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Critical adsorption on curved objects

A. Hanke and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 25 September 1998!

A systematic field-theoretical description of critical adsorption on curved objects such as spherical or rodlike
colloidal particles immersed in a fluid near criticality is presented. The temperature dependence of the corre-
sponding order parameter profiles and of the excess adsorption are calculated explicitly. Critical adsorption on
elongated rods is substantially more pronounced than on spherical particles. It turns out that, within the context
of critical phenomena in confined geometries, critical adsorption on a microscopically thin ‘‘needle’’ repre-
sents a distinct universality class of its own. Under favorable conditions the results are relevant for the
flocculation of colloidal particles.@S1063-651X~99!10305-2#

PACS number~s!: 64.60.Fr, 68.35.Rh, 82.70.Dd, 64.75.1g

I. INTRODUCTION

In colloidal suspensions the interaction between the me-
soscopic dissolved particles and the solvent is of basic im-
portance@1,2#. For example, the solvent generates effective
interactions between the colloidal particles which can even
lead to flocculation. The richness of the physical properties
of these systems is mainly based on the possibility to tune
these effective interactions over wide ranges of strength and
form of the interaction potential. Traditionally this tuning is
accomplished by changing the chemical composition of the
solvent, e.g., by adding salt, polymers, or other components
@1#. Compared with such modifications, changes of the tem-
perature or pressure typically result only in minor changes of
the effective interactions. This, however, is only true as long
as the solvent is not thermodynamically close to a phase
transition of its own. For example, if the solvent consists of
a binary liquid mixture close to afirst-order demixing tran-
sition into a A-rich and aB-rich liquid phase, even slight
changes of the temperature or of the partial pressures of the
two speciesA and B can lead to massive changes of the
effective interactions between dissolved colloid particles in-
duced by the occurrence of wetting transitions. They lead to
wetting films of the preferred phase coating the colloidal
particles@3#. These wetting films can snap into bridges if the
particles come close to each other leading to flocculation
@4,5#. For charged colloidal particles such as silica spheres
immersed in the binary liquid mixture of water and 2,6-
lutidine @4# flocculation can also be influenced by screening
effects generated by the adsorbed layers@6#.

Similarly drastic effects can occur if the solvent is
brought close to acritical point. The inevitable preference of
the surfaces of the colloidal particles for one of the two sol-
vent species of a binary liquid mixture near its critical de-
mixing point or for the liquid phase of a solvent fluid near its
liquid-vapor critical point results into the presence of effec-
tive surface fields leading to pronounced adsorption profiles
of the preferred component. This so-called ‘‘critical adsorp-
tion’’ becomes particularly long-ranged due to the correla-
tion effects induced by the critical fluctuations of the order
parameter of the solvent. In the case of a planar wall critical
adsorption has been studied in much detail@7–16#. Asymp-
totically close to the critical pointTc its universal properties
are linked to thecritical adsorption fixed pointof the corre-

sponding renormalization group description. The ensuing
scaling functions near the surface of a spherical particle with
radius R refer to the simultaneous scaling limitT→Tc , s
→`, andR→`, wheres is the distance from the confining
surface. In this limit the ratios/R is kept fixed forming a
finite scaling variable.At the critical adsorption fixed point
the surface field is infinitely large so that the order parameter
profile diverges upon approaching the surface. We recall that
such divergences refer to the renormalization group fixed
point whereas actually the divergence of the order parameter
profile is cut off at atomic distancess from the surface.

As compared to a planar surface critical adsorption on a
spherical particle is expected to exhibit important differences
in behavior because the confining surface has a positive cur-
vature and because a sphere represents only a quasi-zero-
dimensional defect floating in the critical fluid. The interfer-
ence of critical adsorption on neighboring spheres gives rise
to the so-called critical Casimir forces@17# which have been
argued to contribute to the occurrence of flocculation nearTc
@18–20#. A quantitative understanding of these phenomena
requires the knowledge of the critical adsorption profiles
near the colloidal particles and the resulting effective free
energy of interaction in the whole vicinity of the critical
point, i.e., as functions of both the reduced temperaturet
5(T2Tc)/Tc and the fieldh conjugate to the order param-
eter. This ambitious goal has not yet been accomplished.
Instead, the introduction of a surface curvature has limited
the knowledge of the corresponding critical adsorption so far
to the case of spheres for the particular thermodynamic state
(t,h)5(0,0) of the solvent@21,22#. Only recently at least the
temperature dependence of the critical Casimir force be-
tween a sphere and a planar container wall has been ad-
dressed@23#. Thus the present study of the temperature de-
pendence of critical adsorption on a single sphere contributes
one step towards reaching the aforementioned general goal.

Apart from spherical particles, also rodlike particles play
an important role@24#. Rodlike objects are provided, e.g., by
fibers or colloidal rods@24#, semiflexible polymers with a
large persistence length such as actin@25#, microtubuli @25#,
and carbon nanotubes@26#. Moreover the knowledge of the
general curvature dependence of critical adsorption is also
relevant, e.g., for curved membranes@27,28# dissolved in a
fluid near criticality or for the liquid-vapor interface between
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a binary liquid mixture near its critical demixing point and
its noncritical vapor, which exhibits rippled configurations
due to the occurrence of capillary waves@27#.

Near criticality the relevant length scales of the solvent
structures are dominated by the diverging bulk correlation
length j65j0

6utu2n, wheren is the standard universal bulk
critical exponent;j0

1 andj0
2 are nonuniversal amplitudes in

the one- (1) and two-phase region (2), respectively, with
values typically in the order of a few Å. In practice the
correlation length can span the range between 5 Å –1mm
depending ont. In the present context this length scale is
played off against the length scaleR of the radius of the
dissolved particles. We note that the available systems can
realize both the limitR/j@1 as well as the opposite limit
R/j!1. In the case of Ludox silica particlesR'12 nm@29#
so that the limitR/j!1 can be easily achieved even with the
upper limits forj set by finite experimental resolutions. The
ratio of the lengthl and the radiusR of rodlike particles can
be quite large, in conjunction with a small radius such asR
'7 nm in the case of colloidal boehmite rods@24#. In this
work we considerlong rods, i.e.,R,j! l , and neglect effects
which may arise due to their finite lengthl.

In the present contribution we investigate systematically
the temperature dependence of the critical adsorption on a
single spherical or rodlike particle, i.e., the case (tÞ0,h
50). ~The generalization to the casehÞ0 is straightforward
but tedious.! In order to be able to treat spheres and cylinders
in a unified way within a field-theoretical approach and for
general spatial dimensionsD it is helpful to consider the
particle shape of ageneralized cylinder K@30# with an infi-
nitely extended ‘‘axis’’ of dimensiond. The ‘‘axis’’ can be
the axis of an ordinary infinitely elongated cylinder (d51),
or the midplane of a slab (d5D21), or the center of a
sphere (d50). For general integerD andd the explicit form
of K is

K5$r5~r' ,r i !PRD2d3Rd; ur'u<R% ~1.1!

with r' andr i perpendicular and parallel to the axis, respec-
tively ~see Fig. 1!. Note thatr' is a d-dimensional vector
with

d5D2d. ~1.2!

The radiusR of the generalized cylinderK is the radius in the
cases of an ordinary cylinder or a sphere and it is half of the
thickness in the case of a slab. For the slab the geometry
reduces to the much studied case of~two decoupled! half
spaces. The generalization ofD to values different from three
is introduced for technical reasons becauseDuc54 marks the
upper critical dimension for the relevance of fluctuations of
the order parameter leading to a behavior different from that
obtained from mean-field theory valid forD54.

In Sec. II we discuss the general scaling properties of the
local order parameter profiles for critical adsorption on
spheres and cylinders, in particular the behavior close to the
particle surfaces and for small particle radii, respectively. In
Sec. III we consider the corresponding properties of the ex-
cess adsorption. In Sec. IV we present explicit results both
for the order parameter profiles and for the excess adsorption
in mean-field approximation. Section V contains our conclu-

sions. In Appendix A we discuss the two-point correlation
function near a microscopically thin ‘‘needle’’ at criticality.
In Appendix B we determine a universal amplitude and a
universal scaling function as needed in Secs. II and III, re-
spectively. In Appendix C, finally, we consider the general
curvature dependence of the excess adsorption.

II. ORDER PARAMETER PROFILES

A. General scaling properties

Asymptotically close toTc ~compare the second para-
graph of the Introduction! critical adsorption on the surface
of a sphere or cylinder with radiusR is characterized by an
order parameter profilêF(r )& t which for h50 takes the
scaling form

^F~r !& t5autubP6~s/j6 ,R/j6! ~2.1!

for radial distancess5r'2R*s from the surface larger
than a typical microscopic lengths. Here ^ & t denotes the
thermal average in the presence of a sphere or a cylinder and
b is the standard universal bulk critical exponent. The scal-
ing functionsP6 depend on two scaling variables

FIG. 1. ~a! A generalized cylinderK with d,D @i.e., d5D
2d.0, see Eq.~1.1!# and~b! a sphere as the special case ofK with
d5D as examples of particles with curved boundaries.D is the
spatial dimension. The pointr5(r' ,r i ) at which, e.g., the order
parameter is monitored is also shown.
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x65s/j6 , y65R/j6 . ~2.2!

The scaling functionsP6 areuniversalwhile the nonuniver-
sal bulk amplitudesa and j0

6 are determined by the value
^F& t, b5autub for t,0, t→02 of the order parameter in the
unbounded bulk and by the amplitudes of the correlation
length, respectively.~In this work we are always concerned
with the Ising universality class.! We note that the form of
P6 depends on the definition used for the correlation length
j6 . For definiteness we adoptj6 as being thetrue correla-
tion length fixed by the exponential decay of the two-point
correlation function in real space@31#. Bearing this in mind
one finds that P1, b[P1(`,y1)50, P2, b[P2(`,y2)
51, and P6(x6→`,y6)2P6, b;exp(2x6) where the
prefactor in front of the exponential may by an algebraic
function of x6 ~see Sec. IV!.

On the other hand, in the limity6→` with x6 fixed the
scaling functionsP6(x6 ,y6) reduce to

P6~x6![P6~x6 ,`!, half-space, ~2.3!

corresponding to the half-space bounded by a planar surface.
In recent years the scaling functionsP6(x6) for the half-
space have been intensively studied theoretically@9,12–14#
and compared with experiments@9,14–16#. For later refer-
ence we quote some of their properties. First, we note the
asymptotic behavior@12#

P6~x6→0!→c6 x6
2b/n

3@11ā6 x6
1/n1ā6

8 x6
2/n1b̄6 x6

D 1•••#

~2.4!

with universal amplitudesc6 , ā6 , ā6
8 , andb̄6 @32# which

depend, however, on the definition of the correlation length
@31#. The ellipses stand for contributions which vanish more
rapidly than x6

D . The exponentb/n is the bulk ‘‘scaling
dimension’’ @33# of the order parameterF. For convenience
of the reader we quote their numerical values@33,9#

b~D54!51/2, b~3!.0.328, b~2!51/8, ~2.5a!

n~D54!51/2, n~3!.0.632, n~2!51, ~2.5b!

so that

~b/n! ~4!51, ~b/n! ~3!.0.519, ~b/n! ~2!51/8.
~2.5c!

The leading power law in Eq.~2.4! is a consequence of the
fact that due to the presence of the symmetry breaking sur-
face field the limitt→0 must lead to a nonvanishing order
parameter profile att50 so that

^F~r !&hs, t505a c6 ~s/j0
6!2b/n. ~2.6!

~The subscript hs stands for half-space.! Thus the amplitude
of the power laws2b/n in Eq. ~2.6! consists of the combina-
tion a (j0

6)b/n of nonuniversal bulk amplitudes and of the
universal surface amplitudec6 . Because the left-hand side
~LHS! of Eq. ~2.6! does not depend on how the limitt50 is

approached, the universal amplitudesc1 andc2 are related
via the universal bulk ratioj0

1/j0
2 :

c2

c1
5S j0

1

j0
2D b/n

. ~2.7!

The terms proportional toā6 andā6
8 in Eq. ~2.4! correspond

to regular contributions for t→0 of the order parameter
since

^F~r !&hs, t →
t→0

^F~r !&hs, t50

3@11A t1A8 t21B6utu22a1•••#,

~2.8!

whereA56 ā6(s/j0
6)1/n andA85ā6

8 (s/j0
6)2/n areindepen-

dentof the sign oft @12#. The term proportional tob̄6 in Eq.
~2.4! corresponds to the first singular contribution@34# for t
→0 of the order parameter leading to the termB6utu22a in
Eq. ~2.8! with the bulk exponenta522nD and B6

5b̄6(s/j0
6)D.

Figure 2 summarizes theoretical results forP6(x6) for
the spatial dimensionsD54, 3, and 2. InD54 the functions
P6 are given by the following mean-field expressions:

P1~x1!5
A2

sinh~x1!
, P2~x2!5 cothS x2

2 D , D54.

~2.9!

The results forD53 represent recent Monte Carlo~MC!
simulations @13,15# and field-theoretical renormalization
group ~RG! calculations@12,15#. For D52 exact results are
available from the semi-infinite two-dimensional Ising model
@35#. Note thatP6(x6) for any fixed value ofx6 decreases
with decreasingD @36#. This reflects the general trend that
critical fluctuations, which reduce the mean value of the or-
der parameter, are more pronounced in lower spatial dimen-
sions.

The curves in the inset of Fig. 2 are scaled so that they
demonstrate the leading behavior ofP6(x6→0). ~A similar
representation will be used in Sec. IV.! In Table I we quote
the corresponding numerical values of the surface amplitudes
c6 and ā6 according to Eq.~2.4!. In order to achieve a
presentation in the inset of Fig. 2~b! which reflects both the
leading behavior ofP2(x2→0) and the exponential decay
P2(x2→`)21; exp(2x2) we introduce the function

U~x2!5 tanhS x2
2

x211D . ~2.10!

The curves in the inset of Fig. 2~b! comply with the above
condition since U(x2→0);x2

2 and U(x2→`)21
;exp(22x2) so that in both limits the leading asymptotic
behaviors ofP2(x2) are not changed.

In the remaining part of this section we discuss the new
features ofP6(x6 ,y6) which arise fory6,`. First, we
consider the short distance behavior fors→0, which corre-
sponds to the limitx6→0 with y6 fixed. Then, we consider
cases in which the radiusR is small compared withj6 as
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well as the distance between the sphere or the cylinder and
the point for which the order parameter is monitored. This
corresponds to the limity6→0 with x6 fixed. It turns out
that in this limit the behaviors for a sphere and a cylinder in
D53 arequalitativelydifferent.

B. Short distance expansion

The same reasoning leading to Eq.~2.6! in case of the
half-space yields for the generalized cylinder

^F~r !& t505a C6~D! ~s/j0
6!2b/n, D5s/R, ~2.11!

i.e., the universal amplitudec6 in Eq. ~2.6! is generalized to
the universal amplitudefunction C6(D). This function ap-
pears in the asymptotic behavior

P6S x6 ,y65
x6

D D→C6~D! x6
2b/n , x6→0, D fixed,

~2.12!

which underscores thatC6(D) is universal but depends on
the definition of the correlation length@31# @compare Eq.
~2.4!# and on the geometry. Since the limitD→0 must re-
produce the behavior for the half-space one hasC6(0)
5c6 . According to Eq. ~2.7! the functionsC1(D) and
C2(D) are proportional to each other with

C2~D!

C1~D!
5

c2

c1
5S j0

1

j0
2D b/n

. ~2.13!

Therefore it is sufficient to study only one of these functions,
say,C1(D), which according to Eqs.~2.11! and~2.6! can be
written as

C1~D!5c1 ^F~r !& t50 / ^F~r !&hs, t50 . ~2.14!

In the case of a sphere, i.e.,d5D, the universal scaling
function C1(D) is known exactly for any spatial dimension
D of interest by means of a finite conformal mapping from
the half-space@21#. It takes the simple analytic form

C1~D!5c1 S 11
D

2 D 2b/n

, d5D, ~2.15!

and depends onD only via the corresponding values ofc1

andb/n. For large distances from the sphere, i.e.,D@1, the
functionC1(D) in Eq. ~2.15! decays asD2b/n ~compare the

FIG. 2. ~a! Universal scaling functionP1(x1) for critical ad-
sorption on a planar surface in spatial dimensionsD54, 3, and 2.
The estimates forP1(x1) in D53 labeled MC and RG are ob-
tained by Monte Carlo simulations and field-theoretical
renormalization-group calculations. We display the corresponding
data presented in Ref.@15#. The inset shows a scaled version of
P1(x1) which reflects, in particular, the asymptotic behavior of
P1(x1→0). The open symbols indicate the corresponding values
of c1 @see Eq.~2.4! and Table I#. ~b! Same representation as in~a!
for the universal scaling functionP2(x2). The inset shows a scaled
version ofP2(x2) which contains the functionU(x2) defined in
Eq. ~2.10! in order to facilitate a similar representation as in the
inset of ~a!.

TABLE I. Numerical values of the universal amplitudesc6 and ā6 @see Eq.~2.4!#.

D c1 c2 ā1 ā2

4 A2.1.414 2 2
1
6 .20.167 1

12.0.083
3, MC a 0.866 1.22
3, RGb 0.717 1.113 20.389 0.129
3, interpolationc 0.9460.05 1.2460.05
2 0.803 0.876 2

1
2 520.5 1

4 50.25

aReference@15#.
bReference@15#; for ā6 we use in addition Eq.~48! in Ref. @12# for «51.
cReference@14#; obtained from interpolating between the results inD542« andD52.
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following subsection!. In the opposite limitD→0, which is
of interest in the present subsection, one has

C1~D→0!

c1
512

b/n

2
D1

b/n ~b/n11!

8
D21O~D3!,

d5D. ~2.16!

We note, first, that an expansion such as in Eq.~2.16! is
expected to hold not only near the surface of a sphere but
also near a smoothly curved surface ofmore general shape.
According to differential geometry up to second order in
curvature the short distance expansion near a
(D21)-dimensional surface of arbitrary shape involves only
the geometric invariantsKm , Km

2 , andKG with @37,38#

Km5
1

2 (
i 51

D21
1

Ri
~2.17a!

and

KG5 (
pairs
i , j

D21
1

RiRj
, ~2.17b!

whereRi are theD21 principal local radii of curvature. In
D53 Eq. ~2.17! yields the familiar expressions for the local
mean curvature and the local Gaussian curvature. Second, we
note that Eq.~2.16! reflects a property of the fluctuating or-
der parameter fieldF(r ) ~or ‘‘operator’’! in the outer space
of the sphere itself. In this spirit also near a surface of more
general shape the short distance expansion can be formulated
in ‘‘operator form:’’

F~r !/^F~r !&hs, t505@1# $11k1Kms1k2Km
2s21kG KG s2

1O~s3!%1O~sD!. ~2.18!

Heres is the distance ofr to the nearest point of the surface.
The terms on the right-hand side~RHS! of Eq. ~2.18! should
be interpreted as operators which are locatedat this point of
the surface, i.e., assurface operators. On the RHS of Eq.
~2.18! only such terms are shown explicitly which are pro-
portional to the unity operator@1#. The corrections emerge
from curvatures of higher order and surface operators of dif-
ferent types which are expected to scale with powers ofs at
least of the ordersD @compare Eq.~2.4! for the half-space
and Ref.@34##. Thus for D.2 the terms displayed in Eq.

~2.18! represent the leading contributions of the short dis-
tance expansion ofF(r ). The dimensionless coefficients
k1 , k2, and kG depend onD but not on the shape of the
boundary surface. Comparison of Eq.~2.18! with Eq. ~2.16!
for the sphere, or direct calculation near a surface of arbitrary
shape@10#, yields

k152
b/n

D21
. ~2.19!

In D53 the coefficientsk2 andkG in Eq. ~2.18! cannot be
determined by comparison with Eq.~2.16! for the sphere
alone. To this end one would need, in addition, the knowl-
edge of the expansion for at least one curved surface of dif-
ferent shape~e.g., the surface of a cylinder!. However, since
in D53 the sphere has the propertyKG5Km

2 the compari-
son of Eq.~2.18! with Eq. ~2.16! determines at least the sum

k21kG5
b/n ~b/n11!

8
, D53. ~2.20!

In Sec. IV we confirm Eq.~2.18! and determinek1 , k2, and
kG for D54.

The expansion~2.18! holds upon inserting it into thermal
averages if the distances to the curved surface—albeit being
large on the microscopic scale—is much smaller than other
characteristic length scales such as the correlation length or
the distances to the remaining operators in correlation func-
tions. For certain thermal averages such as the profile
^F(r )& t additional regular terms can occur on the RHS
@compare Eq.~2.8! for the half-space#. For spheres and cyl-
inders, in particular, the expansion~2.18! determines the
leading contributions to the scaling functionsP6(x6 ,y6)
generated by the surface curvature. For the surface of a gen-
eralized cylinder the curvatures in Eq.~2.17! are given by

Km5
d21

2

1

R
~2.21a!

and

KG5
~d21!~d22!

2

1

R2
. ~2.21b!

By inserting these expressions into Eq.~2.18! and using Eq.
~2.1! one obtains

P6~x6→0,y6!usde→c6 x6
2b/n H 11k1

d21

2
D1Fk2

~d21!2

4
1kG

~d21!~d22!

2 G D21O~D3! J ~2.22!

for x6→0 with y6 fixed so thatD5x6 /y6→0 @the subscript sde refers to the short distance operator expansion in Eq.
~2.18!#.

Note that Eq.~2.22! does not contain the abovementioned regular contributions. Upon employing Eq.~2.4! for the half-
space, however, one can obtain the asymptotic expansion ofP6(x6→0,y6) including the leading regular term. Assuming that
for t:0 the profile^F(r )& t is still analytic in 1/R one finds

P6~x6→0,y6!→c6 x6
2b/n H 11k1

d21

2
D1Fk2

~d21!2

4
1kG

~d21!~d22!

2 GD21ā6 x6
1/n1•••J ~2.23!
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for x6→0 with y6 fixed so thatD5x6 /y6→0. The ellipses
stand for contributions which vanish more rapidly thanx6

2 if

D.2 @39#. The universal amplitudesc6 and ā6 are the
same as in Eq.~2.4! ~see Table I! and k1 , k2, andkG are
from Eqs.~2.19! and~2.20!. In Sec. IV we shall confirm Eq.
~2.23! explicitly for D54.

C. Spheres and cylinders with small radii

In this subsection we consider spheres and cylinders
whose radii are much smaller than other characteristic
lengths such as the correlation length or the distance between
the particle and the point at which the order parameter is
monitored. In these limiting cases the effect of the particle
upon the fluctuating order parameter distribution can be rep-
resented by ad-function potential located at the center of the
particle which enhances the value of the order parameter. It
is instructive to consider this expansion for the generalized
cylinderK for which thisd-function potential is smeared out
over its axis, i.e., the Boltzmann weight exp(2dHK) of K,
wheredHK is the difference of the Hamiltonian describing
the system with and without the presence ofK ~whose axis
includes the origin!, can be systematically expanded in a
series with increasing powers ofR @19,23#, i.e.,

exp~2dHK!}11Ed,D Rb/n2D1d wK1•••, ~2.24!

whereEd,D is an amplitude and

wK5H E
Rd

d dr i F~r'50,r i!, d,D,

F~0!, d5D.

~2.25!

Here only the leading nontrivial contribution forR→0 is
shown explicitly and the ellipses stand for contributions
which vanish more rapidly forR→0. For the case thatK is a
sphere@19#, i.e., d5D, the amplitudeED,D is equal to the
ratio A ↑

F/BF , whereA ↑
F andBF are amplitudes of the half-

space profile

^F~r !&hs, t505A ↑
F ~2s! 2b/n ~2.26!

at the critical point of the fluid for the boundary condition↑
corresponding to the critical adsorption fixed point and of the
bulk two-point correlation function

^F~r !F~0!&b, t505BF r 2 2b/n ~2.27!

at criticality, respectively. The ratio (A ↑
F)2/BF is universal

@23#. The comparison of Eq.~2.26! with Eq. ~2.6! yields the
relation

A ↑
F5a ~2j0

6!b/n c6 ~2.28!

between the nonuniversal amplitudesA ↑
F , a, j0

6, and the
universal amplitudec6 .

It is crucial to observe that Eq.~2.24! is only valid if the
exponent ofR is positive, i.e.,

b/n2D1d.0. ~2.29!

Figure 3 shows as a dashed lined5D2(b/n)(D) @40# in
the (d,D) plane which separates generalized cylindersK
which arerelevantperturbations for the fluctuating order pa-
rameter field~such as the strip inD52 or the plate inD
53) from those which areirrelevant and for which Eq.
~2.24! applies. Thus, the disc inD52 and the sphere inD
53 represent irrelevant perturbations whereas the cylinder in
D53 represents a relevant perturbation. This implies that an
infinitely elongated cylinder inD53 generates a perturba-
tion of the order parameter from its bulk value whose spatial
extension is only limited by the bulk correlation length. The
order parameter profile becomes even independent ofR in
the formal limit R→0, i.e., if the cylinder radiusR becomes
microscopically small@41#. The critical adsorption transition
on such a microscopically thin ‘‘needle’’ is characterized by
critical exponents which need not be equal to the correspond-
ing exponents for the bulk or the half-space~see Appendix
A!. For the disc inD52 and the sphere inD53, in contrast,
the deviation of the order parameter from its bulk value van-
ishes in the limitR→0. This is reflected by Eq.~2.24! which
is—apart from the condition in Eq.~2.29!—only valid if the
small radiusR is still large on the microscopic scale.

The lined5D2(b/n)(D) itself corresponds to marginal
perturbations leading to a behavior which in general is dif-

FIG. 3. Diagram of generalized cylindersK which behave—in
the renormalization group sense—as relevant or irrelevant perturba-
tions of a fluid near criticality. The parameterd<D characterizes
the shape ofK and D is the space dimension@see Eq.~1.1!#. The
point (d,D)5(2,2) corresponds to a disc inD52 and the points
(3,3) and (2,3) to a sphere and an infinitely elongated cylinder in
D53, respectively. The line withD54 and arbitraryd represents
the upper critical dimension for which the mean-field results for the
adsorption profiles are exact~see Sec. IV!. The open circles indicate
points (d,D) for which d5D2(b/n)(D) within the Ising univer-
sality class. These points are connected by the dashed line so that
within the shaded regionaboveit the small radius expansion~2.24!
is valid @see Eq.~2.29!# andK represents an irrelevant perturbation.
Points (d,D) below the broken line, such as the cylinder inD53,
are characterized by the fact that the order parameter at large dis-
tances fromK deviates from its bulk value even if the radiusR is
microscopically small, which means thatK represents a relevant
perturbation.
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ferent from Eq.~2.24!. We shall neither discuss this nor the
crossover from marginal behavior to the behavior described
by Eq. ~2.24! which may arise for points closely above the
line. The lined5D2(b/n)(D) includes, in particular, the
generalized cylinder withd53 andD54 ~see Sec. IV!. The
marginal behavior of this particular generalized cylinder,
however, is not typical for spheres or cylinders inD53,
which are strictly irrelevant or relevant perturbations, respec-
tively. Therefore in the following we shall generally speak of
spheres ifd5D and speak of cylinders ifd52 andD>3
~see Fig. 3!.

We now turn to the consequences of Eq.~2.24! and the
related properties of the universal scaling functionsC1(D)
and P6(x6 ,y6) defined in Eqs.~2.14! and ~2.1!. First, we
consider the sphere, i.e.,d5D, for which Eq.~2.24! applies.
In order to obtain the asymptotic behavior ofC1(D) for D
5s/R→` one basically replaceŝF(r )& t50 in the numera-
tor on the RHS of Eq.~2.14! by thebulk two-point correla-
tion function^F(r )F(0)&b, t50 wherer can be replaced bys
in leading order. By using Eqs.~2.26! and~2.27! in conjunc-
tion with ED,D5A ↑

F/BF one finds

C1~D→`!→c1 S D

2 D 2b/n

, d5D. ~2.30!

This checks with the exact result forC1(D) in Eq. ~2.15!.
For t:0 and y65R/j6→0 with x65s/j6.0 fixed the
same steps as above lead to

P6~x6 ,y6→0!2P6, b→c6 ~2y6!b/n x6
22b/n F6~x6!,

d5D. ~2.31!

HereF6 is the bulk universal scaling function defined by
~compare Appendix B!

^F~r !F~0!&b, t
C 5BF r 2 2b/n F6~r /j6!, ~2.32!

where the superscriptC denotes the cumulant of the correla-
tion function. Equations~2.32! and~2.27! imply the normal-
izationF6(0)51. According to the definition ofj6 as the
true correlation length@compare the discussion below Eq.
~2.2!# one hasF6(x6→`); exp(2x6). Equation~2.31! im-
plies thatP6(x6 ,y6→0) decays to its bulk value with the
power law;y6

b/n for any value ofx6 .
Next, we consider the cylinder, i.e.,d52 andD>3. In

accordance with the discussion above this object represents a
relevant perturbation. The order parameter deviates from its
bulk value even forR→0 so that the universal scaling func-
tions C1(D) and P6(x6 ,y6) remain finite in the limitD
5s/R→` and y65R/j6→0, respectively. Fort50 this
implies

C6~D→`!→n6 , d52,D>3, ~2.33!

which defines new universal amplitudesn6 with n2 /n1

5(j0
1/j0

2)b/n. Equations~2.33! and ~2.11! imply that for t
50 the order parameter profile near a thin ‘‘needle’’ at dis-
tancess from the needle large compared with microscopic
lengths takes the form

^F~r !& t505a n1 ~s/j0
1!2b/n, needle. ~2.34!

For t:0 one finds

P6~x6 ,y6→0!→P6~x6 ,0![N6~x6!, d52,D>3,
~2.35!

where the new universal scaling functionsN6(x6) charac-
terize the critical adsorption profile on a thin needle. In the
limit x6→0 they behave as

N6~x6→0!→n6 x6
2b/n , needle, ~2.36!

with n6 from Eq. ~2.33! @compare Eq.~2.4! for the half-
space#. In Sec. IV we shall confirm Eqs.~2.33!–~2.36! and
calculaten6 andN6(x6) explicitly for D54. Figure 4 sum-
marizes the various types of limiting behavior of the scaling
functionsP6(x6 ,y6).

III. EXCESS ADSORPTION

A. General scaling properties

Close toTc the total enrichment of the preferred compo-
nent of the fluid near the surface of the generalized cylinder
is proportional to the excess adsorptionG(t,R) defined as

G~ t,R!5E
V
dDr @^F~r !& t2^F& t, b#

5 l d Vd E
0

`

ds~s1R!d21 @^F~r !& t2^F& t, b#.

~3.1!

HereV5RD\K is the volume accessible to the critical fluid,
i.e., the total space except for the volume occupied by the
sphere or the cylinderK, andVd52pd/2/ G(d/2) is the sur-
face area of thed-dimensional unit sphere. For a sphere one
hasd5D2d50 and l d51 whereas for a cylinderd52 so
that in D53 the quantityl d5 l is the length of the cylinder.

FIG. 4. The scaling functionsP6(x65s/j6 ,y65R/j6) ex-
hibit distinct behaviors for various limits of the variablesx6 and
y6 . The position of an equation number in the (x,y) plane indi-
cates the corresponding limiting case to which it applies. The case
y65` corresponds to the half-space@see Eq.~2.4! and Table I#.
The short distance behavior fors→0 corresponds to the limitx6

→0 with y6 fixed @see Eq.~2.23!#. The functionsC6(D5s/R) in
Eq. ~2.12! characterize the behavior forj6→`, i.e., the limit x6

→0 with fixed ‘‘slope’’ D215y6 /x6 . The behavior for smallR
corresponds to the limity6→0 with x6 fixed @see Eqs.~2.31! and
~2.35!#.
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In order to obtain the scaling behavior ofG(t,R) we split the
s integration into the intervals 0<s<s and s.s wheres
represents a typical microscopic length@14#. For the second
interval one can use Eq.~2.1! which leads to

G~ t,R!5 l d Vd @ I ~ t;s,R!1J6~y6 ;s/j6!# ~3.2!

with

I ~ t;s,R!5E
0

s

ds~s1R!d21 @^F~r !& t2^F& t, b#,

~3.3!

J6~y6 ;s/j6!5a utub j6
d E

s/j6

`

dx6 ~x61y6!d21

3@P6~x6 ,y6!2P6, b#. ~3.4!

In the limit t→0 the integral in Eq.~3.3! remains finite and
yields a nonuniversal constant which is subdominant to the
diverging contributionJ6 in Eq. ~3.4!. In order to clarify the
dependence of the latter ony65R/j6 we decompose it ac-
cording to

J6~y6 ;s/j6!5Rd21 a j0
6 utub2nH E

s/j6

`

dx6

3@P6~x6!2P6, b#1G6~y6 ;s/j6!J ,

~3.5!

whereP6(x6)5P6(x6 ,`) are the scaling functions for the
half-space and

G6~y6 ;s/j6!5E
s/j6

`

dx6H S x6

y6
11D d21

@P6~x6 ,y6!

2P6, b#2@P6~x6!2P6, b#J . ~3.6a!

The comparison of Eq.~3.5! with Eq. ~3.2! shows that the
first term in curly brackets in Eq.~3.5! renders a contribution
of the intervals.s to the excess adsorption per unit area as
if the surface of the particle would beplanar times the area
A5 l dVdRd21 of the actually curved surface of a sphere or a
cylinder. Thus the functionsG6 in Eq. ~3.5! reflect the de-
viation of the excess adsorption on a curved surface from
that on a planar surface beyond pure geometry.

In order to reveal the behavior ofJ6(y6 ;s/j6) for t
→0 it is necessary to study the integrals in Eqs.~3.5! and
~3.6a! at their lower boundss/j6→0. The integral in Eq.
~3.5! can be analyzed along the lines of Sec. IIA in Ref.@14#.
One finds that forD,4 its contribution toG(t→0,R) leads
to the power law singularity;utub2n/(n2b) corresponding
to a planar surface. The proper limitD↗4, for which n
→b @see Eq.~2.5!#, is accomplished by the presence of a
term constant with respect tot which also diverges forD↗4
such that the sum leads to a contribution toG(t→0,R) which
diverges logarithmically inD54. The integral in Eq.~3.6a!,
however, remains finite fors/j6→0 also inD54 since the

singular behavior forx6→0 of the first term in curly brack-
ets is cancelled by the second term. This implies that the
function

G6~y6![G6~y6 ; s/j650! ~3.6b!

does indeed represent the leading behavior fort→0. Note
that G6(y6) is universal because it depends only on the
universal scaling functionsP6(x6 ,y6) andP6(x6). In sum
one finds

G~ t→0,R!→A a j0
6 H g6

utub2n21

n2b
1utub2n G6~y6!J ,

D<4, ~3.7!

with the universal numbers~see Table II!

g65H ~n2b! E
0

`

dx6 @P6~x6!2P6, b#, D,4,

n c6 , D54,
~3.8!

where the second line is the limit forD↗4 of the first line.
According to the above discussion one hasG6(`)50.
Equation ~3.7! generalizes the corresponding Eq.~2.10! in
Ref. @14# for a planar surface by the additional second term
in Eq. ~3.7!. A quantity accessible to experiments is the ratio

RF~ utu,R!5
G~1utu,R!

G~2utu,R!
~3.9a!

of the excess adsorptions above and below the critical point.
The leading behavior ofRF for utu→0 is characterized by a
universal functionRF(utu,y1 ,y2), i.e.,

RF~ utu→0,R!→RF~ utu,y1 ,y2!, ~3.9b!

which can be read off from Eqs.~3.9a! and ~3.7!. For a
planar surface this function reduces to the universal number
@14#

RF5
j0

1

j0
2

g1

g2
, half-space. ~3.10!

Table II summarizes theoretical results forg6 and RF cor-
responding to the half-space. For the curved surface of a
sphere or cylinder, however, we shall see that fory6

5R/j6→0 the divergence of the second term in curly

TABLE II. Numerical values of the universal numbersg6 and
RF @see Eqs.~3.8! and ~3.10!#.

D g1 g2 RF

4 A2/2.0.707 1 1
3, MC a 0.663 0.599
3, RGa 0.581 0.438
3, interpolationb 0.6960.1 0.5660.1 2.2860.1
2 0.910 0.0818 22.236

aReference@15#.
bReference@14#; compare Table I.
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brackets in Eq.~3.7! is more pronounced than the divergence
of the first term. In order to clarify this aspect we now dis-
cuss the behavior ofG6(y6) in the limit for large and small
values ofy6 , respectively.

B. The scaling functionG6„y6… for y6˜`

For y6@1 we assume thatG6(y6) is analytic in y6
21

5j6 /R so that it can be expanded into a Taylor series
aroundy6

2150, i.e.,

G6~y6→`!5ad,D
6 y6

211bd,D
6 y6

221••• ~3.11!

@recall G6(`)50 by definition#. The coefficientsad,D
6 and

bd,D
6 are dimensionless and universal and depend on the

space dimensionD and on the shape of the generalized cyl-
inder, i.e., ond. The validity of the expansion~3.11! is plau-
sible since in the limitj6 /R!1 the thickness;j6 of the
adsorbed layer is much smaller than the particle radiusR so
that a small curvature expansion should be applicable to
G(t→0,R) in Eq. ~3.7! in which a surface term; l dRd21 is
followed by successive terms;Rd22, Rd23, etc., generated
by the surface curvature. The terms on the RHS of Eq.~3.11!
correspond to the leading curvature contributions to this ex-
pansion and imply that for decreasing values ofy65R/j6

;utun the leading corrections to the first term in curly brack-
ets in Eq.~3.7!—corresponding to a flat surface—are of the
orderutub2n utu2nn with n51,2, etc., and start to dominate it
as soon asy6&1.

Similar as for the short distance expansion of the order
parameter@compare Eq.~2.18!# the first Taylor coefficients
of the expansion ofG6(y6→`) also determine the curva-
ture parameters of a particleK of more general shapepro-
vided its surfaceS is smooth and all principal radii of curva-
ture are much larger thanj6 . In this case one expects an
expansion of the general form

G~ t→0,R!5a j0
6E

S
dSH g6

utub2n21

n2b
1l1

6Km1l2
6Km

2

1lG
6KG1••• J , ~3.12!

where the curvaturesKm and KG are given for a
(D21)-dimensional surface of general shape in Eq.~2.17!.
For the special case that the particleK is a generalized cyl-
inder K the curvaturesKm and KG are given by Eq.~2.21!
and the comparison of Eq.~3.12! with Eqs.~3.7! and ~3.11!
yields

l1
6

d21

2
5utub2n ad,D

6 j6 ~3.13a!

and the relation

l2
6

~d21!2

4
1lG

6
~d21!~d22!

2
5utub2n bd,D

6 j6
2 .

~3.13b!

The curvature parametersl1
6 , l2

6 , andlG
6 depend onD

but should not depend on the shape ofK, i.e., ond in Eq.
~3.13!. This implies a corresponding dependence ond of
ad,D

6 and bd,D
6 , which provides an important consistency

check for the validity of Eq.~3.12!. In Sec. IV we confirm
this dependence and explicitly calculate the curvature param-
eters forD54.

C. The scaling functionG6„y6… for y6˜0

In order to investigate this limit it is convenient to con-
sider the function

y6
d21 G6~y6!5E

0

`

dx6 $~x61y6!d21 @P6~x6 ,y6!2P6, b#2y6
d21 @P6~x6!2P6, b#%. ~3.14!

Because fory6→0 the functionP6(x6 ,y6) in Eq. ~3.14! behaves qualitatively different for spheres as compared with
cylinders~see Sec. II C! we treat them separately.

First, we consider the sphere, i.e.,d5D, for which Eq.~2.31! holds for the behavior ofP6(x6 ,y6→0) if x6.0 is fixed.
However, the integral in Eq.~3.14! starts at the lower boundx650 where this condition forx6 is violated. Therefore we
temporarily split thex6 integration into the intervals 0,x6,Ay6 and x6.Ay6. In the latter interval the relations/R
.y6

21/2→` holds so that Eq.~2.31! is applicable. This leads to@the curly brackets correspond to those in Eq.~3.14!#

y6
d21 G6~y6!→E

0

Ay6
dx6 $ %1E

Ay6

`

dx6†~x61y6!D21 @c6 ~2y6!b/n x6
22b/n F6~x6!#2y6

D21 @P6~x6!2P6, b#‡.

~3.15!

In the second integral the variabley6 in (x61y6)D21 can
be replaced by zero in leading order fory6→0 and the term
proportional toy6

D21 , i.e., the half-space contribution, can
be dropped sinceD21.b/n. The resulting integrand is in-
tegrable forx6→0 so that the lower boundAy6 can be
replaced by zero and one can readily show that the resulting

second integral in Eq.~3.15! dominates the first integral for
y6→0. This leads to the final result

G6~y6→0!→v6 y6
2D111b/n , d5D, ~3.16!

with the universal amplitudes
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v65c6 2b/n E
0

`

dx6 x6
D2122b/n F6~x6!. ~3.17!

The numerical values ofv6 for several spatial dimensionsD
as presently available are summarized in Table III~see Sec.
IV B and Appendix B!. Using Eq.~3.1! in conjunction with
Eq. ~2.24! yields

G~ t→0,R!→ED,D Rb/n xb~ t !;utu2g, d5D, ~3.18!

with the bulk susceptibilityxb(t);utu2g and the critical ex-
ponentg5Dn22b. Equation~3.18! is, of course, consistent
with Eqs. ~3.16! and ~3.7!. For t→0 the universal function
RF(utu,y1 ,y2) in Eq. ~3.9! approaches the universal number

RF~0,0,0!5 lim
t→0

G~1utu,R!

G~2utu,R!
5S j0

1

j0
2D D2b/n

v1

v2
, d5D.

~3.19!

Whereas the dependence of the functionRF(utu,y1 ,y2) on
y1 , y2 is universal but depends on the definition used for
the correlation length, we note that the limitRF(0,0,0) in
Eq. ~3.19! is independent of the definition for the correlation
length. The reason is that according to the first parts of Eqs.
~3.19! and ~3.1! RF(0,0,0) can be expressed in terms of the
order parameter profilêF(r )& t without resorting to the no-
tion of the correlation length at all.~The same holds for the
numberRF in Eq. ~3.10! @14#.!

Next, we consider the cylinder, i.e.,d52 and D>3,
which represents a relevant perturbation~see Sec. II C!. In
this case Eq.~2.35! holds for the behavior ofP6(x6 ,y6

→0). Thusy6
d21 G6(y6)5y6 G6(y6) becomes indepen-

dent ofy6 in the limit y6→0 and tends to the constant given
by the integral in Eq.~3.14! with y6 replaced by zero. This
leads to

G6~y6→0!→y6 y6
21 , d52, D>3, ~3.20!

with the universal numbers

y65E
0

`

dx6 x6 @N6~x6!2P6, b#. ~3.21!

Numerical values ofy6 are only known forD54 at present
~see Table III and Sec. IV B!. Note that the numbersy6 are
not defined forD52 ~compare Sec. II C!. The exponent in
the power law in Eq.~3.20! differs from that in Eq.~3.16!—
apart from the difference generated on purely geometric
grounds—byb/n due to the different smally6 behavior of
the critical adsorption profiles for spheres as compared with
cylinders. Equation~3.20! in conjunction with Eq.~3.7! leads
to

G~ t→0,R!;utub22n, d52, D>3. ~3.22!

For t→0 the universal functionRF(utu,y1 ,y2) in Eq. ~3.9!
tends to the universal number

RF~0,0,0!5 lim
t→0

G~1utu,R!

G~2utu,R!
5S j0

1

j0
2D 2

y1

y2
, d52, D>3,

~3.23!

with y6 given by Eq.~3.21!. Again, the limit RF(0,0,0) is
independent of the definition for the correlation length@com-
pare Eq.~3.19!#.

IV. MEAN-FIELD THEORY

The critical fluctuations of the fluid are described by the
standard Hamiltonian@7,8#

H$F%5E
V
dV H 1

2
~¹F!21

t

2
F21

u

24
F4J ~4.1!

for a scalar order parameter fieldF(r ) supplemented by the
boundary conditionF51` at the surface of the sphere or
the cylinder corresponding to the critical adsorption fixed
point @12#. The position vectorrPRD covers the volumeV
5RD\K accessible to the critical fluid. The parametert is
proportional tot5(T2Tc)/Tc andu is theF4 coupling con-
stant. The thermal averagêF(r )& corresponding to the
Hamiltonian in Eq.~4.1! with the boundary condition for
critical adsorption at the surface ofK can be systematically
expanded in terms of increasing powers ofu, i.e.,

^F~r !&5A6

u
@m~s;R,t!1O~u!#, s5r'2R. ~4.2!

The leading contribution to this expansion corresponds to the
mean-field result for the order parameter profile which be-
comes exact in the limitD↗4. The profilem(s;R,t) is de-
termined by minimizingH$F% which leads to the Ginzburg-
Landau type equation of motion

m9~s!1
d21

s1R
m8~s!2t m~s!5m3~s!, ~4.3!

which is supplemented by the boundary conditions@7,8#

m~s→0;R,t!→
A2

s
, ~4.4a!

m~s→`;R,t!→m6, b5H 0, t>0,

utu1/2, t,0.
~4.4b!

The parametert is related tot5(T2Tc)/Tc and to the cor-
relation lengthj6 by

j65j0
6 utu21/25H t21/2, t.0,

1

A2
utu21/2, t,0,

~4.5!

and @compare the text following Eq.~2.2!#

TABLE III. Numerical values of the universal amplitudesv6

andy6 @see Eqs.~3.17! and ~3.21!# as presently available.

D v1 v2 y1 y2

4 4A2.5.657 8 1.90 1.86
3 1.5360.05 .1.47
2 0.515 0.0501 not defined not defined
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autu1/25A6

u
utu1/2, t,0. ~4.6!

Equations~4.3! and ~4.4! uniquely determine the profile
m(s;R,t). The universal scaling functionsP6(x6 ,y6) in
Eq. ~2.1! then read

P6~x6 ,y6!5utu21/2m~s;R,t!, D54. ~4.7!

Within the present mean-field approach this scaling form
holds because the LHS of Eq.~4.7! is dimensionless so that
it depends only on the dimensionless variablessutu1/2 and
Rutu1/2, whereutu1/2 is related toj6 by Eq. ~4.5!. Similarly,
the universal scaling functionC1(D) in Eq. ~2.11! is given
by

C1~D!5s m~s;R,t50!, D54. ~4.8!

Equations~4.7! and~4.8! lead to exact results forD↗4 and
generalized cylindersK with arbitrary d in the interval 1
<d<D ~compare Fig. 3!. Equations~4.3! and ~4.4! can be
solved numerically, e.g., by means of a shooting method
@42#. In some cases analytical solutions are available. In the
remaining part of this section we present the corresponding
explicit results for the problems discussed in Secs. II and III.

A. Order parameter profiles

We start with the universal scaling functionsP6(x6 ,y6)
according to Eqs.~4.7! and ~4.3!. Figure 5 shows their be-
havior as function ofx65s/j6 for various values of the
parametery65R/j6 in the case of a sphere~i.e., d5D with
D54, compare Sec. II C and Fig. 3!. For our presentation
we choose a scaled form which reflects the behavior of
P6(x6→0,y6) ~compare the inset of Fig. 2; hereb/n51).
Accordingly, the curves start at the mean-field valuesc1

5A2 andc252 @see Eq.~2.23! and Table I#, respectively,
and decay exponentially forx6→`. In order to deal with the
rapid decay ofP2(x2→`,y2)21 for small values ofy2 in
the caseT,Tc we replace the functionU(x2) in Eq. ~2.10!
by

U~x2 ,y2!5 tanhS x2
2

x211

y211

y2
D , d5D54, ~4.9!

so that U(x2 ,`)5U(x2). We emphasize again that the
function U(x2 ,y2) is introduced only in order to facilitate
an appropriate representation ofP2(x2 ,y2) which reflects
the behavior for both small and large values ofx2 for all
values ofy2 ~compare the discussion related to Fig. 2!. The
overall dependence ofP6(x6 ,y6) on the parametery6 is in
line with Eq.~2.31! and the related discussion. Starting from
the half-space behavior fory65` the profilesP6(x6 ,y6)
2P6, b decrease with decreasingy6 for any fixed value of
x6 and vanish in the limity6→0.

This latter behavior for a sphere differs from the corre-
sponding one for a cylinder~i.e., d52 andD54, compare
Sec. II C and Fig. 3!. Figure 6 shows the corresponding be-
havior of P6(x6 ,y6) for various values ofy6 . For the
presentation ofP2(x2 ,y2) in the case of the cylinder the
function U(x2)5U(x2 ,`) is suitable for all values ofy2 .
The overall dependence ony6 is characterized by the fact

that P6(x6 ,y6) does not vanish in the limity6→0 but
rather tends to the finite limit functionP6(x6 ,0)
5N6(x6) corresponding to the critical adsorption profile on
a thin needle. This is in line with Eq.~2.35! and the related
discussion. According to Eq.~2.36! the curves fory650
start at the mean-field values of the universal amplitudesn6

which are given by

n151, n25A2, D54. ~4.10!

Next, we consider the universal scaling functionC1(D) in
Eq. ~4.8! corresponding tot50. Figure 7 shows its behavior
for the present caseD54 and several values ofd. The func-
tion C1(D) starts atC1(0)5c1 @see the text following Eq.
~2.12!# and for D→` it vanishes in the case of the sphere
~i.e.,d5D with D54) while it tends to the finite numbern1

from Eq.~4.10! in the case of the cylinder~i.e.,d52). In the
marginal cased53 it vanishes only logarithmically~com-
pare Sec. II C and Fig. 3!. For t50 analytical solutions for
Eq. ~4.3! are available in some special cases even ford.1.
For example, fort50 andd54 the differential equation can

FIG. 5. ~a! Scaling functionP1(x1 ,y1) for a sphere in mean-
field approximation~i.e., d5D with D54) as a function ofx1 for
several values ofy1 . The curves start at the valuec1 ~compare the
inset in Fig. 2!. The curve fory15` corresponds to the half-space
profile @see Eq.~2.9!#. The curves decrease with decreasingy1 and
vanish in the limity1→0. The slopes atx150 can be read off
from Eq. ~4.16! with s/R5x1 /y1 . ~b! Same representation for
P2(x2 ,y2). The functionU(x2 ,y2) introduced for convenience
is defined in Eq.~4.9!.
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be solved by relating it to the generalized Emden-Fowler
equation@22#, or by realizing that it represents a so-called
‘‘equidimensional’’ equation~see, e.g., Sec. 1.4 in Ref.
@43#!. The result is

m~s;R,t50!5
2A2 R

s ~s12R!
, d54, ~4.11!

which agrees with Eqs.~4.8! and ~2.15!. It is worthwhile to
note that an analytical solution also exists for the particular
caset50 andd55/2 for which

m~s;R,t50!5
A2 / 2

s1R2AR ~s1R!
, d55/2, ~4.12!

from which the corresponding result forC1(D) can be in-
ferred from Eq.~4.8!. Finally, for t50, R50, and arbitrary
values ofd,3 one finds

m~s;R50,t50!5
A32d

s
, s5r' , d,3, ~4.13!

so that C1(`)5n15A32d.0 for d,3. This is in line
with Eq. ~4.12! as well as with Fig. 3 and the related discus-
sion, according to which inD54 a generalized cylinderK
with d,3 represents a relevant perturbation. In particular,
Eq. ~4.13! leads tom(r')51/r' representing the mean-field
profile near a thin needle~for which d52, compare Sec.
II C! at criticality. In Appendix A we calculate the corre-
sponding two-point correlation function in the presence of
this profile.

The asymptotic behavior ofP6(x6 ,y6) for D54 in
various limiting cases can be derived directly from the de-
fining Eqs.~4.7! and ~4.3! even for those cases in which no
full analytical solution is available@44#.

~i! x65s/j6@1 with y65R/j6 fixed. Because in this
limit m(s;R,t)2m6, b is exponentially small, in Eq.~4.3!
one can neglect powers of it larger than one. This leads to a
linear differential equation form(s;R,t)2m6, b which can
be solved in terms of modified Bessel functionsKa(x6

1y6) and I a(x61y6) @45# with index a5(d22)/2. Here
only the decreasing functionKa must be considered. Using
the asymptotic behavior ofKa for large arguments@45# and
Eq. ~4.7! one finds

P6~x6 ,y6!2P6, b→A6~y6;d! ~x61y6!2
d21

2

3exp~2x6!, x6@1, ~4.14!

where the amplitude functionA6(y6;d) remains undeter-
mined by the present method and must be evaluated numeri-
cally in general. An important feature of Eq.~4.14! is that for
increasing values ofx6 the exponential decay is enhanced by
the algebraic prefactor. Thus the decay is weaker ifx6

!y6 and it is weaker for a cylinder (d52) than for a sphere
(d5D with D54). This is expected because the perturba-
tion of the bulk fluid is strongest in case of the half-space
~corresponding tox6!y6), less for a cylinder, and even less
for a sphere.

FIG. 6. ~a! Scaling functionP1(x1 ,y1) for a cylinder in mean-
field approximation~i.e., d52 andD54) as a function ofx1 for
several values ofy1 ~compare Fig. 5!. The curves decrease with
decreasingy1 . In the limit y1→0 they tend to the curve corre-
sponding toP1(x1,0)5N1(x1) describing the critical adsorption
profile on a thin needle. The latter curve starts at the valuen1

~filled symbol!. ~b! Same representation forP2(x2 ,y2). The func-
tion U(x2) equalsU(x2 ,`) from Eq. ~4.9!.

FIG. 7. Scaling functionC1(D) in mean-field approximation
~i.e., D54) as a function ofD5s/R for several values ofd ~com-
pare Fig. 3!. All curves start at the same valueC1(0)5c1 corre-
sponding to the half-space but for largeD the behaviors are quali-
tatively different. For a sphereC1(D→`) vanishes asD2b/n with
b/n51 whereas for a cylinder it tends to the finite valuen1 . In the
marginal cased53 it vanishes only logarithmically.
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~ii ! x6→0 with R andj6 fixed, i.e.,s→0 ~compare Sec.
II B !. The leading behavior ofm(s→0;R,t) can be obtained
by inserting the ansatz

m~s;R,t!5
A2

s
1a01a1 s1O~s2! ~4.15!

into Eq. ~4.3! and fixing the coefficientsa0 anda1 such that
the prefactors of the most singular powers ofs cancel. The
resulting expression can be arranged so that it takes the form
implied by Eqs.~2.23! and ~4.7!, i.e.,

m~s→0;R,t!5
A2

s H 12
1

3

d21

2

s

R
1F5

9

~d21!2

4

2
1

3

~d21!~d22!

2 G s2

R2

2
1

6
ts21 •••J . ~4.16!

Equation~4.16! confirms that the leading dependence ont is
analytic with the same prefactor as for the half-space. In
addition, one can read off the curvature parameters according
to mean-field theory, i.e.,

k152
1

3
, k25

5

9
, kG52

1

3
, D54. ~4.17!

We note that the derivation of Eq.~4.16! implicitly contains
a consistency check for the validity of the general curvature
expansion~2.23!. For example, the parametersk2 andkG are
fixed by considering only two different types of generalized
cylinders K with nonvanishing curvature, e.g., those for
which d52 andd53. Equation~4.17!, however, holds for
any value ofd in the interval 1<d<D with D54 which
encompasses, in particular, the three integer valuesd52, 3,
and 4 ~compare Fig. 3!. Thus the curvature parameters are
overdetermined. In the present case, however, this consis-
tency may be regarded as a simple consequence of the dif-
ferential equation~4.3! in which the perturbation generated
by the surface curvature is proportional tod21. In the next
subsection we consider the small curvature expansion~3.12!
for the excess adsorption, for which the corresponding con-
sistency check inD54 provides a more stringent test.

~iii ! y6→0 with s andj6 fixed, i.e.,R→0 ~compare Sec.
II C!. We consider the case of a sphere, i.e.,d5D with D
54. By inserting the ansatzm(s;R,t)2m6, b5R u(s;t)
into Eq.~4.3! and keeping only terms linear inR one obtains
a linear differential equation foru(s;t), similar to case~i!
above. The solution of this differential equation in terms of
the modified Bessel functionK1(x6) @45# in conjunction
with Eq. ~4.7! leads to

P6~x6 ,y6→0!2P6, b→2c6 y6 x6
21 K1~x6!, d5D54.

~4.18!

Here the constant prefactor 2c6 is fixed because the limit
x6→0 of the RHS of Eq.~4.18! must reproduce Eq.~2.12!,
in which C6(D→`)→2c6 /D for d5D54 according to

Eq. ~2.15!. Equation~4.18! is in line with Eq.~2.31! because
for D54 one hasb/n51 and the universal scaling functions
F6(x6) are given by

F6~x6!5x6 K1~x6!, D54. ~4.19!

B. Excess adsorption

For D54 Eq. ~3.7! reduces to

G~ t→0,R!→A a j0
6 $g6 u lnutu u1G6~y6!%, D54,

~4.20!

with g151/A2 andg251. The universal scaling function
G6(y6) in Eq. ~4.20! is given by Eq.~3.6! with P6(x6 ,y6)
and P6(x6) from Eqs.~4.7! and ~2.9!. In the following we
discuss the behavior ofG6(y6) in the limit of large and
small values ofy65R/j6 and give results for the whole
range ofy6 representing the crossover between these two
limits.

~i! G6(y6) for y6→` ~compare Sec. III B!. By using the
differential equation~4.3! in conjunction with Eq.~4.7! one
can determine the coefficientsad,D

6 andbd,D
6 in Eq. ~3.11! for

generalized cylindersK with D54 and arbitraryd in the
interval 1<d<4. This calculation is presented in Appendix
C. As a result one finds that the dependences ofad,4

6 andbd,4
6

on d are precisely of the form given by Eq.~3.13!. In the
present caseD54 one hasutub2n51 and the curvature pa-
rameters are given by@46#

l1
155.09 j1 , l1

254.91 j2 , ~4.21a!

l2
1521.55 j1

2 , l2
2520.91 j2

2 , ~4.21b!

lG
152.87 j1

2 , lG
252.52 j2

2 . ~4.21c!

The consistency with Eq.~3.13! for D54 can be traced back
to nontrivial properties of the differential equation~4.3! ~see
Appendix C! and thus provides an important check for the
validity of the general curvature expansion~3.12!. We expect
that the curvature expansion~3.12! is also valid inD53 and
that the corresponding numerical prefactors multiplyingj or
j2 in the curvature parameters forD53 differ only quanti-
tatively from those in Eq.~4.21! valid for D54.

As an illustration, consider a curvedmembranewith both
sides exposed to a fluid near criticality. In particular we con-
sider thetotal excess adsorption, i.e., the sum of the excess
adsorptions on each side of the membrane, per unit area. In
this case the contributions tol1

6Km in the expansion~3.12!
from each side cancel and the signs in Eqs.~4.21b! and
~4.21c! in conjunction with Eq.~2.21! imply that the total
excess adsorption islarger near spherical regions (d5D) of
the membrane as compared to flat regions, whereas near cy-
lindrical regions (d52) it is smaller as compared to flat
regions.

~ii ! G6(y6) for y6→0 ~compare Sec. III C!. In this case
the behaviors for spheres and cylinders are qualitatively dif-
ferent due to the different behaviors ofP6(x6 ,y6). For a
sphere~i.e., d5D with D54) the power law~3.16! is valid
where the exponent2D111b/n equals22 and according
to Eqs. ~3.17! and ~4.19! the universal amplitudesv6 are
given by
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v154A2, v258, d5D54. ~4.22!

For a cylinder~i.e., d52 andD54) one finds the behavior
~3.20! where the universal numbersy6 in Eq. ~3.21! can be
evaluated numerically with the result

y151.90, y251.86, d52, D54. ~4.23!

~iii ! The full scaling functionsG6(y6) describe the cross-
over between their analytic behaviors fory65R/j6→` and
the power laws fory6→0 which have been discussed in~i!
and ~ii ! above. Figures 8 and 9 show numerical results for
G6(y6) corresponding to a sphere and a cylinder, respec-
tively, in D54. The results confirm the small curvature ex-
pansion as implied by Eqs.~3.11!–~3.13! and~4.21! and the
properties~3.16! and ~3.20!, and they provide the range of
validity of the asymptotic behavior. Note that in the case of
the spherey6G6(y6) as function ofy6

215j6 /R diverges
for y6

21→` with the corresponding power law whereas in
the case of the cylinder with increasingy6

21 it interpolates
between one finite value related tol1

6 to the other finite
valuey6 .

V. SUMMARY AND CONCLUDING REMARKS

We have studied critical adsorption phenomena on spheri-
cal and cylindrical particles of radiusR which are immersed
in a fluid near criticality,t5(T2Tc)/Tc→0, for the case
that the fluid is at the critical composition. The correspond-
ing adsorption profiles at the radial distances from the sur-
face are characterized by universal scaling functions
P6(s/j6 ,R/j6) for TÞTc , involving the bulk correlation
lengths j6 for T:Tc , and C1(s/R) for T5Tc @see Eqs.
~2.1! and ~2.11!, respectively#.

In the following we summarize our main results starting
with local propertiesof P6(x6 ,y6) andC1(D) in various
limiting cases as indicated by Fig. 4.

~1! For T5Tc we have introduced the short distance ex-
pansion of the order parameter profile near a weakly curved
(D21)-dimensional surface ofgeneral shape @see Eq.
~2.18!#. This expansion involves the local curvature invari-
antsKm , Km

2 , andKG @see Eq.~2.17!#. The corresponding
expansion parametersk1 , k2, and kG appear also in the
short distance expansion~2.23! of P6(x6 ,y6) valid for T
:Tc . The parametersk1 , k2, and kG are universal and
depend only on the space dimensionD @see Eqs.~2.19!,
~2.20!, and~4.17!#.

~2! For R!s, j the order parameter profile near a cylinder
becomes independent ofR in the limit R→0, i.e., if the
cylinder radius is microscopically small@see Eqs.~2.33!–
~2.36!#. In contrast, near a sphere the universal part of the
order parameter profile, i.e., the one described by Eqs.~2.30!
and~2.31!, vanishes forR→0. Thisqualitativedifference in
behavior can be explained by means of a small radius opera-
tor expansion@see Eqs.~2.24! and ~2.25!#. As indicated by
Fig. 3 a sphere is an irrelevant perturbation for the fluid near
criticality whereas a cylinder is a relevant perturbation.

~3! The explicit forms of the universal scaling functions
P6(x6 ,y6) and C1(D) for a sphere and a cylinder within

FIG. 8. Scaling functionsG6(y6) for a sphere in mean-field
approximation ~i.e., d5D with D54) as a function ofy6

21

5j6 /R for ~a! T.Tc and ~b! T,Tc . The dotted lines show the
small curvature expansion@see Eqs.~3.11!–~3.13!, and~4.21!# valid
for y6

21!1 and the dashed lines show the power law@see Eqs.
~3.16! and ~4.22!# valid for y6

21→`; for D54 the exponent2D
121b/n is equal to21.

FIG. 9. Scaling functionsG6(y6) for a cylinder in mean-field
approximation ~i.e., d52 and D54) as a function of y6

21

5j6 /R for ~a! T.Tc and ~b! T,Tc ~compare Fig. 8!. The dotted
lines show the small curvature expansion and the dashed lines cor-
respond to the numbersy6 in the behaviorG6(y6→0)→y6 y6

21

@see Eqs.~3.20! and ~4.23!#.
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mean-field approximation~see Figs. 5–7! corroborate the re-
sults described in~1! and ~2! above.

We now turn to theexcess adsorptionG(t→0,R) describ-
ing the total enrichment of the preferred component of the
fluid near criticality in proximity of a sphere or cylinder@see
Eq. ~3.1!#. The curvature dependence ofG(t→0,R) is char-
acterized by universal scaling functionsG6(R/j6) obtained
from P6(s/j6 ,R/j6) by integrating over the first variable
s/j6 @see Eqs.~3.6! and ~3.7!#.

~4! For R/j6@1 we have introduced the expansion of
G(t→0,R) near a weakly curved (D21)-dimensional sur-
face ofgeneralshape in terms of the local curvature invari-
antsKm , Km

2 , andKG @see Eq.~3.12!#. The corresponding
expansion parametersl1

6 , l2
6 , and lG

6 depend only on
the space dimensionD and can be expressed in terms of the
universal coefficientsad,D

6 andbd,D
6 appearing in the expan-

sion of G6(y6→`) @see Eqs.~3.11!–~3.13!#. The explicit
calculation ofl1

6 , l2
6 , andlG

6 within mean-field approxi-
mation @see Eq.~4.21! and Appendix C# provides an impor-
tant check for the validity of the general curvature expansion
of the excess adsorption.

~5! For R/j6→0 the behaviors ofG(t→0,R) and
G6(y6) are characterized by power laws@see Eqs.~3.16!–
~3.18! for a sphere and~3.20!–~3.22! for a cylinder#. The
exponents in these power laws are different for spheres and
cylinders beyond the purely geometrical effects. This can be
traced back to the corresponding difference in behavior of
P6(x6 ,y6) addressed in~2!.

~6! The explicit forms ofG6(y6) for a sphere and a
cylinder in mean-field approximation~see Figs. 8 and 9! con-
firm the general results presented in~4! and ~5!.

We conclude by summarizing some of thefield-
theoretical developmentsandperspectivesfor future theoret-
ical work, simulations, and experiments.

~7! For a systematic field-theoretical analysis of the criti-
cal adsorption phenomena on spheres and cylinders it is use-
ful to introduce the particle shape of a ‘‘generalized cylin-
der’’ @see Eq.~1.1! and Fig. 1# which is characterized by the
space dimensionD and an internal dimensiond encompass-
ing a sphere, a cylinder, and a planar wall as special cases.

~8! For a single sphere, certain asymptotic behaviors of
the order parameterprofile are characterized by universal
quantities@see Eqs.~2.23! and ~2.31!#. These quantities are
accurately known inD53 @see Eqs.~2.19!, ~2.20!, and Table
I; as far as the scaling functionsF6(x6) are concerned, only
the functionF1(x1) appropriate forT.Tc is known accu-
rately for D53, see Appendix B#. The corresponding pre-
dictions can be tested using small angle scattering of light,
X-rays, or neutrons which can probe the enlarged effective
size of the colloidal particles due to the adsorption.

~9! For a single sphere, inD53 the behavior of theexcess
adsorption in the limit R/j6→0 is available as well@see
Eqs. ~3.7!, ~3.16!–~3.18!, and Table III# and can be tested
experimentally by, e.g., volumetric measurements. For a disc
in D52 the numerical values of the universal amplitudesv6

in Eq. ~3.16! are also known~compare Appendix B!. This
can be relevant for protein inclusions in fluid membranes
@47#.

~10! Apart from the curvature dependence of the excess
adsorption@see Eq.~3.12!# also the corresponding energetic

contributions, i.e., the change of the surface tension gener-
ated by the surface curvature, can be relevant for applica-
tions. For example, in case of a membrane immersed in a
fluid near criticality such contributions and their temperature
dependence are expected to influence the intrinsic bending
rigidities of the membrane. These modifications of the bend-
ing rigidities can, in turn, induce shape changes of vesicles
formed by closed membranes in a controllable way~see, e.g.,
Ref. @48#!.

~11! A one-dimensional extended perturbation in an Ising-
like system which breaks the symmetry of the order param-
eter represents a relevant perturbation~see Sec. II C! of the
bulk system. This gives rise to new universal quantities such
as the critical exponentsh i andh' characterizing the decay
of the structure factor@see Appendix A and in particular Eqs.
~A9! and ~A11!# and the amplitudesn6 and y6 @see Eqs.
~2.36! and ~3.21!, respectively; the mean-field values ofn6

and y6 are quoted in Eqs.~4.10! and ~4.23!#. Apart from a
rodlike particle immersed in a fluid, such a one-dimensional
perturbation could also be realized in asolid, e.g., by a lattice
dislocation in a binary alloy if the dislocation locally breaks
the symmetry of the order parameter. This would be a natural
starting point for testing the numerous field-theoretical pre-
dictions derived here by Monte Carlo simulation.

~12! As stated in the Introduction, the results addressed in
~2! can be relevant for the flocculation of colloidal particles
dissolved in a fluid near criticality. Specificly, if one consid-
ers the caseT5Tc and compares the behaviors of the order
parameter profiles near a sphere and near an infinitely elon-
gated cylinder, respectively, the order parameter of the fluid
at a distances@R from the particle with radiusR is larger by
a factor;(s/R)b/n@1 for the cylinder than for the sphere
@see Eqs.~2.11!, ~2.30!, and~2.33!#. For rods with a large but
finite length l and distancess* l this enhancement is of the
order of (l /R)b/n@1. Since the critical Casimir forces be-
tween particles are partially induced by an overlap of the
order parameter profiles generated by the individual particles
in the space between them, the aforementioned results sug-
gest that not only spheres but,a fortiori, also long rods in a
fluid near criticality can aggregate due to critical Casimir
forces.
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APPENDIX A: TWO-POINT CORRELATION FUNCTION
NEAR A NEEDLE

The two-point correlation functionG(r ,r 8) for Gaussian
fluctuations around the profilem(r')51/r' @see the text fol-
lowing Eq.~4.13!# at criticality satisfies the differential equa-
tion

@2DD13 m2~r'!# G~r ,r 8!5d (D)~r2r 8!, ~A1!

whereDD is the Laplacian operator inD-dimensional space.
~Although the present mean-field calculation impliesD54
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we leave the symbolD for clarity.! In coordinates adapted to
the geometry of a generalized cylinderK with d52 andR
50 the Laplacian operatorDD has the form

DD5D'1 (
i 51

D22
]2

]r i , i
2

~A2!

with

D'5
]2

]r'
2

1
1

r'

]

]r'

1
1

r'
2

]2

]q2
~A3!

as the Laplacian operator in the two-dimensional subspace
perpendicular toK. Hereq denotes the angle betweenr' and
a fixed direction in the radial subspace. In order to solve Eq.
~A1! we carry out the Fourier transform in the subspace par-
allel to K and a partial wave decomposition in the radial
subspace, i.e.,

G~r ,r 8!5G~r' ,r'
8 ,q,ur i2r i

8 u!

5 (
n50

`

Wn~q! E dD22 p

~2p!D22
exp@ i p•~r i2r i

8 !#

3G̃n~r' ,r'
8 ,p!, ~A4!

whereq is now the angle betweenr' and r'
8 ~see Fig. 10!.

The functionsWn(q) are given by

Wn~q!5
22dn,0

2p
cos~nq! ~A5!

with dn,051 for n50 and zero otherwise. They obey
(nWn(q)5d(q)/2 where the support of thed-function on
the RHS is located entirely in the intervalq>0 so that

*0
q8

dq d(q)51 for any q8.0. The propagatorG̃n in Eq.
~A4! satisfies the radial equation

F2
]2

]r'
2

2
1

r'

]

]r'

1p21
n213

r'
2 G G̃n~r' ,r'

8 ,p!

5
d~r'2r'

8!

r'

. ~A6!

For r'Þr'
8 the solutions of this equation are modified

Bessel functionsKl(p r') and I l(p r') @45# with index

l5ln5An213. ~A7!

The physically acceptable solutionG̃n of Eq. ~A6! is
uniquely determined by the requirements that~i! it is sym-
metric in r' and r'

8 , ~ii ! it decays forr'→`, and ~iii ! it
does not diverge as the singularity atr'50 in Eq. ~A6! is
approached. The result is

G̃n~r' ,r'
8 ,p!5Kl~p r'

(.)! I l~p r'
(,)! ~A8!

with r'
(.)5 max(r' ,r'8 ), r'

(,)5min(r' ,r'8 ), andl given by
Eq. ~A7!. Equations~A4! and ~A8! represent the two-point
correlation function near a thin needle in the presence of the
adsorption profilem(r')51/r' at criticality. In the follow-
ing we infer the asymptotic behavior ofG(r ,r 8) in various
limits.

~a! r' , r'
8 fixed andur i2r i

8 u→`. The RHS of Eq.~A8!
can be expanded forp→0, e.g., by relatingKl to I 2l andI l

via the corresponding formula in Sec. 9.6.2 of Ref.@45#~a!
and by using the formula in Sec. 9.6.10 of the same refer-
ence. Apart from terms proportional to integer powers ofp2,
which are analytic inp yielding only exponentially decaying
contributions on the LHS of Eq.~A4!, one finds that the
leading singularcontribution behaves asp2l. Regarding the
leading behavior forur i2r i

8 u→` in Eq. ~A4! only the term
with n50 is important so that

G~r' ,r'
8 ,q,ur i2r i

8 u→`!;
1

ur i2r i
8 uD221h i

~A9a!

with

h i52l052A3. ~A9b!

~b! r i5r i
8 , r'

8 fixed andr'→`. For r'.r'
8 using Eq.

~A4! and rescalingx5p r' leads to

G~r' ,r'
8 ,q,0!5

1

r'
D22 (

n50

`

Wn~q! E dD22 x

~2p!D22

3Kl~x! I l~xr'
8/r'!. ~A10!

Here I l(xr'
8/r') can be expanded forr'

8/r'→0 so that in
this limit again only the term withn50 is important and

G~r'→`,r'
8 , q,0!;

1

r
'

D221h'
~A11a!

with

FIG. 10. A thin ‘‘needle’’ corresponding to a generalized cylin-
der K with d52 andR50 @compare Eq.~1.1! and Fig.~1!#. The
two spatial argumentsr and r 8 of the correlation function in Eq.
~A4! are also shown.
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h'5l05A3. ~A11b!

We note that within the present mean-field theory the rela-
tion 2h'5h1h i is fulfilled becauseh(D54)50.

The exponents in Eqs.~A9! and ~A11! for a needle are
different from those for the half-space for whichh i

hs56 and
h'

hs53 in mean-field approximation. Thus the correlations in
the critical fluid are more suppressed in proximity of the
needle than in the bulk fluid, and are even more suppressed
near the surface bounding the half-space. This can be under-
stood by noting that a needle represents a weaker, but still
relevant, perturbation for the critical fluid than a planar wall
~compare Fig. 3!. For a sphere one finds that the two-point
correlation function at criticality decays asur
2r 8u2(D221h) with the bulk exponenth if the distance vec-
tor r2r 8 is increased in any direction. This reflects the fact
that a sphere represents an irrelevant perturbation.

APPENDIX B: AMPLITUDES v6 AND SCALING
FUNCTIONS F6„x6…

In this appendix we determine the universal amplitudes
v6 @see Eqs.~3.16! and ~3.17!# and the universal scaling
functionsF6(x6) @see Eqs.~2.31! and ~2.32!#. The corre-
sponding mean-field results@see Eqs.~4.22! and ~4.19!, re-
spectively# hold in D54. ForD53 and 2 results are avail-
able@49–54# for the Fourier transform of the bulk two-point
correlation function introduced in Eq.~2.32!, i.e.,

St~p!5E dDr ei p•r ^F~r !F~0!&b, t
C , ~B1!

which can be written in the scaling form

St~p!5C6 utu2g g6~p j6!. ~B2!

The universal scaling functionsg6(Y6) are fixed by the nor-
malization conditiong6(0)51 and the choice ofj6 as the
true correlation length forT:Tc . The nonuniversal ampli-
tudesC6 and the universal bulk critical exponentg5n(2
2h) characterize the bulk susceptibilityxb(t)5St(0)
5C6utu2g in the critical regimet→0. Numerical values of
the universal bulk critical exponenth are given byh(D
52)51/4 andh(D53)50.031 @33# @compare Eq.~2.5!#.
Inserting Eq.~2.32! into Eq.~B1! and using Eq.~3.17! yields

v65
c6 2b/n

VD Q̃6

~B3!

with VD52pD/2/ G(D/2). The universal numbersQ̃6 are
given by

Q̃65H N R1
22h Q3 , T.Tc ,

N R1
22h Rj

h22 C1

C2
Q3 , T,Tc ,

~B4!

with the universal amplitude ratioQ35D̂ (j0,1
1 )22h/C1 in-

troduced by Tarko and Fisher@51#. The amplitudesj0,1
6 cor-

respond to correlation length defined via the second moment
@51# of the correlation function, i.e.,j6,15j0,1

6 utu2n. The

amplitudeD̂ is defined bySt50(p)5D̂ ph22 which implies
that BF in Eq. ~2.27! is related toD̂ via BF5ND̂ with the
numbers

N5H GS 1

8D /F2p 23/4GS 7

8D G50.654308, D52,

G~h!sinS h p

2 D /~2p2!50.078196, D53.

~B5!

Numerical values ofQ3 are given byQ3(D52)50.41377
and Q3(D53)50.896 @51#. In Eq. ~B4! R15j0

1/j0,1
1 , Rj

5j0
1/j0

2 , andC1/C2 are known universal amplitude ratios
with R1(D52)51.000402 @see Eq. ~3.7! in Ref. @52##,
R1(D53)51.0003 @50#, Rj(2)52, Rj(3).1.92 @50#,
(C1/C2)(2)537.693562 @51#, (C1/C2)(3)54.95 @54#.
Using Eqs.~B3! and ~B4! in conjunction with the values of
c6(D52) from Table I and withc1(D53)50.94, and
c2(D53)51.24 yields the values ofv6 quoted in Table
III. We note that the accuracy of the quoted value of
v2(D53) is unknown because the accuracy of the afore-
mentioned value ofRj(D53) is not given reliably@50#.

Next we outline how the universal scaling functions
F6(x6) introduced in Eq.~2.32! can be inferred from pres-
ently available results forg6(Y6) @see Eqs.~B1! and~B2!#.

~a! D53. In this case the scaling functionsF6(x6) are
given by

F6~x6!5k6 x6
h E

0

`

dY6 Y6 sin~Y6x6! g6~Y6!,

~B6!

with the amplitudesk6 fixed by the conditionF6(0)51
which allows one to express the nonuniversal amplitudesC6

in terms ofBF andj0
6 . For the caseT.Tc the approxima-

tion for g1(Y1) proposed by Bray@53# can be regarded to
be reliable. Accordingly, for valuesY1<20 the function
g1(Y1) can be inferred from the first column in Table V of
Ref. @53# whereas forY1.20 the asymptotic expansion by
Fisher and Langer@49# is applicable, i.e.,

g1~Y1→`!5
C1

Y1
22h F11

C2

Y1
(12a)/n

1
C3

Y1
1/n

1 ••• G ,

~B7!

with coefficientsCi and the bulk critical exponentsh, a,
and n. Using in Eqs. ~B6! and ~B7! the values h
50.041, n50.638, anda50.086 as quoted in Ref.@53#
yields C150.909, C253.593, C3524.493 @53#, and k1

50.7166. Unfortunately, forT,Tc and D53 we are not
aware of an accurate estimate ofg2(Y2).

~b! D52. In this case the scaling functionsF6(x6) are
given by

F6~x6!5k6
8 x6

h E
0

`

dY6 Y6 J0~Y6x6! g6~Y6!,

~B8!

whereJ0 is a modified Bessel function@45#. In D52 exact
results forg6(Y6) can be deduced from Ref.@52#. However,
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some care is necessary regarding the definition of the scaling
variabley used in Ref.@52#: whereasy5Y1 for T.Tc , one
has y51.959Y2 for T,Tc . The numerical prefactor in
front of Y2 equals (AS2

2 R2)21 with S2
2 from Table IV in

Ref. @52# @see Eq.~3.7! in Ref. @52## and with the universal
amplitude ratioR25j0

2/j0,1
2 51.615 in D52 @50#. For the

amplitudesk6
8 in Eq. ~B8! one obtainsk1

8 50.5874 andk2
8

50.05055.

APPENDIX C: SMALL CURVATURE EXPANSION
OF THE EXCESS ADSORPTION

In this appendix we outline how the coefficientsad,D
6 and

bd,D
6 introduced in Eq.~3.11! can be calculated within mean-

field theory, i.e., forD54. Since the approaches forT.Tc
(1) and for T,Tc (2) are quite similar we restrict our
presentation to the caseT.Tc .

According to Eqs.~4.3! and ~4.7! for D54 the universal
scaling functionP1(x1 ,y1) satisfies the nonlinear differen-
tial equation~in the following we drop the subscript ‘‘1 ’’ in
order to simplify the notation!

P9~x,y!1
d21

x1y
P8~x,y!2P~x,y!5P3~x,y!, ~C1a!

where the derivatives are taken with respect to the variablex.
The parameterd with 1<d<4 can be chosen arbitrarily.
Equation~C1a! is supplemented by the boundary conditions

P~x→0,y!→
A2

x
, P~`,y! 5P1, b 50. ~C1b!

The scaling functionG(y)[G1(y1) from Eq. ~3.6! then
reads

G~y!5E
0

`

dx H S x

y
11D d21

P~x,y!2P0~x!J ~C2!

with P(x,y) defined by Eq.~C1! and the half-space profile
P0(x)[P(x,`)5P1(x1) given by the first part of Eq.
~2.9!. Note that the singularity atx50 of the first term in
curly brackets in Eq.~C2! is cancelled by the second term.
According to Eq.~3.11! the functionG(y) can be expanded
as

G~y→`!5ad y211bd y221••• ~C3!

with the coefficientsad[ad,4
1 andbd[bd,4

1 which we want to
determine. To this end we expandP(x,y) as

P~x,y→`!5P0~x!1P1~x! y211P2~x! y221 ••• .
~C4!

By inserting Eq.~C4! into Eq.~C1a! and equating terms with
the same power iny one derives the familiar nonlinear dif-
ferential equation for the half-space profileP0(x), i.e.,

P092P05P0
3 , ~C5a!

P0~x→0!→
A2

x
, P0~`!50, ~C5b!

and the two linear differential equations

P192P123P0
2P152~d21!P08 , ~C6a!

P1~0!52
A2

6
~d21!, P1~`!50, ~C6b!

and

P292P223P0
2P252~d21!P1813P0P1

21~d21! xP08 ,
~C7a!

P28~0!52
A2

36
~d21!21

A2

6
~d21!, P2~`!50,

~C7b!

for P1(x) and P2(x), respectively. For the boundary condi-
tions in the second parts of the above equations compare
Eqs.~4.16! and ~4.7!. By using

S x

y
11D d21

511~d21! x y21

1
1

2
~d21!~d22! x2 y221••• ~C8!

in the integrand on the RHS of Eq.~C2! in conjunction with
Eq. ~C4! we find for the coefficients in Eq.~C3! the expres-
sions

ad5~d21!E
0

`

dx x P0~x!1E
0

`

dx P1~x! ~C9!

and

bd5
1

2
~d21!~d22!E

0

`

dx x2 P0~x!1~d21!E
0

`

dx x P1~x!

1E
0

`

dx P2~x!, ~C10!

where P0(x), P1(x), and P2(x) are the solutions of Eqs.
~C5!–~C7!. While P0(x) is given by the first part of Eq.~2.9!
we now turn to the calculation ofP1(x) and P2(x). It is
important to retain the dependence of the latter functions on
d in analytical form in order to be able to carry out the
consistency check of Eq.~3.13! for the present caseD54.

~i! FunctionP1(x). Both the RHS of Eq.~C6a! and the
boundary condition in the first part of Eq.~C6b! depend ond
via the term (d21). We note that even the full function
P1(x) exhibits this simple dependence ond. The reason is
that Eq.~C6a! is linear with respect toP1 so that Eq.~C6! is
solved by the ansatz

P1~x!5~d21! U~x!, ~C11!

whereU(x) is independent ofd and satisfies the inhomoge-
neous linear differential equation

U92U23P0
2U52P08 , ~C12a!
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U~0!52
A2

6
, U~`!50. ~C12b!

The solution of Eq.~C12! can be given analytically~see, e.g.,
Ref. @43#!:

U~x!5
cosh~x!2 sinh~x!

6A2 sinh2 ~x!
@2 cosh~2x!2223x

23x cosh~2x!13 sinh~2x!23x sinh~2x!#.

~C13!

~ii ! Function P2(x). By using Eq.~C11! the differential
equation~C7a! turns into

P292P223P0
2P252~d21!2 U81~d21!2 3P0U2

1~d21! xP08 ~C14!

with U(x) from Eq. ~C13!. In this case both on the RHS of
Eq. ~C14! and in the boundary condition in the first part of
Eq. ~C7b! different dependences ond arise via the terms
(d21)2 and (d21). Again it is crucial to observe that Eq.
~C14! is linear with respect toP2 so that its dependence ond
takes the simple form

P2~x!5~d21!2 V~x!1~d21! W~x! ~C15!

whereV(x) andW(x) are independent ofd and satisfy sepa-
rately the inhomogeneous linear differential equations

V92V23P0
2V52U813P0U2, ~C16a!

V8~0!52
A2

36
, V~`!50, ~C16b!

and

W92W23P0
2W5xP08 , ~C17a!

W8~0!5
A2

6
, W~`!50. ~C17b!

Equations~C16! and~C17! can be solved numerically, which
is facilitated by the fact that bothU(x) and P0(x) on the
RHS of Eqs.~C16a! and ~C17a! are known in analytical
form. By inserting the resulting functionP2(x) from Eq.
~C15! and the functionP1(x) from Eq. ~C11! into Eqs.~C9!
and ~C10! one obtains the dependences ofad,4

1 5ad and
bd,4

1 5bd on d as given by Eq.~3.13! with the curvature pa-
rameters given in the first parts of Eq.~4.21!. The procedure
in the caseT,Tc is completely analogous to that forT
.Tc as outlined above and yields the curvature parameters
in the second parts of Eq.~4.21!.
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