers and the impacts on 
species diversity.
Methods: We evaluated species richness, detection/occupancy rates, and spe-
cies–habitat relationships, and we estimated the sampling effort required to 
achieve a given level of relative precision if relative abundance was used instead 
of occupancy to inform future sampling. Sampling gear included bag seines for 
juvenile life stages and gill nets for capturing subadult and adult life stages. For 
analysis, we used a Bayesian negative binomial linear mixed- effects model to 
evaluate richness–habitat relationships and a hierarchical Bayesian multispecies 
model to evaluate individual species–habitat relationships, and we calculated the 
total number of fish captured and relative standard error by gear and sample year 
to produce a precise estimate of relative abundance.
Result: Overall, 29 species were caught between 2018 and 2021. Salinity emerged 
as a clear driver in the Bahia Grande, as both species richness and individual- 
level responses were negatively associated with high salinity values. We found 
that catch estimated as relative abundance had much variability, as is typical of 
most survey programs assuming constant detectability, and the number of net 
sets or seine hauls required to achieve a given level of relative precision varied 
considerably depending on the species, season, year, and gear type. The most col-
lected species were found in the upper extremes of their salinity tolerances—po-
tentially a unique adaptation to this hypersaline system.
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INTRODUCTION

Coastal marine habitats require freshwater in-
puts to maintain their unique and diverse habitats 
(Pritchard 1967). Unfortunately, many of these habitats 
have been degraded, filled, or destroyed in various parts 
of the world (Zedler et  al.  2001), leading to decreased 
freshwater flow, altered nutrient cycling, habitat loss, 
and reductions in estuarine- associated populations 
(Kennish 2002; Russell et al. 2006). In Texas, the Bahia 
Grande tidal basin was once a thriving nursery for fish 
and other aquatic life on the southern coast (Hicks 
et  al.  2010). However, the dredging of the Brownsville 
Ship Channel in 1934–1936 caused the estuary to dry up 
due to the placement of dredge material, which blocked 
all tidal flows. Over the next 70 years, the Bahia Grande 
basin remained dry and unproductive, posing a signif-
icant health risk to nearby communities through dust 
storms.

In 2000, the Laguna Atascosa National Wildlife 
Refuge (LANWR) acquired the Bahia Grande manage-
ment unit. A large partnership was formed, and one of 
the largest restoration efforts in Texas was launched, 
with the goal of refilling the basin and restoring its orig-
inal tidal hydrology as well as providing subsequent wa-
tering to two other basins. The first phase of the project 
began in 2005, which involved constructing a pilot chan-
nel (4.5 × 695.5 m [15 × 1250 ft]) to reconnect the main 
interior basin (i.e., Bahia Grande) to the Brownsville 
Ship Channel. Two additional interior channels were 
built in 2007, linking the Bahia Grande to two smaller 
basins: Little Laguna Madre and Laguna Larga. The pilot 
channel and interior channels were effective in restor-
ing water flow throughout the basins (Hicks et al. 2010). 
In 2021, the next phase started, which aimed to widen 
the pilot channel to 45.5 m (150 ft) to enhance water cir-
culation and reduce salinity levels in the Bahia Grande 
basin.

Despite the construction of the pilot channel in 
2005, the Bahia Grande remains a hypersaline envi-
ronment (>35‰), with salinity levels reaching 150‰ 
in the northern half of the basin. The basin's shallow 
morphology, arid climate, low tidal exchange, and lack 

of freshwater inflow all contribute to its high salinity 
levels. Salinity gradients are a reliable predictor of fish 
distribution in hypersaline environments: the higher the 
salinity, the lower the species diversity and abundance 
(Gunter 1961). With the majority of the basin reaching 
extreme hypersaline conditions (>75‰), habitat for 
most fish and invertebrates is reduced to just half the 
wetted area. Estuarine fish are influenced by salinity 
gradients, which can be a major physical barrier to habi-
tat use and organism survival (Baggett et al. 2015). Upon 
completion of the pilot channel bridge in 2008, the Texas 
Department of Transportation reported a tidal exchange 
rate of 1.7%, which increased to 9.7% by 2011 (Coast 
and Harbor Engineering [CHE]  2011). Tidal exchange 
is limited to the southern half of the Bahia Grande due 
to an old railroad trestle, which is a porous barrier that 
splits the basin in two halves. The planned widening of 
the pilot channel in 2021 was expected to substantially 
increase tidal exchange, improve water circulation, and 
reduce salinity ranges throughout the basin, thereby 
creating more suitable habitat for aquatic species.

The Bahia Grande restoration project aims to re- 
establish a nursery habitat for native species and to 
provide wetland habitat for birds. This project offers 
a unique opportunity to observe species changes in a 
transitioning environment. To evaluate the restoration, 
we collected 3 years of baseline data using fisheries- 
independent monitoring to assess changes in the hab-
itat and aquatic communities. These data are essential 
for understanding the effectiveness of the 2021 channel 
widening project, providing a baseline against which to 

Conclusion: Baseline data suggest that for the channel widening to be successful, 
there must be a noticeable increase in suitable habitat characteristics throughout 
the basin.

K E Y W O R D S

Bahia Grande, Bayesian, Bayesian models, detection probabilities, fisheries, hypersaline, 
management, species distribution

Impact statement

Habitat restoration is a unique opportunity to as-
sess changes in aquatic communities. We used 
hierarchical Bayesian models to describe preres-
toration community relationships for one of the 
largest coastal restorations in Texas. This flexible 
framework can be applied to other complex habi-
tat restorations.
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measure the project's effectiveness in restoring tidal ex-
change to the basin. Our objectives were to (1) evaluate 
species richness; (2) estimate the effect of drivers (sa-
linity, season, water temperature, and water depth) on 
detection probability and occupancy rates using hierar-
chical Bayesian multispecies models; and (3) determine 
the number of seine hauls and gill- net sets required to 
attain a relative precision in relative abundance of 80% 
and 95% to inform future sampling.

METHODS

Study area

The Bahia Grande is a management unit within the 
LANWR (U.S. Fish and Wildlife Service [USFWS]) in 
south Texas along the Gulf Coast. Our study area en-
compassed the entire main bay system of Bahia Grande 
(Figure  1). The area also contained bird islands where 
numerous species of colonial waterbirds nest, including 
the reddish egret Egretta rufescens (listed as threatened 
in the state of Texas), black skimmer Rynchops niger, and 

gull- billed tern Gelochelidon nilotica. Therefore, a 200- m 
buffer was implemented during sampling to protect these 
nesting areas (as shown in Figure 1).

Sampling

Biannual sampling trips were initiated in 2018 and com-
pleted before the start of the Bahia Grande channel wid-
ening construction in summer 2021. Five preconstruction 
sampling trips were conducted, with no sampling taking 
place in 2020 due to COVID- 19 restrictions. Fish and in-
vertebrates were sampled using bag seines and gill nets. 
Bag seines were used to sample shorelines and capture 
juvenile life stages, while gill nets were used to sample 
subadult (age 1) and adult (age > 1) life stages, providing a 
comprehensive understanding of species utilization in the 
Bahia Grande. Bag seines measured 18.3 m long × 1.8 m 
deep (60 × 6 ft), with 19- mm (0.75- in) mesh in the wings 
and 13- mm (0.50- in) mesh in the bag. Gill nets measured 
61 m long × 0.9 m deep (200 × 3 ft), with 15.2- m (50- ft) sec-
tions of 76- , 102- , 127- , and 152- mm mesh (3, 4, 5, and 6 
in). Both gears were used to sample fish and invertebrate 

F I G U R E  1  Large pink grids on the Bahia Grande tidal basin indicate 60 × 60 arcseconds; small black gridlets indicate 5 × 5 arcseconds. 
The red highlighted regions indicate sensitive bird nesting areas that were avoided. Grids were labeled 1–10 from left to right and from top to 
bottom. Inset depicts the location of the Bahia Grande along the Texas coastline.
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numbers (catch per unit effort [CPUE]) and sizes. The 
shallow depth of the system (0.025–1.000 m) prevented 
the use of trawls.

Survey framework

The Bahia Grande was sampled using a stratified ran-
dom sampling design. The basin was divided into 10 
large grids (60 × 60 arcseconds or 1.86 × 1.86 km in size), 
each containing 144 smaller gridlets (5 × 5 arcseconds 
or 0.15 × 0.15 km; Martinez- Andrade 2015). The 10 grids 
were numbered sequentially and sampled systemati-
cally from west to east and from north to south. Odd- 
numbered grids were sampled with bag seines (five 
grids, each gridlet sampled with four replicate seine 
hauls), and even- numbered grids were sampled with gill 
nets (five grids, each gridlet sampled with three repli-
cate 4- h soaks). Each grid that was selected for bag seine 
sampling had five randomly chosen gridlets for a total 
of 25 gridlet sample sites, each with four seine hauls re-
peated at the same location, resulting in 100 total seine 
hauls. Each grid that was selected for gill netting had 
one randomly chosen gridlet, which was sampled three 
times for a total of 12 h of soak time per gridlet; sampling 
of the five gridlets (one gridlet per grid) resulted in 60 h 
of total gill- net soak time. Water depth (m), water tem-
perature (°C), dissolved oxygen (mg/L), and salinity (‰) 
were measured at every bag seine haul and gill- net set 
using a YSI Professional Plus meter.

Salinity gradient mapping

Salinity measurements were taken on July 23, 2019, at 
71 sites in the Bahia Grande (34 sites in the southern 
area and 37 sites in the northern area) under typical 
conditions for the estuary (i.e., no recent rainfall events 
and no large tidal swings; Figure 2). Salinity sampling 
occurred 2 months after spring fish sampling and 2 
months before fall fish sampling. A Hydrolab Compact 
DS5 multi- parameter probe (Hydrotech ZS) was used 
to measure salinity (from specific conductivity), water 
temperature, and dissolved oxygen at each site. Where 
the salinity was too high to be determined with the data 
sonde, water samples were collected, diluted 1:1 with 
deionized water, and then analyzed with a refractom-
eter. The Global Positioning System (GPS) coordinates 
at each site were recorded using a Trimble Juno 3B 
and were differentially corrected using GPS Pathfinder 
Office software to improve accuracy. The corrected GPS 
locations and salinity values were mapped using kriging 
in ArcMap's Geostatistical Analyst toolbox, with values 

assigned to classes based on natural breaks in the data 
(e.g., 0–20‰, 20–40‰, and 40–60‰).

DATA ANALYSIS

Objective 1: Site- specific correlates of 
species richness

We used a Bayesian negative binomial linear mixed- effects 
model to describe the relationship between species rich-
ness (the number of different species encountered in each 
gear at a site) and environmental covariates. The observed 
elements of species richness consist of the number of spe-
cies encountered y at each site i = 1, … I. The observed 
data yi were denoted by the vector of visits at each site 
Y =

{
yi: i = 1, … , I

}
 and regarded as a negative binomial 

outcome h
(
yi| λi, θ

)
:

where λi is the underlying negative binomial mean of yi and 
θ is the inverse parameter that controls the overdispersion, 
the scaled square of the mean. A generalized linear random- 
effects model was assumed between the mean count λi and 
predictor variables Xi:

P
(
yi = l| λi, θ

)
=

(
l + θ − 1

l

)(
λi

λi+θ

)l(
θ

λi+θ

)θ

,

log
(
λi
)
= α0 +

w∑

v=1

αvXv,i + γj,

F I G U R E  2  Salinity (‰ [parts per thousand, ppt]) gradient map 
for the Bahia Grande tidal basin based on salinity values measured 
at 71 sites during a single event under typical conditions. Salinity 
ranges are shown. The blue arrow indicates the pilot channel 
opening location.
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where the Xi are the predictors (e.g., salinity, water tempera-
ture, and water depth) v = 1, … ,w measured at location 
i throughout the study period. The α0 and αv are the inter-
cept and slope fixed- effect coefficients, and γj is the random 
effect for the jth year and is assumed to be distributed as 
γj ∼ N

(
0, σ2

j

)
 with the prior of σ2j ∼ Cauchy(0, 3.5).

Predictor variables were standardized with a mean 
of zero and a standard deviation of 1. To reduce multi-
collinearity, only predictor variables with a correlation 
coefficient r less than 0.60 were used in the same model 
(Dormann et al. 2013). This resulted in two models—one 
containing depth (m) and the other containing gear (1 = gill 
net; 0 = beach seine)—due to correlation. Models were fit-
ted simultaneously in Stan (Carpenter et al. 2017) with the 
RStan interface (Stan Development Team  2021) in R (R 
Core Team 2021) using a Hamiltonian Monte Carlo algo-
rithm to estimate parameters with the No- U- Turn sampler 
(Hoffman and Gelman 2011). We ran four chains for each 
model, with a warm- up phase of 2000 iterations (analo-
gous to the burn- in phase in other software) and an addi-
tional 7000 iterations that were retained for each chain. 
We did not apply thinning to the posteriors, as computa-
tional memory was not a limiting factor for model runs 
(Link and Eaton  2012; Annis et  al.  2017) and estimates 
of bulk and tail effective sample sizes were sufficiently 
large (Gelman et  al.  2013). Inspection of trace plots for 
chains and the potential scale reduction factor ( r̂ ; Gelman 
and Rubin 1992) indicated that all parameters converged 
(i.e., r̂  < 1.10). If the 95% credible interval (CRI) of a co-
efficient estimate had any overlap with zero, the estimate 
was considered unsupported and insufficient evidence of 
a statistical difference (Oleson 2010; Murtaugh 2014). We 
compared the two models with the Watanabe–Akaike in-
formation criterion (WAIC), a fully Bayesian information 
criterion that works particularly well with hierarchical 
models (Hooten and Hobbs 2015). We considered the top 
model to be the one with the lowest WAIC value.

Objective 2: Site- specific correlates of 
species detection and occupancy

To quantify species- specific detection and true local occu-
pancy estimates at a site within a grid, we developed a hi-
erarchical Bayesian multispecies framework that links the 
subset of individuals collected from temporally replicated 
samples to a latent occupancy state of animals present 
at a site within each grid. This model estimates species- 
specific parameters from spatially replicated observations 
by assuming that terms among species and location- level 
random effects are independent and exchangeable. The ap-
proach accounts for the variability in visit number across 
space (individual grid location) and time. The observed 

elements consist of species- specific visits y from each sur-
vey occasion j = 1, … , J within each set of i = 1, … , I sites 
for the k = 1, … ,K species and gear type. The observed 
data yijk are denoted by the matrix of visits for each spe-
cies as Y =

{
yijk; i = 1, … , I ; j = 1, … , J ; k = 1, … ,K

}
 

and regarded as a Bernoulli outcome h
(
yijk|ψik, pijk

)
. The 

integrated likelihood representing the survey design is de-
noted as

The true occupancy probability ψik of species k at site i 
arises as a Bernoulli random variable and is represented as 
a logit- linear model of environmental variables:

where Xv,i are the predictor variables v = 1, … ,w measured 
at site i; β0,k and βv,k are species- specific parameter estimates 
that arise from a normal distribution; and γj is the random 
effect for the jth year and is assumed to be distributed as 
γj ∼ N

(
0, σ2

)
 with a prior of σ2

j
∼ Cauchy(0, 3.5). We mod-

eled pijk (the probability that a species is detected given that 
it is present; i.e., detectability) as a logit- linear model of pre-
dictor variables:

where α0,k and αv,k represent species- specific parameter es-
timates. Predictor variables were standardized with mean 
of zero and a standard deviation of 1. Only predictor vari-
ables with r less than 0.60 were used in the same model to 
reduce intercorrelation (Dormann et al. 2013; Christensen 
2020). Given that the WAIC was unstable, we calculated the 
conditional deviance information criterion (DIC) proposed 
by Celeux et al. (2006), with DIC determined based on the 
conditional likelihood. Similarly, for other model selection 
procedures, the top model among the four models (devel-
oped from a priori hypotheses) with a DIC less than 4 was 
considered to be plausible, and the degree of evidence sup-
porting one model over another was calculated from devi-
ance weights (i.e., Akaike weights based on DIC statistics; 
Burnham and Anderson 2002).

We developed hierarchical Bayesian multispecies oc-
cupancy and detection models and implemented them 
in R using NIMBLE, which combines the advantages of 

�
yijk�ψik, pijk

�
= I�∑J

j=1 yijk>0
�

�
ψik

J�

j=1

p
yijk
ijk

�
1−pijk

�1−yijk
�

+

�
1− I�∑J

j=1 yijk>0
�
�

×

�
�
1−ψik

�
+ψik

J�

j=1

�
1−pijk

�
�
.

logit
(
ψik

)
= β0,k +

w∑

v=1

βv,kXv,i + γj,

logit
(
pijk

)
= α0,k +

w∑

v=1

αv,kXv,i,
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the BUGS and JAGS programming languages while offer-
ing a new user- adaptable Metropolis–Hastings sampling 
method (de Valpine et  al.  2021; R Core Team 2021). To 
improve Bayesian computation, we ran four indepen-
dent parallel chains using the “parallel” package in R to 
facilitate parallel Markov chain–Monte Carlo sampling 
in NIMBLE (de Valpine et al. 2021; R Core Team 2021). 
We used diffuse priors and simulated models for 75,000 
iterations, with the first 20,000 iterations used as burn- in. 
The required number of iterations was estimated using 
the global model and testing for convergence via the 
Gelman–Rubin statistic r̂ , examination of chain histories, 
and inspection of posterior density plots (Gelman and 
Rubin 1992).

Objective 3: Minimum effective 
sampling effort

We calculated the total number of fish captured and the 
relative standard error (RSE) from the survey data set for 
the species that were consistently captured annually by 
gear and by sample year to determine the degree of preci-
sion in catch indices (CPUE; Stewart and Long 2016). We 
determined precision and the minimum effective num-
ber of gill- net and beach seine sets needed to attain an 
RSE no greater than 15% (RSE15) and an RSE no greater 
than 25% (RSE25) for each species, season, and gear as 
part of a stochastic resampling procedure (Dumont and 
Schlechte 2004; Stewart and Long 2016). We chose target 
levels of RSE15 and RSE25 to reflect the amount of effort 
needed to inform research and management objectives 
based on recommendations by Robson and Regier (1964) 
and Hardin and Conner  (1992). The resampling tech-
nique involved randomly sampling two nets from the 
empirical data for each site and species 3000 times with 
replacement. Next, the proportion of the 3000 samples 
achieving an RSE15 or RSE25 was calculated (Stewart 
and Long 2016). If the proportion was less than 0.80, then 
the number of nets was increased from two to three and 
continued to increase by an additional net until the pro-
portion of the 3000 samples from the resampling routine 
achieving the desired precision (RSE15 and RSE25) was at 
least 0.80 (Stewart and Long 2016).

RESULTS

Salinity gradient mapping

Salinity gradient mapping of the Bahia Grande revealed 
that the environment became more hypersaline as the 

distance from the pilot channel increased (Figures 2 and 
3). Salinities were lowest (36–45‰) in the southernmost 
areas of the Bahia Grande and highest (91–178‰) in the 
northernmost areas. Based on the salinity data collected 
for gradient mapping (i.e., on a single event under typical 
conditions), the southern area of the basin had an average 
salinity of 39.7‰, while the northern area of the basin had 
an average salinity of 73.4‰. Further, the northeastern 
area had an average salinity of 67.5‰, while the north-
western area had an average salinity of 80.3‰.

Species composition and richness

Overall, 29 species were caught from 150 gridlets in 10 
grids between 2018 and 2021 (Table  1). Of the 29 spe-
cies caught, 24 (83%) were fish and 5 (17%) were in-
vertebrates (Table  2). Sixteen fish families and four 
invertebrate families were represented. Sciaenidae was 
the most dominant family (5 fish species out of 29 spe-
cies). The most commonly collected fish species were the 
Sheepshead Minnow (350 detections), silverside Menidia 
sp. (88 detections), Gulf Killifish (78 detections), and 
Striped Mullet (77 detections). The most commonly col-
lected invertebrate species were the brown shrimp (128 
detections), blue crab (91 detections), and lesser blue 
crab (24 detections).

From the set of two models fitted to the data relating 
species richness to site- level environmental variables, 
a single model was assigned the full WAIC weight. This 
model estimated a fixed effect for gear. The second model 
was 4.5 points worse than the first model and received 
none of the WAIC weight. Salinity, season, water tempera-
ture, and water depth were the four strongly supported 
variables (i.e., 95% CRIs did not overlap with zero) in the 
top model, which also included temporal random effects. 
Season and water depth were both related to species rich-
ness, while species richness was negatively related to sa-
linity and water temperature (Figures 2 and 3). Dissolved 
oxygen was not strongly supported.

Species detection and occupancy

Detection probabilities (p) estimated from an uncon-
ditional model were different among species (Table 2). 
Overall, detection probabilities were highest for 
Sheepshead Minnow (85%), Black Drum (69%), brown 
shrimp (59%), Striped Mullet (44%), silverside (42%), 
blue crab (40%), and Pinfish (34%). Estimated detection 
probabilities were lowest for Atlantic Needlefish (2%), 
grass shrimp (5%), Spotted Seatrout (5%), and lesser blue 
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   | 7 of 16BAHIA GRANDE AQUATIC COMMUNITY BAYESIAN MODELING

crab (9%). The model selection procedure identified 
one of four models showing that the detection and oc-
cupancy of fish and invertebrates were strongly related 
to salinity, dissolved oxygen, water temperature, water 
depth, season, and gear type (Table  3). The best over-
all model included salinity, water temperature, water 
depth, season, and gear type (Figure 4). Detection prob-
abilities for brown shrimp, Ladyfish, Longnose Killifish, 
and White Mullet were higher in spring/summer 
sampling than in fall (Figure  5). Brown shrimp, Gulf 
Killifish, Pinfish, Sheepshead Minnow, and silverside 
had the highest detection rates in bag seines, whereas 
Hardhead Catfish, Red Drum, and Spotted Seatrout had 
the highest detection rates in gill nets (Figures 4 and 5). 
Furthermore, occupancy for some species had a strong 
negative relationship with salinity and water tempera-
ture, whereas the occupancy of most species showing a 
strongly supported effect was positively related to water 
depth (Figure 5).

Minimum effective number of traps

The estimated number of seine sets or gill- net sets that 
were required to achieve an RSE15 or RSE25 varied 
considerably depending on the species, season, year, 
and gear type (Table 4). On average, the number of gill- 
net sets required to describe CPUE with a precision of 
RSE25 at 80% and 95% for Striped Mullet (range = 6–25) 
and Red Drum (range = 12–20) was 12–16, which was 
less than the number of gill- net sets required to de-
scribe CPUE for Ladyfish (mean = 21.5; range = 11–35), 
Black Drum (mean = 22.9; range = 4–45), Hardhead 
Catfish (mean = 30.6; range = 18–48), and Spotted 
Seatrout (mean = 37.5; range = 26–48). The number 
of seine sets required to describe CPUE with a preci-
sion of RSE25 at 80% and 95% was, on average, higher 
than the estimates reported for gill nets. For example, 
the lowest required number of seine sets was observed 
for Sheepshead Minnow (mean = 16.8; range = 4–40), 

F I G U R E  3  Estimated species richness response (with 95% credible intervals) to dissolved oxygen (mg/L), season, water temperature 
(°C), water depth (m), and salinity (‰) from the best supported Bayesian negative binomial random- effects model for the Bahia Grande tidal 
basin.
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8 of 16 |   ULIBARRI et al.

T A B L E  1  Seasonal total capture counts of fish and invertebrates in the Bahia Grande tidal basin, Texas (2018, 2019, and 2021), from 
the replicate surveys using bag seines and gill nets. Blank cells represent zero captures. White rows indicate data from the spring/summer 
survey period (May/June), and gray rows correspond to the fall survey period (October/November).

Species

Bag seine Gill net

2018 2019 2021 2018 2019 2021

Atlantic Croaker Micropogonias undulatus 1

2

Bay Whiff Citharichthys spilopterus

2

Black Drum Pogonias cromis 503 126 87 64

91 64

Blue crab Callinectes sapidus 23 17 71 1

1 17

Brown shrimp Farfantepenaeus aztecus 149 685 161

18 90

Crevalle Jack Caranx hippos 3 3

Grass shrimp (also known as daggerblade grass 
shrimp) Palaemonetes pugio

7

7 5 9

Gulf Killifish Fundulus grandis 63 166 21

4 91

Gulf Menhaden Brevoortia patronus 179

Gulf Pipefish Syngnathus scovelli 2 2

Hardhead Catfish Ariopsis felis 18 26 30

24 10

Ladyfish Elops saurus 84 8 3 13

2 3

Least Puffer Sphoeroides parvus 5

Lesser blue crab Callinectes similis 13 3 7 1

2

Longnose Killifish Fundulus similis 116 21

9

Atlantic Needlefish Strongylura marina 6 1

Pinfish Lagodon rhomboides 89 430 27 2 1

2 25

Pink shrimp Farfantepenaeus duorarum 12

Red Drum Sciaenops ocellatus 3 12 5

4 12

Sheepshead Archosargus probatocephalus 1 2 3

Sheepshead Minnow Cyprinodon variegatus 1940 1441 542

776 634

Silverside Menidia sp. 77 286 41

14 59

Common Snook Centropomus undecimalis 1

Spot Leiostomus xanthurus 22

Spotfin Mojarra Eucinostomus argenteus 45
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   | 9 of 16BAHIA GRANDE AQUATIC COMMUNITY BAYESIAN MODELING

whereas the number of seine sets needed for attain-
ing a precise CPUE estimate was significantly higher 
for blue crab (mean = 67.6; range = 19–116), brown 
shrimp (mean = 58.5; range = 26–115), Gulf Killifish 
(mean = 68.8; range = 33–124), Longnose Killifish 

(mean = 117; range = 62–216), Pinfish (mean = 109; 
range = 38–234), silverside (mean = 61.2; range = 25–
127), Spotfin Mojarra (mean = 72.3; range = 28–108), 
Striped Mullet (mean = 140; range = 17–257), and White 
Mullet (mean = 132.5; range = 109–155). The number of 

Species

Bag seine Gill net

2018 2019 2021 2018 2019 2021

3 19 14

Spotted Seatrout Cynoscion nebulosus 2 9 3

3

Striped Mullet Mugil cephalus 142 104 4 4

7 3 7 13

White Mullet Mugil curema 140 194

1

T A B L E  1  (Continued)

T A B L E  2  Names of the 27 fish and invertebrate species selected for modeling, sample characteristics, and mean conditional detection 
probabilities (p ± 95% credible intervals) observed within the Bahia Grande tidal basin.

Species Sites (%) Bag seine (%) Gill net (%) p

Atlantic Croaker 0.67 – 0.67

Bay Whiff 0.67 0.67 –

Black Drum 17.33 4.67 12.66 0.69 (0.55, 0.80)

Blue crab 18.00 17.33 0.67 0.40 (0.31, 0.49)

Brown shrimp 23.33 23.33 – 0.59 (0.52, 0.67)

Crevalle Jack 1.33 0.67 0.66

Grass shrimp 6.67 6.67 – 0.05 (0.03, 0.08)

Gulf Killifish 17.33 17.33 – 0.39 (0.30, 0.50)

Gulf Menhaden 0.67 0.67 –

Gulf Pipefish 1.33 1.33 –

Hardhead Catfish 8.67 – 8.67 0.15 (0.10, 0.21)

Ladyfish 12.67 6.67 6.00 0.18 (0.12, 0.25)

Least Puffer 2.67 2.67 –

Lesser blue crab 10.00 9.33 0.67 0.09 (0.06, 0.13)

Longnose Killifish 12.67 12.67 – 0.21 (0.15, 0.29)

Atlantic Needlefish 2.67 2.00 0.67 0.02 (0.01, 0.04)

Pinfish 16.00 14.67 1.33 0.34 (0.24, 0.45)

Pink shrimp 2.00 2.00 –

Red Drum 9.33 – 9.33 0.10 (0.06, 0.14)

Sheepshead Minnow 38.00 35.33 2.67 0.85 (0.82, 0.89)

Silverside 20.00 20.00 – 0.42 (0.33, 0.51)

Common Snook 0.67 – 0.67

Spot 8.00 4.00 4.00

Spotfin Mojarra 11.33 11.33 – 0.14 (0.10, 0.19)

Spotted Seatrout 4.00 – 4.00 0.05 (0.03, 0.08)

Striped Mullet 24.00 14.67 9.33 0.44 (0.34, 0.56)

White Mullet 12.00 12.00 – 0.19 (0.13, 0.27)
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10 of 16 |   ULIBARRI et al.

gill- net or bag- seine sets required to attain a precise esti-
mate of CPUE with RSE15 at 80% or 95% was more than 
two to three times the effort needed to achieve an RSE25 
with 80% or 95% confidence.

DISCUSSION

Our study aimed to highlight and document a transitioning 
estuarine environment by evaluating species richness and 

the effect of environmental drivers (salinity, season, water 
temperature, and water depth) prior to a large restoration 
to increase tidal exchange. In this section, we will first ex-
plain the use of Bayesian models to account for species- 
specific patterns and how occupancy and the probability 
of detection were influenced by habitat variables. Next, we 
will discuss some of the unique ecology of the system, the 
life histories of the species caught, and how they contrast 
with the results from the study. We will end with the im-
portance of the restoration and management implications.

T A B L E  3  Results of the hierarchical Bayesian multispecies models predicting species occupancy and detection in relation to 
environmental variables in the Bahia Grande tidal basin. DIC, deviance information criterion; ΔDIC, difference in DIC between the given 
model and the best model; oxy, dissolved oxygen; temp, temperature; wi, Akaike weight based on DIC statistics.

Occupancy Detection DIC ΔDIC wi

ψ(salinity; temp; depth) p(salinity; season; gear) 4167 0 1.00

ψ(salinity; season; temp; depth) p(oxy; gear) 4203 36 0.00

ψ(salinity; temp; season) p(season; oxy; gear) 4280 113 0.00

ψ(salinity; gear; oxy; season) p(season) 4296 129 0.00

F I G U R E  4  Species- specific parameter estimates from the best supported hierarchical multispecies Bayesian model relating 
environmental variables (gear, salinity, season, water depth, and water temperature) to conditional detection probability and occupancy for 
18 marine species in the Bahia Grande tidal basin. The bars represent the 5% and 95% values for the parameter estimate. Overlap with zero 
indicates that the variable was not strongly supported for that species and parameter.
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   | 11 of 16BAHIA GRANDE AQUATIC COMMUNITY BAYESIAN MODELING

We used a sampling design paired with hierarchical 
Bayesian models to effectively describe the relationships 
(1) between species richness and habitat and (2) between 
occupancy/detection probability and habitat. These 
models provided a flexible framework for incorporating 
multiple sources of uncertainty and considering com-
plex data structures, such as dependence between dif-
ferent sampling locations and multiple species (Kirsch 
and Peterson  2014; Stewart and Long  2016; Stewart 
et al. 2018). By using hierarchical Bayesian models, we 
were able to account for individual species- specific pat-
terns and simultaneously describe how occupancy and 
the probability of detection were influenced by multiple 
habitat variables (Stewart et al. 2018; Porta et al. 2020). 
The results obtained from these models provided robust 
and meaningful estimates of the relationships, which 
was crucial in understanding the impact of habitat vari-
ables on species richness. By accounting for detection 

probability, we were able to address false negatives (i.e., 
failing to detect an individual due to habitat and species 
behavior despite the individual being present and alive 
at a study site during sampling) that commonly plague 
surveys based on CPUE (Stewart et al. 2017). This was 
done because whether species will return and which 
species will return after the channel widening are un-
known. Therefore, this approach allowed for a more ac-
curate assessment of the relationships between habitat 
variables and species richness in the study area.

We found that the aquatic community in the Bahia 
Grande consisted of 29 species (as listed in Table  1). 
The presence and detection probability of some species 
were significantly influenced by environmental factors, 
including salinity, water temperature, water depth, sea-
son, and gear type (Table 3; Figures 4 and 5). Salinity is 
widely recognized as a key factor shaping the structure 
of fish communities in estuarine systems (Rakocinski 

F I G U R E  5  Detection and occurrence probability of each species with strongly supported effects under the best supported hierarchical 
multispecies Bayesian model in response to environmental variables (gear, salinity [‰], season, water depth [m], and water temperature 
[°C]) in the Bahia Grande tidal basin.
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12 of 16 |   ULIBARRI et al.

T A B L E  4  Number of net sets required to achieve a relative standard error (RSE) no greater than 15% or 25% (RSE = [100 × standard 
error of estimate]/estimate) for the catch per unit effort of fish and invertebrate species collected with gill nets and beach seines in the Bahia 
Grande tidal basin.

Species Gear Season Year

Effort (net sets)

RSE25, 80% RSE25, 95% RSE15, 80% RSE15, 95%

Black Drum Gill net Spring 2018 43 45 120 122

2019 9 10 24 25

2021 38 40 105 107

Gill net Fall 2018 4 5 13 14

2019 17 18 48 49

Blue crab Bag seine Spring 2018 90 92 253 258

2019 45 47 125 128

2021 19 20 51 53

Bag seine Fall 2018 – – – –

2019 112 116 >300 >300

Brown shrimp Bag seine Spring 2018 70 73 197 202

2019 38 39 105 107

2021 26 27 72 74

Bag seine Fall 2018 111 115 >300 >300

2019 42 44 116 119

Gulf Killifish Bag seine Spring 2018 73 76 205 210

2019 33 34 90 92

2021 45 46 125 127

Bag seine Fall 2018 120 124 >300 >300

2019 67 70 187 190

Hardhead Catfish Gill net Spring 2018 47 48 130 133

2019 27 28 74 75

2021 26 27 72 74

Gill net Fall 2018 33 34 90 92

2019 18 18 48 50

Ladyfish Gill net Spring 2018 33 35 93 95

2019 20 20 54 55

2021 17 17 47 48

Gill net Fall 2018 24 25 66 67

2019 11 11 29 30

Longnose Killifish Bag seine Spring 2018 76 80 215 220

2019 206 216 >300 >300

2021 – – – –

Bag seine Fall 2018 62 64 173 176

2019 – – – –

Pinfish Bag seine Spring 2018 95 97 265 270

2019 68 71 191 195

2021 38 39 106 108

Bag seine Fall 2018 – – – –

2019 229 234 >300 >300

Red Drum Gill net Spring 2018 20 20 54 55

2019 16 17 44 45
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   | 13 of 16BAHIA GRANDE AQUATIC COMMUNITY BAYESIAN MODELING

et  al.  1992; Akin et  al.  2003; Martino and Able  2003; 
Boucek and Rehage  2014; Zhou et  al.  2019). Our find-
ings indicated that the number of species decreased 
as salinity and water temperature increased, whereas 

the number of species increased with increasing water 
depth. The deeper areas in the Bahia Grande near the 
pilot channel opening offer a wider range of habitats for 
a variety of species due to greater water exchange, lower 

Species Gear Season Year

Effort (net sets)

RSE25, 80% RSE25, 95% RSE15, 80% RSE15, 95%

2021 17 18 48 48

Gill net Fall 2018 14 15 39 40

2019 12 12 33 33

Sheepshead Minnow Bag seine Spring 2018 38 40 106 108

2019 9 10 26 27

2021 4 5 12 13

Bag seine Fall 2018 16 17 43 44

2019 14 15 40 41

Silverside Bag seine Spring 2018 49 51 136 139

2019 25 26 68 70

2021 36 37 100 102

Bag seine Fall 2018 68 70 188 192

2019 123 127 >300 >300

Spotted Seatrout Gill net Spring 2018 47 48 130 133

2019 26 27 71 73

2021 47 48 130 133

Gill net Fall 2018 – – – –

2019 28 29 78 80

Spotfin Mojarra Bag seine Spring 2018 81 84 228 233

2019 – – – –

2021 28 29 78 79

Bag seine Fall 2018 – – – –

2019 104 108 296 300

Striped Mullet Bag seine Spring 2018 112 116 >300 >300

2019 – – – –

2021 17 18 46 47

Bag seine Fall 2018 250 257 – –

2019 173 178 >300 >300

Gill net Spring 2018 24 25 66 67

2019 – – – –

2021 8 8 22 23

Gill net Fall 2018 6 6 17 18

2019 8 9 23 23

White Mullet Bag seine Spring 2018 152 155 >300 >300

2019 109 114 >300 >300

2021 – – – –

Bag seine Fall 2018 – – – –

2019 – – – –

T A B L E  4  (Continued)
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14 of 16 |   ULIBARRI et al.

salinities, and lower water temperatures. Conversely, 
with increasing distance from the pilot channel, barriers 
to water exchange result in shallower depths and higher 
water temperature and salinity, likely due to evaporation 
in the arid environments.

Several studies have found strong negative relation-
ships between salinity and fish species abundance and 
richness in hypersaline estuarine environments (Simier 
et  al.  2004; Sosa- Lopez et  al.  2007; Cyrus et  al.  2011; 
Almeida- Silva et al. 2015; Mickle et al. 2018). Our results 
confirm this relationship but are also novel because the 
most commonly collected species were found at the upper 
extremes of their salinity tolerances. Salinities in estuaries 
along the Gulf coast of Texas vary, but they average be-
tween 27‰ and 36‰ (Orlando 1993). However, our most 
frequently caught species were found at a salinity range 
of 36–76‰. The previously documented salinity ranges 
for these species were 0–142‰ for Sheepshead Minnow, 
0–76‰ for Gulf Killifish, 0–75‰ for silverside, 0–75‰ 
for Striped Mullet, 0–45‰ for brown shrimp, and 0–37‰ 
for blue crab (Simpson and Gunter 1956; Simmons 1957; 
Holland et al. 1971; Collins 1981; Longly 1994). The salin-
ity ranges for all these species typically have a maximum 
of 75‰, except for the Sheepshead Minnow. However, in 
the present study, these species occupied salinities at—if 
not above—their reported salinity limits. This could rep-
resent a unique adaptation to the hypersaline systems that 
are found in secondary and tertiary bays of south Texas, 
similar to species like the Black Drum, which has shown 
high tolerances and adaptations for hypersaline condi-
tions (Oleson 2010).

The species composition of the Bahia Grande has sig-
nificant implications for fishery management in the Rio 
Grande Valley. Sportfishing is a popular activity in the 
area and is part of the resource management plan of the 
LANWR. Changes in habitat and fish populations could 
impact the level of fishing that is permitted, as the need 
to protect nursery areas must be balanced against the po-
tential benefits of a more productive fishery. Habitat resto-
ration is crucial in combatting species decline and habitat 
loss (Feist et al. 2003). Lower salinity levels may improve 
the fishery and provide additional nursery habitat for na-
tive species and sport fish in the lower Laguna Madre. 
Furthermore, the Bahia Grande features a crucial string of 
islands that are home to threatened and endangered bird 
species. Enhancing the habitat and the fishery could result 
in increased food availability for these species. Monitoring 
the effects of habitat restoration will provide a better un-
derstanding of changes in fish populations and will help 
to inform future management decisions. Employing the 
same monitoring and statistical modeling analysis after 
restoration will allow us to fully evaluate the ecological re-
sponses from a large and complex restoration effort. Such 

consistency can be applicable to other coastal restoration 
efforts that have unique or re- establishing environments.

The large effort to restore this former wetland habitat 
has been a tremendous endeavor by all partners involved. 
Projects that restore wetlands of this size—especially in 
such a unique hypersaline environment—are limited. 
The initial pilot channel was successful in rewetting the 
Bahia Grande, thus providing more aquatic habitats for 
returning fish species. Currently, tidal exchange in the 
Bahia Grande is estimated at 9.7% of its total volume, with 
a higher percentage in the southern half and a consider-
ably lower percentage in the northern half (CHE  2011). 
Widening of the pilot channel that connects the Bahia 
Grande to the Gulf of Mexico may increase tidal exchange, 
potentially decreasing salinity in the northern half of the 
basin, which could result in increased species use. The 
continuation of data gathering over the next 3 years after 
channel widening will help to identify the level of success 
in terms of aquatic habitat.

Continued collaboration among stakeholders and 
adaptive management will be vital in ensuring the success 
of the Bahia Grande restoration project. Lessons learned 
from the initial stages of the project will be invaluable in 
identifying areas for improvement and adjusting manage-
ment strategies accordingly. As more data are collected 
and analyzed, it will be crucial to communicate these find-
ings among partners and to use this information to inform 
future restoration efforts, not only in the Bahia Grande 
but also in similar hypersaline environments. This itera-
tive process will help to maximize the success of habitat 
restoration, ultimately leading to a healthier ecosystem 
that supports a diverse array of aquatic and avian species 
as well as providing recreational and economic benefits to 
the local community.
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