
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

12-2009

S2ST: A Relational RDF Database Management System S2ST: A Relational RDF Database Management System

Anthony T. Piazza
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Piazza, Anthony T., "S2ST: A Relational RDF Database Management System" (2009). Theses and
Dissertations - UTB/UTPA. 348.
https://scholarworks.utrgv.edu/leg_etd/348

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/348?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

S2ST: A RELATIONAL RDF DATABASE

MANAGEMENT SYSTEM

A Thesis

by

ANTHONY T. PIAZZA

Submitted to the Graduate School of the

University of Texas - Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2009

Major Subject: Computer Science

S2ST: A RELATIONAL RDF DATABASE

MANAGEMENT SYSTEM

A Thesis

by

ANTHONY T. PIAZZA

Approved as to style and content by:

Dr. Artem Chebotko

Chair of Committee

Dr. Robert Schweller

Committee Member

Dr. Andres Figueroa

Committee Member

Dr. Richard Fowler

Committee Member

December 2009

Copyright 2009 Anthony T. Piazza

All Rights Reserved

iii

ABSTRACT

Piazza, Anthony T., S2ST: A Relational RDF Database Management System. Master of

Science (MS), December, 2009, 45 pp., 11 figures, references, 27 titles.

The explosive growth of RDF data on the Semantic Web drives the need for novel

database systems that can efficiently store and query large RDF datasets. To achieve good

performance and scalability of query processing, most existing RDF storage systems use

a relational database management system as a backend to manage RDF data. In this

paper, we describe the design and implementation of a Relational RDF Database

Management System. Our main research contributions are: (1) We propose a formal

model of a Relational RDF Database Management System (RRDBMS), (2) We propose

generic algorithms for schema, data and query mapping, (3) We implement the first and

only RRDBMS, S2ST, that supports multiple relational database management systems,

user-customizable schema mapping, schema-independent data mapping, and semantics-

preserving query translation.

iv

ACKNOWLEDGEMENTS

 First, I want to thank my entire family for all of their encouragement and support.

Second, I want to thank my advisor, Dr. Artem Chebotko, for allowing me to work with

him. Lastly, I want to thank all of the graduate students I have studied with, for making

this a truly memorable experience.

v

TABLE OF CONTENTS

Page

ABSTRACT………………………………………………………………………….. iii

ACKNOWLEDGEMENTS………………………………………………………….. iv

TABLE OF CONTENTS…………………………………………………………….. v

LIST OF FIGURES…………………………………………………………………... vii

CHAPTER I. INTRODUCTION…………………………………………………….. 1

Research Motivation…………………………………………………………. 2

Research Contributions………………………………………………………. 3

Organization of this Document………………………………………………. 3

CHAPTER II. FOUNDATIONS OF RELATIONAL RDF DATABASE

MANAGEMENT SYSTEMS………………………………………………………... 4

Preliminaries: RDF and SPARQL……………………………………………. 4

Relational RDF Database Management System……………………………… 6

Logical Schema………………………………………………………………. 7

Physical Schema……………………………………………………………… 11

Data Management Operations………………………………………………… 18

CHAPTER III. SERVICE-ORIENTED ARCHITECTURE OF AN RRDBMS……... 23

CHAPTER IV. DESIGN AND IMPLEMENTATION OF S2ST…………………….. 27

Schema Mapping Services……………………………………………………. 27

vi

Data Mapping Services……………………………………………………….. 30

Query Mapping Services……………………………………………………… 34

CHAPTER V. RELATED WORK……………………………………………………. 37

CHAPTER VI. CONCLUSION AND FUTURE WORK……………………………. 41

REFERENCES……………………………………………………………………….. 42

BIOGRAPHICAL SKETCH…………………………………………………………. 45

vii

LIST OF FIGURES

Page

Figure 1: Sample RDF Graph………………………………………………………. 5

Figure 2: Function Compute-α……………………………………………………… 13

Figure 3: Function Compute-β……………………………………………………… 13

Figure 4: Algorithm CreateLS………………………………………………………. 18

Figure 5: Algorithm SM…………………………………………………………….. 20

Figure 6: Algorithm DM…………………………………………………………….. 22

Figure 7: Service-Oriented Architecture of an RRDBMS…………………………... 24

Figure 8: S2ST Metadata Model…………………………………………………….. 30

Figure 9: Data Mapping Architecture of S2ST……………………………………… 31

Figure 10: Data Mapping Sequence Diagram……………………………………….. 32

Figure 11: Query Mapping Sequence Diagram……………………………………… 35

1

CHAPTER I

INTRODUCTION

 We are living in a time of unprecedented information growth. It is estimated that

the amount of digital information in the world today is doubling in size every 18 months.

This explosive growth presents a number of interesting challenges for organizations that

produce, collect and process large amounts of digital information. One common problem

is that much of the data being produced lacks semantics. Semantics provides meaning to

data. The World Wide Web currently contains a vast amount of data without semantics.

The World Wide Web Consortium (W3C) has proposed standards that make it possible

for data to be shared and reused across application, enterprise, and community

boundaries. These standards promote the development of the next-generation Web,

known as the Semantic Web.

 The vast majority of information available on the Web today is published using

the HyperText Markup Language (HTML). HTML is a standard for describing the

structure of published information. Web browsers use this structural information to render

the information in a way that facilitates consumption by humans. Information published

using HTML is not intended for consumption by computers, which makes it difficult for

them to make effective use of the ever increasing volume of information available on the

Web. To solve this problem, theW3C has proposed new standards to enable computers to

discern the meaning of available information. XML (eXtensible Markup Language) is a

2

W3C standard that provides a set of rules for encoding information. Adoption of XML

has now become widespread. Besides having a standard way to encode information, there

needs to be a standard way to express its meaning. That’s the purpose of RDF (Resource

Description Framework), a W3C standard that supports modeling of information that is

made available as web resources. RDF is based on the idea of making statements about

web resources in the form of subject-predicate-object expressions, called triples. Triples

can be encoded using several different W3C standard formats, including XML, N-Triples

and N3. Triples are an intuitive way to describe most of the information being processed

by computers today.

 A number of systems have been developed to support large-scale RDF storage

using relational database backends. To resolve the conflict between the graph RDF data

model and the relational data model, these systems require various mappings between the

two data models, such as schema mapping, data mapping, and query mapping (a.k.a.

query translation). Schema mapping is used to generate a relational database schema for

storing RDF data. Data mapping is used to shred RDF triples into relational tuples and

insert them into the database. Finally, query mapping is used to translate SPARQL queries

into equivalent SQL queries, which are then evaluated by the relational engine and the

results are returned as SPARQL query solutions.

Research Motivation

 As the use of RDF becomes more widespread, so too will be the need for systems

that support storing and querying of RDF data. There have been numerous such systems

developed in recent years. Many of these systems are based on relational database

technology. This approach leverages the mature and vigorous storage and query

3

capabilities provided by relational databases. A careful study of these systems reveals a

number of significant limitations including: hard-coded support for only one or two fixed

schema mapping strategies, data mapping and query translation algorithms that must be

reinvented for every new schema mapping strategy and support for very few relational

database management systems, just to name a few. Our motivation is to develop a system

for storing and querying RDF data based on relational database technology without these

limitations.

Research Contributions

 Our research contributions are: (1) a formal model for a relational RDF database

management system (RRDBMS), (2) generic algorithms for schema, data and query

mapping, and (3) the realization of an RRDBMS that supports all of the most popular

database management systems.

Organization of this Document

 The remaining chapters of this document are organized as follows: Chapter 2 lists

a number of preliminary definitions and then presents a formal model for addressing the

limitations of existing RDF storage systems, Chapter 3 defines a service-oriented

architecture for building a relational RDF database management system, Chapter 4 details

the realization of a relational RDF database management system, Chapter 5 reviews

related research, and Chapter 6 concludes the document and reviews some interesting

research topics for future work.

4

CHAPTER II

FOUNDATIONS OF RELATIONAL RDF

DATABASE MANAGEMENT SYSTEMS

 It may be helpful to review some of the fundamental definitions before delving

into the more complex topics which depend on them. We start this chapter by discussing

some of them most important terms related to semantic web technology. After that, we

present a formal model for a Relational RDF Database Management System.

Preliminaries: RDF and SPARQL

 Let I, B, L, and V denote pairwise disjoint infinite sets of Internationalized

Resource Identifiers (IRIs), blank nodes, literals, and variables, respectively. Let IB, IL,

IV, IBL, and IVL denote I ∪ B, I ∪ L, I ∪ V, I ∪ B ∪ L, and I ∪ V ∪ L, respectively.

Elements of the set IBL are also called RDF terms. In the following, we formalize the

notions of RDF triple, RDF graph, triple pattern, graph pattern, and SPARQL query.

Definition 1 (RDF triple and RDF graph)

An RDF triple t is a tuple (s, p, o) ∈ (IB) × I × (IBL), where s, p, and o are a subject,

predicate, and object, respectively. An RDF graph G is a set of RDF triples. We define T

and G as infinite sets of all possible RDF triples and graphs, respectively.

5

 A sample RDF graph that we use for subsequent examples is shown in Figure 1.

The RDF graph is represented as a set of 11 triples, as well as a labeled graph, in which

edges are directed from subjects to objects and represent predicates, circles denote IRIs,

and rectangles denote literals.

 We focus on the core fragment of SPARQL defined in the following.

Definition 2 (Triple pattern)

A triple pattern tp is a triple (sp, pp, op) ∈ (IVL) × (IV) × (IVL), where sp, pp, and op are

a subject pattern, predicate pattern, and object pattern, respectively. We define TP as an

infinite set of all possible triple patterns.

Definition 3 (Graph pattern)

A graph pattern gp is defined by the following abstract grammar:

gp → tp | gp AND gp | gp OPT gp | gp UNION gp | gp FILTER expr

where AND, OPT, and UNION are binary operators that correspond to SPARQL

conjunction, OPTIONAL, and UNION constructs, respectively. FILTER expr represents

Figure 1: Sample RDF Graph

6

the FILTER construct with a boolean expression expr, which is constructed using

elements of the set IVL, constants, logical connectives (¬, ∨, ∧), inequality symbols

(<, ≤, ≥, >), the equality symbol (=), unary predicates like bound, isIRI, and other

features defined in [24]. We define GP as an infinite set of all possible graph patterns.

Definition 4 (SPARQL query)

A SPARQL query sparql is defined as

sparql → SELECT varlist WHERE (gp)

where varlist = (v1, v2, ..., vn) is an ordered list of variables and varlist ⊆ var(gp). We

define Q as an infinite set of all possible SPARQL queries that can be generated by the

defined grammar.

Relational RDF Database Management System

 A Relational RDF Database Management System (RRDBMS) relies on a

Relational Database Management System (RDBMS) to store and query RDF datasets.

RRDBMS provides a collection of data structures and algorithms that map operations on

RDF data to equivalent operations on relational data in an RDBMS. In this section, we

formalize the notion of RRDBMS by giving its high-level definition first and defining its

individual components afterwards.

Definition 5 (Relational RDF Database Management System)

A relational RDF database management system (RRDBMS) is a tuple (RDBMS, DB, LS,

PS, ALG), where

7

� RDBMS is a set of RDBMS backends that manage RDF data,

� DB is a set of relational databases implemented in the RDBMS backends to store

RDF data,

� LS is a set of logical schemas that specify how a new relational database (becomes

an element in DB) can be created,

� PS is a set of physical schemas that are extended instantiations of logical schemas,

such that each physical schema PS ∈ PS describes a relational database DB ∈ DB

and is derived from a logical schema LS ∈ LS, and

� ALG is a collection of algorithms that perform operations in the RRDBMS, such

as creation of a logical schema, creation of a physical schema and relational

database schema, mapping of RDF data to relational data, and SPARQL-to-SQL

query translation.

 While the notions of RDBMS and relational database are well-understood,

RRDBMS logical schemas, physical schemas and algorithms require further explanation

found in the following subsections.

Logical Schema

 The purpose of a logical schema is to encode the structure of a relational database

that can be used for RDF storage, such that this structure can be later instantiated in one

or more RDBMSs. Therefore, the logical schema should record a set of relation names R

and a set of relational attribute names A, such that each a ∈ A is associated with one or

many relations in R. While attribute names (further “attributes” for simplicity) are

represented by string literals, relation names (further “relations” for simplicity) may be

8

data-driven, i.e., they may depend on values found in RDF data, and thus may have more

complex structure. In addition, the logical schema should capture the information about

what triples each relation can store and what attributes of the relation are used to store the

components (subject, predicate, and object) of triples. To achieve this, we introduce two

mappings, called γ and δ.

Definition 6 (Mapping γ)

Given a set of relations R and a set of triple patterns TP, a mapping γ is a many-to-many

mapping γ : R → TP, if given a relation R ∈ R, γ (R) is a set of triple patterns TPR = {tp1,

tp2, ..., tpn} ⊂ TP, such that for any two distinct triple patterns tpi ∈ TPR and tpj ∈ TPR, tpi

does not subsume tpj and tpj does not subsume tpi.

 Mapping γ precisely defines what RDF triples can be stored in relation R ∈ R,

such that if triple t ∈ T matches triple pattern tp ∈ γ(R), then R is used to store t. As we

mentioned earlier, besides string literals, R ∈ R may include one or more special variables

%sub%, %pre%, and %obj%, that are interpolated using the corresponding values of a

triple t = (s, p, o) ∈ T , such that t matches a triple pattern tp ∈ γ (R). This provides

support for data-driven relations, whose names are derived only when RDF data is being

inserted into an RRDBMS.

 Mapping δ defines what specific components of RDF triples, i.e., subject,

predicate, and object, relational attributes can store.

9

Definition 7 (Mapping δ)

Given a set of relations R, a set of relational attributes A, and a set P = {sub, pre, obj}, a

mapping δ is a many-to-one mapping δ : R × A → P, if given a relation R ∈ R and its

attribute a ∈ A, δ(R, a) returns a position pos ∈ P, such that for any two distinct attributes

a1 and a2 of R, if pos1 = δ(R, a1) and pos2 = δ(R, a2), then pos1 ≠ pos2.

 Mapping δ restricts a relational attribute to store subjects, predicates or objects,

but not the combination of those, i.e., the same attribute cannot store a subject of one

triple and an object of another triple. In addition, if one attribute of a relation stores triple

subjects, no other attribute can store subjects; the same is true for predicates and objects.

Therefore, a relation can have at most one attribute for each position.

 The last mapping that we need is denoted as τ and captures data types D of

attributes A found in relations R. To avoid dependence on data types in a particular

RDBMS, we can use generic data types, such as string, date, and double, defined in the

XML Schema language.

Definition 8 (Mapping τ)

Given a set of relations R, a set of relational attributes A, and a set of XML Schema data

types D, a mapping τ is a many-to-one mapping τ : R × A → D, such that given a relation

R ∈ R and its attribute a ∈ A, τ(R, a) returns a data type d ∈ D.

 These three mappings constitute a logical schema.

10

Definition 9 (Logical Schema)

A logical schema LS is a tuple (lsid, γ, δ , τ), where lsid is a unique identifier of the

schema, γ is a mapping as in Definition 6, δ is a mapping as in Definition 7, and τ is a

mapping as in Definition 8.

 The logical schema definition is very flexible, enabling encoding different types

of relations supported in schema-oblivious, schema-aware, data-driven, and hybrid

relational RDF stores. Moreover, γ and δ allow the design of new types of relations,

resulting in a novel user-customized approach to schema design. In the following

example, we show a logical schema that implements relations used by different

approaches.

Example 10 (Logical Schema)

A database designer may specify the following logical schema that may be used for the

sample RDF graph in Figure 1.

lsid: 1

γ: Triple → {(?s, ?p, ?o)},

 Name → {(?s, name, ?o)},

 Class%obj% → {(?s, type, ?o)},

 Phone → {(?s, cell, ?o), (?s, phone, ?o)}.

δ: (Triple, s) → sub τ: (Triple, s) → xsd:string

 (Triple, p) → pre (Triple, p) → xsd:anyURI

 (Triple, o) → obj (Triple, o) → xsd:string

 (Name, s) → sub (Name, s) → xsd:anyURI

 (Name, o) → obj (Name, o) → xsd:string

 (Class%obj%, i) → sub (Class%obj%, i) → xsd:anyURI

 (Phone, s) → sub (Phone, s) → xsd:anyURI

 (Phone, p) → pre (Phone, p) → xsd:anyURI

 (Phone, o) → obj (Phone, o) → xsd:unsignedInt

11

 According to this schema, three relations with fixed names (Triple, Name, and

Phone) and one data-driven relation Class%obj% are defined. Triple can store all

possible RDF triples as specified by the triple pattern (?s, ?p, ?o) in three columns s, p, o

that correspond to a subject, predicate, and object, and have data types xsd:string,

xsd:anyURI, and xsd:string, respectively. Similarly, the structure of relations Name and

Phone is defined as Name(s : xsd:anyURI, o : xsd:string) and Phone(s : xsd:anyURI, p :

xsd:anyURI , o : xsd:unsignedInt). Name is intended to store subjects and objects of any

RDF triple whose predicate is name, i.e., the triple matches triple pattern (?s, name, ?o).

More interestingly, Phone is allowed to store any RDF triple whose predicate is cell or

phone, i.e., the triple matches (?s, cell, ?o) or (?s, phone, ?o). Finally, the actual name of

relation Class%obj% is derived from a triple itself, such that special variable %obj% is

interpolated with the object value of a triple that matches triple pattern (?s, type, ?o). For

example, if triple (B1, type, Person) is in the graph, its subject is to be stored by relation

ClassPerson(i : xsd:anyURI).

 The four relations are representative of four different approaches to schema

design, namely schema-oblivious (Triple), schema-aware (Name), data-driven

(Class%obj%), and user-driven (Phone), resulting in a flexible hybrid design.

Physical Schema

 The logical schema serves as a template that can be applied to generate relational

database schemas in one or more RDBMS. Once a relational database schema is created

in an RDBMS, we derive a new set of mappings that describe the concrete storage

structure. This set of mappings is referred to as physical schema.

12

 In a physical schema, mappings γ and δ are initially inherited from the

corresponding logical schema. If data-driven relations are used, these mappings may be

augmented with new instances. Similarly, mapping τ is inherited from the corresponding

logical schema with generic data types mapped to RDBMS-specific data types. τ may

also evolve when data-driven relations are created.

 Next, while mappings γ and δ are good means to capture what data can be stored

in relations, they are not very straightforward to use for deciding how to insert new triples

or match SPARQL triple patterns over relations. One step towards this goal is defining

reverse mappings γ
−1

 : TP → R and δ
−1

 : P → R × A. The reverse mappings may not be

easy to use, because γ
−1

 is defined on a finite set of triple patterns that may subsume other

triple patterns and δ
−1

 returns a set for a given position. Therefore, to better support data

mapping and query translation, we introduce mappings α and β, deriving them from γ
−1

and δ
−1

, respectively.

Definition 11 (Mapping α)

Given a set of triple patterns TP, a set of triples T , and a set of relations R, a mapping α is

a many-to-many mapping α : TP ∪ T → R, if given a triple pattern tp ∈ TP (or triple t ∈

T), α(tp) (or α(t)) is a set of relations Rtp = γ
−1

(tp1) ∪ γ
−1

(tp2) ∪ · · · ∪ γ
−1

(tpn) ⊆ R, where

γ
−1

 is defined on tp1, tp2, ..., tpn and each triple pattern tpi subsumes tp (or matches t).

Therefore, each relation R ∈ α(tp) is used to store all the triples that match tp or each

relation R ∈ α(t) is used to store triple t.

 A function for computing α is shown in Figure 2.

13

Definition 12 (Mapping β)

Given a set of relations R, a set of relational attributes A, and a set of positions P = {sub,

pre, obj}, a mapping β is a many-to-one mapping β : R × P → A, if given a relation R ∈ R

and a position pos ∈ P, β(R, pos) is a relational attribute a ∈ A that belongs to R and is

used to store triple components at position pos.

A function for computing β is shown in Figure 3.

Figure 2: Function Compute-α

Figure 3: Function Compute-β

14

 For example, given a triple pattern tp and mappings α and β, an RRDBMS can

determine a set α(tp) of relations that store RDF data that may match tp, choose one

relation R from this set, and identify relational attributes β(R, sub), β(R, pre), and

β(R, obj) that should be checked to match tp’s subject pattern, predicate pattern, and

object pattern, respectively.

 Mappings γ, δ, τ, α, and β constitute a physical schema.

Definition 13 (Physical Schema)

A physical schema PS is a tuple (psid, lsid, rdbms, γ, δ, τ, α, β), where psid is a unique

identifier of the physical schema, lsid is a unique identifier of the corresponding logical

schema, rdbms is a reference to the corresponding RDBMS, γ is a mapping as in

Definition 6, δ is a mapping as in Definition 7, τ is a mapping as in Definition 8 with the

generic data types substituted by data types supported by rdbms, α is a mapping as in

Definition 11, and β is a mapping as in Definition 12.

 A physical schema is required to perform operations in an RRDBMS, such as

mapping of RDF data to relational data, SPARQL-to-SQL query translation, and

reconstruction of original RDF data from relational data.

Example 14 (Physical Schema)

We can derive a physical schema based on the mappings in Example 10. The first step is

to select a specific RDBMS - we choose Oracle version 10g for this example and assume

valid RDBMS credentials (username and password) are provided. First, we describe the

usage of a physical schema for data mapping. In this situation we use a physical schema

to insert triples into the appropriate relational tables.

15

lsid: 1

γ: Triple → {(?s, ?p, ?o)},

 Name → {(?s, name, ?o)},

 Class%obj% → {(?s, type, ?o)},

 Phone → {(?s, cell, ?o), (?s, phone, ?o)}.

δ: (Triple, s) → sub τ: (Triple, s) → VARCHAR2(256)

 (Triple, p) → pre (Triple, p) → VARCHAR2(256)

 (Triple, o) → obj (Triple, o) → VARCHAR2(256)

 (Name, s) → sub (Name, s) → VARCHAR2(256)

 (Name, o) → obj (Name, o) → VARCHAR2(256)

 (Class%obj%, i) → sub (Class%obj%, i) → VARCHAR2(256)

 (Phone, s) → sub (Phone, s) → VARCHAR2(256)

 (Phone, p) → pre (Phone, p) → VARCHAR2(256)

 (Phone, o) → obj (Phone, o) → VARCHAR2(256)

 To store the following three triples, we use the algorithms listed in Figure 2 and

Figure 3 to determine which tables and attributes will be used.

α(B1, type, Person) = {Class%obj%, Triple},

β (Class%obj%, sub) = i,

β (Class%obj%, pre) = undef,

β (Class%obj%, obj) = undef,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple (B1, type, Person), α returns a set containing two relations,

Class%obj% and Triple. This means that the triple must be stored in both relations. The

first one, Class%obj% represents a data-driven (or dynamic) relation. At runtime the

name of the relation is derived using the object of the specified triple; in this case, it

would be ClassPerson. It is possible that this relation may not exist at runtime. If

necessary it can be created on-the-fly before the triple is inserted. The triple must also be

16

stored in the Triple relation. In this case the relation already exists because it was created

during schema mapping. Once we know which tables will store the triple, β gives us the

attributes that will be used to store the subject, predicate and object. Using β we know

that attribute i should be used to store the subject in the relation named ClassPerson.

When β returns undef, nothing is stored for the specified position. In this case it means

that the predicate and object are not stored in the ClassPerson relation. Using β we know

that attributes s, p, and o store the subject, predicate and object, respectively, in the

relation named Triple.

α(B1, name, paul) = {Name, Triple},

β(Name, sub) = s,

β(Name, pre) = undef,

β(Name, obj) = o,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple (B1, name, paul), α returns a set containing two relations Name and

Triple. Again, the triple must be stored in both relations. In this case, both relations

already exist so the next step is to determine where to store the subject, predicate and

object of this triple. For the Name relation, the subject is stored in attribute s and the

object is stored in attribute o. The Triple relation is handled in exactly the same way as

the previous triple.

α(B1, phone, 111−1111) = {Phone, Triple},

β(Phone, sub) = s,

β(Phone, pre) = p,

β(Phone, obj) = o,

β(Triple, sub) = s,

β(Triple, pre) = p,

β(Triple, obj) = o.

 For this triple, (B1, phone, 111−1111), α returns a set containing two relations

17

Phone and Triple. For both of these relations, β returns s, p, and o to store the subject,

predicate and object, respectively.

 Next, we describe the usage of the physical schema for query translation. In this

scenario, SPARQL queries provide graph patterns to be matched. Consider the following

graph patterns:

(?a ?b ?c) For this graph pattern, α returns a set containing one relation,

Triple. This relation will be used to satisfy this query.

(?a cell ?b) For this graph pattern, α returns a set containing two relations,

Phone and Triple. In this scenario, we have the choice of which

relation to execute the query against. Depending on the specifics

of the query mapping algorithms, there may be different reasons

for selecting one relation over another. In this example, the Phone

relation likely has fewer tuples and may therefore provide faster

query execution.

(?a type Person) For this graph pattern, α returns a set containing one relation,

Class%obj%. As described previously, the name of this relation is

derived at runtime. In this case, it would be ClassPerson. During

query translation, we must determine whether or not this relation

has actually been realized. If it has, it can be queried and the

results returned. If not, the query returns no results. From this

example we can see that the usage of α during query translation is

different from its use during data mapping.

18

Figure 4: Algorithm CreateLS

Data Management Operations

 There are four fundamental operations that an RRDBMS should support to store

and query RDF data. The first operation is the specification of a logical schema, which

can be done via a graphical user interface by a data architect. The architect is required to

specify (1) relations and triple patterns that “describe” their purpose via mapping γ,

(2) relational attributes and their relationship to triple pattern positions via mapping δ,

and (3) data types of relational attributes via mapping τ. A high-level algorithm for this

operation is shown in Figure 4. A logical schema produced by the CreateLS algorithm is

stored by the RRDBMS and serves as a template for creating relational database

schemas; the logical schema can be completely deleted if needed, but not altered.

19

 The second operation, called schema mapping, involves the creation of a physical

schema based on a given logical schema and generation of a relational database schema

in an RDBMS based on the physical schema. Through the schema mapping process, the

same logical schema can be instantiated multiple times in the same or different RDBMSs.

Each time, a distinct physical schema and database schema are created, where the former

describes how the latter is used to store RDF data. The schema mapping algorithm, SM, is

shown in Figure 5. It first creates the mappings that constitute a physical schema and then

proceeds with the creation of relations in an RDBMS. Relation and attribute names are

derived from the domains of γ and δ, respectively. Data-driven relations, whose names

include special variables %sub%, %pre%, and %obj%, are skipped, since these variables

can only be interpolated when RDF data is stored into the database.

 The third essential operation in an RRDBMS is data mapping, which inserts RDF

data into a relational database according to a given physical schema. The data mapping

algorithm is presented in Figure 6. The algorithm relies on α to get the set of relations

where a triple t must be inserted. This set is divided into two disjoint sets, RS1 and RS2,

where the former contains relation names with special variables that need to be

interpolated and the latter contains regular relations. Relations in RS1 are meant to be

data-driven and may not yet exist in the database. Therefore, their schemas are created on

the fly and the physical schema is updated accordingly. Newly created relations are also

added to RS2 to be used later for data insertion. Once all relations in RS1 are processed,

the algorithm inserts t into every relation in RS2. Mapping β is used to identify relational

attributes, if defined, that can store subject t.s, predicate t.p, and object t.o. As a result of

20

this operation, both database schema and physical schema may be updated and the

relations are populated with RDF triples that are mapped into relational tuples.

The final operation that an RRDBMS needs is query translation, such that a SPARQL

query can be translated into an equivalent SQL query, which can be further executed by

an RDBMS. The translation is the most complex operation in an RRDBMS, since not

only locating data in correct relations and attributes is involved, but also mapping of

SPARQL constructs to relational operators is required. Our semantics preserving

SPARQL-to-SQL translation, called trans, is presented in [8]. trans is parameterized with

mappings α′ and β' (denoted as α and β in [8]) that have similar meaning as α and β

defined in this paper. The first mapping is defined as a many-to-one mapping α′ : TP → R,

which only differs from α in two aspects: (1) α’s domain includes a set of triples to

support the data mapping operation (α : TP ∪ T → R) and (2) α is a many-to-many

mapping. While the first difference does not affect the translation, the second one

Figure 5: Algorithm SM

21

requires selecting one relation from a set returned by α. This, in fact, is an advantage of α

over α′ that enables additional optimizations in an RRDBMS. In particular, a query

optimizer may select to use a relation that (1) has the smallest cardinality, (2) is in cache,

(3) is already chosen in another part of the same query, (4) has appropriate indexes, and

so forth. Therefore, α′ can be straightforwardly derived from α: in the worst case, by

randomly selecting a relation in the result of α. The second mapping is defined as a

many-to-one mapping β′ : TP × P → A, which again is slightly different from a many-to-

one mapping β : R × P → A. Since a triple pattern maps to exactly one relation by α′, for

some tp ∈ TP and pos ∈ P, β′(tp, pos) = (α′(tp), pos). Thus, trans can support SPARQL-

to-SQL translation for physical schemas defined in our work.

 The presented set of operations is rather minimal. Additional useful operations,

such as deletion of a logical schema, physical schema, and database schema, RDF data

update and deletion, can be supported by an RRDBMS. We also did not touch indexing of

RDF data. These are beyond the scope of this document.

22

Figure 6: Algorithm DM

23

CHAPTER III

SERVICE-ORIENTED ARCHITECTURE OF AN RRDBMS

 S2ST is our implementation of an RRDBMS. It is built on a layered architecture

that is commonly used for enterprise applications. Figure 7 shows the layers of the

architecture. The Presentation Layer provides functionality for performing user tasks

such as creating schemas, loading data, and executing queries. The Services Layer

provides functionality needed by the Presentation Layer such as schema mapping, data

mapping and query mapping. The Data Layer provides storage and query functionality

needed by the Services Layer. One of the primary motivations for using a layered

architecture is to provide support for web services. This architectural style is called a

service-oriented architecture (SOA). The Services Layer of S2ST provides a functionality

which may be accessed via a web services interface. The promise of SOA is that it

enables the creation of applications by combining loosely coupled and interoperable

services. Support for SOA is growing across a number of important application domains

including those that have already adopted semantic web technology. We expect that

support for semantic web and SOA technologies will be important requirements of future

applications.

 The S2ST architecture features a metadata model designed to resolve the conflict

between the graph RDF data model and the relational data model. The metadata model

defines RDF-to-Relational mappings, which capture how an RDF graph is stored in a

24

relational database. This makes it possible to develop generic algorithms for data and

query mapping. All of this functionality can be exposed via web services to facilitate the

integration of semantic web technology with existing applications. S2ST can support all

schema mapping strategies used by existing systems and also future strategies as they

become available. This flexibility is not available in any existing relational RDF

database. Details of the metadata model are provided in Chapter 4.

Figure 7: Service-Oriented Architecture of an RRDBMS

25

There are several architectural decisions that have strongly influenced the design and

implementation of S2ST. The first decision has to do with the choice of software

development platform. In the case of S2ST, the decision was made to build on the Java

Enterprise Edition (Java EE) platform. This decision has many implications including

availability of software components and tools as well as wide support within the

academic and software development communities. The Java EE platform is a set of

coordinated technologies for developing, deploying, and managing layered, server-centric

applications. We have chosen to develop S2ST using an open-source web application

framework (Grails) based on the Java EE platform and the Groovy programming

language. Grails focus on coding by convention allowed us to quickly build the

infrastructure for S2ST while eliminating most of the boilerplate code that is common in

web applications. The Grails framework is based on the popular Model-View-Controller

(MVC) architectural pattern. The MVC pattern separates domain logic (the Model) from

input (the Controller) and presentation (the View). This facilitates independent

development, testing and maintenance of each of these software components. The Groovy

programming language is a dynamic language for the Java Virtual Machine (JVM). This

means that applications built with Grails can be written in Groovy, Java or a mixture of

both. S2ST includes code written in both Java and Groovy. All of the View and Controller

code is written in Groovy. The performance-critical components of the Model are written

in Java and the remaining components are written in Groovy.

 The second architectural decision has to do with providing support for all of the

most popular database management systems. Most of the existing systems that we studied

provide support for only a limited number of them. Consider two of the best known

26

existing systems, Sesame and Jena. Sesame currently supports only 4 databases

(PostgreSQL, MySQL, Microsoft SQL Server and Oracle). If your organization wants to

use DB2, Sesame is not an option. Jena, which supports more databases than most

existing systems, currently supports Oracle, Microsoft SQL Server, DB2, PostgreSQL,

and MySQL. If your organization wants to use Sybase Adaptive Server, Jena is not an

option. S2ST avoids this problem by taking advantage of an Object Relational Mapping

framework known as Hibernate. We avoid writing vendor-specific SQL by relying on

Hibernate to generate all DDL statements. We do anticipate the development of some

vendor-specific query optimizations in the future. Even without these optimizations,

S2ST can execute queries on all the popular databases by generating ANSI-compliant

SELECT statements.

27

CHAPTER IV

DESIGN AND IMPLEMENTATION OF S2ST

Schema Mapping Services

 As mentioned in Chapter 3, the architecture of S2ST is based on a unique

metadata model. This model is what separates S2ST from existing systems. Figure 8 is a

UML class diagram of the S2ST metadata model. The model is populated during schema

mapping. Chapter 5 explains the different strategies employed by existing systems. It is

clear that there is no ‘one size fits all’ schema mapping strategy. Which strategy should be

used depends on a number of factors including the size and shape of the ontology, the

amount of data being stored and the types of queries that will be executed. For the

purpose of this chapter we refer to the four categories of schema mapping strategies listed

in Chapter 5: schema oblivious, schema-aware, data-driven and hybrid. The first step in

schema mapping is the creation of a Logical Schema, which is the central object in the

metadata model.

 During schema mapping, one or more Relations are created which have a set of

Attributes and associated Triple Patterns. A Relation is a logical representation of a table

which will be realized in a specific RDBMS. An Attribute is a logical representation of a

column which will be realized in a specific table. As mentioned previously, RDF is based

on subject-predicate-object expressions, called triples. Triple Patterns are specialized

triples whose subject, predicate and object expressions can be used as variables. Triple

28

Patterns are used in SPARQL queries to specify the matching of triples. It is worth

mentioning that there is a many-to-many relationship between Triple Patterns and

Relations in the S2ST metadata model. This provides significant flexibility in specifying

which triples are stored in particular Relations.

 Once a Logical Schema has been created, one or more associated Physical

Schemas can be created. A Physical Schema represents an instance of a Logical Schema

on a specific database management system (e.g. Oracle 10g). S2ST creates an actual

relational schema during the creation of a Physical Schema. The relational schema

created in the target database contains a subset of the S2ST system catalog as well as

tables for storing triples. The actual schema created depends on the details provided by

the user during creation of the Logical Schema. For example, if the user chooses a

Schema-Oblivious schema mapping strategy, then only a single table is created for

storing all triples. If the user chooses a Schema-Aware schema mapping strategy, then

tables would be created for each Class and Property found in the ontology specified

during creation of the Logical Schema. S2ST even provides the user with the ability to

exclude any of the Classes or Properties found in the specified ontology. This means that

the user controls not only what data gets stored but also how it is stored. No other system

provides this level of customization. Namespaces represent the prefixes found by S2ST

when parsing the ontology specified during creation of the Logical Schema. They are

used during schema and data mapping to disambiguate the names of classes and

properties. Transactions represent data mapping operations performed on a specific

Physical Schema. This allows S2ST to track the source of triples being stored and also

gives us the option of implementing a delete feature at some point in the future.

29

 Logical Schema, Relation, Attribute, Triple Pattern, Namespace, Physical Schema

and Transaction are domain objects implemented as Java classes. Instances of these

classes are persisted using Hibernate, which requires mapping metadata. Hibernate

supports two ways of providing mapping metadata: annotations or XML. We chose to use

XML. There is a separate XML mapping file for each domain class. Hibernate uses the

mapping metadata to generate DDL statements needed to create the relational tables for

storing instances of domain classes. Hibernate is able to generate platform-specific DDL

statements for the target database management system.

 The code for schema mapping consists of 6 views, 1 controller class and 1 service

class. The schema mapping views correspond to specific use cases: View All Logical

Schemas, View Logical Schema, Create Logical Schema, Create Physical Schema, Load

Physical Schema, and Query Physical Schema. These views are implemented using

Groovy Server Pages (GSP), which is the view technology bundled with the Grails

framework. The schema mapping controller class, Schema Controller, is implemented as

a Grails controller, which is written in Groovy. A Grails controller handles all HTTP

requests from clients for a specific web context (URL pattern). It is common for code in a

Grails controller to invoke methods in one or more Grails service classes.

 The schema mapping service class, SchemaMappingService, is implemented as a

Grails service and is also written in Groovy. Service classes encapsulate operations that

deal with domain objects and are often transactional.

30

Data Mapping Services

 The data mapping services provided by S2ST allow users to load data into

physical schemas created by S2ST. The purpose of data mapping is to shred triples in the

source datastream and insert them into a relational database. Figure 9 below shows the

architecture of our data mapping service. The shredding of triples is done by the Parser

component. Most RDF database systems support multiple input formats including

RDF/XML, N-Triple, N3, and Turtle. Rather than writing our own parser, we made the

decision to use the ARP parser which is part of the Jena Semantic Web Framework. The

Mapper component is responsible for shredding the triples produced by the Parser and

feeding them as tuples to Loader components. A Loader component simply inserts the

tuples into a specific relational table.

Figure 8: S2ST Metadata Model

31

 Any schema mapping strategy based on fixed relations (schema-oblivious,

schema-aware and possibly hybrid) results in static data loaders being used to insert data

into the appropriate tables. As mentioned previously, there are schema mapping strategies

(data-driven and possibly hybrid) that allow tables to be created on-the-fly based on

patterns found in the source data. These strategies result in dynamic data loaders being

used to insert data into newly created tables.

 Figure 10 below is a UML sequence diagram that shows the interaction between

the classes involved in data mapping. All that is required to use the ARP parser is a class

which implements the StatementHandler interface (defined by Jena library). This

interface contains only two overloaded methods which support the shredding of triples

Figure 9: Data Mapping Architecture of S2ST

32

produced by the parser. Our implementation of the StatementHandler interface is the

JenaDataMapper class. When an instance of DataMapper is created, a hash table instance

is populated with the names of relations as keys and DataLoader instances as values. In

other words, there is an instance of DataLoader for each table in the physical schema. The

DataMapper interface, which is also implemented by the JenaDataMapper class, contains

three methods which are needed to perform data mapping operations. The primary

method in this interface is mapTriple, which controls the data mapping process.

 The DataLoader interface contains three methods needed to perform data loading

operations. The primary method in this interface is loadTriple. S2ST currently supports

only one approach for inserting data into a relational database - JDBC batch loading.

Another simpler, more generic approach is to produce a flat file containing SQL

Figure 10: Data Mapping Sequence Diagram

33

statements (DML and possibly DDL) needed to insert the data. Unfortunately, this

approach results in poor performance for data mapping operations on large datasets.

Another approach is to use vendor-specific bulk loading facilities to insert the data. Bulk

loading usually results in the best performance for data mapping operations on large

datasets. Unfortunately, it requires vendor-specific input formats and programming

interfaces. Our long term goal is to support all three of these approaches. We decided to

implement JDBC batch loading first because it provides reasonable performance and is

straightforward to implement for all popular database management systems.

 One of the most challenging aspects of implementing data loading functionality is

determining what data from each triple to persist. The schema mapping strategy

prescribes what data is stored in each relational table in the target database. For example,

if the table represents a class relation then only the subject is persisted. If the table

represents a property relation then only the subject and object is persisted. S2ST can

persist any combination of the subject, predicate and object in each table. It is common

for Java applications to use the JDBC PreparedStatement to insert large numbers of rows

into a relational table. Creating an instance of PreparedStatement requires a

parameterized SQL statement. Once the application is ready to insert data, the parameters

are initialized with appropriate values and then the addBatch method is called to add this

SQL statement to a buffer for later execution. In the case of a data loader, the table name

in the SQL INSERT statement depends on the triple being loaded. S2ST can use Java

Unified Expression Language to dynamically generate table names based on patterns

specified during schema creation and runtime values of triple properties.

34

Query Mapping Services

 The W3C standard query language for RDF is SPARQL. To allow users to submit

SPARQL queries and have them executed against a relational database requires

translation to SQL, the standard query language for relational database management

systems. S2ST is the first relational RDF database management system to feature

semantics-preserving SPARQL-to-SQL query translation. This means that S2ST can

guarantee the correctness of translated queries.

 The first step in query translation is parsing of the user specified SPARQL query.

Rather that writing our own SPARQL parser, we made the decision to use the one

included in the Sesame RDF Framework. The Sesame SPARQL parser generates a parse

tree containing all of the terms in the specified query. Like many parsers, the Sesame

SPARQL parser relies on the Visitor software pattern. This pattern provides a way to

separate an algorithm from the data structure it depends on. Sesame defines an interface,

QueryModelVisitor, which contains more than 50 overloaded methods that must be

implemented. Each of the overloaded methods is intended to support a specific type of

node that may be encountered in the generated parse tree. Our QueryTranslator class

contains an inner class which implements the QueryModelVisitor interface. Figure 11 is a

UML sequence diagram that shows the interaction between the classes involved in query

translation. Once the parse tree has been generated, an instance of this inner class uses

postorder traversal to visit each node in the parse tree. As each node is visited, an instance

of the TranslationObject class is created and pushed onto a stack.

 The TranslationObject class is a simple class which contains an SQL query and a

set of terms referenced in the query. The QueryTranslator class uses an instance of the

35

TranslationObjectBuilder class to perform most of the actual query translation. Once

child nodes have pushed their results onto the stack, a parent node pops the

TranslationObject instances created by the child nodes, creates another TranslationObject

and pushes it onto the stack. This continues up the parse tree until the root node is

reached. The root node is handled like all other parent nodes and it creates the final

TranslationObject. S2ST currently supports a subset of the full SPARQL syntax. We

expect to support the full SPARQL syntax at some point in the future.

 The initial implementation of query translation in S2ST does not generate the

simplest possible SQL. A. Chebotko et al. provide a number of simplifications that can be

used to generate simpler and more efficient SQL queries. We expect to implement these

simplifications in S2ST in the near future. Once a query has been translated, it must be

executed against the relational database associated with the specified physical schema.

This is done using a JDBC Statement object. Once the query is executed by the RDBMS,

Figure 11: Query Mapping Sequence Diagram

36

the results are returned as a JDBC ResultSet object. The results are then encoded in XML

to facilitate easy transformation into any of several different formats including CSV,

HTML and PDF.

37

CHAPTER V

RELATED WORK

 There has been considerable research done in the area of Semantic Web data. In

this chapter, we review the research that is most closely related to the work we have done

here. In recent years, several RDBMS-based RDF stores (see [4] for a survey) have been

developed to support large-scale Semantic Web applications. The conflict between the

graph RDF [22,23] data model and the target relational data model of such systems

requires providing a way to deal with various mappings between the two data models,

such as schema mapping, data mapping, and query mapping (a.k.a. query translation).

Schema mapping is used to generate a relational database schema that can store RDF

data. Schema mapping strategies employed by existing RDF stores fall into four

categories:

Schema-oblivious (also called generic or vertical): A single relation, e.g.,

Triple(s,p,o), is used to store RDF triples, such that attribute s stores the subject of

a triple, p stores its predicate, and o stores its object. Schema-oblivious RDF

stores include Jena [26, 27], Sesame [5], 3store [12,13], KAON [21], RStar [14],

and OpenLink Virtuoso [10]. This approach has no concerns of RDF schema or

ontology evolution, since it employs a generic database representation.

38

Schema-aware (also called specific or binary): This approach usually employs an

RDF schema or ontology to generate so called property relations and class

relations. A property relation, e.g., Property(s, o), is created for each property in

an ontology and stores subjects s and objects o related by this property. A class

relation, e.g., Class(i), is created for each class in an ontology and stores

instances i of this class. An extension to the idea of property relations is a

clustered property relation [25], e.g., Clustered(s, o1, o2, ... , on), which stores

subjects s and objects o1, o2, ..., on related by n distinct properties (e.g., < s p1 o1

>, < s p2 o2 >, etc.). In [7], along with property and class relations, class-subject

and class-object relations are introduced. A class-subject relation, e.g.,

ClassSubject(i, p, o) stores triples whose subjects are instances of a particular

class in an ontology. Similarly, a class-object relation, e.g., ClassObject(s, p, i),

stores triples whose objects are instances of a particular class. Such relations are

useful for queries that retrieve all information about an instance (subject or object)

of a particular class. Representatives of schema-aware RDF stores are Jena [25–

27], DLDB [16], RDFSuite [3,20], DBOWL [15], PARKA [18], and RDFPROV

[6,7]. Schema evolution for this approach is quite straightforward: the addition or

deletion of a class/property in an ontology requires the addition or deletion of a

relation (or relational tuples) in the database. More information on ontology

evolution can be found in [19] and [11]. The schema-aware approach is in general

yields better query performance than the schema oblivious approach as has been

shown in several experimental studies [2, 3, 7, 20]. In addition, the use of a

39

column-oriented DBMS, in conjunction with vertical partitioning of relations, has

shown further improvements in query performance [1].

Data-driven: This approach uses RDF data to generate database schema. For

example, in [9], a database schema is generated based on patterns found in RDF

data using data mining techniques. RDF store RDFBroker [17] implements

signature relations, which are conceptually similar to clustered property relations,

but are generated based on RDF data rather than RDF Schema information. In

general, relations generated by the schema-aware approach can also be supported

by the data-driven approach (e.g., property relations in Sesame [5] are created

when their instances are first seen in an RDF document during data mapping).

RDFBroker [17] reports improved in-memory query performance over Sesame

and Jena for some test queries. Schema evolution for the data-driven approach, if

supported, might be expensive.

Hybrid: This approach uses the mix of features of the previous approaches. An

example of the hybrid database schema (resulted from schema-oblivious and

schema-aware approaches) is presented in [20], where a schema-oblivious

database representation, e.g., Triple(s, p, o), is partitioned into multiple relations

based on the data type of object o, and a binary relation, e.g., Class(i, c), is

introduced to store instances i of classes c. [20] reports comparable query

performance of the hybrid and schema-aware approaches.

 Data mapping is used to shred RDF triples into relational tuples and insert them

into the database. Data mapping algorithms employed by existing RDF stores are usually

40

fairly straightforward, such that RDF triples are inserted into a single relation as in the

schema-oblivious approach, or into one or multiple relations as in the other approaches.

Several data mapping strategies and algorithms are presented in [7].

 Query mapping is used to translate a SPARQL query into an equivalent SQL

query, which is evaluated by the relational engine and the result is returned as a SPARQL

query solution. This is one of the most difficult mappings in RDBMS-based RDF stores.

41

CHAPTER VI

CONCLUSION AND FUTURE WORK

 In this paper, we established the theoretical foundations of a Relational RDF

Database Management System (RRDBMS), we described an SOA architecture for

exposing the services provided by an RRDBMS, and we detailed the implementation of

S2ST, the first and only RRDBMS that supports multiple relational database management

systems, user-customizable schema mappings, schema-independent data mapping, and

semantics-preserving query translation.

 We plan to extend our research in a number of areas including:

� Enhancements to our schema generation user interface to provide

recommendations for creating optimal schemas based on ontology and

amount of data being stored/queried

� Simplifications to improve the performance of generated SQL queries

� Access control that provides fine-grained security for all data and user

accessible objects

� RSS feeds for tracking specific database activity

� Virtual machine images containing a fully configured S2ST system

42

REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable Semantic

Web data management using vertical partitioning. In Proc. of the International

Conference on Very Large Data Bases (VLDB), pages 411–422, 2007.

[2] R. Agrawal, A. Somani, and Y. Xu. Storage and querying of e-commerce data.

In Proc. of the Internatonal Conference on Very Large Data Bases (VLDB),

pages 149–158, 2001.

[3] S. Alexaki, V. Christophides, G. Karvounarakis, and D. Plexousakis. On

storing voluminous RDF descriptions: The case of Web portal catalogs. In

Proc. of the International Workshop on the Web and Databases (WebDB),

pages 43–48, 2001.

[4] D. Beckett and J. Grant. SWAD-Europe Deliverable 10.2: Mapping

SemanticWeb data with RDBMSs. Technical report, 2003. Available from

http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report.

[5] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic

architecture for storing and querying RDF and RDF Schema. In Proc. of the

International Semantic Web Conference (ISWC), pages 54–68, 2002.

[6] Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi. Storing and querying

scientific workflow provenance metadata using an RDBMS. In Proc. of the

IEEE International Workshop on Scientific Workflows and Business Workflow

Standards in e-Science, pages 611–618, 2007.

[7] Chebotko, X. Fei, S. Lu, and F. Fotouhi. Scientific workflow provenance

metadata management using an RDBMS-based RDF store. Technical Report

TR-DB-092007-CFLF, Wayne State University, September 2007. Available

from

http://www.cs.wayne.edu/˜artem/main/research/TR-DB-092007-CFLF.pdf.

[8] Chebotko, S. Lu, and F. Fotouhi. Semantics preserving SPARQL-to-SQL

translation. Data & Knowledge Engineering (DKE), 68(10):973–1000, 2009.

[9] L. Ding, K. Wilkinson, C. Sayers, and H. Kuno. Application specific schema

design for storing large RDF datasets. In Proc. of the International Workshop

on Practical and Scalable Semantic Systems (PSSS), 2003.

43

[10] O. Erling. Implementing a SPARQL compliant RDF triple store using a SQL-

ORDBMS. Technical report, OpenLink Software Virtuoso, 2001. Available

from http://virtuoso.openlinksw.com/wiki/main/Main/VOSRDFWP.

[11] G. Flouris, D.Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou.

Ontology change: classification and survey. Knowledge Engineering Review,

23(2), 2008.

[12] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In Proc. of the

International Workshop on Practical and Scalable Semantic Systems (PSSS),

pages 1–15, 2003.

[13] S. Harris and N. Shadbolt. SPARQL query processing with conventional

relational database systems. In Proc. of the International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS), pages 235–244,

2005.

[14] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: an RDF storage and query

system for enterprise resource management. In Proc. of the International

Conference on Information and Knowledge Management (CIKM), pages 484–

491, 2004.

[15] S. Narayanan, T. M. Kurc, and J. H. Saltz. DBOWL: Towards extensional

queries on a billion statements using relational databases. Technical Report

OSUBMI TR 2006 n03, Ohio State University, 2006. Available from

http://bmi.osu.edu/resources/techreports/osubmi.tr.2006.n3.pdf.

[16] Z. Pan and J. Heflin. DLDB: Extending relational databases to support

Semantic Web queries. In Proc. of the International Workshop on Practical

and Scalable Semantic Web Systems (PSSS), pages 109–113, 2003.

[17] M. Sintek and M. Kiesel. RDFBroker: A signature-based high-performance

RDF store. In Proc. of the European Semantic Web Conference (ESWC), pages

363–377, 2006.

[18] K. Stoffel, M. G. Taylor, and J. A. Hendler. Efficient management of very

large ontologies. In Proc. of the American Association for Artificial

Intelligence Conference (AAAI), pages 442–447, 1997.

[19] L. Stojanovic. Methods and Tools for Ontology Evolution. Ph.D. Dissertation,

University of Karlsruhe, Germany, 2004. Available from

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/1241.

[20] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database

representations of RDF/S stores. In Proc. of the International Semantic Web

Conference (ISWC), pages 685–701, 2005.

44

[21] R. Volz, D. Oberle, B. Motik, and S. Staab. KAON SERVER - a Semantic

Web management system. In Proc. of the International World Wide Web

Conference (WWW), Alternate Tracks - Practice and Experience, 2003.

[22] W3C. RDF Primer.W3C Recommendation, 10 February 2004. F. Manola and

E. Miller (Eds.). 2004. Available from http://www.w3.org/TR/rdf-primer/.

[23] W3C. Resource Description Framework (RDF): Concepts and Abstract

Syntax. W3C Recommendation, 10 February 2004. G. Klyne, J. J. Carroll, and

B. McBride (Eds.). 2004. Available from

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[24] W3C. SPARQL Query Language for RDF. W3C Recommendation, 15

January 2008. E. Prud’hommeaux and A. Seaborne (Eds.). 2008. Available

from http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[25] K. Wilkinson. Jena property table implementation. In Proc. of the

International Workshop on Scalable Semantic Web Knowledge Base Systems

(SSWS), 2006.

[26] K.Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage

and retrieval in Jena2. In Proc. of the International Workshop on Semantic

Web and Databases (SWDB), pages 131–150, 2003.

[27] K. Wilkinson, C. Sayers, H. A. Kuno, D. Reynolds, and L. Ding. Supporting

scalable, persistent Semantic Web applications. IEEE Data Eng. Bull.,

26(4):33–39, 2003.

45

BIOGRAPHICAL SKETCH

Anthony T. Piazza earned a Master of Science in Computer Science from the

University of Texas – Pan American in December 2009. He earned a Bachelor of Science

in Electrical Engineering from Texas A&M University – Kingsville in 1987. He has over

22 years of experience in software development including design, development, testing,

training and consulting. He holds a number of industry certifications. He has done

consulting work for many companies, including; eBay, BMC Software, Wright Express,

Texas Department of Family and Protective Services, Wisconsin Electric Power,

Metavante, Trane Corporation, J.C. Penney Company, Concordia Publishing House,

Missouri Chamber of Commerce, Edward Jones, Ralston Purina and IBM. He has also

delivered technical training courses for many companies, including; SRA International,

BlueCross BlueShield of North Dakota, IBM, U.S. Department of Treasury, eLoyalty,

Chicago Tribune, Cash America International, Discover Financial Services, TDS

Telecom, Highmark Blue Cross Blue Shield and the City of Phoenix (Arizona). His

permanent mailing address is 1308 Palm Drive, Kingsville, TX 78363.

	S2ST: A Relational RDF Database Management System
	Recommended Citation

	Microsoft Word - piazza-thesis.doc

