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2.2 Experimental Procedure 

Subject consisted of a 28-year-old male with a height of 5’9” and a weight of 170 

pounds.  Before beginning the experiment, the subject was required to stretch out for 5 minutes.  

The motion capture cameras and the force plates were calibrated while the subject placed the 

reflective markers on the locations shown on Fig. 4.  The subject performed two exercises during 

the experiment, a moderate squat and a knee extension.  For the squatting exercise the subject 

was required to keep his heels on the ground at all times with his feet aligned with his shoulders.  

For the knee extension, the subject sat on a wooden box and extended his leg from 

approximately 90-degree flexion to full extension then back to the initial position. 

 

 
 

Figure 4:  Marker placement and labels [14]. 
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CHAPTER III 
 
 

MATHEMATICAL MODEL 
 

 
3.1 Body-Fixed Coordinate Systems 

 
Body-fixed coordinate systems were generated for both the thigh and the shin.  The 

coordinate systems were generated using three reflected markers for each body segment.  The 

markers used consisted of a proximal, lateral, and a medial marker.  For the thigh the proximal 

marker was the RGTR, the lateral was RLKN, and the medial was RMKN, Fig. 4.  For the shin 

the proximal marker was the RTTP, the lateral was RLAN, and the medial was RMAN, Figs. 4.  

The origin for the body fixed coordinate system was set at the centroid of the plane determined 

by the three markers, as shown in Fig. 5 for markers P (proximal), L (lateral), and M (medial).  

The global position vector of the centroid (O) was calculated by averaging the global position 

vectors for the three markers as follows 

𝑂" =
𝑃" + 𝐿" +𝑀(

3 																																																															(1) 

𝑂", 𝑃", 𝐿", and 𝑀( are 3x1 column vectors consisting of XYZ components with respect to a 

global coordinate system.  As shown in Fig. 4, the x-axis for the body-fixed coordinate system 

points towards the midpoint (𝐴̅) between marker L and M. The global position vector of A is 

given by 

𝐴̅ =
𝐿" + 𝑀(
2 																																																																					(2) 

Unit vector, 𝚤,̅ for the x-axis was calculated using Eq. (3). 
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𝚤̅ =
(𝐴̅ − 𝑂")

3(𝐴̅ − 𝑂") ⋅ (𝐴̅ − 𝑂")
																																																							(3) 

Moreover, 𝚤 ̅is a column vector consisting of XYZ components as shown on Eq. (4). 

𝚤̅ = 5
𝑋7
𝑌7
𝑍7
:																																																																							(4) 

The z-axis for the body-fixed coordinate system was set so that it is perpendicular to the 

plane determined by markers P, L, and M.  This was done by first finding a point that is 

perpendicular to the plane and then calculating the unit vector, as shown in below 

𝑁( =
𝑃" +𝑀(
2 																																																																				(5) 

𝑇" = (𝐴̅ − 𝑂") × (𝑁( − 𝑂")																																																								(6) 

𝑘" =
𝑇"

3𝑇" ⋅ 	𝑇(
= 5

𝑋B
𝑌B
𝑍B
	:																																																												(7) 

where 𝑁( is the midpoint between markers P and M, 𝑇" is a point that is perpendicular to the 

plane, and 𝑘" is the unit vector for the body-fixed z-axis.  Lastly, the unit vector for the body-

fixed y-axis was calculated by using the cross product for the other two unit vectors as shown in 

Eq. (8), [15]. 

𝚥̅ = 𝑘" × 𝚤̅ = E
𝑋F
𝑌F
𝑍F
G																																																															(8) 

The rotational matrix was constructed by transposing and concatenating the unit vectors as 

shown in Eq. (9). 

𝑅 = E
𝚤J̅
𝚥J̅

𝑘"J
G = E

𝑋7 𝑌7 𝑍7
𝑋F 𝑌F 𝑍F
𝑋B 𝑌B 𝑍B

G																																																						(9) 
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Furthermore, the following equation was used to convert from the global coordinate 

system XYZ to the body-fixed coordinate system xyz.  The body-fixed coordinate systems used in 

the mathematical models are shown in Figs. 6 and 7.  Note that the longer lines correspond to the 

global coordinate system and that the shorter lines represent the body-fixed coordinates [15]. 

5
𝑥MNOBPO
𝑦MNOBPO
𝑧MNOBPO

: = 𝑅 E
𝑋MNOBPO − 𝑋SO7T7U
𝑌MNOBPO − 𝑌SO7T7U
𝑍MNOBPO − 𝑍SO7T7U

G																																											(10) 
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Figure 7:  Global and body-fixed coordinate systems used in the 
mathematical model for the knee extension exercise. 
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3.2 Angular Velocity 

 The angular velocity vector was determined from the rotational matrix and the 

properties of its derivative.  The angular velocity tensor is skew-symmetric and thus may be 

defined by the following matrix 

𝑊 =	X
0 𝜔Z −𝜔[

−𝜔Z 0 𝜔\
𝜔[ −𝜔\ 0

]																																																					(11) 

where 𝜔\, 𝜔[ , 𝜔Z are the components of the angular velocity vector.  The angular 

velocity tensor was determined from rotational matrix, R, and its derivative, 𝑅̇, using Eq. (12), 

[16]. 

𝑊 = 𝑅̇𝑅J																																																																			(12) 

 

3.3 Axis of Rotation 

The relative axis of rotation is the axis about which one body segment rotates with respect 

to another adjacent body segment.  In the mathematical model presented in this paper this value is 

important because it was used to represent the location of the joints.  The location of three joints 

were determined using this method the knee, hip, and ankle. In general, the relative axis of rotation 

was determined by calculating the instantaneous center of rotation of the markers that were placed 

on one body segment with respect to a body-fixed coordinate system on an adjacent body segment.  

The calculation for determining the knee, hip, and ankle each required a set of different markers 

with their values relative to a particular body-fixed coordinate system.  The location of the knee 

was determined by calculating the instantaneous center of rotation of the markers on the tibia 

(RTTP and RTAB) with respect to the body-fixed coordinate system on the thigh.  The location of 

the hip joint was determined by calculating the instantaneous center of rotation of makers that were 
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placed on the pelvis (RASI and RPSI) with respect to the body-fixed coordinate system on the 

thigh.  The location of the ankle was determined by calculating the instantaneous center of rotation 

of the markers on the foot (RHEE and RTOE) with respect to the body-fixed coordinate system on 

shin.  The equation used to calculate the relative axis of rotation was derived using Eq. (13), [15]. 

𝑣̅` = 𝑣̅ab + 𝜔( × 𝑟̅` abd
																																																									(13) 

where 𝑣̅` is the velocity vector of marker A,  𝜔( is the angular velocity, 𝑣̅ab is the velocity vector 

for the instantaneous center of rotation which is equal to zero, and  𝑟̅`
abd
		is the position vector of 

marker A with respect to the instantaneous center of rotation.  The derivation is as follows, since 

𝑣̅ab is equal to zero, Eq. (13) can be rewritten as 

𝑣̅` = 𝜔( × 𝑟̅`
abd

 

𝑣̅` × 𝜔( = e𝜔( × 𝑟̅`
abd
f × 𝜔( 

𝑣̅` × 𝜔( = 𝑟̅`
abd
(𝜔( ⋅ 𝜔() − 𝜔( e𝑟̅`

abd
⋅ 𝜔(f 

However, since 𝑟̅`
abd

 and 𝜔( are perpendicular, since this is a sagittal plane model, the equation is 

rewritten as 

𝑣̅` × 𝜔( = 𝑟̅`
abd
(𝜔( ⋅ 𝜔() 

𝑟̅`
abd
=
𝑣̅` × 𝜔(
(𝜔( ⋅ 𝜔() 

𝑟̅ab = 𝑟̀̅ −
𝑣̅` × 𝜔(
(𝜔( ⋅ 𝜔() =

5
𝑥ab
𝑦ab
𝑧ab
:																																																			(14) 

where 𝑟̅ab is the position vector for the instantaneous center of rotation, and 𝑟̀̅  is the position 

vector for marker A.  Note that these calculations are generic and that for each joint a specific set 

of markers were used from the perspective of a specific body-fixed coordinate system that were 
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previously stated in this section.  The instantaneous center of rotation was then converted into 

global coordinates using Eq. (15). 

5
𝑋ab
𝑌ab
𝑍ab

: = 𝑅gh 5
𝑥ab
𝑦ab
𝑧ab
: + E

𝑋SO7T7U
𝑌SO7T7U
𝑍SO7T7U

G																																																(15) 

where XIC, YIC, ZIC are the Cartesian coordinates for the instantaneous center of rotation with 

respect to the global coordinate system; xIC, yIC, zIC are the Cartesian coordinates for the 

instantaneous center of rotation with respect to the body-fixed coordinate system, and XOrigin, 

YOrigin, ZOrigin are the Cartesian coordinates of the assumed origin for the body-fixed coordinate 

system with respect to the global coordinate system.  Furthermore, the joints (instantaneous 

centers of rotation) were assumed to be fixed points with respect to their corresponding body-

fixed coordinate system and thus in order to obtain a single instantaneous center of rotation the 

values for the position vector of the instantaneous center of rotation (xIC, yIC, zIC) were filtered 

and average.  The filter consisted of removing any values from the calculated xIC, yIC, zIC that 

were determined when the relative angular velocity was zero or close to zero, Fig. 8.  The 

angular velocity considered for finding the relative center of rotation has to be non-zero; 

therefore all angular velocities less than 5% of the maximum value were not considered. 
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3.4  Velocity and acceleration 

The velocity and acceleration of the markers were calculated using numerical 

differentiation.  This was done by curve fitting cubic splines to the marker position data with 

respect to time and then using a differentiate function on MATLAB to obtain the first derivative 

to calculate the velocity and the second derivative to calculate the acceleration [17].  Note that for 

Eq. (14) the velocities are with respect to a body-fixed coordinate system, in this case, the marker 

position data was first converted to body-fixed coordinates using Eq. (10) and then was 

differentiated once to calculate the velocity with respect to the body-fixed coordinate system.  
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Figure 8:  Angular velocity of the shin relative to the thigh during the knee 
extension exercise.  The horizontal dark line shows the cutoff used for the 
filter. 
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3.5 Flexion Angle 

The flexion angle for the knee is defined as the angle between the longitudinal axis of 

femur and the longitudinal axis of tibia.  In the work presented in this paper, the flexion angle 

was determined using the Y-components of the angular velocity vector calculated for both thigh 

and shin. These angular velocities were integrated by finding the best fitting spline with respect 

to time and then integrating the spline using a MATLAB function [17].   

𝜃Jj7Tj = k 𝜔Jj7Tj

l

m
𝑑𝑡																																																								(16) 

𝜃pj7U = k 𝜔pj7U
l

m
𝑑𝑡																																																											(17) 

Eqs. (16) and (17) show the integration of the Y-component for thigh and shin, respectively.  

Note that these values are with respect to the global coordinate system.  Furthermore, Eq. (18) 

was used to calculate the flexion angle for knee. 

𝜃qrP\7sU = 𝜃Jj7Tj − 𝜃pj7U − 𝜃`tFuvlwPUl 																																							(18) 

where 𝜃qrP\7sU  is the knee flexion angle, 𝜃Jj7Tj  is the angular displacement for thigh, 𝜃pj7U  is the 

angular displacement for shin, and 𝜃`tFuvlwPUl  is an adjustment angle used to set the minimum 

flexion angle at zero.  The adjustment angle was introduced into the equation because the test 

subject reached full extension (𝜃qrP\7sU= 0) when performing both exercises.  The adjustment 

angle is the minimum value calculated when subtracting the angular displacements of thigh with 

those of shin.  The calculation for the adjustment angle is shown in Eq. (19). 

𝜃`tFuvlwPUl = min{𝜃Jj7Tj − 𝜃pj7U|																																											(19) 

3.6  Femur 

 Bone surfaces were incorporated into the mathematical model as cubic splines that were 

obtained by tracing an x-ray using a MATLAB script named Grabit [18, 19].  Cubic splines were 
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generated for the x and z axes with respect to a curve parameter for the femur, tibia, and patella 

[17].  The femur was incorporated into the mathematical model by superimposing the bone’s 

geometric center of rotation with the instantaneous center of rotation that was used to represent 

the knee.  The geometric center of rotation was determined by finding the center of the circle that 

best fits the femur’s lateral condyle.  The best fitting circle and its center were determined by 

using a nonlinear least squares optimization technique.  The optimization process was done on 

MATLAB by using a function called lsqnonlin [20, 21].  The objective function used during the 

optimization process is shown on Eq. (16), [7]. 

𝑓 = 𝑅s~l − 3(𝑥tNlN − 𝑥�PU)� + (𝑧tNlN − 𝑧�PU)�																																(20) 

where 𝑥tNlN  and 𝑧tNlN are data points along the lateral condylar surface,  𝑥�PU and 𝑧�PU are the 

coordinates for the center of the best fitting circle, and 𝑅s~l is the radius of the best fitting circle.  

The femur profile, best fitting circle, and geometric center of rotation are shown in Fig. 8.  
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Moreover, the femur profile was incorporated onto the kinematic marker data by first 

determining its relative position from the geometric center Eq. (21) and then aligning the 

geometric center with the knee using Eq. (22), [22]. 

𝑟̅q�
�bd = 5

𝑥qPwuO	�Os�7rP − 𝑥�PswPlO7�	bPUlPO
0

𝑧qPwuO	�Os�7rP − 𝑧�PswPlO7�	bPUlPO
:																															(21) 

E
𝑋qPwuO	�Os�7rP
𝑌qPwuO	�Os�7rP
𝑍qPwuO	�Os�7rP

G = 5
𝑋�UPP
𝑌�UPP
𝑍�UPP

: +	𝑅qPwuO		𝑟̅q� �bd 																															(22) 

where 𝑟̅q�
�bd is the position vector for the femoral profile with respect to the geometric center, 

XKnee, YKnee, ZKnee are the coordinates for the instantaneous center of rotation that represents the 

knee joint, and 𝑅qPwuO	is the rotational matrix used to orient the femur profile with that of the 

experimental data.  The following equations were used to calculate the rotation matrix of femoral 

profile [22]. 

𝑅aU7l7Nr =

⎣
⎢
⎢
⎢
⎡ cos e

𝜋
2 + 𝛼Mq`f 0 sin e

𝜋
2 + 𝛼Mq`f

0 1 0
−sin e

𝜋
2 + 𝛼Mq`f 0 cos e

𝜋
2 + 𝛼Mq`f⎦

⎥
⎥
⎥
⎤
																								(23) 

𝑅qPwuO = 𝑅aU7l7Ngh 𝑅Jj7Tjgh 																																																			(24) 

where 𝛼Mq` is an additional angle used to improve the orientation of the femur, and RThigh is the 

rotation matrix for the body-fixed coordinate system on the thigh. These additional adjustments 

done on the femur’s transformation matrix are necessary due to the knee joint position on the x-

rays.  The x-rays from which the femur profile was traced had the knee joint at full extension and 

at approximately 90-degree angle from the x-axis. 
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3.7 Tibia 

The tibia profile was superimposed onto the experimental data and fixed to the shin 

during minimum flexion.  Bone alignment was done during minimum flexion because the x-rays 

from which the bone surfaces were taken show the bones when the patient’s knee was fully 

extended [18]; therefore, it is possible to calculate the position of both the tibia and patella using 

the same approach applied for the femur when the subject’s knee is fully extended.  The global 

coordinates for the tibial profile during minimum flexion was calculated by first calculating the 

relative position of the tibial profile from the geometric center, 𝑟̅J�
�bd , as shown in Eq. (25).   

𝑟̅J�
�bd = 5

𝑥J7�7N	�Os�7rP − 𝑥�PswPlO7�	bPUlPO
0

𝑧J7�7N	�Os�7rP − 𝑧�PswPlO7�	bPUlPO
: 																																					(25) 

The relative position, 𝑟̅J�
�bd , was then used to calculate the position of the tibial profile 

at minimum flexion (MF) with respect to the global coordinate system.   

�
𝑋J7�7N	�Os�7rPMq

𝑌J7�7N	�Os�7rPMq

𝑍J7�7N	�Os�7rPMq
� = E

𝑋�UPPMq

𝑌�UPPMq

𝑍�UPPMq
G +	𝑅qPwuOMq 		𝑟̅J�

�bd 																																(26) 

where 𝑋J7�7N	�Os�7rPMq 	, 𝑌J7�7N	�Os�7rPMq 	, 𝑍J7�7N	�Os�7rPMq  are the global coordinates for the tibial profile 

during minimum flexion, 𝑋�UPPMq 	, 𝑌�UPPMq 		, 𝑍�UPPMq  are the global coordinates for the knee during 

minimum flexion, and 𝑅qPwuOMq  is the transformation matrix used for the femur during minimum 

flexion.  Again, the transformation matrix for femur is used to obtain the position of the tibia 

during minimum flexion because the x-rays from which the bone surfaces were taken show how 

the bones align when the knee is fully extended.  At minimum flexion the tibial profile is fixed to 

the body-fixed coordinate system on the shin using Eq. (27). 
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�
𝑥J7�7N	�Os�7rPpj7U

𝑦J7�7N	�Os�7rPpj7U

𝑧J7�7N	�Os�7rPpj7U

� = 𝑅pj7U �
𝑋J7�7N	�Os�7rPMq − 𝑋SO7T7Upj7U

𝑌J7�7N	�Os�7rPMq − 𝑌SO7T7Upj7U

𝑍J7�7N	�Os�7rPMq − 𝑍SO7T7Upj7U

� 																											(27) 

where 𝑥J7�7N	�Os�7rPpj7U 	, 𝑦J7�7N	�Os�7rP	,pj7U  𝑧J7�7N	�Os�7rPpj7U  are the body-fixed coordinates for the tibial 

profile with respect to the shin, 𝑋SO7T7Upj7U 	, 𝑌SO7T7Upj7U 	, 𝑍SO7T7Upj7U  are the global coordinates for the origin 

of the body fixed coordinate system on the shin, and 𝑅pj7U is the transformation matrix of shin.  

The tibial profile was converted to global coordinates using Eq. (28).   

E
𝑋J7�7N	�Os�7rP
𝑌J7�7N	�Os�7rP
𝑍J7�7N	�Os�7rP

G = �
𝑋SO7T7Upj7U

𝑌SO7T7Upj7U

𝑍SO7T7Upj7U

� + 𝑅pj7Ugh �
𝑥J7�7N	�Os�7rPpj7U

𝑦J7�7N	�Os�7rPpj7U

𝑧J7�7N	�Os�7rPpj7U

� 																									(28) 

where 𝑋J7�7N	�Os�7rP  𝑌J7�7N	�Os�7rP  𝑍J7�7N	�Os�7rP are the global coordinates for the tibial 

profile. 

 

3.8 Patella 

A geometric approach was taken in order to incorporate the patella onto the experimental 

data.  As shown in Fig. 10 the entire distal region of the femoral condyle was used to calculate 

the geometric center about which the patella is assumed to rotate [23].  This geometric center of 

the entire condyle was calculated using the same nonlinear least squares optimization technique 

used to calculate the geometric center of the lateral condyle [20, 21].  Another important point 

used to calculate the patella’s position and motion is its center of mass.  Assuming that the 

density of the patella is uniformly distributed the center of mass is located at the centroid, which 

was calculated using the following equations [24]. 
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𝑥�w =
1
𝐴
k 𝑥𝑓(𝑥)𝑑𝑥
�

N
																																																					(29) 

𝑧�w =
1
𝐴
k

1
2

�

N
[𝑓(𝑥)]�𝑑𝑥																																																		(30) 

where 𝑥�w and 𝑧�w are the coordinates for the center of mass of patella, and A is the area 

comprising the sagittal plane of patella, which was taken from the x-ray.  The center of rotation 

of patella is shown in Fig. 10, [24].   

 

 

The center of mass was incorporated onto the experimental data by first finding its 

position at minimum flexion, and then using the law of cosines to find its position at the other 

flexion angles. In order to use the law of cosines it was assumed that the distance between the 

center of mass of patella and the center of rotation for patella was constant, as well as the 
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Figure 10: Center of rotation of patella. 
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distance between the center of mass of patella and the tibial tuberosity. The position of the center 

of mass of patella was determined by first calculating the relative distance between the center of 

mass and the geometric center of the lateral condyle as shown in Eq. (31). 

𝑟̅�w
�bd = 5

𝑥�w − 𝑥�PswPlO7�	bPUlPO
0

𝑧�w − 𝑧�PswPlO7�	bPUlPO
: 																																								(31) 

The relative distance 𝑟̅�w
�bd  was then used to calculate the position of the center of mass 

of patella during minimum flexion as shown in Eq. (32). 

E
𝑋�wMq

𝑌�wMq

𝑍�wMq
G = E

𝑋�UPPMq

𝑌�UPPMq

𝑍�UPPMq
G +	𝑅qPwuOMq 		𝑟̅�w

�bd 																																							(32) 

where 𝑋�wMq  𝑌�wMq  𝑍�wMq are the global coordinates for the center of mass of patella during 

minimum flexion.  The law of cosines was then used to calculate the angle between the segment 

determined by the tibial tuberosity and the center of rotation of patella (TTFG) and the segment 

determined by the tibial tuberosity and the center of mass of patella (TTCM) as shown on Eq. 

(33), Fig. 11. 

𝜙 = cosgh �
𝑇𝑇𝐹𝐺� + 𝑇𝑇𝐶𝑀� − 𝐹𝐺𝐶𝑀�

2(𝑇𝑇𝐹𝐺)(𝑇𝑇𝐶𝑀)
�																																		(33) 

where 𝜙 is the angle between TTFG and TTCM as shown in Fig. 10, and FGCM is a line 

determined by the center of mass of patella and the center of rotation of patella.  Again, this 

calculation is possible because the lengths of lines TTCM and FGCM are kept constant from the 

values calculated during minimum flexion.  The following equations were used to calculate the 

global coordinates for the center of mas of patella. 
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𝑅� = 5
cos𝜙 0 sin 𝜙
0 1 0

−sin 𝜙 0 cos𝜙
:																																																(34)  

5
𝑋�w
𝑌�w
𝑍�w

: = 5
𝑋JJ
𝑌JJ
𝑍JJ

: + 𝑅�(𝑇𝑇𝐶𝑀)𝑈(JJq� 																																								(35) 

where 𝑋�w 𝑌�w 𝑍�w are the global coordinates for the center of mass of patella, 𝑋JJ 𝑌JJ 𝑍JJ are 

the global coordinates for the tibial tuberosity, 𝑅� is the rotation matrix, and 𝑈(JJq�  is the unit 

vector for the position vector shown on Eq. (36) and it was defined using Eq. (37). 

𝑟̅q�
JJd = 5

𝑋q�
𝑌q�
𝑍q�

: − 5
𝑋JJ
𝑌JJ
𝑍JJ

:																																																		(36) 

𝑈(JJq� =
𝑟̅q�

JJd

�𝑟̅q� JJd ⋅ 𝑟̅q�
JJd

																																																	(37) 

where 𝑟̅q�
JJd  is the position vector for the center of rotation for patella with respect to the tibial 

tuberosity, and 𝑋q�  𝑌q�  𝑍q� are the global coordinates for the center of rotation .  The patella 

profile was incorporated using a similar process than that done for the tibia.  First the global 

coordinates for the patella profile were calculated during minimum flexion (MF) using the 

relative position vector of the patella profile with respect to the geometric center (GC) of the 

lateral condyle; this is shown in Eqs. (38) and (39). 

𝑟̅�NlPrrN	�Os�7rP
JJd = E

𝑋�NlPrrN	�Os�7rP
𝑌�NlPrrN	�Os�7rP
𝑍�NlPrrN	�Os�7rP

G − 5
𝑋�b
𝑌�b
𝑍�b

:																														(38) 

�
𝑋�NlPrrN	~Os�7rPMq

𝑌�NlPrrN	~Os�7rPMq

𝑍�NlPrrN	~Os�7rPMq
� = E

𝑋�UPPMq

𝑌�UPPMq

𝑍�UPPMq
G +	𝑅qPwuOMq 		𝑟̅�NlPrrN	�Os�7rP

�bd 																					(39) 
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where 𝑋�NlPrrN	~Os�7rPMq  𝑌�NlPrrN	~Os�7rPMq  𝑍�NlPrrN	~Os�7rPMq  are the global coordinates for the patella 

profile during minimum flexion, and 	𝑟̅�NlPrrN	�Os�7rP
�bd  is the position vector for the patella 

profile with respect to the geometric center of the lateral condyle.  The position of the patella 

profile for the other flexion angles are determined by calculating the relative position of the 

patella profile with respect to the center of mass in order to account for the translation of the 

profile, this is shown in Eq. (41).  The patella profile is rotated by the angle determined by the X-

axis and the line TTCM.  The angle by which the patella profile is rotated is shown in Fig. 11 and 

is labeled as 𝜃~Nl. 

𝑅�NlPrrN = E
cos𝜃~Nl 0 sin 𝜃~Nl

0 1 0
−sin 𝜃~Nl 0 cos 𝜃~Nl

G                                          (40) 

E
𝑥�NlPrrN	�Os�7rP�w

𝑦�NlPrrN	�Os�7rP�w

𝑧�NlPrrN	�Os�7rP�w
G = 𝑅�NlPrrN �

𝑋�NlPrrN	~Os�7rPMq − 𝑋�wMq

𝑌�NlPrrN	~Os�7rPMq − 𝑌�wMq

𝑍�NlPrrN	~Os�7rPMq − 𝑍�wMq
�																									(41) 

where 𝑥�NlPrrN	�Os�7rP�w  𝑦�NlPrrN	�Os�7rP�w  𝑧�NlPrrN	�Os�7rP�w  are the coordinates for the patella profile 

with respect to the patellas center of mass, 𝑅�NlPrrN  is the transformation matrix use to orient the 

patella profile, 𝑋�NlPrrN	~Os�7rPMq  𝑌�NlPrrN	~Os�7rPMq  𝑍�NlPrrN	~Os�7rPMq  are the global coordinates for the 

patella profile during minimum flexion, and 𝑋�wMq  𝑌�wMq  𝑍�wMq are the global coorindates for the 

center of mass of patella during minimum flexion. The equations used to determine the position 

of the patella profile at other flexion angles is as follows 

E
𝑋�NlPrrN	�Os�7rP
𝑌�NlPrrN	�Os�7rP
𝑍�NlPrrN	�Os�7rP

G = 5
𝑋�w
𝑌�w
𝑍�w

: + 𝑅�NlPrrNgh E
𝑥�NlPrrN	�Os�7rP�w

𝑦�NlPrrN	�Os�7rP�w

𝑧�NlPrrN	�Os�7rP�w
G																						(42) 

where 𝑋�NlPrrN	�Os�7rP  𝑌�NlPrrN	�Os�7rP  𝑍�NlPrrN	�Os�7rP  are the global coordinates for the patella 

profile. 
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3.9 Ligaments 

The cruciate ligaments are assumed to behave like nonlinear elastic strings with 

unchanging cross sections.  This string like behavior is characterized by a stress-strain curve that 

initially behaves like a quadratic function then after reaching a particular threshold exhibits 
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Figure 11:  The knee joint showing important points and angles used to incorporate 
the patella onto the experimental data. 



29 
 

linear behavior [12, 13].  The threshold dividing the quadratic and linear regions for the 

stress/strain curve was defined as  

𝜀s =
𝐾¡

4𝐾¢𝑆¡
																																																																	(43) 

where 𝜀s is the strain threshold, 𝐾¡ is the elastic constant for the linear region, 𝐾¢ is the 

elastic constant for the quadratic region, and 𝑆¡  is the slack length, which was calculated as 

follows 

𝑆¡ =
𝐿Mq
𝐸¥

																																																																			(44) 

where 𝐿Mq is the length of the ligament during minimum flexion and 𝐸¥  is an extension 

ratio, which relates the ligament length at full extension to the slack length.  Since the slack 

length represents the length at which the ligaments do not generate a force, the strain (𝜀U) was 

calculated using Eq. (45), [9, 12]. 

𝜀U =
𝐿 − 𝑆¡
𝑆¡

																																																																	(45) 

where 𝜀U is the ligament strain and L is equal to the ligaments’ length.  Furthermore, the 

ligament forces were calculated using three different cases.  In the first case, when the ligament’s 

strain is less than zero (𝜀U ≤ 0) the ligament forces are equal to zero [9, 12]. 

𝐹r7TNwPUl = 0																																																															(46)	 

In the second case, the strain value is between 0 and the linear threshold (0 < 𝜀U < 	2𝜀s), 

during this case the force-strain curve behaves as a quadratic function, and the ligament force is 

calculated using the following equation [9, 12]. 

𝐹r7TNwPUl = 𝐾¢(𝐿 − 𝑆¡)�																																																					(47) 
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The third and final case describes the behavior of the ligament when its strain is beyond 

the linear threshold (𝜀U 	≥ 	2𝜀s), at this region the force-strain curve behaves linearly, and its 

force was calculated using equation 48 [9, 12]. 

𝐹r7TNwPUl = 𝐾¡[𝐿 − (1 + 𝜀m)𝑆¡]																																															(48) 

Note that the values for the elastic constants and the linear thresholds are from Caruntu 

and Hefzy [9].  Both the anterior cruciate ligament (ACL) and the posterior cruciate ligament 

(PCL) were accounted for in the mathematical model; however, each ligament was divided into 

an anterior bundle and a posterior bundle.  The origins/insertions for the cruciate ligaments were 

estimated from MRIs and are shown in Fig. 12. 
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3.10 Contact Forces 

 Both the tibiofemoral and patellofemoral contact forces were accounted for in the 

mathematical model.  The contact force for both bone-to-bone interactions were determined by 

multiplying a scaling factor by the bone’s overlapping area.  The contact force is shown in Eq. 

(49), [9, 19]. 

𝐹bsUlN�l = 𝐶𝐴bsUlN�l 																																																									(49) 

where 𝐹bsUlN�l is the magnitude of the contact force, 𝐴bsUlN�l is the bone to bone 

overlapping area, and C is the scaling factor that is associated with the elasticity of the articular 

cartilage.  The intersections for the overlapping bones were determined using a MATLAB script, 

provided by [9, 19].  The curves used to calculate the contact area were determined by 

calculating the Euclidean distance between the intersection points and the data that makes up the 

bone profile.  The bone profile data that yield the smallest Euclidean distance was assumed to be 

the intersection point for the bone profile.  Note that the overlapping area consists of two 

intersection points.  The bone profile data was then sorted out by excluding any data that was not 

between the intersection points and splicing together the points that were between the 

intersection points.  The contact area was then rotated in such a way that the two intersection 

points fell on the horizontal axis.  The centroid for the overlapping contact areas were 

determined using Eqs. (29) and (30), and they are shown Fig. 13   


