
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

5-2018 

Simplification of EEG Signal Extraction, Processing, and Simplification of EEG Signal Extraction, Processing, and 

Classification Using a Consumer-Grade Headset to Facilitate Classification Using a Consumer-Grade Headset to Facilitate 

Student Engagement in BCI Research Student Engagement in BCI Research 

Jesus D. Rodriguez 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Rodriguez, Jesus D., "Simplification of EEG Signal Extraction, Processing, and Classification Using a 
Consumer-Grade Headset to Facilitate Student Engagement in BCI Research" (2018). Theses and 
Dissertations. 395. 
https://scholarworks.utrgv.edu/etd/395 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/395?utm_source=scholarworks.utrgv.edu%2Fetd%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


SIMPLIFICATION OF EEG SIGNAL EXTRACTION, PROCESSING, AND

CLASSIFICATION USING A CONSUMER-GRADE HEADSET TO

FACILITATE STUDENT ENGAGEMENT IN BCI RESEARCH

A Thesis

by

JESUS D. RODRIGUEZ

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2018

Major Subject: Computer Science





SIMPLIFICATION OF EEG SIGNAL EXTRACTION, PROCESSING, AND

CLASSIFICATION USING A CONSUMER-GRADE HEADSET TO

FACILITATE STUDENT ENGAGEMENT IN BCI RESEARCH

A Thesis
by

JESUS D. RODRIGUEZ

COMMITTEE MEMBERS

Dr. Megan K. Strait
Chair of Committee

Dr. Andrew Winslow
Committee Member

Dr. Dongchul Kim
Committee Member

Dr. Andres Figueroa
Committee Member

May 2018





Copyright 2018 Jesus D. Rodriguez

All Rights Reserved





ABSTRACT

Rodriguez, Jesus D., Simplification of EEG Signal Extraction, Processing, and Classification

using a Consumer-Grade Headset to Facilitate Student Engagement in BCI Research. Master of

Science (MS), May, 2018, 26 pp., 2 tables, 13 figures, 41 references, 33 titles.

Brain-computer interfaces (BCIs) are an emerging technology that leverage neurophysio-

logical signals as input to computing systems. By circumventing the reliance on traditional input

methods (e.g., mouse and keyboard), BCIs show a promising alternative interaction modality for

people with disabilities. Advances in BCI research have further inspired a range of novel appli-

cations, such as the use of neurophysiological signals as passive input (e.g., to detect and reduce

operator workload when managing multiple machines). BCIs have also emerged as a tool for stu-

dent engagement due to the intrinsic interdisciplinarity of the technology, which spans the fields

of computer science, electrical engineering, neuroscience, psychology and their broad applica-

bility. However, these benefits also stand as a challenge to students interested in BCI research,

as the need for familiarity with multiple related disciplines creates a high barrier to entry. To-

wards overcoming this barrier, we developed a simplified EEG-based BCI wherein we integrated

a low-cost, consumer-grade headset for signal extraction with a novel graphical user interface that

affords seamless exploration of several signal processing and machine learning techniques for

analysis. Here, electrical activity is measured in real-time via an extracortical electrode placed

on the user’s forehead, superior to the prefrontal cortex. The headset can then be connected to

any Bluetooth-compatible device via a Bluetooth connection for (1) processing and classification

of the signal contents and (2) operation of a machine (e.g., the Cozmo robot) via the intentional

brain activity of the user. An additional visualization model also allows the user to explore the

signal processing techniques, including the information decomposition and classification.
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CHAPTER I

INTRODUCTION

1.1 Background

Brain-computer interfaces (BCIs) leverage neurophysiological signals as input to comput-

ing systems. By circumventing traditional input methods (e.g., mouse and keyboard), BCIs hold

great promise as an alternative interaction model for people with physical disabilities. Advances

in BCI research have further inspired a range of novel applications, such as the use of BCI as

passive input (e.g., to detect and reduce operator workload in complex tasks). Due to the intrinsic

interdisciplinarity of BCIs (which spans the fields of computer science, electrical engineering,

neuroscience, and psychology), BCIs can also be used as a method for broad student engagement

in research. However, this interdisciplinarity also poses a challenge to engagement, as the need

for familiarity with each related discipline creates a high barrier to entry.

1.2 Contributions

Towards overcoming this knowledge barrier found within BCI research, we developed

a simplified EEG-based BCI system integrating a low-cost, consumer-grade headset for signal

extraction with a novel graphical user interface for exploring signal processing and machine

learning techniques for analysis. Additionally, we integrated the system with a both a simulated

and physically-embodied robotic platform — Cozmo — to demonstrate direct control of an

application via intentional brain activity.
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CHAPTER II

BRAIN-COMPUTER INTERFACES (BCI) AND EEG TECHNOLOGY

BCI technologies have gained traction in both academic and public fields as the tech-

nology advancements surrounding the development of BCI devices have approached a more

consumer-targeted market [1]. In particular, the ability of BCI technologies to serve as an alter-

native input method (e.g., to mouse/keyboard) fills a critical gap in communication technologies

for people with disabilities [29]. For example, BCIs have emerged for people with locked-in syn-

drome (LIS) and amyotrophic lateral sclerosis (ALS) — disabilities that interfere with movement,

speech, and other forms of communication — to provide alternative means of communicating

based on neurophysiological signals to circumvent traditional input methods. BCI systems capa-

ble of performing communication via gaze, for LIS and ALS patients have emerged in [4] and

[33], helping throughout the development of systems capable of aiding patients with disabilities

to communicate by allowing a neurofeedback-based touchless interaction with a device.

2.1 Extraction of Brain Data: From Invasive to Non-invasive Techniques

Brain signals can be extracted via a number of mechanisms, which range from highly

invasive (e.g., cortical implants) to non-invasive (e.g., sensors placed external to and atop the

head via a wearable device); see 2.1.

2.1.1 Invasive

Invasive BCI technologies involve the direct contact with cortical matter through implan-

tation of electrodes directly into the brain. Such BCIs provide maximal spatial resolution, with

the ability to localize measurements down to single neurons. Due to this degree of spatial speci-

ficity, invasive techniques have enabled partial function restoration such as mobility and vision

2



Figure 2.1: Invasive and non-invasive methods for Brain-Machine Interfaces (BMI) (modified
from reference [3]).

to individuals with paralysis and vision impairments [2]. Invasive techniques work by the mea-

surement of either action potentials (e.g., [16]) or of local field potentials (e.g., [27]). Action

potentials are measured from single or few neurons, which emit a summative electrical signal

when enervated. Local field potentials reflect the electrical activity of a population of neurons.

Both methods (sampling of action potentials and local field potentials) require implantation of

intracortical sensors.

2.1.2 Partially-invasive

Similar to invasive techniques, partially-invasive approaches require surgical implantation

beneath the skull. However, unlike invasive techniques, partially-invasive systems only require

implants in the dura mater — an extracortical layer that surrounds the brain [2]. Two examples of

partially-invasive systems include electrocorticography (ECoG) and stereoelectroenephalography

(SEEG).

Electrocorticography (ECoG) ECoGs are composed of thin plastic pads called, micro

and macrogrids. They allow for a more complex understanding of cognitive, motor and language

tasks by taking advantage of a more invasive approach to retrieving brain wave signals [21]. The

technique is partial invasive because of the possibility of scar tissue damage on implantation.

3



Stereoelectroenephalography (SEEG) SEEGs are partially invasive techniques that can

cover extensive areas of the head with high accurate sampling using direct implantation through

the scalp into the dura mater of the brain. They are a form of therapeutic application alternative

for deep-seated lesions (e.g., patients with epilepsy) [9].

2.1.3 Non-invasive

Non-invasive techniques are those that do not involve direct contact with brain matter or

the outer layer of brain.

Functional Near-infrared spectroscopy (fNIRS) This non-invasive techniques is used

through optical imaging. It enforces the idea that safety is a priority and as explained in the fMRI,

the functional component allows in real-time measure of brain activity. This is achieved by mea-

suring the changes in oxygen levels of the blood in the brain, which is linked to changes in neural

activity that accompanies changes in the blood flow [24].

Functional Magnetic Resonance Imaging (fMRI) This technique involves the usage

of MRI imaging to collect scanning of sectors in the brain that represent visual cues and motiva-

tional processes such as hunger [22], where by approaching the data retrieval from a perspective

point of a scan can allow for higher-degree of flexibility within the process of signal acquisition

and the patient.

Magnetoencephalography (MEG) MEG is a non-invasive technique used with the in-

tent to record neuronal activity of the brain through a processes of measuring magnetic fields

created by the brain. It is known that the technology provides signals with higher spatioemporal

resolution greater than EEG techniques [13].

Electroencephalography (EEG) While the non-invasive EEG technique tends to yield

a lower performance against other BCI retrieval techniques [30], they offer a safer approach for

brain-signal acquisition by using electrodes placed on specific areas of the head scalp without

the need for direct contact with the brain. The accessibility of recording accurate data with this

technology requires the use of gel-covered electrodes, however, the thought of applying gel or

4



wet electrodes on every use tend to create an issue, as it becomes rather time consuming and

difficult to use. For this, EEG headsets using dry electrodes, have also been targeted.

2.2 In Depth: EEG-based BCIs

It wasn’t until Hans Berger made the discovery of brain activity based on mental activity

with the use of EEG techniques that initiated the development of more complex brain activity

recorders [11]. EEG has become widely more used as dry electrodes have now emerged as the

possible form of consumer product that will allow individual users the simple requirement of

putting on the device [32]. This intriguing technology allows the field of multi-purpose research

development surrounding BCI.

Applications surrounding the use of this technology have surfaced with the idea of using

easy to use BCI devices to control computer applications such as the one proposed in [28], con-

sisting of a BCI device with a neurofeedback computer game that uses the EEG Emotiv Epoc+

headset with an implemented acquisition module for signal processing. This module allows the

measurement and recording of brain signal coming from the electrodes, where they will then be

processes through signal filtering and fed into a classifier model for action classification with the

intention to interact with a connected machine.

This BCI advancements have made it possible for some patients to have partial control of

doing simple daily life tasks such as communicating, controlling computer interfaces and pros-

thetic limbs with the use of their brain [15]. With that perspective, researchers and developers can

now use readily available EEG headsets to explore on their own the possibilities and limitations

of the technology without the requirement of specialized and expensive medical tools.

2.2.1 Band Powers

In EEG, the band powers, or also known as EEG Band Frequencies, are referred to the

bands defined by their frequency of waves (e.g., Delta, Theta, Alpha, Beta, and Gamma) shown

in Figure 2.2. Each of this bands frequency are dependent to different mental state activity. The

following information regarding band powers and their brainwave state was defined in [6], and

5



(a) Delta Wave (b) Theta Wave (c) Alpha Wave (d) Beta Wave (e) Gamma Wave

Figure 2.2: Band Powers.

recompiled by [17, 14].

Delta Delta waves, or slow wave activity as shown in Figure 2.2a; range from 0.5 to 4 Hz.

They are the slowest brainwaves and are associated within the function of a deep state of sleep

or dreamless sleep during non-rapid eye movement sleep [5]. Having too much could mean that

there are brain injuries, learning problems if situated within a deep-sleep state. While having too

little, could then indicate that there exists an inability to revitalize the brain, body and can lead to

poor sleep pattern [14].

Theta Theta waves, as shown in Figure 2.2b; are more associated with daydreaming and

sleep. They tend to range from 4 to 8 Hz, and can be considered to be more active during strong

internal focus and meditation. This state consists of being in its optimal state during the process

of creativity, emotional connection, intuition and relaxation. Too much theta brain activity could

mean depression, hyperactivity, inattentiveness, such as ADHD. However, if too little is found,

then its regarded as poor emotional awareness, stress or anxiety [14].

Alpha Alpha waves, as shown in Figure 2.2c; sometimes are divided into two sections,

low and high as they tend to range from 8 to 12 Hz, and belong in the moderate frequency. The

low activity in this waves are associated with relaxation and disengagement, and high activity can

be regarded as too relaxed, and could be categorized as daydreaming effects. Relaxant intake can

help in the increase of alpha waves [14].

Beta Beta waves, as shown in Figure 2.2d; and just like Alpha waves, are divided into

two sections, low and high. The range from this wave can go from 12 to 30 Hz, and are part of

the high frequency range. The low state (12-18 Hz) are associated while being in a conscious

focus, problem solving, active thinking and concentration, while the high waves (18-30 Hz) can

be associated with alertness and agitation (e.g., in a panic state). An abnormal amount of beta

6



waves can lead to experience stress or anxiety. In order to increase beta waves activity have been

linked to coffee, energy drinks and other stimulant intake [14].

Gamma Gamma is the fastest of the brain activity waves as shown in Figure 2.2e; and

can range from 30 to 70 Hz. They are involved in cognitive processing and information insight.

Optimal gamma waves are more prominent to learning and mental activity (e.g., good memory

and efficient problem solving can be associated to gamma wave activity occurring at 40 Hz).

They are associated with learning, reading and speaking. An abnormal high amount of gamma

activity could indicate anxiety, high arousal, and stress. However, a very low amount of gamma

activity could be classified as ADHD, depression and learning disabilities. A way to increase

good gamma brain activity can be linked to meditation [14].
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CHAPTER III

DATA ACQUISITION & ANALYSIS

In this chapter, the processes of data extraction and analysis will be covered in detail to

further cover the techniques used in our proposed BCI system. The proposed system process flow

diagram is shown in Figure 3.1.

3.1 EEG Headset

In our system setup, we use the NeuroSky EEG MindSet headset as our brain wave signal

retriever. The headset comes with a single dry electrode attached to the device that is placed at

the left frontal lobe area of the forehead when in use as pictured in Figure 3.1 within the EEG

Signal acquisition state. The underlying of how the data was retrieved through the Bluetooth con-

nection and manipulated from the headset was described in an explicit manner in the provider’s

product documentation website, NeuroSky Inc [18].

3.2 Extraction

In the EEG signal acquisition process, EEG data is sampled from the user’s prefrontal

cortex via the EEG MindSet headset Bluetooth communication ports. Even though the MindSet

headset provides pre-filtered data by default, it is only accessible as a single data point once every

second using covert methods for brain signal processing. In our system, the data is retrieved

as raw data at 512 samples per second or once every 2 milliseconds, this give us the flexibility

to fully understand the data being recorded to later processes and analyze using signal filters

and classification methods. Figure 3.2 shows the raw EEG data of a single blinking wave being

sampled.

8



Figure 3.1: Brain-Computer Interface System Process Flow.

Figure 3.2: Raw EEG Data of a blink sample.
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Figure 3.3: Bandpass filtering, convolving and window filtering of a single blink sample.

Figure 3.4: Signal filtering using an estimation of Power Spectral Density and Frequency Re-
sponse of blink sample.

3.3 Signal Processing

Inside the signal processing module, a raw data sample will require three rigorous signal

manipulation steps. (1) Bandpass filtering through Filter Impulse Response (FIR), convolving

and window filtering as shown in Figure 3.3. (2) The estimation of Power Spectral Density (PSD)

using the squared magnitude of the Fast Fourier Transform (FFT) on each band power wave [31].

(3) And performing a Frequency Response (FR) on filtered band power waves from frequency

domain [26] allowing the splitting of band powers into their respective band bins composed of

Delta, Theta, Alpha, Beta and Gamma waves as shown in Figure 3.4.

3.4 Classification

At the end of the post-processing filtering, the signal features from the separated bands

are then used as input to a hierarchical multiclass support vector machine (SVM) model [8] that

will allow the quickness of building and training models based on the tasks selected.

10



CHAPTER IV

EEG-BASED BCI SYSTEM

This chapter will cover an overview of the system design, its implementation and testing

scenarios.

4.1 System Overview

The proposed EEG-based system to overcome the knowledge barrier between interdisci-

plinary research towards BCI applications was developed with the purpose of being used with

low cost, consumer-grade headsets for signal acquisition, as those created by NeuroSky Inc. (e.g.,

MindSet, MindWave and MindWave Mobile) and inspired by the work of [12].

With the task of setting up a ready-to-use system for interdisciplinary research, we de-

cided to write the project in its entirety in Python, as it is considered to be an easy to read and

understand high-programming language for non computer science students and researchers, as

opposed to other high-level programming languages [7] while also allowing us to develop the

required componenets for the system.

Figure 4.1: EEG MindSet’s electrode placed on forehead (modified from reference [23]).

11



Figure 4.2: Screenshot of the BCI System’s Main Window.

In our system setup, we use the NeuroSky EEG MindSet headset. The headset comes

with a single dry electrode attached to the device that is placed at the left frontal lobe area of

the forehead when in use as shown in Figure 4.1. In order to interact with the headset through

the application, we decided to create a parser that would break any information going through

the communication port and translate it into useful data. Any underlying of the process behind

parsing Bluetooth connection from the headset was described in explicit manner and followed

from the provider’s product documentation website [18].

4.2 System Implementation

The proposed BCI system was built with two screen windows; (1) a main system window

screen and (2) the task setup and classification window screen.

4.2.1 Main Window

As shown in Figure 4.2, the main window screen contains five important modules to

notice. A detail explanation of how each of the modules operate will be described next.

12



Headset-Bluetooth Connection. The Bluetooth Connection module is based on the

technology that is available in the headset and computer as a form of communication protocol.

The component allows the selection of any available communication ports (e.g., windows based:

’COM0, COM1 ... COMN’ and UNIX based ’refcomm0, ... refcommN’, where N represents any

given number).

By pressing the connect button, the program will then attempt to make a connection with

the headset through the specified port. If successful, the status label and program state will switch

from "Offline" to "Online" and then activate the process of retrieving data from the headset. How-

ever, if the connection is found not successful, it will then re-attempt to connect with the headset

until a timeout of 20 attempts is reached. If no connection is made, the program throws an error

message inside the status label describing the issue (e.g., "Error no device found.", "Error the port

is busy at this moment.", etc.).

Brain Signal Visualizations. The Graphing and Power Bars visualization modules allow

for the students to interact and explore the decomposition of raw signal waves in real-time into

its respective band powers. It can also be used as a visualization tool to observe the default signal

recording from the headset and filtered classifications (e.g., the eSense Attention and Meditation

meters) and its intensity to each other brain wave.

Sample Testing Module. The Sample View module in the main screen focus on the

simple idea of both visualizing the filtered brain data and the availability to take a snapshot of a

specific brain-signal segment by simply pressing the "Take Sample" button. The snapshot will

be recorded in a time interval specified by the given input time number in milliseconds. The data

will be represented by 1 data point recorded each 2 milliseconds. This module also contains the

feature of graphing, saving the sample and figure created of the current snapshot taken; allowing

for a greater understanding of the raw and filtered band power data retrieved from the snapshot of

data collected.
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Figure 4.3: Screenshot of Task Setup and Classification Window.

Task Setup and Classification Module. This encompasses the button available for click-

ing under this module. The functionalities of the window that launches after clicking the button

will be described in the next section in detail to focus this section on those components that can

be interacted solely within the main window screen.

Application interaction Module. This module contains buttons that when pressed, they

will launch an application. Applications linked to the buttons are in itself simply normal applica-

tion that can be interacted with a keyboard and a mouse. However, a minimal application modifi-

cation allows the addition of an special module behind the program that will allow the usage of

the EEG headset for direct interaction through a machine learning classifier.

4.2.2 Task Setup and Classification Window

As shown in Figure 4.3, the ’Task Setup and Classification Window’ is composed of

several modules. Three of them are very specific and important to note; below we give a concise

and detailed definition of these modules.
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Task setup and data collection. Within the Task Setup module, the system allows the

creation of multiple task scenarios to record. The idea within this module is that it will create a

modular way of constructing one’s own task scenarios without having to code a single line. By

pressing the ’Tools’ option at the top of the current application window, will display a simple

task-creation window with the specifications required to create a custom-task scenario. Once the

task is created, the task setup section of the module will allow the recording of subject-labeled

samples for the new selected task and save it directly into its corresponding subsequent directo-

ries (e.g., taskname->subjectname->samplerecording.csv).

Datasets and SVM Training/Testing The module simplifies the collecting and com-

bining of data samples into complex datasets. It offers its users the power to group and select

multiple files from a file explorer window, where each selected sample file will then be combined

into the final dataset as a matrix. To train and test the model, we took advantage of the Python

library sklearn [19] to create a predefined classification model that can be initialized within the

SVM Setup window. We used the following parameters to define our SVM classification model:

C = 1 for our penalty parameter of the error term, a linear kernel and a random state for shuffling

samples. The rest of the options were left as is, since they had no impact on our linear kernel.

The classification model will then divide the data into a training and testing set for training the

model. After the model has finished training, the system will then automatically create and store

a persistent copy of the training SVM model. Any new created data recordings can be used and

tested against this machine learning model for accuracy evaluation within the same window.

4.3 System Application Integration

To test our trained models on a interactive application we implemented two applications

for testing, (1) a Cozmo Robot Simulation via PyGame and (2) the physical Cozmo robot via

CozmoSDK.
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Figure 4.4: Screenshot of the Cozmo Simulator.

4.3.1 Cozmo Robot Simulation via PyGame

The implemented simulation of the Cozmo robot platform was built using the Python

game engine framework, Pygame [20] as shown in Figure 4.4 with the purpose of allowing re-

search students the availability to interact with the simulator as if they were using the physical

robot. We developed a top down view that represented the physical robot core movements (e.g.,

moving forward, moving backwards, turning left and turning right.) and at the same time we inte-

grated our classification model for testing into the game through an SVM classification persistent-

trained model to classify mental tasks in real-time to control the Cozmo robot movement inside

the simulator.

4.3.2 Physical Cozmo Robot via CozmoSDK

The physical Cozmo robot interaction was developed using the Cozmo SDK, provided by

Cozmo developers, Anki [10]. The core movements were controlled through a Python script that

was activated by the classified input from the EEG headset, as seen in 4.5.
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Figure 4.5: Picture of the Cozmo Robot, being controlled through mental task.

Figure 4.6: Cozmo-Interaction Classification State Controller.
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Table 4.1: Results of 5-fold cross-validation of the three-class classification (baseline versus blink
versus tapping), including the overall mean (M) and standard deviation (SD) by subject.

F1 F2 F3 F4 F5 M SD
S1 80.0% 80.0% 86.6% 80.0% 80.0% 81.3% 2.6%
S2 64.7% 86.6% 73.3% 78.5% 78.5% 76.3% 7.2%
S3 80.6% 86.6% 73.3% 73.3% 73.3% 77.3% 5.3%

Table 4.2: Results of 5-fold cross-validation of the five-class classification (baseline, forward,
backward, left, and right), including the overall mean (M) and standard deviation (SD) by sub-
ject.

F1 F2 F3 F4 F5 M SD
S1 25.9% 42.3% 46.1% 33.3% 31.8% 35.9% 7.3%
S2 22.2% 53.8% 46.1% 37.5% 50.0% 41.9% 11.2%
S3 29.6% 38.4% 46.1% 50.0% 36.3% 40.1% 7.2%

4.4 Preliminary Evaluation

To verify our system implementation, we conducted a preliminary evaluation using data

from three volunteer participants. For each participant, we collected 200 samples of each class

of activity (baseline, blink, tapping, forward, backward, left, and right) using our Task Setup and

Data Collection GUI module.

We first verified the SVM’s ability to detect noise (blinking) in two-way classification

(discrimination of blinking from baseline activity). ”Baseline” is assumed to correspond to low

prefrontal activity; whereas blinking is expected to be readily distinguishable due to the spik-

ing of EEG signals that it introduces. 5-fold cross-validation on the 200 samples per class per

participant showed an overall accuracy of 90.6% (SD=5.03%).

Next, we conducted 5-fold cross-validation on our three-way and five-way classifications

found within our Cozmo-interaction state controller (as seen on 4.6). The three-way classification

was composed of baseline, blinking, and tapping signal data. ”Tapping” corresponds to inten-

tional tapping was done to the headset by the subject. Once tapping is confirmed, it will open the

next classification state under tapping after a delay of 2 seconds, allowing for a 5-way classifica-

tion: Baseline vs Forward vs Backward vs Left vs Right, after the completion of the classification
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it will then return to the first state. This test resulted with a mean accuracy of 78.3% (SD=2.65%)

as shown in Table 4.1.

Lastly, we conducted 5-fold cross-validation on the five-way classification of baseline,

moving forward, moving backwards, turning left and turning right signal data that corresponded

to control movements. The four movement tasks pertain to brain activity related to their phys-

ical action (e.g., thinking of moving or turning towards a giving direction). After the comple-

tion of the second state classification, it will loop back to the first state, where it will initiate the

three-way classification again. The initial results from this classification were low with a mean

accuracy of 39% (SD=3.07%) as shown in Table 4.2. However, both accuracies were found to be

well above chance considering 33% represents guessing at three-way classification and 20% for

five-way.
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CHAPTER V

DISCUSSION

Towards overcoming a knowledge barrier intrinsic to BCI research, we developed a sim-

plified EEG-based system by integrating a low-cost headset, novel GUI, and accessible robot

platform for signal extraction, evaluation, and application. At the same time our classification

model implementation used on our state controller showed a good performance in three-way de-

tection of action instantiation (M=78.3%, SD=2.65% for Baseline vs Blinking vs Tapping) and

in a five-way detection of control movements (M=39%, SD=3.07% for Baseline vs Forward vs

Backward vs Left vs Right).

5.1 Limitations and Avenues For Future Work

After processing our initial evaluation of our Cozmo-integration classification state con-

troller, we noted a very important usability feature that should be included within the current

design of the controller regarding exiting and entering the second state and a way to continu-

ously classify repeated actions under that state without the additional requirement of creating an

intentional headset tap. We then decided to revise the state controller in its entirety to properly

address the limitations of our current design and implement the new controller. Figure 5.1 shows

the revised Cozmo-integration classification state controller and its composed of four states; (1)

perform a 3-way classification as the previous version of the controller (Baseline vs Blink vs

Tapping). (2) If intentional headset tapping classification is detected on the first state; it will then

jump to the second state mapped in color red. Inside the red state, it will only jump to either the

blue or green state based on a 4-way classification (Forward vs Backward vs Left vs Right). If

either the Forward or Backward task classification is activated, then it will jump to the third state.
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Figure 5.1: Revised Cozmo-Interaction Classification State Controller.

(3) Within the third state (green), any actions will only then be based in a 3-way classification

(Baseline vs Forward vs Backward); if either the Forward or Backward actions are classified from

the three, then it will keep on checking for further intentional classifications within the green

color state in a continuous loop. However, if Baseline (yellow) is classified inside the green state;

then it will exit the current state and return to the first state. (4) Now, if the classification ends in

either the Left or Right task classifications from the red state, it will then exit that current state

(blue) and return to the first state. This revisions to the controller were made to allow a more

seamlessly and continuous interaction with the Cozmo robot while still being in control of the

movements.
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CHAPTER VI

CONCLUSION

We developed a system which simplifies the procedure of connecting a EEG headset,

acquiring data, performing signal processing and visualization. In addition, we were able to

integrate a classifier and a Cozmo-interaction application to test signals produced within the

system. The system and classification implementation shows a good performance (averages of

90.6% for two-way, 78.3% for three-way and above chance of 39% in a 5-way classification) in

our preliminary evaluations with possible room for improvements.

Next we aim to further expand the system features to include additional EEG headset sup-

port (e.g., Epoc+ developed by Emotiv and the Ultracortex "Mark IV" EEG Headset developed

by OpenBCI) and implement more applications for testing (e.g., Raspberry Pi integration to tog-

gle other small systems ON and OFF, smart LED light bulb deeming) allowing direct control of

electronics by applying mental task classification based on certain brain states. At the same time,

we plan to implement more complex models of cognition (e.g., a neural network with logistic

regression [25]) for classification to assess other approaches and their accuracy in interpreting

EEG data for direct control systems.
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