
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

5-2017

Randomized Approach tor Set Cover with Multiple Phases* Randomized Approach tor Set Cover with Multiple Phases*

Ujjwol Subedi
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Subedi, Ujjwol, "Randomized Approach tor Set Cover with Multiple Phases*" (2017). Theses and
Dissertations. 368.
https://scholarworks.utrgv.edu/etd/368

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/368?utm_source=scholarworks.utrgv.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

RANDOMIZED APPROACH FOR SET COVER WITH MULTIPLE PHASES*

A Thesis

by

UJJWOL SUBEDI

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2017

Major Subject: Computer Science

RANDOMIZED APPROACH FOR SET COVER WITH MULTIPLE PHASES*

A Thesis
by

UJJWOL SUBEDI

COMMITTEE MEMBERS

Dr. Bin Fu
Chair of Committee

Dr. Zhixiang Chen
Committee Member

Dr. Robert Schweller
Committee Member

May 2017

Copyright 2017 Ujjwol Subedi

All Rights Reserved

ABSTRACT

Subedi, Ujjwol, Randomized Approach for Set Cover with Multiple Phases*. Master of Sci-

ence (MS), May, 2017, 39 pp., 3 figures, 26 references, 18 titles.

We develop an interactive algorithm for the set cover problem. The algorithm uses multiple

stages and select some sets each stage via random samples among the uncovered points. We show

that it has a O(logn)- approximation ratio and takes O(logn) rounds and O(m2+ε) samples each

round, where n is the size of universal set and m is the number of sets.

We also prove a Ω

(√
logn

loglogn

)
lower bound for both the number of phases if each phase has

poly(m) the number of samples.

iii

DEDICATION

I would not have completed my Master’s degree without the support of my family. I would

like to dedicate my work to my family and my daughter Ohana Subedi.

iv

ACKNOWLEDGMENTS

My sincere thanks and regards to my advisor Dr. Bin Fu for his constant support and

guidance.

I am also grateful to all the committee members Dr. Zhixiang Chen, Dr. Robert Schweller

for carefully reviewing and evaluating my thesis.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . vii

CHAPTER I. INTRODUCTION . 1

CHAPTER II. AN OVERVIEW OF GREEDY APPROACH FOR THE SET COVER ALGO-
RITHM . 3

2.1 Greedy algorithm . 3

2.2 Approximation Algorithm . 8

2.3 Randomization Algorithm . 8

2.4 Maximal K-coverage for Set Cover . 8

CHAPTER III. WEIGHTED SET COVER . 9

CHAPTER IV. COMPUTATIONAL MODEL AND COMPLEXITY 10

4.1 Interactive Proof System . 11

4.2 Deterministic Computation . 15

CHAPTER V. OUTLINE OF OUR METHODS . 17

CHAPTER VI. ALGORITHM FOR SET COVER . 19

CHAPTER VII. LOWER BOUND FOR SET COVER . 24

7.1 Randomized Model for Lower Bounds . 24

7.2 Lower Results . 26

CHAPTER VIII. CONCLUSION . 33

BIBLIOGRAPHY . 34

APPENDIX A . 37

BIOGRAPHICAL SKETCH . 39

vi

LIST OF FIGURES

Page

Figure 2.1: A Greedy Approach to Solve the Set Cover Problem 4

Figure 4.1: Interactive Proof System . 12

Figure 4.2: Deterministic Algorithm . 15

vii

CHAPTER I

INTRODUCTION

The set cover problem is a classical NP-hard problem, and one of Karp’s twenty-one NP-

complete problems [12]. This problem has been extensively studied in the theoretical computer

science. The classical set cover problem is the given a set U of elements (called the universe) and a

collection S of sets whose union equals the universe U , identify the elements sub-collection of S

whose union equals the universe. It can be shown that this algorithm achieves an approximation

ration of ln(n) approximation via a greedy approach [11]. The weighted version for set cover with

same approximation ratio was extended [2], and a linear programming relaxation achieves the same

ratio [14]. Inapproximability results shows that the greedy algorithm is essentially the best possible

polynomial time approximation algorithm for set cover [6].

In recent years there is much development of new streaming algorithms for the Set Cover

problem, in both theory and applied communities [16] [3] [13] [5] [4] [1] . A streaming model

receives elements of each set one by one, and tries to save a small amount of information in a

storage. In the streaming Set Cover problem [16], the set of elements U is stored in the memory

in advance; the sets S1,S2,,Sm are stored consecutively in a read-only repository and an

algorithm can access the sets only by performing sequential scans of the repository.

We develop an interactive algorithm for the Set Cover problem. The algorithm uses multiple

stages and selects some sets each stage via random samples among the uncovered points by those

chosen sets. In this model, each set including the universal set is a black box with unknown size.

We can only get random samples from those uncovered elements and check the membership if

one element belongs to a specific set. It is similar to the classical interactive proof system. Our

model is based on communications between a solver and a verifier. The solver provides a list of

1

sets and a parameter r to the verifier that checks if all elements are covered by the given sets, and

will provide r random uncovered elements if some elements are not covered. The complexity for

such an interactive model is measured by the number of rounds, and the number of random samples

each round. This is motivated by some applications that may be impractical to provide the list of

elements in each set, but it is possible to collect random samples from those uncovered elements as

they are demanding coverage service.

This is a rigorous theoretical model that needs investigation and has been found some

interesting properties. The solver gives an approximation for the problem when it only has partial

information about the problem input. The number of random samples tells us how the information a

solver need to know. The number of phases measures the depth of computation.

We show that it has O(logn)- approximation ratio and takes O(logn) rounds and O(m2+ε)

samples each round, where n is the size of universal set and m is the number of sets.We also prove a

Ω

(√
logn

loglogn

)
lower bound for both the number of phases if each phase has poly(m) the number of

samples.

Our model is based on the applications that the covered elements become silent, and

uncovered elements are generating noises for demanding service to be covered. Our model is

greatly different from the existing streaming model that needs to scan all elements of all sets. The

total time complexity at streaming model is Ω(n), but the total time complexity in our model is

O(poly(m) logn).

2

CHAPTER II

AN OVERVIEW OF GREEDY APPROACH FOR THE SET COVER ALGORITHM

Set Cover Problem is a classical combinatorial optimization problem. Given a set of n

elements in the universe X and a family of m sets S = {S1,S2,,Sm} , the goal is to find a

subset I ⊆ S such that I covers X , i.e. X ⊆ ∪S∈IS. Here the number of sets in I has to be as small as

possible.

Definition 1. Let X = {x1,x2,,xn} be a set of n elements. Let S = S1,S2,Sm be the

collection of m subsets of X such that union of all the subsets of S is X. Let I be the minimal subsets

which covers all the elements in X such that ∪ j∈IS j = X. A minimum set cover is a set cover I of

minimum size, i.e finding minimum subsets to cover all the elements of X is a set cover problem.

Since Set Cover problem is a classical problem, finding an optimal solution is very hard and

is an NP-complete problem. A greedy algorithm is widely used to find best minimal subsets out

of all the sets of n elements. The algorithm works perfect and finds the solution very close to an

optimal solution but the algorithm does not scale very well to the huge amount of data [3]. Thus, to

find a scalable solution for a very large data sets, a tremendous amount of research has been devoted

to it.

2.1 Greedy algorithm

Greedy approach is the best-known algorithm for the set cover problem [7]. Greedy approach

proceeds greedily, adding one set at a time to the set cover until every element in X is covered. In

the first step, it chooses the set that covers the most elements. Once it has been chosen it ignores the

set that is already covered and goes to the next step. In the next step, it chooses the set which covers

most elements and so on. It continues the step until all the elements have been covered.

3

1: I←− φ

2: Repeat until every element is covered.
3: While X 6= φ

4: do select an I ∈ S that maximizes |S∩X |
5: I←− I∪S j
6: X ←− X\S j // RemovesS j from X
7: return I

Figure 2.1: A Greedy Approach to Solve the Set Cover Problem

The figure 2.1 consists of 15 elements with 7 subsets.

U = {1,2,3,,15} and S = {S1,S2,S3,S4,S5,S6,S7}.

1st Iteration:

Let UC be the list of uncovered elements.

C = φ

UC = {1,2,3,,15}

Here,

4

S1 = {1,2,3,4,5}

S2 = {2,3,7,8,9,12,13,14}

S3 = {10,15}

S4 = {9,10}

S5 = {8,9,10,13,14,15}

S6 = {1,6,11,12,13,14,15}

S7 = {6,7,11,12}

The optimal solution has size 3 because the union of sets S1,S5,S7 contains all the elements

of the universe U .

Our greedy algorithm selects the largest set, S2 = {2,3,7,8,9,12,13,14}. Excluding the

elements that are already selected will leave us the sets:

S1 = {1,4,5},

S3 = {10,15},

S4 = {10},

S5 = {10,15},

S6 = {1,6,11,15} and

S7 = {6,11} .

The greedy now picks the set with maximum number of elements which is

S6 = {1,6,11,15}.

Now we are left with sets {4,5} and {10}. In the next step, it picks the set {4,5} followed

by set {10}.

Hence, the greedy algorithm produces a set cover {S1,S2,S3,S6} of size 4.

Johnson [11] originally presented the concept of Johnson standard greedy approximation

of Set Cover. His algorithm works by picking a subset that covers the most number of remaining

uncovered elements at each stage of the algorithm.

Johnson Standard Greedy Algorithm:

Here, let C denotes the covered elements, and UC denotes the uncovered elements and U as

5

a Universal set which contains n elements and m subsets.

Standard Greedy Set Cover algorithm [11].

Algorithm 1 Johnson Standard greedy SetCover
Set C = φ , UC = U. I(i) = Si, 1≤ i≤ N

2: UC = φ , stop and return.
do select an j ≤ N such that |I(j)| is maximized.

4: Set C←−C∪S j, UC =UC− I(j),
I(i) = I(i)− I(j), 1≤ i≤ N

6: Go to 2.

Example 1:

Let, U = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

S1 = {1,2,3,4,5,6,7,8}

S2 = {6,7,8,10,11,12,13}

S3 = {1,4,7,10,12,14}

S4 = {2,5,7,8,11,13,14}

S5 = {3,6,9,15,16}

S6 = {13,14,15}

First Iteration:

C = φ , which means we do not have any elements covered yet.

UC = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

Since UC 6= φ ,

For j = 1 I(1) = 8 has maximum cardinality

C = {S1}

So, UC =UC−C

UC = {9,10,11,12,13,14,15,16}

S2 = {10,11,12,13}

S3 = {10,12,14}

S4 = {11,13,14}

S5 = {9,15,16}

6

S6 = {13,14,15}

Second Iteration: UC 6= φ , so we continue,

For j = 2 I(2) = 4 has maximum cardinality

C = {S1,S2}

So, UC =UC−C

UC = {9,14,15,16}

S3 = {14}

S4 = {14}

S5 = {15,16}

S6 = {14,15}

Third Iteration: UC = φ , so we continue,

For j = 5 I(5) = 2 has maximum cardinality

C = {S1,S2,S5}

So, UC =UC−C

UC = {14}

S3 = {14}

S4 = {14}

S6 = {14}

Fourth Iteration: Since, UC = φ , so we continue,

For j = 3 I(3) = 1 has maximum cardinality,

C = {S1,S2,S3,S5}

UC = φ .

Fifth Iteration:

Since UC = φ , we stop here ,

C = {S1,S2,S3,S5}

Hence, Standard greedy algorithm produces a set cover {S1,S2,S3,S5} of size 4. But the

optimal solution for the set cover is {S3,S4,S5} of size 3.

7

2.2 Approximation Algorithm

Approximation algorithm is a technique which helps to find the solution within a factor of

optimum solution. In our algorithm we have shown that our approximation ratio is O(logn).

2.3 Randomization Algorithm

A randomized algorithm is a technique that employs a degree of randomness as a part of

its logic. It has been used very often and is one of the powerful randomized technique in standard

algorithm to reduce either time complexity or space complexity. Random numbers r are generated

while using randomized algorithm within a specified range of numbers, and hence making a decision

based on r value. Here in this paper, chernoff inequality and hoeffiding inequality plays an important

role in designing and analyzing the accuracy of our algorithm. It shows how the number of samples

determines the accuracy of the approximation.

2.4 Maximal K-coverage for Set Cover

Let U be the universal set of n elements and S1,S2,,Sm be the subsets of S set

such that 1≤ i≤ m, and Si ⊆U . Here in maximum k-coverage problem, we are given an integer k

and the goal is to find at most k sets from S such that the size of their union is maximum.

Definition 2. Given a set U of elements n and a collection of subsets S1,S2,,Sm such that

1≤ i≤ m and an integer k. The maximum k-coverage problem finds the k sets such that the size of

their union is maximum.

8

CHAPTER III

WEIGHTED SET COVER

A set cover C ⊆ is a subcollection of the sets whose union is U , given a collection S of the

sets over a Universe U . Finding a minimum cardinality set, given S would be the set cover problem.

For the weighted set-cover problem, a weight ws ≥ 0 is specified for each set s ∈ S. The goal then

would be to find a set cover C of minimum total weight ∑s∈C ws.

By choosing a set s that minimize the weight ws divided by number of elements in s not

covered by chosen sets, the greedy algorithm builds a cover for weight set cover.

Theorem 1. [18] The greedy algorithm returns a set cover of weight at most Hk times the minimum

weight of any cover.

Proof. In the optimal set cover C∗, suppose the greedy algorithm covers the elements of s, where

s = {xk,xk−1,,x1}, in the following order xk,xk−1, Initially the algorithm covers elements

xi of s, then, at least i elements of s are not covered. The idea is that the greedy algorithm chooses s

in such an iteration so that it would pay ws/i per element covered. Therefore, in a way the greedy

algorithm charges ws/i per element xi to be covered. The total amount charged, to elements in

s after summing over i, is wsHk at the greatest. Noting that every element is in some set in C∗,

summing over s ∈C∗, the total amount charged to elements is at most ∑s∈C∗ wsHk = HkOPT

The theorem was shown first for the unweighted case (each ws = 1) by Johnson [11] ,

Lova’sz [14], and Stein [17], then extended to the weighted case by Chva’tal [2].

9

CHAPTER IV

COMPUTATIONAL MODEL AND COMPLEXITY

In this section, we show our model of computation, and the definition of complexity. Assume

that A1 and A2 are two sets. Their union A1∪A2 contains the elements in either A1 or A2. Define A2

- A1 to be the sets of elements in A2, but not in A1. Define their intersection A1∩A2 to be the set

of elements in both A1 and A2. For example, A1 = {3, 5} and A2 = {1, 3, 7}, then A1∪A2 = {1, 3,

5, 7}, A2 - A1 = {1, 7}, and A1∩A2={3}. For a finite set A, we use |A|, cardinality of A, to be the

number of distinct elements in A. For a real number x, let dxe be the least integer y ≥ x, and bxc be

the largest integer z ≤ x. For example,d3.2e = 4, and b3.2c = 3. Let N = {0, 1, 2,........} be the set

of nonnegative integers, R = (−∞,+∞) be the set of all real numbers, and R+ = [0,+∞) be the set

of all nonnegative real numbers. An integer s is a (1+ ε)-approximation for |A| if (1− ε) |A| ≤

(1+ ε) |A|.

Definition 3. The randomized computation for set cover is defined below: An input L is a list of

sets A1, A2,.........., Am that support the following operations:

1. Function RandomUncoveredElement (L′,L) returns a random element x that is not covered

by the sets in sublists L′ of L.

2. Function Query(x,Ai) returns 1 if x ∈ Ai, and 0 otherwise.

3. Each phase of the algorithm can select some sets and put them into a list L′, which is empty

in the beginning.

4. It returns L′ as an (approximate) set cover solution at the end of the algorithm.

10

Definition 4. Let A(., .) be a randomized algorithm for the set cover problem in the model given

by definition 3. Let L be a list of input sets. We use the tuple (T (.),R(.)) to characterize the

computational complexity, where

• A(L, p) is a deterministic computation at path p.

• T (.) is a function for the number of phases such that each phase allows to generate at most

R(m,n) random samples from those uncovered elements.

• R(.) is a function to be the upper bound of the number of the random samples each phase via

RandomUncoveredElement(L′).

• The algorithm A(L, .) gives f (n)-approximation if it returns a sublist L′ of sets from L in at

least 3/4 paths p such that |L′| ≤ f (n).|opt(L)|, where opt(L) is a sublist of sets in an optimal

solution.

4.1 Interactive Proof System

Definition 5. [10] For the given problem, interactive proof system works in the following ways:

• we have two participants, a verifier V and a solver SV .

• Both of the participants are given the same input.

• V and SV exchange messages for the given problem.

• Both parties performs some computation on the problem and try to solve it using local

randomness.

• Eventually V verifies whether particular problem is solved. Verifier has to be convinced and

satisfied with the solution the solver has solved.

11

Figure 4.1: Interactive Proof System

The main goal of the solver is to convince and satisfy the verifier of its validity and verifier’s

purpose is to embrace only a correct solution [10]. Interactive proof system can be interpreted

in many ways in a real life. It is just a process of verifying a problem solved by a solver. For

instance, a thesis is a process of doing extensive research and coming up with your own solution

for a given problem. Let’s say, one of the students from University of Texas Rio Grande Valley in

computer science department wants to work on a thesis project. To work on his thesis he has to first

choose an adviser. Once he chooses the adviser he starts working with the adviser and tries to solve

the problem given by the adviser. Here adviser acts as a "verifier" whereas student as a "solver".

He asks student to solve some problem and gives some random hint to solve it. Once the student

receives the problem with the hint, he tries to solve it and solved problem is sent back to adviser.

Adviser verifies it and gives some more problem to solve it in order to fulfill the requirements of his

12

thesis paper. This process continues until all the problems needed to finish the thesis are solved

and verified. Goldwasser, Micali and Rackoffin came up with the concept of interactive proofs as a

game between "solver" and a "verifier" in the paper [8].

An interactive proof system is said to be good proof system for a solution if it meets the

following properties:

1. Completeness: Verifier always accepts the solution if it is true.

2. Soundness: Verifier always rejects the solution if it is false.

3. Efficient: The strategy used by a verifier to verify the solution is effective and very efficient

(runs in polynomial time in the NP case).

We developed an interactive algorithm for the set cover problem. In our model, function

RandomUncoveredElement(L′,L) acts as a verifier "V " and function Query(x,Ai) acts as a solver

"SV ".

Example:

Let U = {1, 2, 3, 4,.........., 20} be the universal set. Let S = {S1,S2,S3,S4,S5} be the subsets

of U where,

S1 = {1,2,3,4,5,6}

S2 = {4,5,6,7,8,20}

S3 = {7,8,9,10,11,12,13,14,15}

S4 = {4,5,16,17,18}

S5 = {1,2,3,19,20}

We have five sets S = {S1,S2,S3,S4,S5} with U = {1,2,3,4,,20}. According to

our computational model, Input L = {S1,S2,S3,S4,S5} is a list of sets ⊆U . Let r be the random

samples.

Solver "SV " is given with the input list U . It sends the list to the verifier "V " to check if the

list U is covered. Here in our model, covered elements remain silent whereas uncovered one remain

noisy demanding to be covered.

13

Once the input list is sent to the V , it verifies whether the elements of the list are covered. If

not, V provides the list and the random samples r to the solver.

Let random samples provided to the SV is {1,5,6,7,8,9,10,15,18,19}. With the help of

random samples r =, the solver solves it. Function Query(x,Ai) acts as a Solver "SV ".

Query(x,Ai) =

1, if x ∈ Ai

0, otherwise

Here, from the given random samples r, solver tries to find the set the samples represent. In

the process it finds that,

1 ∈ {S1,S5}

5 ∈ {S1,S2}

6 ∈ {S1,S2}

7 ∈ {S2,S3}

8 ∈ {S2}

9 ∈ {S3}

10 ∈ {S3}

15 ∈ {S3}

18 ∈ {S4}

19 ∈ {S5}

Then, {1,5,6,7,8,9,10,15,18,19} is added to the set and is covered. Once it is covered

these elements remain silent. SV sends back the list of sets to V to verify if all the elements are

covered. V verifies it. Since the sets are not covered yet, it sends back to solver the list of sets and

random samples r from uncovered areas (elements).

Let the r = {2,3,4,13,14}.

SV repeats the same process to solve it. In the process it finds that,

2 ∈ {S1,S5}

3 ∈ {S1,S5}

14

4 ∈ {S1,S2,S4}

13 ∈ {S3}

14 ∈ {S3}

Once the process is done, the list of the elements is added to the sublist L′. Hence,

{2,3,4,13,14} remain silent. SV sends back the list of elements to V to verify if all the elements of

the sets are covered. V verifies it.

Here, elements of set S1 = {1,2,3,4,5,6} are all selected and the set S1 is said to be covered

and we put the set in sublist L′. So, the elements of S1 remain silent.

Again, V provides the SV with input list of sets and a random samples r from and uncovered

elements. Let r = {11,12,16}. Once the solver SV receives the list of sets with some random

samples, it repeats the same process as described above to process it. In the process it finds that,

11 ∈ {S3}

12 ∈ {S3}

16 ∈ {S4}

So, {11,12,16} are added to the set and these elements once selected remains silent.

This process continues until all the elements of the input list U is covered. In every phase

in our computational model, at least half of the elements are covered. Hence, our algorithm takes

O(logn) rounds.

4.2 Deterministic Computation

Figure 4.2: Deterministic Algorithm

15

Deterministic Algorithm is an algorithm which always produces same output, when particu-

lar input is provided. While defining in terms of state machine, it is defined as a state machines that

behaves in a predetermined sequence of actions from one state to another state of the machine. If the

machine is deterministic, just by entering the input the machine will be in its starting state or initial

state. The current state determines its upcoming state and will never stop or finish until it delivers

the same output (automatically follows a predetermined sequence of operations). Deterministic

Finite Automaton and Deterministic Turing Machine are two examples of abstract machine which

are deterministic. In our model we have used deterministic algorithm on a path p.

16

CHAPTER V

OUTLINE OF OUR METHODS

For the two sets A and B, we develop a randomized method to approximate the cardinality

of the difference B−A. We approximate the size of B−A by sampling a small number of elements

from B and calculating the ratio of the elements in B−A by quering the set A. The approximate

|A∪B| is the sum of an approximate |A| and an approximate of |B−A|.

A greedy approach will be based on the approximate difference between a new set and the

union of sets already selected. Assume that A1, A2,........., An is the list of sets for the set cover

problem. After Ai1 ,.........., Ait have been selected, the greedy approach needs to check the size

|A j− (Ai1 ∪Ai2 ∪∪Ait)| before selecting the next set. Our method to estimate |A j− (Ai1 ∪Ai2 ∪

.....∪Ait)| is based on randomization in order to make the time independent of the sizes of input

sets. Some random samples are selected from set A j.

During the accuracy analysis, Hoeffiding Bound (see [9]) plays an important role. It shows

how the number of samples determines the accuracy of approximation.

Theorem 2. Let X1,,Xs be s independent random 0-1 variables and X = ∑
s
i=1 Xi.

• if Xi takes 1 with probability at most p for i=1,......,s then for any ε > 0, Pr(X > ps+ εs)<

e−
1
2 sε2

.

• if Xi takes 1 with probability at least p for i=1,......,s then for any ε > 0, Pr(X < ps+ εs)<

e−
1
2 sε2

We define the function µ(x) in order to simply the probability mentioned in theorem

µ(x) = e−
1
2 sε2

(5.1)

17

During the accuracy analysis, Chernoff Bound (see[15]) plays an important role. It shows

how the number of samples determines the accuracy of approximation.

Theorem 3. Let X1,,Xs be s independent random 0-1 variables, where Xi takes 1 with

probability at least p for i=1,......,n. Let X = ∑
n
i=1 Xi, and µ = E[X]. Then for any δ > 0,

Pr(X < (1−δ)pn)< e−
1
2 δ 2 pn.

Theorem 4. Let X1,,Xs be s independent random 0-1 variables, where Xi takes 1 with

probability at most p for i=1,......,n. Let X = ∑
n
i=1 Xi, and µ = E[X]. Then for any δ < 0,

Pr(X > (1+δ)pn)<
[

eδ

(1+δ)(1+δ)

]pn
.

Define g1(δ) = e−
1
2 δ 2

and g2(δ) =
[

eδ

(1+δ)(1+δ)

]
. Define g(δ) = max(g1(δ),g2(δ)). We

note that g1(δ) and g2(δ) are always strictly less than 1 for all δ > 0. It is trivial for g1(δ). For

g(δ), this can be verified by checking that the function f (x) = (1+ x)ln(1+ x)− x is increasing

and f (0) = 0. This is because f ′(x) = ln(1+ x) which is strictly greater than 0 for all x > 0.

A well-known fact in probability theory is the union bound that is represented by the

inequality

Pr(E1∪E2∪∪Em)≤ Pr(E1)+Pr(E2)++Pr(Em), (5.2)

where E1, E2,....., Em are m events that may not be independent. In the analysis of our randomized

algorithm, there are multiple events such that the failure from any one of them may fail the entire

algorithm. We often characterize the failure probability of each of those events, and use the above

inequality to show that the whole algorithm has a small chance to fail, after showing that each of

them has a small chance to fail.

18

CHAPTER VI

ALGORITHM FOR SET COVER

In this section, we describe an interactive algorithm for the set cover problem. The number

of rounds and the number of samples are analyzed.

Definition 6. Let R = x1,x2,,xw be a list of elements, B be a set, and let L be a list of sets

A1,A2,,Au. Define Test(L,B,R) = |(j : 1≤ j ≤ w,x j ∈ B, and x j /∈ (A1∪A2∪∪Au)|

The algorithm ApproximateDifference(.) gives an approximation s for the size of B−A. It

is very time consuming to approximate |B−A| when |B−A| is much less than |B|. The algorithm

ApproximateDifference(.) returns an approximate value s for |B−A| with a range [(1− δ)|B−

A|,(1+δ)|B−A|], and will not lose much accuracy when it is applied to approximate the set cover

by controlling the two parameters δ and ε .

Algorithm Test(L,B,R)

Input: L is a list of sets A1,A2,,Au, B is another set, R is a set of elements in U .

1. Let x1,,xw be the items in R;

2. For i = 1 to w

3. Let yi = 1 if xi ∈ B and (xi /∈ A1∪A2∪∪Au), and 0 otherwise;

4. Return t = y1 ++ yw;

End of Algorithm

We show a multi stage algorithm for the set cover problem. It uses the randomized algorithm

to estimating the set difference.

19

Algorithm: SetCover(L,ε,γ)

Input: L is a list of sets A1,A2,,Am and ε and γ are real parameters in (0,1).

Steps:

1. Let L′ = φ ;

2. Let α = 1
2 ;

3. Let i = 1;

4. Stage i:

5. Get a set R of g(m) = m2+ε random samples that are not covered by the sets in L′.

6. If R does not contain any element, then stop the algorithm (all elements are covered).

7. Repeat

{

8. For each set A j in L but not in L′, let t j = Test(L′,A j,R);

9. If there is a set A j that has the largest t j and t j ≥ αg(m)
4m ,

10. then put A j into L′, and remove it from L;

11. else terminate loop, and enter stage i+1 (and let i = i+1);

}

Return L′

End of the Algorithm

Theorem 5. There is a O(logn,m2+ε) interactive algorithm for the set cover with O(logn)-

approximation ratio.

20

Proof. Our analysis is only at phase i, which may select several sets. Since the random samples are

from those uncovered point, the already selected sets and covered points can be ignored.

Let γ = 1
4m22m . Let g(m) be the number of random points generated in the beginning of each

phase. We let α = 1
2 , and β = α

9 .

Let Vi be the set of elements that have been uncovered by the sets selected after stage i. Let

Ut be the set of uncovered elements after selecting t sets. Let Tt be the union of the selected sets

after selecting t sets. Assume that there are at least α · |Ut | uncovered by Tt . There exists at least

one set Si such that Si covers at least α·|Ut |
m points.

Claim 1. At stage i, for all Su with pu ≥ β

m , with probability at most γ ≤ 1
4m , we do not have all of

the following conditions:

Test(L′,Su,R)≥ (1−δ)pu|R|, (6.1)

Test(L′,Su,R)≤ (1+δ)pu|R|, (6.2)

Test(L′,Su,R)>
αg(m)

4m
, (6.3)

Proof. Define pi to be the probability that a random item of R is in Si−T . We have there is a set Si

with pi ≥ α

m . Assume pi ≥ β

m . We have the inequalities:

µ(δ)pig(m) ≤ µ(δ)
β

m ·g(m) ≤ γ ≤ 1
4m22m (6.4)

For a Su with pu ≥ β

m , with probability at most γ ≤ 1
4m22m , we do not have all of the following

conditions:

Test(L′,Su,R)≥ (1−δ)pu|R|, (6.5)

Test(L′,Su,R)≤ (1+δ)pu|R|, (6.6)

Test(L′,Su,R)>
αg(m)

4m
, (6.7)

21

There are at most 2m cases of subsets selected in the process of algorithm. Thus, we

probability at most Q = m ·2m · 1
4m22m ≤ 1

4m , at least one of Su with pu ≥ β

m fails some inequalities

among (6.1) to (6.3). We assume that inequalities (6.1) to (6.3) are true for each Su with pu ≥ β

m .

By the conditions at line 9 in SetCover(.), one set will be selected.

Claim 2. At stage i, if |Ut−1| ≤ α|Vi−1|, then there is a (t-th) set that will be selected with failure

probability at most 1
4m .

Proof. If |Ut−1| ≤ α|Vi−1|, then there is a set Su with pu ≥ α

m ≥
β

m . By the conditions at line 9 in

SetCover(.) and inequality (6.3) in claim 1, with probability at most γ ≤ 1
4m , one set will not be

selected.

With g(m) samples each round, the set with the largest uncovered elements has Ω(m1+ε)

elements from R since there are m sets available. Let Si−T be the largest set among all Sa−T .

Claim 3. If S j is selected, then p j ≥ 1
2 · pi with failure probability at most 1

4m , where Si is the set

such that |Si−Tt |is the largest.

Proof. In the case that S j is selected, then by the line 8 in SetCover(.), we have Test(L′,S j,R)≥
αg(m)

4m . If p j <
β

m , with probability at most µ(1)
β

m g(m) ≤ 1
4m22m , Test(L′,S j,R)≥ 2βg(m)

m . We know
2βg(m)

m < αg(m)
4m .

The Set Si with the largest probability is at least α

2m > β

m . We have Test(L′,Si,R) ≥ (1−

δ)pi|R|. As S j is selected according to the conditions in line 9 of SetCover(.), we have (1+

δ)p j|R| ≥ (1−δ)pi|R|. Therefore, p j|R| ≥ 1−δ

1+δ
· pi|R| ≥ 1

2 · pi|R|.

Therefore, when each S j is selected, the number of uncovered points is reduced by at least

1
2mo

factor, where mo is the optimal number of sets to cover all points. The number of remained

items is at most z(1− 1
2mo

), where z is the number of uncovered items before S j is chosen.

After k sets have been selected, we have the number of uncovered items bounded by

n(1− 1
2mo

)k, where n is the total number of points to be covered in the beginning. Therefore, when

22

k = c ·mo · logn for some fixed c > 0. We have n(1− 1
2mo

)k < 1, which implies that all points are

covered after selecting k sets. Thus, the approximation factor is O(logn).

If no set is selected in a stage, it keeps the same result from the last stage. Since each stage

has probability at most Q with no set being selected when it is not fully covered, the probability that

one stage has no set being selected is most mQ≤ 1
4 among the first m stages.

If no stage fails, each stage can reduce the number of uncovered elements by at least half.

Therefore, it takes O(logn) rounds.

23

CHAPTER VII

LOWER BOUND FOR SET COVER

In this section, we derive lower bound for the number of rounds for set cover problem. If

the number of rounds is not sufficient, it is unlikely to have good approximation ratio.

7.1 Randomized Model for Lower Bounds

We define a randomized computation model for our lower bound.

Definition 7. A randomized computationT (., .) for the maximum coverage problem is a tree T that

takes an input of list L of finite sets. Let U be the universal set, which is the union of all sets in the

list L.

1. Each node of T (L, .) (with input list L of sets for set cover problem) allows an operation

defined in definition 1.

2. A branching point of p that has s children p1, p2,, ps and is caused by the following two

cases

• RandomUncoveredElement() returns a random element in U−S = {a1,a2,,au} such

that p j is the case that a j is selected, Where S is the list of selected sets.

• RandomNumber(s) returns a random element in {0,1,,s−1} for an integer s≥ 0

such that p j is the case that j+1 is returned.

3. A computation path is determined by a series of numbers r0,r1,r2,,rt such that r j

corresponds to the jth branching point for j = 1,2,, t−1 and r0 is the root, and rt is a

leaf.

24

4. A partial path p is an initial part of a path that starts from the root r0 of computation to a

node q

5. The root node r0 has weight w(r0) = 1.

6. If a partial path p from root r0 to a node q that has children p1,, ps and weight w(q).

Then w(p1) = w(p2) == w(ps) =
w(q)

s , where w(pi) is the weight for pi.

7. The weight of a path from the root r0 to a leaf q has a weight w(q), which is the weight of q.

8. The output of the randomized computationT (L, .) (with input L) on a path p is defined to be

T (L, p).

The weight function w(.) determines the probability of a partial path or path generated in

the randomized computation. In Definition 7, we give the concept of a shared path for randomized

computation under two different inputs of lists of sets. Intuitively, the computation of the two shared

paths with different inputs does not have any difference, gives both the same output, and has the

same weight.

Definition 8. • Let L be a list of sets A1,,Am, and L′ be another input list of m sets

A′1,,A
′
m. If |Ai| = |A′i| for i = 1,2,,m, then L and L′ are called equal size of list of

sets.

• Let L be a list of sets A1,,Am, and L′ be another input list of m sets A′1,,A
′
m such that

they are of equal size. A partial path p is shared by T (L, .) and T (L′, .) if

– path p gets the same result for each random access to RandomUncoveredElement () and

– path p gets the same result for each random access to RandomNumbers(s).

Let P be a set of path in T(L,.), define W (P) be the sum of weights of all paths in P. In other

words, W (P) = ∑p∈P w(p). The algorithm T (L, .) gives an f (n)-approximation if there is a set P

of paths in T (L, .) of weight W (P) at least 3
4 such that for each p ∈ P, |L′| ≤ f (n) · |opt(L)|, where

L′ = T (L, p) and opt(L) is a sublist of sets in an optimal solution.

25

The weight function w(.) determines the probability of partial path or path generated in

randomized computation.

7.2 Lower Results

The idea to derive a lower bound for the number of phases is to construct two lists L1 and

L2 that have the same solution in most cases by running the algorithm, but greatly different number

of sets for the set cover solutions.

Lemma 1. Let g(m,n) and f (m,n) be a functions from N×N to N. Let g(.) be defined by the

following recursions:

g(1,m,n) = 2, (7.1)

g(i,m,n) = 10 f (m,n)(1+
i−1

∑
j=1

g(j,m,n)), (7.2)

Then g(i,m,n)≤ (10(f (m,n)+3))i.

Proof. By equation(7.2), we have 1+∑
i−2
j=1 g(j,m,n)≤ 1

f (m,n)g(i−1,m,n)). Therefore, we have

g(i,m,n)≤ f (m,n)(g(i−1,m,n)+
1

f (m,n)
g(i−1,m,n))+1 (7.3)

≤ 10(f (m,n)+1)(g(i−1,m,n)+
1

f (m,n)
g(i−1,m,n)) (7.4)

≤ 10(f (m,n)+1)(1+
1

f (m,n)
g(i−1,m,n)) (7.5)

≤ 10(f (m,n)+3)(g(i−1,m,n)) (7.6)

≤ (10(f (m,n)+3))i(g(1,m,n)) (7.7)

≤ (10(f (m,n)+3))i (7.8)

Lemma 2. Let c(m,n),g(m,n),h(m,n)and f (m,n) be the functions from N×N to N. Let h(.) be

defined by the following recursions:

26

h(k,m,n) = 1, (7.9)

h(i,m,n) = 100c(m,n) · s(m,n)
k

∑
j=i+1

g(j,m,n)h(j,m,n) (7.10)

Then h(i,m,n)≤ (100ec(m,n)s(m,n))k(10(f (m,n)+3))k2
, where g(.) is given in Lemma

1.

Proof. By equation (7.10), we have ∑
k
j=i+2 g(j,m,n)h(j,m,n)≤ 1

100c(m,n)s(m,n)h(i+1,m,n). There-

fore we have,

h(i,m,n)≤ 100c(m,n)s(m,n)(g(i+1,m,n)h(i+1,m,n)) (7.11)

+
1

100c(m,n)s(m,n)
·g(i+1,m,n)h(i+1,m,n)

≤ 100ec(m,n)s(m,n)
(

1+
1

100c(m,n)s(m,n)

)
g(i+1,m,n)h(i+1,m,n) (7.12)

≤ 100ec(m,n)s(m,n)
(

1+
1

100c(m,n)s(m,n)

)
(10(f (m,n)+3)i+1h(i+1,m,n))

(7.13)

≤ 100ec(m,n)s(m,n)
(

1+
1

100c(m,n)s(m,n)

)k−i

(10(f (m,n)+3)∑
k
j=i+1 jh(k,m,n))

(7.14)

≤ (100ec(m,n)s(m,n))k(10(f (m,n)+3))k2
(7.15)

Lemma 3. Let c(m,n),g(m,n),h(m,n)and f (m,n) are functions from N×N to N. Let c(f (m,n)+

3)c+1 ≤ m and 2(100ec(m,n)s(m,n))k(10 f (m,n)+ 3)k2+k ≤ n. Let g(.) and h(.) be defined as

Lemma 1 and Lemma 2. Then we can get k lists L1,,Lk of disjoint sets such that it contains

sublists L1,,Lk, each L j contains g(i, m, n) sets, and each set in Li is of size h(i,m,n), and

the union of all sets are at most n.

27

Proof. We have

k

∑
i=1

g(j,m,n)h(j,m,n)≤
k

∑
i=1

(100ec(m,n)s(m,n))k(10(f (m,n)+3))k2
· (f (m+n)+3)i (7.16)

≤ 2(100ec(m,n)s(m,n))k(10(f (m,n)+3))k2
· (f (m+n)+3)k (7.17)

≤ 2(100ec(m,n)s(m,n))k(10(f (m,n)+3))k2+k (7.18)

≤ n (7.19)

Definition 9. • If A1,Ak is k list of sets, define union (A1, .., .Ak) to be the set of union of

the sets in the k lists.

• For a set S and an integer t ≤ |S|, let S[t] be defined the first t elements in S.

Definition 10. Assume that L is given as Lemma 3 and each Li has the sets Si,1,Si,vi .

• Define L1 to have a list of sublist of sets L1,1,,L1,k such that each set S1, j,t in L1, j is

S1,1[h(1,m,n)−|S j,t |]∪S j,t for t = 1,,vi.

• Let L1(j, t) is the same as L1 except that the set S j,t is replaced by S′j,t = S1,1[h(1,m,n)−

|S j,t ∪U j|]∪S j,t ∪U j, where U j = union(L1, j,L1, j+1,,L1,k).

Lemma 4. Let L1 be defined in Definition 10 and L2 = L1(j) for some j ≤ k. Then every set

cover solution for L1 needs at least ∑
k
i=1 g(i,m,n) sets, and an optimal solution for L2 has 1+

∑
j−1
i=1 g(i,m,n).

Proof. All sets in L are disjoint to each other. List L has ∑
k
i=1 g(i,m,n) sets. Therefore, every set

cover solution for L1 needs at least ∑
k
i=1 g(i,m,n) sets.

The set S′j,1 can cover all elements from Li, j,L1, j+1,,L1,k. The other part can be

covered with ∑
j−1
i=1 g(i,m,n). Thus the optimal solution for L2 needs 1+∑

j−1
i=1 g(i,m,n) sets.

28

Define two inequalities

c(m,n)(f (m,n)+3)c(m,n)+1 ≤m, (7.20)

2(100ec(m,n)s(m,n))k(10(f (m,n)+3))k2+k ≤n (7.21)

Theorem 6. Let c(m,n), f(m,n) and s(m,n) be functions N×N → N. They satisfy the conditions

inequalities (7.21) and (7.22) with k = c(m,n)+ 1. Then there is no c(m,n) rounds interactive

algorithm for set cover problem with f (m,n)-approximation that uses s(m) round samples each

phase.

Proof. Here we construct two list of sets L1 : L1,1,,L1,k with k = c(m,n)+ 1, and

L2 : L2,1,,L2,k where Li, j is a sublist of sets in the input list. All sets in the same Li, j have

the same size. Let m be the number of sets in the input list. Let function g(i,m,n) and function

h(i,m,n) are defined those in Lemmas 1 and 2.

Let L1 be constructed as that in Definition 10. We construct L2.

Assume that T (., .) is an approximation algorithm for set cover problem, and runs in c

rounds. Let T (L, p) be the computation of T (., .) with input L at random path p.

Let T (L1, .) run on L1. We have the following claim about some properties of the randomized

computation for T (.) with input L1.

Definition 11. Let Ei be the event that L1,i−1 has less than g(i− 1,m) sets being selected after

phase i−1, a new elements will be selected from L(1, j) with j > i−1 among the s(m) random

samples at phase i.

Claim 4. Prob(E1∪E2∪∪Ec(m,n))≤ 1
100

Proof. The number of new elements in L1, j with j > 1 is at most ∑
k
j=i+1 h(j,m,n)g(j,m,n) ≤

1
100c(m,n)s(m,n)h(i,m,n)g(i,m,n) by equation (7.10).

29

There are s(m,n) random elements. It happens with probability at most
(

1
100c(m,n)s(m,n)

)
s(m,n)≤ 1

100c(m,n) at one phase. Therefore, it happens with probability at most 1
100 at among one of

c(m,n) phases with union bound.

Let α = 1
2 , β = 6

9 , and γ = 1
9 .

Let Pi be the set of all those paths p at stage i that T (L1, p) takes at least g(j,m)γ sets in

L1, j with j ≥ i at phase i.

Let Pi be the complementary set of Pi. Define Us[p, i, j] = 1 if S ∈ L j, and path p selects S

among the first i stages.

We consider two cases at the end of phase i of T (L1, .):

Case 1. W (Pi)≥ α for some i≤ c(m,n). There is a phase i≤ c(m,n) such that at least total weights

α random paths p, T (L1, p) takes at least g(j,m)γ sets in L1, j with j ≥ i at phase i. Let i be the

least s Let Pi be the set of all those paths p at stage i that T (L1, p) takes at least g(j,m,n)
9 sets in L1, j

with j > i at phase i. We consider two cases at the end of phase i of T (L1, .):

∑
p

w(p)∑
S

US[p, i−1, i] = ∑
p∈Pi

∑
S

US[p, i−1, i]+ ∑
p∈Pi

w(p)∑
S

US[p, i−1, i]

≤ ∑
p∈Pi

w(p)g(i,m,n)+ ∑
p∈Pi

w(p)γg(i,m,n)

≤ g(i,m,n) ∑
p∈Pi

w(p)+ γg(i,m,n) ∑
p∈Pi

w(p)

≤ g(i,m,n)α + γg(i,m,n)(1−α)

≤ g(i,m,n)(α + γ(1−α)).

Define U(S, i, j) to be the set of the paths p that selects S ∈ L j in the first i phases. Assume

30

W (U(S, i−1, i))≥ β for all sets S in Li. Then we have

∑
p

w(p)∑
S

US[p, i−1, i] = ∑
S

∑
p

w(p)US[p, i−1, i]

≥∑
S

β

= g(i,m,n)β .

Since β ≥ (α + γ(1−α)), we have contradiction. Thus, W (U(S, i−1, i)≤ β for some set

S in Li.

At phase i− 1, there is a Si,t that is not picked up by at least 2
9 portion of paths. Let

L2 = L1(i+1, t).

We will find that L1 and L2 have greatly different solution for the set cover problem. On

the other hand, they will have the same output. This will make that the number of sets for two

set cover problems have big difference. This brings a contradiction by Lemma 4. This is because

γ · g(i+ 1,m,n) ≥ f (m,n)(1+∑
i
j=1 g(j,m,n)) by equations (7.1) and (7.2). For the input L2,

the algorithm selects at least γg(i+ 1,m,n) sets for most of the paths, but it only needs at most

(1+∑
i
j=1 g(j,m,n)) sets to cover all elements. For inputs L1 and L2, the algorithm gives the same

output for most of the paths. A set cover solution for L1 is not a f (m,n)-solution for L2 by equation

(7.2).

Case 2: W (Pi)<
1
2 for all i≤ c(m,n). For each i≤ c(m,n). In particular, we have W (Pc(m,n))<

1
2 .

Thus, W (Pc(m,n)) = 1−W (Pc(m,n)) >
1
2 . For each paths p ∈ Pc(m,n), T (L1, p) picks less than

γg(j,m,n) sets in L1, j with j = c(m,n)+1.

We do not have enough sets from L1,k with k = c(m,n)+ 1 to cover the elements in the

sets of Lc(m,n)+1. In this case, the algorithm with input L1 fails at all the paths in Pc(m,n) with

W (Pc(m,n))>
1
2 as the sets selected among those paths in Pc(m,n) cannot cover all elements in the

universal set. Note that phase c(m,n) is the final phase of the algorithm. No more sets will be

31

picked up after phase c(m,n). Thus, we have contradiction that the randomized algorithm returns a

set cover among paths with sum of weights at least 3
4 .

Corollary 1: For each d ≥ 0, there is a positive d1 such that there is no
(

d1

√
logn

loglogn),m
d
)

interactive algorithm for the set cover problem with dlog(n) approximation ratio.

Proof. Assume that the number of random samples is md , and f (m,n) = dlog(n). We can satisfy

inequalities (7.21) and (7.22) with k = c(m,n)+1 in the condition c(m,n) = d1

√
logn

loglogn for some

fixed d1. It follows from Theorem 6.

Corollary 2: For a fixed d ≥ 0, there is no (d,md) interactive algorithm for the set cover problem

with nα approximation ratio for some fixed α ≥ 0.

Proof. Assume that the number of random samples is md , and f (m,n) = nα . We can satisfy

inequalities (7.21) and (7.22) with k = c(m,n)+1 in the condition for some fixed α ≥ 0. It Follows

from Theorem 6.

Corollary 3: For a fixed d ≥ 0, there is no (d,n1−ε) interactive algorithm for the set cover problem

with nα approximation ratio for some fixed α ≥ 0.

Proof. Assume that the number of random samples is n1−ε , and f (m,n) = nα . We can satisfy

inequalities (7.21) and (7.22) with k = c(m,n)+1 in the condition for some fixed α ≥ 0. It Follows

from Theorem 6.

32

CHAPTER VIII

CONCLUSION

In this paper, we develop a randomized interactive model for solving set cover problem.

It needs O(logn) phases and each phase takes poly(m) random samples from those uncovered

elements. An interesting problem is to close the gap between the O(logn) upper bound and

Ω

(√
logn

loglogn

)
lower bound for the number of phases under the condition that each of the phase uses

poly(m) random samples from uncovered elements.

33

BIBLIOGRAPHY

[1] A. CHAKRABARTI AND A. WIRTH, Incidence geometries and the pass complexity of semi-
streaming set cover, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2016, pp. 1365–1373.

[2] V. CHVATAL, A greedy heuristic for the set-covering problem, MATHEMATICS OF OPER-
ATIONS RESEARCH, 4 (1979).

[3] G. CORMODE, H. KARLOFF, AND A. WIRTH, Set cover algorithms for very large datasets,
in Proceedings of the 19th ACM international conference on Information and knowledge
management, ACM, 2010, pp. 479–488.

[4] E. D. DEMAINE, P. INDYK, S. MAHABADI, AND A. VAKILIAN, On streaming and com-
munication complexity of the set cover problem, in International Symposium on Distributed
Computing, Springer, 2014, pp. 484–498.

[5] Y. EMEK AND A. ROSÉN, Semi-streaming set cover, ACM Transactions on Algorithms
(TALG), 13 (2016), p. 6.

[6] U. FEIGE, A threshold of ln n for approximating set cover, Journal of the ACM (JACM), 45
(1998), pp. 634–652.

[7] T. A. FEO AND M. G. RESENDE, A probabilistic heuristic for a computationally difficult set
covering problem, Operations research letters, 8 (1989), pp. 67–71.

[8] S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity of interactive
proof systems, SIAM Journal on computing, 18 (1989), pp. 186–208.

[9] W. HOEFFDING, Probability inequalities for sums of bounded random variables, Journal of
the American statistical association, 58 (1963), pp. 13–30.

[10] I. INTRODUCING, Interactive proof systems, (2006).

[11] D. S. JOHNSON, Approximation algorithms for combinatorial problems, Journal of computer
and system sciences, 9 (1974), pp. 256–278.

[12] R. M. KARP, Reducibility among combinatorial problems, in Complexity of computer com-
putations, Springer, 1972, pp. 85–103.

[13] R. KUMAR, B. MOSELEY, S. VASSILVITSKII, AND A. VATTANI, Fast greedy algorithms in
mapreduce and streaming, ACM Transactions on Parallel Computing, 2 (2015), p. 14.

34

[14] L. LOVÁSZ, On the ratio of optimal integral and fractional covers, Discrete mathematics, 13
(1975), pp. 383–390.

[15] R. MOTWANI AND P. RAGHAVAN, Randomized algorithms, Chapman & Hall/CRC, 2010.

[16] B. SAHA AND L. GETOOR, On maximum coverage in the streaming model & application to
multi-topic blog-watch, in Proceedings of the 2009 SIAM International Conference on Data
Mining, SIAM, 2009, pp. 697–708.

[17] S. K. STEIN, Two combinatorial covering theorems, Journal of Combinatorial Theory, Series
A, 16 (1974), pp. 391–397.

[18] N. E. YOUNG, Greedy set-cover algorithms, in Encyclopedia of algorithms, Springer, 2008,
pp. 379–381.

35

APPENDIX A

36

APPENDIX A

CHERNOFF BOUND

Proof. Chernoff bound is a tail bound inequality which bounds the amount of probability of some

random variable S that is far from the mean.

Let t > 0. From the definition of the expectation, we have E(etSi = Pr(Si = 1)et +Pr(S = 0).

For the proof of this inequality, we first consider a function f (x) = ex− (1+ x). The function is

always positive at f ′(x) for x > 0 and negative for x < 0. Let Xi be a 0-1 random variable fori = 1...n

with expectation pi. We have,

Pr[S≥ (1+δ)µ] = Pr[etS ≥ et(1+δ)µ]

Now we apply the Markovs inequality in above equation, we get

Pr[S≥ (1+δ)µ] = Pr[etS ≥ et(1+δ)µ] (1.1)

≤ E[etS]

et(1+δ)µ
(1.2)

≤ eet−1µ

et(1+δ)µ
(1.3)

=

(
eet−1

et(1+δ)

)µ

(1.4)

= (eet−1−t(1+δ))µ . (1.5)

Now we choose t in such a way that exponent et−1− t(1+δ) gets minimized. Applying derivative

37

with respect to t to 0 gives et = (1+δ) or t = ln(1+δ). Plugging this value gives

Pr[S≥ (1+δ)µ]≤
(

e(1+δ)−1−(1+δ)ln(1+δ)
)µ

(1.6)

=

(
eδ

(1+δ)1+δ)

)µ

(1.7)

38

BIOGRAPHICAL SKETCH

Ujjwol Subedi was born in a small village called Sarlahi in eastern part of Nepal to his

parents Kalpana Subedi and Lok Nath Subedi Sharma. He obtained his high school degree from

National School of Sciences. He finished his undergraduate from North Dakota State University in

2013 with Bachelor’s Degree in Computer Science and Mathematics. After completion of degree,

he worked as a system analyst in Softnice Inc from 2014 - 2015. After working one year he decided

to pursue his Master Degree from University of Texas Rio Grande Valley where he received his

Master of Science in Computer Science degree in May 2017.

Permanent Address:

Ujjwol Subedi

Dhumbarahi - ward no 4

Kathmandu, Nepal 00977

ujjwol007@gmail.com

39

	Randomized Approach tor Set Cover with Multiple Phases*
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	CHAPTER I. Introduction
	CHAPTER II. An overview of Greedy Approach For the Set Cover Algorithm
	Greedy algorithm
	Approximation Algorithm
	Randomization Algorithm
	Maximal K-coverage for Set Cover

	CHAPTER III. Weighted Set Cover
	CHAPTER IV. Computational Model and Complexity
	Interactive Proof System
	Deterministic Computation

	CHAPTER V. Outline of Our Methods
	CHAPTER VI. Algorithm for Set Cover
	CHAPTER VII. Lower Bound for Set Cover
	Randomized Model for Lower Bounds
	Lower Results

	CHAPTER VIII. Conclusion
	Bibliography
	APPENDIX A
	Biographical Sketch

