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PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Critical adsorption on curved objects

A. Hanke and S. Dietrich
Fachbereich Physik, Bergische Universit&uppertal, D-42097 Wuppertal, Federal Republic of Germany
(Received 25 September 1998

A systematic field-theoretical description of critical adsorption on curved objects such as spherical or rodlike
colloidal particles immersed in a fluid near criticality is presented. The temperature dependence of the corre-
sponding order parameter profiles and of the excess adsorption are calculated explicitly. Critical adsorption on
elongated rods is substantially more pronounced than on spherical particles. It turns out that, within the context
of critical phenomena in confined geometries, critical adsorption on a microscopically thin “needle” repre-
sents a distinct universality class of its own. Under favorable conditions the results are relevant for the
flocculation of colloidal particled.51063-651X99)10305-2

PACS numbe(s): 64.60.Fr, 68.35.Rh, 82.70.Dd, 64.7%

I. INTRODUCTION sponding renormalization group description. The ensuing

In colloidal suspensions the interaction between the mescaling functions near the surface of a spherical particle with
soscopic dissolved particles and the solvent is of basic imradiusR refer to the simultaneous scaling limit—T;, s
portance[1,2]. For example, the solvent generates effective—o, andR—«, wheres is the distance from the confining
interactions between the colloidal particles which can eversurface. In this limit the ratie/R is kept fixed forming a
lead to flocculation. The richness of the physical propertiedinite scaling variableAt the critical adsorption fixed point
of these systems is mainly based on the possibility to tuné¢he surface field is infinitely large so that the order parameter
these effective interactions over wide ranges of strength angrofile diverges upon approaching the surface. We recall that
form of the interaction potential. Traditionally this tuning is such divergences refer to the renormalization group fixed
accomplished by changing the chemical composition of thgoint whereas actually the divergence of the order parameter
solvent, e.g., by adding salt, polymers, or other componentprofile is cut off at atomic distances from the surface.
[1]. Compared with such modifications, changes of the tem- As compared to a planar surface critical adsorption on a
perature or pressure typically result only in minor changes ospherical particle is expected to exhibit important differences
the effective interactions. This, however, is only true as longn behavior because the confining surface has a positive cur-
as the solvent is not thermodynamically close to a phaseature and because a sphere represents only a quasi-zero-
transition of its own. For example, if the solvent consists ofdimensional defect floating in the critical fluid. The interfer-
a binary liquid mixture close to first-order demixing tran-  ence of critical adsorption on neighboring spheres gives rise
sition into aA-rich and aB-rich liquid phase, even slight to the so-called critical Casimir forcé47] which have been
changes of the temperature or of the partial pressures of trergued to contribute to the occurrence of flocculation figar
two speciesA and B can lead to massive changes of the[18—20. A quantitative understanding of these phenomena
effective interactions between dissolved colloid particles intequires the knowledge of the critical adsorption profiles
duced by the occurrence of wetting transitions. They lead tmear the colloidal particles and the resulting effective free
wetting films of the preferred phase coating the colloidalenergy of interaction in the whole vicinity of the critical
particles[3]. These wetting films can snap into bridges if the point, i.e., as functions of both the reduced temperature
particles come close to each other leading to flocculation=(T—T.)/T. and the fieldh conjugate to the order param-
[4,5]. For charged colloidal particles such as silica spheregter. This ambitious goal has not yet been accomplished.
immersed in the binary liquid mixture of water and 2,6- Instead, the introduction of a surface curvature has limited
lutidine [4] flocculation can also be influenced by screeningthe knowledge of the corresponding critical adsorption so far
effects generated by the adsorbed layéis to the case of spheres for the particular thermodynamic state

Similarly drastic effects can occur if the solvent is (t,h)=(0,0) of the solvenf21,22. Only recently at least the
brought close to aritical point. The inevitable preference of temperature dependence of the critical Casimir force be-
the surfaces of the colloidal particles for one of the two sol-tween a sphere and a planar container wall has been ad-
vent species of a binary liquid mixture near its critical de-dressed23]. Thus the present study of the temperature de-
mixing point or for the liquid phase of a solvent fluid near its pendence of critical adsorption on a single sphere contributes
liquid-vapor critical point results into the presence of effec-one step towards reaching the aforementioned general goal.
tive surface fields leading to pronounced adsorption profiles Apart from spherical particles, also rodlike particles play
of the preferred component. This so-called “critical adsorp-an important rol¢24]. Rodlike objects are provided, e.g., by
tion” becomes particularly long-ranged due to the correla-fibers or colloidal rodg24], semiflexible polymers with a
tion effects induced by the critical fluctuations of the orderlarge persistence length such as ag#8]|, microtubuli[25],
parameter of the solvent. In the case of a planar wall criticahnd carbon nanotubg26]. Moreover the knowledge of the
adsorption has been studied in much ddtai#16. Asymp-  general curvature dependence of critical adsorption is also
totically close to the critical poinT. its universal properties relevant, e.g., for curved membran&y,2§ dissolved in a
are linked to thecritical adsorption fixed poinbf the corre-  fluid near criticality or for the liquid-vapor interface between
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a binary liquid mixture near its critical demixing point and subspace {| (dimension 3= D-d)
its noncritical vapor, which exhibits rippled configurations |
due to the occurrence of capillary wae|. T

Near criticality the relevant length scales of the solvent N | d<D

structures are dominated by the diverging bulk correlation
length &, = &5 ]t] 77, wherew is the standard universal bulk
critical exponent#, and¢, are nonuniversal amplitudes in
the one- (+) and two-phase region~), respectively, with
values typically in the order of a few A. In practice the
correlation length can span the range between 5 A st
depending ort. In the present context this length scale is
played off against the length scak of the radius of the
dissolved particles. We note that the available systems can
realize both the limitR/é>1 as well as the opposite limit
R/¢<1. In the case of Ludox silica particlé®~12 nm[29]
so that the limitR/é< 1 can be easily achieved even with the
upper limits for¢ set by finite experimental resolutions. The
ratio of the length and the radiuR of rodlike particles can
be quite large, in conjunction with a small radius suchRas
~7 nm in the case of colloidal boehmite rod&4]. In this
work we considetong rods, i.e.,R, <1, and neglect effects
which may arise due to their finite length

In the present contribution we investigate systematically
the temperature dependence of the critical adsorption on a
single spherical or rodlike particle, i.e., the cagetQ,h
=0). (The generalization to the cabke-0 is straightforward
but tedious). In order to be able to treat spheres and cylinders
in a unified way within a field-theoretical approach and for
general spatial dimensiond it is helpful to consider the
particle shape of generalized cylinder K30] with an infi-
nitely extended “axis” of dimensior$. The “axis” can be (b)
the axis of an ordinary infinitely elongated cylindet=f1),
or the midplane of a slabs=D—1), or the center of a FIG. 1. (a) A generalized cylindeK with d<D [i.e., §=D

sphere §=0). For general integdd and 8 the explicit form ~ —d>0, see Eq(1.1)] and(b) a sphere as the special case&afiith
of K is d=D as examples of particles with curved boundarigsis the

spatial dimension. The point=(r, ,rj) at which, e.g., the order
K={r=(r, 1)) e RP-9XR% |r,|<R} (1.1) parameter is monitored is also shown.

with r, andr; perpendicular and parallel to the axis, respec-Sions' In Appendix A we discuss the two-point correlation

tively (see Fig. 1 Note thatr, is a d-dimensional vector function near a microscopically thin “needle” at criticality.
with + In Appendix B we determine a universal amplitude and a

universal scaling function as needed in Secs. Il and lll, re-
d=D-2s. (1.2) spectively. In Appendix C, finally, we consider the general
curvature dependence of the excess adsorption.

The radiusk of the generalized cylindé( is the radius in the
cases of an ordinary cylinder or a sphere and it is half of the Il. ORDER PARAMETER PROFILES
thickness in the case of a slab. For the slab the geometry
reduces to the much studied case(tfo decoupleg half
spaces. The generalizationDfto values different from three Asymptotically close toT, (compare the second para-
is introduced for technical reasons becaDgg=4 marks the graph of the Introductioncritical adsorption on the surface
upper critical dimension for the relevance of fluctuations ofof a sphere or cylinder with radilR is characterized by an
the order parameter leading to a behavior different from thabrder parameter profilé®(r)), which for h=0 takes the
obtained from mean-field theory valid fer=4. scaling form

In Sec. Il we discuss the general scaling properties of the
local order parameter profiles for critical adsorption on (@(r))=alt|’P.(slé. RIE) (0
spheres and cylinders, in particular the behavior close to the
particle surfaces and for small particle radii, respectively. Infor radial distancess=r, —R=¢ from the surface larger
Sec. Il we consider the corresponding properties of the exthan a typical microscopic lengttr. Here( ); denotes the
cess adsorption. In Sec. IV we present explicit results bottthermal average in the presence of a sphere or a cylinder and
for the order parameter profiles and for the excess adsorptiofl is the standard universal bulk critical exponent. The scal-
in mean-field approximation. Section V contains our conclu-ing functionsP.. depend on two scaling variables

A. General scaling properties
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X.=slé., y.=RIE,. (2.2 approached, the universal amplitudes andc_ are related
via the universal bulk ratigg /¢, :
The scaling function®.. areuniversalwhile the nonuniver-
sal bulk amplitudesa and ¢, are determined by the value c_ & Ay
(@), p=alt|? for t<0, t—0" of the order parameter in the c. ; .
unbounded bulk and by the amplitudes of the correlation 0
length, respectively(In this work we are always concerned The terms proportional tai an dgt' in Eq. (2.4) correspond

with the Ising universality class\We note that the form of to regular contributions fort—0 of the order parameter
P.. depends on the definition used for the correlation length 9 P

& . For definiteness we adogt. as being thedrue correla- since
tion length fixed by the exponential decay of the two-point

2.7)

t—0

correlation function in real spad&1]. Bearing this in mind d(r o (D(r B

one finds thatP, ,=P,(»,y,)=0, P_ ,=P_(%,y_) (P (e = (V1=

=1, and P.(x.—%,y.)—P. ,~exp(—x.) where the X[1+At+A 2+ B |t|> 4+ . .],
prefactor in front of the exponential may by an algebraic 2.8

function ofx.. (see Sec. IV.
On the other hand, in the limit. —oo with x.. fixed the

: _ whereA= * a. (s/&5)Y andA’ =a. (s/&5)?" areindepen-
scaling functionsP.. (X ,y~) reduce to —

dentof the sign oft [12]. The term proportional tb-. in Eq.
P.(x.)=P.(x.,»), half-space, 2.3 (2.4) corresponds to the first singular contributikﬁﬂz]ifor_t
—0 of the order parameter leading to the teBm|t|*~* in

corresponding to the half-space bounded by a planar surfacEd- (2.8 with the bulk exponenta=2—vD and B.
In recent years the scaling functiols. (x..) for the half- =b.(s/&;)P.
space have been intensively studied theoretiddll2—-14 Figure 2 summarizes theoretical results fr(x.) for
and compared with experiment8,14—14. For later refer- the spatial dimension®=4, 3, and 2. IrD =4 the functions
ence we quote some of their properties. First, we note th@. are given by the following mean-field expressions:
asymptotic behaviof12]

V2

P.(X:—0)—c.x, A P*(X*)zsinr’(xg’

b X_
_(x_)= cotl—(T), D=4.

v 2lv (29)

X[1+a. xP+a; x?+b.xP+.. ]
2.4 The results forD=3 represent recent Monte Car(C)

' simulations [13,15 and field-theoretical renormalization

group (RG) calculationg12,15. For D=2 exact results are

with universal amplitudes.., a., a., andb.. [32] which available from the semi-infinite two-dimensional Ising model

depend, however, on the definition of the correlation lengt .
[31]. The ellipses stand for contributions which vanish morggs]' Note thatP..(x..) for any fixed value ok.. decreases

rapidly thanx®. The exponentg/v is the bulk “scaling with decreasind [36]. This reflects the general trend that

di ion”133] of th d b F . critical fluctuations, which reduce the mean value of the or-
imension”[33] of the or er parameteb. For convenience o parameter, are more pronounced in lower spatial dimen-
of the reader we quote their numerical valjias,9|

sions.

The curves in the inset of Fig. 2 are scaled so that they
demonstrate the leading behavior®f (x..—0). (A similar
representation will be used in Sec. ]\Mn Table | we quote
the corresponding numerical values of the surface amplitudes

B(D=4)=1/2, B(3)=0.328, B(2)=1/8, (2.5a

v(D=4)=1/2, »(3)=0.632, v(2)=1, (2.5b

so that c. and a. according to Eq.2.4). In order to achieve a
presentation in the inset of Fig(l9 which reflects both the
(Blv) (4)=1, (Blv)(3)=0.519, (Blv)(2)=1/8. leading behavior oP_(x_—0) and the exponential decay
(2.50 P_(x_—®)—1~ exp(—x_) we introduce the function
The leading power law in Eq2.4) is a consequence of the U(x_)= tan}‘( x2 (2.10
fact that due to the presence of the symmetry breaking sur- - X_+1/° ’
face field the limitt—0 must lead to a nonvanishing order
parameter profile at=0 so that The curves in the inset of Fig.(l® comply with the above
condition since U(x_—0)~x? and U(x_—o»)—1
(D(r))ps1—o=ac« (sl&) A (2.6) ~exp(2x_) so that in both limits the leading asymptotic
behaviors ofP_(x_) are not changed.
(The subscript hs stands for half-spacEhus the amplitude In the remaining part of this section we discuss the new

of the power laws™#'” in Eq. (2.6) consists of the combina- features ofP. (x. ,y.) which arise fory, <. First, we
tion a(&y)?"" of nonuniversal bulk amplitudes and of the consider the short distance behavior §+ 0, which corre-
universal surface amplitude. . Because the left-hand side sponds to the limik.—0 with y.. fixed. Then, we consider
(LHS) of Eq. (2.6) does not depend on how the lintiE0 is  cases in which the radiuR is small compared witt¥.. as
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well as the distance between the sphere or the cylinder and
the point for which the order parameter is monitored. This
5 . @ o p=3,MC | corresponds to the limiy.—0 with x.. fixed. It turns out
--- o D=3,RG that in this limit the behaviors for a sphere and a cylinder in
4l —— b D=2 1 D=3 arequalitatively different.
[4

half-space — ¢ D=4

P.(x,)
w

B. Short distance expansion

The same reasoning leading to EG.6) in case of the
half-space yields for the generalized cylinder

) \
T

(D(N)—o=aC.(A) (sl&y) F*, A=sIR, (2.11)

i.e., the universal amplitude. in Eq. (2.6) is generalized to
the universal amplitudéunction C..(A). This function ap-
pears in the asymptotic behavior

X+

Pi(xi,yfA)Hct(A) x2P" x.—0, A fixed,
half-space — ¢ D=4

(2.12
® ° D=3, MC ¢ which underscores that. (A) is universal but depends on
- © D=3,RG the definition of the correlation lengtf81] [compare Eq.
—- o D=2 t (2.4] and on the geometry. Since the lindit—0 must re-
produce the behavior for the half-space one I6ag0)
=c. . According to Eg.(2.7) the functionsC,(A) and
5 £ C_(A) are proportional to each other with

T /v
C<A>_c__(§)’3

6 1 Ci(A) cy &

Therefore it is sufficient to study only one of these functions,

0 1 2 3 4 say,C, (A), which according to Eqg2.11) and(2.6) can be
N written as

[P(x)-U(x.)]

Xgﬁ/v
/.
’,
12

(2.13

.........

........

P L N eyyyrreyry

FIG. 2. (a) Universal scaling functiorP . (x.) for critical ad- Ci(A)=cy (P(N))=0/ <q)(r)>hsyt:0' (2.14
sorption on a planar surface in spatial dimensibns4, 3, and 2. . . .
The estimates foP . (x,) in D=3 labeled MC and RG are ob- N th_e case of.a sphere, i.ed=D, the Unlversal_scallng
tained by Monte Carlo simulations and field-theoretical functionC.(A) is known exactly for any spatial dimension
renormalization-group calculations. We display the corresponding® Of interest by means of a finite conformal mapping from

data presented in Ref15]. The inset shows a scaled version of the half-spacg21]. It takes the simple analytic form
P, (x;) which reflects, in particular, the asymptotic behavior of

P, (x,—0). The open symbols indicate the corresponding values C.(A)=c
of ¢, [see Eq(2.4) and Table ]. (b) Same representation as (& + +
for the universal scaling functioR_(x_). The inset shows a scaled
version of P_(x_) which contains the functiot(x_) defined in

- Blv
1+§) , d=D, (2.19

and depends o only via the corresponding values of.
Eq. (2.10 in order to facilitate a similar representation as in the and 8/ v. For large distances from the sphere, i 1, the
inset of (a).

functionC. (A) in Eq. (2.15 decays as\ ~#'” (compare the

TABLE |. Numerical values of the universal amplitudes andgi [see Eq(2.4)].

D Cy c_ a, a_

4 J2=1.414 2 —t=-0.167 15=0.083
3,MC? 0.866 1.22

3, RG" 0.717 1.113 -0.389 0.129
3, interpolatiorf 0.94+0.05 1.24-0.05

2 0.803 0.876 3=-05 7=0.25
%Referencd 15].

bReferencd 15]; for Et we use in addition Eq48) in Ref.[12] for e=1.
‘Referencd 14]; obtained from interpolating between the resultDir4—¢ andD=2.



PRE 59 CRITICAL ADSORPTION ON CURVED OBJECTS 5085

following subsection In the opposite limitA—0, which is  (2.18 represent the leading contributions of the short dis-
of interest in the present subsection, one has tance expansion ofb(r). The dimensionless coefficients
K1, Ky, and kg depend orD but not on the shape of the

C.(A—0) - @AJF Blv(Blv+1) boundary surface. Comparison of Eg.18 with Eq. (2.16)

2 3
c. 2 8 ATHO(AY), for the sphere, or direct calculation near a surface of arbitrary
shap€g[10], yields
d=D. (2.1
Blv
We note, first, that an expansion such as in @416 is K=~ 57 (2.19

expected to hold not only near the surface of a sphere but

also near a smoothly curved surfacenobre general shape | p=3 the coefficientsc, and kg in Eq. (2.18 cannot be
According to differential geometry up to second order ingetermined by comparison with E¢2.16) for the sphere
curvature the short distance expansion near jone. To this end one would need, in addition, the knowl-
(D —1)-dimensional surface of arbitrary shape involves onlyggge of the expansion for at least one curved surface of dif-

the geometric invariants,, K., andKg with [37,38 ferent shapée.qg., the surface of a cylindeiHowever, since
D_1 in D=3 the sphere has the propey=K 2 the compari-
1 1 . . m
K. == 2 - (2.173 son of Eq.(2.18 with Eq. (2.16) determines at least the sum
m .
2 &R
v (Blv+1
and K2+KG:%, D=3. (2.20
D-1

Ke= > i (2.17H In Sec. IV we confirm Eq(2.18 and determine;, «,, and
pars RiR; kg for D=4.

<] The expansiorf2.18 holds upon inserting it into thermal
whereR; are theD —1 principal local radii of curvature. In averages if the distanceto the curved surface—albeit being

D=3 Eq.(2.17) yields the familiar expressions for the local large on the microscopic scale—is much smaller than other
mean curvature and the local Gaussian curvature. Second, wgaracteristic length scales such as the correlation length or
note that Eq(2.16) reflects a property of the fluctuating or- the distances to 'the remaining operators in correlation fun.c-
der parameter fieleb(r) (or “operator”) in the outer space tions. For certain thermal averages such as the profile
of the sphere itself. In this spirit also near a surface of mord ?(r)): additional regular terms can occur on the RHS

general shape the short distance expansion can be formulatEgPmpare Eq(2.8) for the half-spack For spheres and cyl-
in “operator form:” inders, in particular, the expansiof2.18 determines the

leading contributions to the scaling functiols. (X ,y-)
D(NH{D(r))ps t=0=[1] {1+ K1 K S+ koK 28%+ kg K S2 generated by the surface curvature. For the surface of a gen-
3 b eralized cylinder the curvatures in E®.17) are given by
+O(s°)}+O(s°). (2.18

Heres s the distance of to the nearest point of the surface. Km=
The terms on the right-hand sideHS) of Eqg. (2.18 should
be interpreted as operators which are locatethis point of
the surface, i.e., asurface operatorsOn the RHS of Eq.
(2.18 only such terms are shown explicitly which are pro-
portional to the unity operatdrl]. The corrections emerge :(d—l)(d—Z) i
from curvatures of higher order and surface operators of dif- ¢ 2 R2
ferent types which are expected to scale with powers aff

least of the ordesP [compare Eq(2.4) for the half-space By inserting these expressions into E8.18 and using Eq.
and Ref.[34]]. Thus forD>2 the terms displayed in Eg. (2.1) one obtains

d-1 2.21
2 (2213

x|+

and

(2.21b

d-1 (d—1)2 (d—1)(d—2)

4 +KG 2

Po(Xe—0y:)|sgeCa Xo P 1 1+ ki—— A+ |

A2+CXA3)] (2.22

for x.—0 with y. fixed so thatA=x./y.-—0 [the subscript sde refers to the short distance operator expansion in Eq.
(2.18].

Note that Eq.(2.22) does not contain the abovementioned regular contributions. Upon employin@.Bqfor the half-
space, however, one can obtain the asymptotic expansiBn @f.. —0,y..) including the leading regular term. Assuming that
for t=0 the profile(d(r)), is still analytic in 1R one finds

—_1)\2 _ )
L (d-1)2  (d-1)(d-2) "

+ Al+a, xM+...
K2 4 KG 2 * A+

(2.23

P.(X+—0y+)—Cu X:_'B/V
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for x. —0 with y.. fixed so thath =x.. /y. —0. The ellipses d
stand for contributions which vanish more rapidly tha_§1 if 4
D>2 [39]. The universal amplitudes.. and a. are the

same as in Eq2.4) (see Table)land x;, «,, andkg are
from Egs.(2.19 and(2.20. In Sec. IV we shall confirm Eq.
(2.23 explicitly for D=4.

-
C. Spheres and cylinders with small radii =2.481

In this subsection we consider spheres and cylinders
whose radii are much smaller than other characteristic
lengths such as the correlation length or the distance between
the particle and the point at which the order parameter is strip
monitored. In these limiting cases the effect of the particle ’
upon the fluctuating order parameter distribution can be rep- 2 3 4
resented by @-function potential located at the center of the —
particle which enhances the value of the order parameter. It D
is instructive to consider this expansion for the generalized

cylinderK for which this §-function potential is smeared out the renormalization group sense—as relevant or irrelevant perturba-

over its axis, i.e., the Boltzmann weight expfHx) of K, ions of a fiuid near criticality. The paramete<D characterizes
where 6Hy is the difference of the Hamiltonian describing {he shape ok andD is the space dimensidisee Eq.(1.1)]. The
the system with and without the presencekofwhose axis  point (d,D)=(2,2) corresponds to a disc =2 and the points

includes the origin can be systematically expanded in a(3,3) and (2,3) to a sphere and an infinitely elongated cylinder in

cylinder

FIG. 3. Diagram of generalized cylindekswhich behave—in

series with increasing powers Bf[19,23, i.e., D=3, respectively. The line witld =4 and arbitraryd represents
the upper critical dimension for which the mean-field results for the
exp — OHy)*1+ & p REV " PHdw,+..., (2.24  adsorption profiles are exaee Sec. IY. The open circles indicate
' points (d,D) for which d=D—(8/v)(D) within the Ising univer-
where&, p is an amplitude and sality class. These points are connected by the dashed line so that

within the shaded regioaboveit the small radius expansidi2.24)
is valid [see Eq(2.29] andK represents an irrelevant perturbation.

f dor ®(r, =0yy), d<D Points @,D) t_)elow the broken line, such as the cylinderDr=3, _
we=1{ Jre I LY ’ (2.25  are characterized by the fact that the order parameter at large dis-
tances fromK deviates from its bulk value even if the radiRsis
®(0), d=D. microscopically small, which means thHt represents a relevant
perturbation.

Here only the leading nontrivial contribution f&®—0 is
shown explicitly and the ellipses stand for contributions Blv—D+d>0. (2.29
which vanish more rapidly foR— 0. For the case thdt is a
sphere[19], i.e., d=D, the amplitudep , is equal to the Figure 3 shows as a dashed lide=D —(/v)(D) [40] in

ratio A%/Bg, , whereA? andB,, are amplitudes of the half- the (d,D) plane which separates generalized cylindkrs
space profile which arerelevantperturbations for the fluctuating order pa-

rameter field(such as the strip ilD=2 or the plate inD
@ . =3) from those which ardrrelevant and for which Eq.
(P(1)hs,t=0=A (25) (220 (2.24 applies. Thus, the disc iD=2 and the sphere iD
- . . . =3 represent irrelevant perturbations whereas the cylinder in
at the critical point of the fluid for the boundary condition b — 3 represents a relevant perturbation. This implies that an
corresponding to the critical adsorption fixed point and of theinfinitely elongated cylinder iD=3 generates a perturba-

bulk two-point correlation function tion of the order parameter from its bulk value whose spatial
extension is only limited by the bulk correlation length. The
(D(r)D(0))p 1o=Bgr~ 281" (2.27) order parameter profile becomes even independeiR iof

the formal limitR— 0, i.e., if the cylinder radiuf becomes
at criticality, respectively. The ratioA(’JT’)Z/Bq, is universal  Microscopically small41]. The critical adsorption transition

23]. The comparison of Eq2.26 with Eq. (2.6) vields the ©N .such a microscopically thin “needle” is characterized by
Eela]ltion P 4229 a.28y critical exponents which need not be equal to the correspond-

ing exponents for the bulk or the half-spa@Eme Appendix
A). For the disc irD=2 and the sphere iD= 3, in contrast,
AT=a(2)" " c. (2.28  the deviation of the order parameter from its bulk value van-
ishes in the limitR— 0. This is reflected by Eq2.24) which
between the nonuniversal amplitudA§, a, &, and the is—apart from the condition in Eq2.29—only valid if the
universal amplitude .. . small radiusR is still large on the microscopic scale.
It is crucial to observe that E¢2.24) is only valid if the The lined=D — (B/v)(D) itself corresponds to marginal
exponent ofR is positive i.e., perturbations leading to a behavior which in general is dif-
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ferent from Eq.(2.24. We shall neither discuss this nor the
crossover from marginal behavior to the behavior described
by Eq. (2.24) which may arise for points closely above the
line. The lined=D —(B/v)(D) includes, in particular, the
generalized cylinder withl=3 andD =4 (see Sec. Y. The
marginal behavior of this particular generalized cylinder,
however, is not typical for spheres or cylinders bn=3,
which are strictly irrelevant or relevant perturbations, respec-
tively. Therefore in the following we shall generally speak of

CRITICAL ADSORPTION ON CURVED OBJECTS

spheres ifd=D and speak of cylinders ifl=2 andD=3
(see Fig. 3.

We now turn to the consequences of E2.24) and the
related properties of the universal scaling functichgA)
and P, (x+,y+) defined in Eqs(2.14) and(2.1). First, we
consider the sphere, i.@l=D, for which Eq.(2.24) applies.
In order to obtain the asymptotic behavior @f(A) for A
=s/R— one basically replacegb(r)),— in the numera-
tor on the RHS of Eq(2.14 by thebulk two-point correla-
tion function(®(r)®(0));, 1~ wherer can be replaced by
in leading order. By using Eq$2.26) and(2.27) in conjunc-
tion with &, p=A%/Bg, one finds

D. (2.30

A - Blv
C+(A_>OO)HC+<E) ’ d

This checks with the exact result fér (A) in Eq. (2.15.
Fort=0 andy.=R/¢.—0 with x.=s/¢£.>0 fixed the
same steps as above lead to

P.(Xs,y+—0)—P. p—cCs (ZYi)B/VXQZ'B/V}—t(Xi)a

(2.31)

Here F. is the bulk universal scaling function defined by
(compare Appendix B

d=D.

(@(NP(0)y =Bor 2" Fu(rlés), (232
where the superscrifit denotes the cumulant of the correla-
tion function. Equation$2.32 and(2.27) imply the normal-
ization 7. (0)=1. According to the definition of.. as the
true correlation lengtfcompare the discussion below Eq.
(2.2)] one hasF. (x.— )~ exp(—X.). Equation(2.31) im-
plies thatP . (x. ,y.—0) decays to its bulk value with the
power Iaw~yi’” for any value ofx.. .

Next, we consider the cylinder, i.ed=2 andD=3. In
accordance with the discussion above this object represent

relevant perturbation. The order parameter deviates from its

bulk value even foR— 0 so that the universal scaling func-
tions C,(A) and P.(x.,y.) remain finite in the limitA
=s/R—o andy.=R/¢.—0, respectively. Fot=0 this
implies

C-(A—»)—n,, d=2,D=3, (2.33

which defines new universal amplitudes. with n_/n,
=(&§1&5)P"". Equations(2.33 and (2.11) imply that for t

=0 the order parameter profile near a thin “needle” at dis-

(2.6)
N\ (24)  (2.3), half-space
[0.0]
, (2.23) (4.14)] bulk
(2.16) ;
(2.12), slopes: A
0 %O) - (2:33) (2.31), (2.35)
o (2.36) 0

X

FIG. 4. The scaling function®. (x.=s/é. ,y.=R/&.) ex-
hibit distinct behaviors for various limits of the variablgs and
y-. . The position of an equation number in the ) plane indi-
cates the corresponding limiting case to which it applies. The case
y. =oo corresponds to the half-spafeee Eq.(2.4) and Table ].
The short distance behavior fa—~0 corresponds to the limi..
—0 with y.. fixed [see Eq{2.23)]. The functionsC..(A=s/R) in
Eq. (2.12 characterize the behavior f@r.—~, i.e., the limitx.
—0 with fixed “slope” A~1=y. /x. . The behavior for smalR
corresponds to the limig.—0 with x.. fixed [see Eqs(2.31) and

(2.39].
Fort=0 one finds

P.(X+,y+—0)—=P.(X+,0)=N.(x.), d=2,D=3,
(2.395
where the new universal scaling functioNs.(x-) charac-

terize the critical adsorption profile on a thin needle. In the
limit x.—0 they behave as

N.(X:—0)—n. X;’B/V, needle,

(2.36

with n. from Eq. (2.33 [compare Eq.(2.4) for the half-
space. In Sec. IV we shall confirm Eqg2.33—(2.36) and
calculaten.. andN..(x..) explicitly for D=4. Figure 4 sum-
marizes the various types of limiting behavior of the scaling
functionsP . (X« ,y+).

lll. EXCESS ADSORPTION
A. General scaling properties

Close toT, the total enrichment of the preferred compo-
nent of the fluid near the surface of the generalized cylinder
é"‘proportional to the excess adsorptib(t,R) defined as

[(t,R)= JVdDr [(®(1))— (D), ]

—120, [ Tds(s+ R @)~ (@) b).
(3.1

HereV=RP\K is the volume accessible to the critical fluid,
i.e., the total space except for the volume occupied by the

tancess from the needle large compared with microscopicsphere or the cylindeK, andQ4=2=%%T'(d/2) is the sur-

lengths takes the form

(d(r))—o=an, (s/&) P, needle.

(2.39

face area of thel-dimensional unit sphere. For a sphere one
hasé=D—d=0 andl°=1 whereas for a cylindedl=2 so
that inD =23 the quantityl®=1 is the length of the cylinder.
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In order to obtain the scaling behaviorb{t,R) we split the
s integration into the intervals €s< ¢ ands>o whereo
represents a typical microscopic lengt#]. For the second
interval one can use E@2.1) which leads to

L(t,R)=1°Qq[I(t;0,R) +I.(y+;0/éL)] (3.2
with
(toR)= [ ds(s+RII@M) (@),
(3.3
Ja(y=+ ;0/§¢)=a|t|ﬁfg foc dx. (X:+Yt)d_l
X[Ps(Xs,y+)— Py pl. (3.9

In the limit t— 0 the integral in Eq(3.3) remains finite and
yields a nonuniversal constant which is subdominant to th
diverging contribution] in Eq. (3.4). In order to clarify the
dependence of the latter gn. = R/£. we decompose it ac-

cording to
ja'lf

X[P+(X4)=Ps p]+GL(y+ ;U'/§+)],

dx.

=+

Ja(y= ;0/§¢)=Rd_1a§§ |t|ﬂ_v{

(3.5

whereP. (x.)=P.(x. ,») are the scaling functions for the
half-space and

d-1
[Pa(Xs,y+)

[

Gi(yi;o-/é:i):f dX+(

olé.

X+
!
Y+

_P:,b]_[Pr(X:)_Pr,b]]- (3.69

The comparison of Eq(3.5 with Eqg. (3.2) shows that the
first term in curly brackets in Ed3.5) renders a contribution

of the intervals> ¢ to the excess adsorption per unit area as

if the surface of the particle would h@anar times the area
A=1°Q4RI"?
cylinder. Thus the function&.. in Eq. (3.5 reflect the de-
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TABLE Il. Numerical values of the universal numbegs and
Ry [see Egs(3.8) and(3.10)].

D g+ g- Ro

4 J2/2=0.707 1 1
3,Mc? 0.663 0.599

3, RG? 0.581 0.438

3, interpolationb 0.69+0.1 0.56-0.1 2.28-0.1
2 0.910 0.0818 22.236
3Referencd15].

PReferencd 14]; compare Table I.

singular behavior fox. — 0 of the first term in curly brack-
ets is cancelled by the second term. This implies that the
function

Gi(y+)=Gi(y+,0/é.=0) (3.6b

oes indeed represent the leading behaviortfei0. Note
hat G..(y+) is universal because it depends only on the
universal scaling functionB.. (X ,y.) andP.(X.). In sum
one finds

t[f -1
r(t—0R)—A afg{gr%jL“w_VG:(yi) ,
D=4, (3.7
with the universal numbersee Table |
(=) [ P)-P. ], D=4,
L= 0
vCc., D=4,
(3.9

where the second line is the limit f@ 4 of the first line.
According to the above discussion one h@s.(«)=0.
Equation(3.7) generalizes the corresponding Eg.10 in
Ref.[14] for a planar surface by the additional second term
in Eq. (3.7). A quantity accessible to experiments is the ratio

I'(+]t[.,R)

R¢(|t|,R)=m

(3.9a

of the excess adsorptions above and below the critical point.

of the actually curved surface of a sphere or aTpe |eading behavior R, for |t|— 0 is characterized by a

universal functiorRq([t],y. ,y_), i.e.,

viation of the excess adsorption on a curved surface from

that on a planar surface beyond pure geometry.

In order to reveal the behavior af.(y. ;o/¢&.) for t
—0 it is necessary to study the integrals in E¢&5) and
(3.6a at their lower boundsr/¢.—0. The integral in Eq.
(3.5 can be analyzed along the lines of Sec. IIA in R&#].
One finds that folD <4 its contribution tol'(t—0,R) leads
to the power law singularity- |t|#~*/(v— B8) corresponding
to a planar surface. The proper linit 4, for which v
— B [see Eqg.(2.5)], is accomplished by the presence of a
term constant with respect tavhich also diverges fob "4
such that the sum leads to a contributiol {d— 0,R) which
diverges logarithmically ild =4. The integral in Eq(3.63,
however, remains finite for/¢.— 0 also inD=4 since the

Ro(t|=0R)—Ra(|t]y. ,y-), (3.90

which can be read off from Eq€$3.99 and (3.7). For a
planar surface this function reduces to the universal number
[14]

255 g+

P , half-space.

(3.10

0

Table 1l summarizes theoretical results fpr andRg, cor-
responding to the half-space. For the curved surface of a
sphere or cylinder, however, we shall see that jor
=R/¢.—0 the divergence of the second term in curly
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brackets in Eq(3.7) is more pronounced than the divergence . |t~ v— )
of the first term. In order to clarify this aspect we now dis- F(t—>0,R)=a§5J ds[g 7“\1 Km+X; K
cuss the behavior db-.(y-) in the limit for large and small s
values ofy.. , respectively.

NG Kt (3.12

B. The scaling functionG.(y.) for y,.—

Fory.>1 we assume thaB.(y.) is analytic iny,; >  where the curvaturesK,, and Kg are given for a
=¢. /R so that it can be expanded into a Taylor series(D—1)-dimensional surface of general shape in Eql17).

aroundyi’l:O, ie., For the special case that the partiéleis a generalized cyl-
. . inder K the curvatures(,,, and Ks are given by Eq(2.21)
G:i(y:—*)=a4p yot+ bap y.2+--- (31D and the comparison of E¢3.12 with Egs.(3.7) and(3.11)
yields

[recall G.(=)=0 by definitionl. The coefficients, and

bip are dimensionless and universal and depend on the -

space dimensio® and on the shape of the generalized cyl- N ——= |t|5‘Va(fD &L (3.133
inder, i.e., ond. The validity of the expansio(8.11) is plau-
sible since in the limit¢. /R<1 the thickness- £.. of the
adsorbed layer is much smaller than the particle raBig®e
that a small curvature expansion should be applicable to

and the relation

I'(t—O0,R) in Eq. (3.7 in which a surface term-1°R4"1 is . (d-1) NE (d—-1)(d-2) —|tF b, &2
followed by successive termsRY™2, RY~3 etc., generated 2 4 G 2 dbs=-
by the surface curvature. The terms on the RHS of(Bd.]) (3.13bh

correspond to the leading curvature contributions to this ex-

pansion and imply that for decreasing valuesyof=R/¢.  The curvature parameteks™, A\, , and\s depend orD

~|t|” the leading corrections to the first term in curly brack- but should not depend on the shapekofi.e., ond in Eq.

ets in Eq.(3.7—corresponding to a flat surface—are of the (3 13. This implies a corresponding dependence of

order|t|#~”[t|~" with n=1,2, etc., and start to dominate it aj, and by, which provides an important consistency

as soon ay.=<1. check for the validity of Eq(3.12. In Sec. IV we confirm
Similar as for the short distance expansion of the ordethis dependence and explicitly calculate the curvature param-

parametefcompare Eq(2.18)] the first Taylor coefficients eters forD =4.

of the expansion oG (y.—) also determine the curva-

ture parameters of a partické of more general shappro-

vided its surfacesis smooth and all principal radii of curva-

ture are much larger thag. . In this case one expects an  In order to investigate this limit it is convenient to con-

expansion of the general form sider the function

C. The scaling functionG.(y.) for y.—0

Y& Gulys)= f:dxi {(xe 4y ) [Pa(Xe ya) — P o] =Y P (x2) — P pl} (3.14

Because fory.—0 the functionP.(x.,y+) in Eq. (3.14 behaves qualitatively different for spheres as compared with
cylinders(see Sec. Il Cwe treat them separately.

First, we consider the sphere, i.d= D, for which Eq.(2.31) holds for the behavior oP_. (x.. ,y.—0) if x. >0 is fixed.
However, the integral in Eq3.14) starts at the lower boungl. =0 where this condition fox.. is violated. Therefore we
temporarily split thex. integration into the intervals ©x.<\y. andx.>\Jy.. In the latter interval the relatios/R
>y;1’2—>oo holds so that Eq(2.3)) is applicable. This leads fdhe curly brackets correspond to those in E2j14)]

©

y;“lei(yipfmdxi{ }+f A [(Xe +y2 )P 1 [ca (2y )8 %228 Fo(x2)]—y O [P (xa)— P o]l
0 N+
(3.15

N

In the second integral the variabje in (x.+y.)? ! can second integral in E¢(3.15 dominates the first integral for
be replaced by zero in leading order for—0 and the term y.—0. This leads to the final result

proportional toy ° !, i.e., the half-space contribution, can

be dropped sinc® — 1> B/v. The resulting integrand is in- G.(y:—0)—w, y P d=Dp, (3.19
tegrable forx.—0 so that the lower boundly. can be

replaced by zero and one can readily show that the resultingith the universal amplitudes
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TABLE Ill. Numerical values of the universal amplitudes.
andv. [see Eqs(3.17) and(3.21)] as presently available.

D (o w_ v, v_

4 4,/2=5.657 8 1.90 1.86

3 1.53+0.05 =1.47

2 0.515 0.0501 not defined not defined

w.=C. 2ﬁ’VfO dx. xP 1728 £ (x,). (3.19

The numerical values ab.. for several spatial dimensioiis
as presently available are summarized in Tablddde Sec.
IV B and Appendix B. Using Eq.(3.1) in conjunction with
Eq. (2.24 yields

I'(t—0R)—&pp R xp(t)~[t| 77, d=D, (3.18

with the bulk susceptibilityy,(t) ~|t| ~” and the critical ex-

ponenty=Dv—28. Equation(3.18) is, of course, consistent

with Egs.(3.16 and (3.7). Fort—0 the universal function
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I'(t—0R)~|t|#"2", d=2, D=3. (3.22

Fort—0 the universal functiolRy(|t],y, ,y_) in Eqg. (3.9
tends to the universal number

+
Uy

2
—‘i) —, d=2, D=3,
§O v_

(3.23
with v given by Eq.(3.21). Again, the limitR4(0,0,0) is

independent of the definition for the correlation lengtbm-
pare Eq.(3.19].

Ru(0,0.0 l.mT(+|t|,R)
,U, =l —_—
@ tﬂor(_“l,R)

IV. MEAN-FIELD THEORY

The critical fluctuations of the fluid are described by the
standard Hamiltoniah7,8]
Hq>—fdvlvq>2+7q>2+uq>4 4.1
{@}= | dVi5(VO)*+ 502+ 2 (4.1

for a scalar order parameter fiefel(r) supplemented by the

Ro(t],y+,y-) in Eq.(3.9) approaches the universal number boundary conditionb =+ at the surface of the sphere or

Re(0,0,0 = lim

re+tR) ()" " o.
COT(—TtR)

56 I, d:D.
(3.19

the cylinder corresponding to the critical adsorption fixed
point[12]. The position vector € RP covers the voluma/
=RP\K accessible to the critical fluid. The parameteis
proportional tot=(T—T.)/T. andu is the®* coupling con-
stant. The thermal averageP(r)) corresponding to the
Hamiltonian in Eq.(4.1) with the boundary condition for

Whereas the dependence of the functiRy(|t|,y, ,y_) on - , .
y.,y_ is universal but depends on the definition used forcrmcal adsorption at the surface &f can be systematically

the correlation length, we note that the linR,(0,0,0) in  €xPanded in terms of increasing powersupf.e.,
Eq. (3.19 is independent of the definition for the correlation
length. The reason is that according to the first parts of Egs.
(3.19 and(3.1) R4(0,0,0) can be expressed in terms of the
order parameter profiled(r)), without resorting to the no-
tion of the correlation length at alfThe same holds for the
numberRy in Eq. (3.10 [14].)

6
((I)(r)>=\/; [m(s;R,7)+O(u)], s=r, —R. (4.2

The leading contribution to this expansion corresponds to the
mean-field result for the order parameter profile which be-

Next, we consider the cylinder, i.,ed=2 and D=3,
which represents a relevant perturbati@ee Sec. Il ¢ In
this case Eq(2.35 holds for the behavior oP. (X ,y«

—0). Thusy? 1G.(y.)=Yy. G.(y.) becomes indepen-
dent ofy.. in the limity. —0 and tends to the constant given
by the integral in Eq(3.14) with y.. replaced by zero. This

leads to
G.(y-—0)—v. yt_l, d=2, D=3, (3.20
with the universal numbers
Ut:j dXe X+ [N (Xe)— P2 y]. (3.21
0

Numerical values ob.. are only known foD =4 at present
(see Table Ill and Sec. IV B Note that the numbers. are
not defined forD =2 (compare Sec. Il £ The exponent in
the power law in Eq(3.20 differs from that in Eq(3.16—

apart from the difference generated on purely geometric

grounds—byp/v due to the different smalf.. behavior of

the critical adsorption profiles for spheres as compared with

cylinders. Equatiori3.20 in conjunction with Eq(3.7) leads
to

comes exact in the limib 4. The profilem(s;R, 7) is de-
termined by minimizing#{®} which leads to the Ginzburg-
Landau type equation of motion

1
m’(s)+ ——=m’(s)— rm(s)=m(s),

s+R 43

which is supplemented by the boundary conditifns|

2
m(s—>0;R,7)—>?, (4.439
0, =0, b
m(s_)ocvRaT)_)mi,b_ |’T|l/2, T<O (44)

The parameter is related tot=(T—T.)/T. and to the cor-
relation lengthé.. by

12 >0,

L= + t—l/2: 1
g_ SO | | _|T|_1/2, 'T<O,

V2

and[compare the text following Eq2.2)]

(4.5
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6 1.5 4
a|t|Y?= \[a|7|1’2, 7<0. (4.6 =2
Equations(4.3) and (4.4) uniquely determine the profile =
m(s;R,7). The universal scaling functionB..(X.,y) in s b
Eq. (2.1) then read 3
o
Pt(xiayt):|T|7l/2m(S;Ra7-)r D=4. 4.7 &,
< 05
Within the present mean-field approach this scaling form
holds because the LHS of E(#.7) is dimensionless so that
it depends only on the dimensionless variatsgs'/? and
R|7|Y2, where| 7|2 is related to.. by Eq.(4.5). Similarly, 0 :
the universal scaling functiofi, (A) in Eq. (2.11) is given 6 1 2 3 4 5 6
by X, =s/E,
C.(A)=sm(s;R,7=0), D=4. (4.9 c=2 '
% S\ sphere,D=4 vy =R/&
Equations(4.7) and(4.8) lead to exact results fdd 4 and = E P Y ¢
generalized cylinderK with arbitrary d in the interval 1 45 ] A\ — Yy.=eo
<d=<D (compare Fig. B Equations(4.3) and (4.4) can be % ' A\ --- y.=10
solved numerically, e.g., by means of a shooting method N i A\ U y. =1
[42]. In some cases analytical solutions are available. In the > 14 \\ A\ —— y.=041
remaining part of this section we present the corresponding 5, i - y_=0.01
explicit results for the problems discussed in Secs. Il and Ill. :L- ‘\ N
R AN (b)
A. Order parameter profiles |\ \‘\\ ] ‘\\
We start with the universal scaling functioRs (X. ,y+) 0 Il e
according to Eqgs(4.7) and (4.3). Figure 5 shows their be- 0 1 2 3 4 5 6
havior as function ofx.=s/£. for various values of the X =s/E.

parametey .. =R/ .. in the case of a sphefee.,d=D with

D=4, compare Sec. Il C and Fig).3For our presentation FIG. 5. () Scaling functionP (x, ,y) for a sphere in mean-
we choose a scaled form which reflects the behavior ofield approximatior(i.e.,d=D with D=4) as a function ok for
P.(x.—0y.) (compare the inset of Fig. 2; he@/v=1). several values of . . The curves start at the valeg (compare the
Aacor_dingly,_the curves start at the mean-field valges inse.t in Fig. 2. The curve fory, =« correspor?ds to the h.alf-space
=2 andc_=2 [see Eq(2.23 and Table ], respectively, profile [see Eq(2.9)]. The curves decrease with decreagmngand

X . vanish in the limity, —0. The slopes ak, =0 can be read off
and decay exponentially for. — . In order to deal with the . N X
. . from Eq. (4.16 with s/R=x,/y,. (b) Same representation for
rapid decay oP_(x_—o,y_)—1 for small values of/_ in

. . P_(x_,y.). The functionU(x_,y_) introduced for convenience
the caseT <T, we replace the functiobl(x_) in Eq. (2.10 is d(efingd )in Eq(4.9 (x=.y-)
by 9.

that P.(X+,y+) does not vanish in the limiy.—0 but
rather tends to the finite Ilimit functionP_.(x.,0)
=N_(x+) corresponding to the critical adsorption profile on
a thin needle. This is in line with Eq2.35 and the related
discussion. According to Eq2.36 the curves fory.=0
start at the mean-field values of the universal amplitudes
which are given by

x2 y_+1

x_.+1 y_

, d=D=4, (4.9

U(x_,y_)= tan?‘(

so thatU(x_ ,»)=U(x_). We emphasize again that the
functionU(x_,y_) is introduced only in order to facilitate
an appropriate representation Bf (x_,y_) which reflects
the behavior for both small and large valuesxof for all
values ofy_ (compare the discussion related to Fig. Phe
overall dependence &f.. (X ,y-) on the parametey.. is in
line with Eq.(2.31) and the related discussion. Starting from

n,=1, n_=+2, D=4. (4.10

Next, we consider the universal scaling functin(A) in

the half-space behavior for. =« the profilesP. (X ,y.)
—P. p, decrease with decreasiyg. for any fixed value of
X~ and vanish in the limity.—0.

Eq. (4.8 corresponding ta=0. Figure 7 shows its behavior
for the present cade =4 and several values of The func-
tion C.(A) starts atC,(0)=c, [see the text following Eq.

This latter behavior for a sphere differs from the corre-(2.12] and for A—< it vanishes in the case of the sphere
sponding one for a cylindeii.e.,d=2 andD=4, compare (i.e.,d=D with D=4) while it tends to the finite number,
Sec. Il C and Fig. 8 Figure 6 shows the corresponding be- from Eq.(4.10 in the case of the cylinddi.e.,d=2). In the
havior of P..(x.,y+) for various values ofy.. For the marginal casel=3 it vanishes only logarithmicallycom-
presentation o _(x_,y_) in the case of the cylinder the pare Sec. Il C and Fig.)3For 7=0 analytical solutions for
functionU(x_)=U(x_,%) is suitable for all values oy _ . Eq. (4.3 are available in some special cases everdforl.
The overall dependence on. is characterized by the fact For example, forr=0 andd=4 the differential equation can
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1.5 4
c,=V2 D=4
cylinder, D=4 vy, =R/E, 151 half-space (d=1)
V2 C.
cylinder (d=2)
....... ’<T q cecoo====== N,
O+
~(Inay'?
05 ¢
sphere (d=D)
+ + + + ¥ 0 + ¥
0 1 2 3 4 5 6 10° 10’ 102 10°

A+1=s/R+1

FIG. 7. Scaling functionC, (A) in mean-field approximation
(i.e.,D=4) as a function oA =s/R for several values ofl (com-
pare Fig. 3. All curves start at the same valdg (0)=c, corre-
sponding to the half-space but for lardethe behaviors are quali-
tatively different. For a spher@, (A— ) vanishes as\ ~#'* with
Blv=1 whereas for a cylinder it tends to the finite vatue. In the
marginal casal= 3 it vanishes only logarithmically.

[P(x_,y)-U(x)]

so thatC,(«)=n,=+3—d>0 for d<3. This is in line
with Eq. (4.12 as well as with Fig. 3 and the related discus-
sion, according to which ilD =4 a generalized cylindeK
with d<<3 represents a relevant perturbation. In particular,
Eq. (4.13 leads tom(r, )=1/r, representing the mean-field
profile near a thin needléfor which d=2, compare Sec.
x. =8/t II C) at criticality. In Appendix A we calculate the corre-
) ) . ) sponding two-point correlation function in the presence of
FIG. 6. (@) Scaling functionP . (x, ,y.) for a cylinder in mean-  ipis profile.
field approximation(i.e.,d=2 andD=4) as a function ok for The asymptotic behavior oP. (x.,y.) for D=4 in
several values of . (compare Fig. & The curves decrease with 5 s |imiting cases can be derived directly from the de-

decreasingy . . In the limit y, —0 they tend to the curve corre- fini : :
. - " : ining Egs.(4.7) and (4.3) even for those cases in which no
sponding toP . (x,,0)=N_(x,) describing the critical adsorption full zgnal(;l/tic(al 7s)olutio(n is) availabl44].

profile on a thin needle. The latter curve starts at the valye : -~ . _ " . .
(filled symbo). (b) Same representation f&_(x_,y_). The func- . (I) X:=8/¢:>1 Wlth y==RI¢. _flxed. Beca_luse in this
tion U(x_) equalsU(x_ ) from Eq. (4.9). limit m(s;R,7)—m.. , is exponentially small, in Eq(4.3

one can neglect powers of it larger than one. This leads to a

be solved by relating it to the generalized Emden-Fowlefinear differential equation fom(s;R,7) —m.. , which can

equation[22], or by realizing that it represents a so-called P& Solved in terms of modified Bessel functioks,(x..

“equidimensional” equation(see, e.g., Sec. 1.4 in Ref. TY=) andl (x.+y.) [45] with index a=(d—2)/2. Here

[43]). The result is only the decreasing functiokd, must be considered. Using
the asymptotic behavior df, for large argumentf45] and

2\2R Eq. (4.7 one finds
—F—, d=4, (4.11
s(s+2R)

X_[i/v

m(s;R,7=0)=
_g-1

which agrees with Eqg4.8) and (2.15. It is worthwhile to Pr(Xs Y2)=Ps p—=As(Yid) (Xetys)” 72

note that an analytical solution also exists for the particular Xexp —Xi), X+>1, (4.14

caser=0 andd=5/2 for which

V212 where the amplitude functiod.(y.;d) remains undeter-
m(s;R,7=0)= , d=5/2, (4.12  mined by the present method and must be evaluated numeri-
s+R—VR(s+R) cally in general. An important feature of E@..14) is that for

. _ . increasing values of.. the exponential decay is enhanced by
from which the corresponding result fer.(A) can be in-  the algebraic prefactor. Thus the decay is weakek.if
ferred from Eq.(4.8). Finally, for =0, R=0, and arbitrary <y, and it is weaker for a cylinderd=2) than for a sphere

values ofd<3 one finds (d=D with D=4). This is expected because the perturba-
3=d tion of the bulk fluid is strongest in case of the half-space
m(s;R=0,7=0)= . s=r,, d<3, (4.13 (corresponding ta.. <y..), less for a cylinder, and even less

for a sphere.
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(i) x.—0 with Rand£.. fixed, i.e.,s—0 (compare Sec. Eq.(2.15. Equation(4.18 is in line with Eq.(2.31) because
Il B). The leading behavior ah(s—0;R, 7) can be obtained for D=4 one hag3/v=1 and the universal scaling functions
by inserting the ansatz F.(X.) are given by

\/E ]:i(Xi)ZXi Kl(xt), D=4. (4.19
m(s;R, )= < Taotagst O(s?) (4.15
B. Excess adsorption

into Eq. (4.3 and fixing the c_oefficientao anda; such that For D=4 Eq. (3.7 reduces to
the prefactors of the most singular powerssafancel. The
resulting expression can be arranged so that it takes the form T'(t—0R)—A agg {g- |In|t] [+ G.(y+)}, D=4,
implied by Egs.(2.23 and(4.7), i.e., (4.20
J2 1d-1s [5(d—1)2 with g, =1/y2 andg_=1. The universal scaling function

372 §+ 9 a2 G.(y+) in Eq.(4.20 is given by Eq(3.6) with P (X4 ,Y+)
and P (x..) from Egs.(4.7) and(2.9). In the following we

m(SHO;R,r)=?

1(d—1)(d—2)]s? discuss the behavior d&..(y.) in the limit of large and
—— T | small values ofy.=R/{¢. and give results for the whole
3 2 R? range ofy. representing the crossover between these two

limits.
_ Ersz+ o (4.16 (i) G (y<) fory.— o (compare Sec. lll B By using the
6 ' differential equation4.3) in conjunction with Eq.(4.7) one

can determine the coefficienas, andbp, in Eq.(3.11) for
Equation(4.16) confirms that the leading dependencerds  generalized cylinder& with D=4 and arbitraryd in the
analytic with the same prefactor as for the half-space. Irinterval 1=d<4. This calculation is presented in Appendix
addition, one can read off the curvature parameters according. As a result one finds that the dependencesofandbg,

to mean-field theory, i.e., on d are precisely of the form given by E@3.13. In the
present cas® =4 one hagdt|?~*=1 and the curvature pa-
1 5 1 i
=3, k=g, ke=—3. D=4. 417 rameters are given biy6]
AN =5.09 £, Ny =491 &, (4.213
We note that the derivation of E¢4.16) implicitly contains . ) B )
a consistency check for the validity of the general curvature N, =—155¢&7, A, =—091¢&2, (4.21b
expansion(2.23. For example, the parametets and«g are .\ ) - )
fixed by considering only two different types of generalized Ng =287 £7, \g =292 §Z. (4.219

cylinders K with nonvanishing curvature, e.g., those for ) ]

which d=2 andd=3. Equation(4.17), however, holds for The consistency with Eq3.13 for D=4 can be traced back
any value ofd in the interval kd<D with D=4 which to nontrivial properties of the differential equati¢h3) (see
encompasses, in particular, the three integer valizeg, 3, APpendix Q and thus provides an important check for the
and 4 (compare Fig. B Thus the curvature parameters are Validity of the general curvature expansil. We expect
overdetermined. In the present case, however, this consi§at the curvature expansié8.12) is also valid inD =3 and
tency may be regarded as a simple consequence of the d#jzalt the corresponding numerical prefactors multiplyéngr
ferential equatior(4.3) in which the perturbation generated é~ in the curvature parameters for=3 differ only quanti-
by the surface curvature is proportionalde- 1. In the next tatively from those in Eq(4.21) valid for D=4.

for the excess adsorption, for which the corresponding consides exposed to a fluid near criticality. In particular we con-
sistency check ifD=4 provides a more stringent test. sider thetotal excess adsorption, i.e., the sum of the excess

(i) y. —0 with sand&.. fixed, i.e.,R—0 (compare Sec. adsorptions on each side of t+he membrane, per unit area. In
Il C). We consider the case of a sphere, icksD with D this case the contributions to; K, in the expansior3.12
=4. By inserting the ansatm(s;R,7)—m. ,=R u(s;7) from each side cancel and the signs in EGs21bh and
into Eq. (4.3 and keeping only terms linear Rone obtains  (4.219 in conjunction with Eq.(2.21) imply that the total
a linear differential equation fou(s;7), similar to case(i)  €xcess adsorption larger near spherical regionsi¢ D) of
above. The solution of this differential equation in terms ofthe membrane as compared to flat regions, whereas near cy-
the modified Bessel functiol,(x.) [45] in conjunction lindrical regions (i=2) it is smaller as compared to flat

with Eq. (4.7) leads to regions.
(i) G4 (y=+) for y.—0 (compare Sec. lll € In this case
P.(X+,y+—0)—P. p—2C. Y. Xs 1Ky(x+), d=D=4. the behaviors for spheres and cylinders are qualitatively dif-

(4.18 ferent due to the different behaviors Bf.(x.,y.). For a
sphere(i.e.,d=D with D=4) the power law3.16) is valid
Here the constant prefactorc2 is fixed because the limit where the exponent D+ 1+ B/v equals—2 and according
Xx+-—0 of the RHS of Eq(4.18 must reproduce Ed2.12), to Egs.(3.17 and (4.19 the universal amplitudes. are
in which C.(A—»)—2c. /A for d=D=4 according to given by
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103 + $ 2.6 T ¥
sphere, D=4 - o4 1 cylinder, D=4
2 --- y,=0
~~~~~~~ curvature expansion S 22 ¢
R --~ power law > 21 (a) :
0+ £ -  =e=e====F 0,
5», 10 ,,' 1.8 + + + t t
4 D424y -2 -1 0 1 2 3 4
o ,’m+y+D”‘/ 10° 10 10° 10 10° 10° 10
y, =&/R
2.6
(@) .
10' 24 ¥ cylinder, D=4
} + \?/% -—— y_:O
10" 10° 10' 10° o 227
-1 >
y. =& /R 21 (O
10° ' " 1.8 —— i v-
10% 10" 10° 10' 10° 10° 10°
sphere, D=4 Y= £ /R
___ curvatt:re expansion FIG. 9. Scaling function$> . (y~) for a cylinder in mean-field
o, power faw approximation (i.e., d=2 and D=4) as a function ofy,?
§ 10° =¢. IR for (8) T>T. and(b) T<T,. (compare Fig. 8 The dotted
- F iy D lines show the small curvature expansion and the dashed lines cor-
respond to the numbets. in the behaviolG . (y.—0)—v. y. !
[see Egs(3.20 and(4.23)].
1004 () V. SUMMARY AND CONCLUDING REMARKS
' ' We have studied critical adsorption phenomena on spheri-
10" 10° 10 10° cal and cylindrical particles of radilR which are immersed

y ' =E /R in a fluid near criticality,t=(T—T.)/T.—0, for the case
that the fluid is at the critical composition. The correspond-
FIG. 8. Scaling functionss.(y.) for a sphere in mean-field ing adsorption profiles at the radial distare&om the sur-
approximation (i.e.,, d=D with D=4) as a function ofy.' face are characterized by universal scaling functions
=¢. /R for (@) T>T. and(b) T<T.. The dotted lines show the P (s/&. ,R/&.) for T#T,, involving the bulk correlation
small curvature expansidsee Eqs(3.11)—(3.13, and(4.21] valid lengths . for T=T,, andC.(s/R) for T=T, [see Egs.
for y-*<1 and the dashed lines show the power l&e Egs. (2.1) and(2.12), respectively.
(3.16 and (4.22] valid for y. *—c; for D=4 the exponent-D In the following we summarize our main results starting
+2+plvis equal to—1. with local propertiesof P. (x. ,y.) andC,(A) in various
limiting cases as indicated by Fig. 4.
w,=42, w_=8, d=D=4. (4.22 (1) For T=T, we have introduced the short distance ex-
pansion of the order parameter profile near a weakly curved
For a cylinder(i.e., d=2 andD=4) one finds the behavior (D—l)-dimensiongﬂ surface obeneraj shape [see Eq.
(3.20 where the universal numbets. in Eq. (3.2 can be (2.18]. This expansion involves the local curvature invari-
evaluated numerically with the result antsK,,, K2, andKg [see Eq.(2.17]. The corresponding
expansion parameters;, «,, and kg appear also in the
short distance expansig®.23 of P.(x.,y.) valid for T
=T.. The parameters,, «,, and kg are universal and

(iii ) The full scaling function& . (y-) describe the cross- depend onlv on the space dimensibnlsee Eqs.(2.1
over between their analytic behaviors for=R/&.. — and (22@ and(Z.l?)]. P [ 4s(2.19,

the power laws foy. —0 which have been discussed(in (2) ForR<s, ¢ the order parameter profile near a cylinder
and (i) above. Figures 8 and 9 show numerical results for,

. ; becomes independent & in the limit R—0, i.e., if the
(_;i()'i_) corresponding to a sphere and a cylinder, reSPeCsyiinder radius is microscopically smalsee Eqgs(2.33—
tlvely_, in D=_4. '_I'he results confirm the small curvature ex- (2.36]. In contrast, near a sphere the universal part of the
pansion as implied by Eq$3.11)—(3.13 and(4.21) and the

. . order parameter profile, i.e., the one described by E480
properties(3.16 and (3.20, and they provide the range of and(2.31), vanishes foR— 0. Thisqualitativedifference in

validity of the asymptotic behavior. Notle that in the case ofepayior can be explained by means of a small radius opera-
the SF_)TGVQ&C?x(Y:) as function ofy. “=¢. /R diverges o expansior{see Eqs(2.24 and (2.25]. As indicated by

for y. "—oo with the corresponding power law whereas in Fig. 3 a sphere is an irrelevant perturbation for the fluid near
the case of the cylinder with increasiyg it interpolates criticality whereas a cylinder is a relevant perturbation.
between one finite value related 1" to the other finite (3) The explicit forms of the universal scaling functions
valuev. . P.(X+,y+) andC,(A) for a sphere and a cylinder within

v,=1.90, v_=1.86, d=2, D=4. (4.23
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mean-field approximatiofsee Figs. 5-)7corroborate the re- contributions, i.e., the change of the surface tension gener-
sults described iil) and(2) above. ated by the surface curvature, can be relevant for applica-
We now turn to theexcess adsorptioRi(t—0,R) describ-  tions. For example, in case of a membrane immersed in a
ing the total enrichment of the preferred component of thdluid near criticality such contributions and their temperature
fluid near criticality in proximity of a sphere or cylindgsee ~ dependence are expected to influence the intrinsic bending
Eq. (3.1)]. The curvature dependence Bft—O0,R) is char- rigidities of the membrane. These modifications of the bend-
acterized by universal scaling functio@s. (R/£.) obtained ing rigidities can, in turn, indupe shape changes of vesicles
from P (s/£. ,R/£.) by integrating over the first variable g)r;nefgby closed membranes in a controllable \sse, e.g.,
s/ &, [see EQs(3.6) and (3.7)]. ef. [48]). . , . ,
(4) For R/£.>1 we have introduced the expansion of (11) A one-dimensional extended perturbation in an Ising-
I (t—0R) neair a weakly curvedr(— 1)-dimensional sur- like system which breaks the symmetry of the order param-
Y axly . . eter represents a relevant perturbatisee Sec. Il Cof the
face ofgeneralshape in terms of the local curvature invari-

> _ bulk system. This gives rise to new universal quantities such
antsKn, Kp, andKg [see Eq(3.12)]. The corresponding a5 the critical exponents| and 5, characterizing the decay

expansion parametets;, \; , and\g depend only on  of the structure factdisee Appendix A and in particular Egs.
the space dimensioD and can be expressed in terms of the(A9) and (A11)] and the amplitudes. and v. [see Egs.
universal coefficienta(fD and b(fD appearing in the expan- (2.36 and(3.21), respectively; the mean-field values mof
sion of G.(y.—®) [see Eqs(3.11)—(3.13]. The explicit andv. are quoted in Eqs4.10 and (4.23]. Apart from a
calculation of\ =, A\,~, and\g within mean-field approxi- rodlike particle immersed in a fluid, such a one-dimensional
mation[see Eq(4.21) and Appendix G provides an impor- Perturbation could also be realized isalid, e.g., by a lattice
tant check for the validity of the general curvature expansiorflislocation in a binary alloy if the dislocation locally breaks

of the excess adsorption. the symmetry of the order parameter. This would be a natural
(5) For R/£.—0 the behaviors of['(t—0R) and starting point for testing the numerous field-theoretical pre-

G.(y.) are characterized by power lafsee Eqs(3.16—  dictions derived here by Monte Carlo simulation.

(3.18 for a sphere and3.20—(3.22 for a cylindeil. The (12) As stated in the Introduction, the results addressed in

exponents in these power IaWS are different for Spheres ar@) can be relevant for the flocculation of colloidal particles
Cy"nders beyond the pure|y geometrica' effects. This can bQiSSOlved in a fluid near Cr|t|Ca.||ty Specificly, if one consid-
traced back to the corresponding difference in behavior ofrs the casd =T and compares the behaviors of the order
P.(X.,y.) addressed ir2). parameter profiles near a sphere and near an infinitely elon-
(6) The explicit forms ofG.(y.) for a sphere and a gated cylinder, respectively, the order parameter of the fluid
cylinder in mean-field approximatiaisee Figs. 8 and)&on- ata distance> R from the particle with radiuR is larger by
firm the genera] results presented(m and (5). a faCtorN(S/R)ﬁ/V>1 for the Cylinder than for the Sphere
We conclude by summarizing some of thield- [see Eqs(2.11), (2.30, and(2.33]. For rods with a large but
theoretical devek)pmenm']dperspectiveﬁor future theoret- finite Iengthl and distances=| this enhancement is of the
ical work, simulations, and experiments. order of (/R)#/">1. Since the critical Casimir forces be-
(7) For a systematic field-theoretical analysis of the criti-tween particles are partially induced by an overlap of the
cal adsorption phenomena on spheres and cylinders it is usetder parameter profiles generated by the individual particles
ful to introduce the particle shape of a “generalized cylin-in the space between them, the aforementioned results sug-
der” [see Eq(1.1) and Fig. 1 which is characterized by the gest that not only spheres buat fortiori, also long rods in a
space dimensio® and an internal dimensiot encompass- fluid near Criticality can aggregate due to critical Casimir
ing a sphere, a cylinder, and a planar wall as special casedorces.
(8) For a single sphere, certain asymptotic behaviors of
the order parameteprofile are characterized by universal ACKNOWLEDGMENTS
quantities[see Eqs(2.23 and(2.31)]. These quantities are
accurately known i =3 [see Egs(2.19, (2.20), and Table
I; as far as the scaling functiotfs. (x..) are concerned, only
the functionF,(x,) appropriate folT>T, is known accu-
rately for D=3, see Appendix B The corresponding pre-
dictions can be tested using small angle scattering of ligh
X-rays, or neutrons which can probe the enlarged effective

We thank Professor E. Eisenriegler for helpful discussions
and Professor A. J. Bray and Professor M. E. Fisher for
helpful correspondence. This work has been supported by the
German Science Foundation through Sonderforschungsbere-
tjch 237 Unordnung und grof3e Fluktuationen

size of the colloidal particles due to the adsorption. APPENDIX A: TWO-POINT CORRELATION FUNCTION
(9) For a single sphere, id =3 the behavior of thexcess NEAR A NEEDLE
adsorptionin the limit R/§.—0 is available as wel[see The two-point correlation functio(r,r ') for Gaussian

Egs. (3.7, (3.16—(3.18, and Table Il and can be tested q,ctyations around the profifa(r )= 1/r, [see the text fol-

experimentally by, €.g., volumetric measurements. For a disf,ying Eq.(4.13] at criticality satisfies the differential equa-
in D=2 the numerical values of the universal amplitudes 5,

in Eq. (3.16 are also knowncompare Appendix B This
can be relevant for protein inclusions in fluid membranes [—Ap+3m*(r)]G(r,r)=6P(r—r"), (A1)
[47].

(10) Apart from the curvature dependence of the excessvhereAy is the Laplacian operator iD-dimensional space.
adsorptionsee Eq.(3.12] also the corresponding energetic (Although the present mean-field calculation implies- 4
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FIG. 10. A thin “needle” corresponding to a generalized cylin-

der K with d=2 andR=0 [compare Eq(1.1) and Fig.(1)]. The
two spatial arguments andr ' of the correlation function in Eq.
(A4) are also shown.

we leave the symbdD for clarity.) In coordinates adapted to

the geometry of a generalized cylind€rwith d=2 andR
=0 the Laplacian operatak has the form

D-2
[?2

AD:AL‘F Z —2
BN

(A2)

with

# 1 9 1 42

Al=—t——+ ——
- orf rLdr. r2py?

(A3)
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821(9+2+n23~G( ')
- T, T r 7r 1
arf rL ari p I’l n\" L 1 p
o(rp—r,)
-+ L7 (AB)
re

For rﬁ&rl' the solutions of this equation are modified
Bessel function, (pr,) andl,(pr,) [45] with index

A=\p=n?+3,

The physically acceptable solutios, of Eq. (A6) is
uniguely determined by the requirements tfiatit is sym-
metric inr andrl', (i) it decays forr, —oo, and (iii) it
does not diverge as the singularityrat=0 in Eq. (A6) is
approached. The result is

(A7)

Ga(ru . p)=Ka(pr{i) 1 (pr(?) (A8)
with r{*)=max¢, r,"), f®=min(, r,"), andx given by
Eq. (A7). Equations(A4) and (A8) represent the two-point
correlation function near a thin needle in the presence of the
adsorption profilan(r, )=1/r, at criticality. In the follow-
ing we infer the asymptotic behavior &(r,r ') in various
limits.

@r,,r, fixedandrj—r," |—. The RHS of Eq(A8)
can be expanded fgr—0, e.g., by relating, tol_, andl,
via the corresponding formula in Sec. 9.6.2 of R&hb](a)
and by using the formula in Sec. 9.6.10 of the same refer-
ence. Apart from terms proportional to integer powerpaf
which are analytic irp yielding only exponentially decaying
contributions on the LHS of Eq(A4), one finds that the
leading singularcontribution behaves gs?*. Regarding the

as the Laplacian operator in the two-dimensional subspadeading behavior fofrH—r”’ | - in Eq. (A4) only the term

perpendicular t&. Here denotes the angle betweenand

with n=0 is important so that

a fixed direction in the radial subspace. In order to solve Eg.
(A1) we carry out the Fourier transform in the subspace par-

allel to K and a partial wave decomposition in the radial

subspace, i.e.,

G(r,r")=G(r, ,r, ,ﬂ,lfu—fu' )
o dD*Z ,
(A4)

XGn(r,,r,,p),

where ¥ is now the angle betweean and rl' (see Fig. 1D
The functionsw,(39) are given by

2—06h0
2

W, (9)= cognd) (A5)

with §,0=1 for n=0 and zero otherwise. They obey

oW, (9)=6(9)/2 where the support of thé-function on
the RHS is located entirely in the intervat=0 so that
SO do 8(9)=1 for any ¥'>0. The propagato, in Eq.
(A4) satisfies the radial equation

G(ry.r) o r=r) |[—0)~ (A9a)

with
7=2No=243. (A9b)
(o) ry=r,", r,’ fixed andr, —c. Forr, >r," using Eq.
(A4) and rescalingc<=pr, leads to

) L) )
L . D-2 0 n( (2 r)D*Z

XKy () Ly(xr,'Ir ). (A10)

Herel)\(xrl'/rl) can be expanded forL'/rl—>0 so that in
this limit again only the term witm=0 is important and

Glru—=r, 9.0~ 5y (ALD

1

with
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amplitudeD is defined byS,_,(p)=D p”~2 which implies
that B in Eq. (2.27 is related toD via B =ND with the
humbers

7L=No= Jg

We note that within the present mean-field theory the rela
tion 27, =+ 75| is fulfilled becausen(D=4)=0.

The exponents in EqA9) and (A11) for a needle are
different from those for the half-space for whi@jﬂi‘sz 6 and
nfSZS in mean-field approximation. Thus the correlations in
the critical fluid are more suppressed in proximity of the
needle than in the bulk fluid, and are even more suppressed
near the surface bounding the half-space. This can be under-
stood by noting that a needle represents a weaker, but still . :
relevant),/ pertu?bation for the criti(F:)aI fluid than a planar wall Numerical values oRQ; are given byQ3(D=2)+= 0;41377
(compare Fig. B For a sphere one finds that the two-point and+Q3ED=3)=O.896 (51]. In Eq. (54) Ri=& /.50,1’ Ré_
correlation function at criticality decays as|r  =%o/&o . andC"/C” are known universal amplitude ratios
—r'|~(P=2%7) with the bulk exponeny, if the distance vec- with R, (D=2)=1.000402[see Eq.(3.7) in Ref. [52]],
torr—r ' is increased in any direction. This reflects the factR+(D=3)=1.0003 [50], R(2)=2, R,(3)=1.92 [50],

that a sphere represents an irrelevant perturbation. (C"/C7)(2)=37.693562[51], (C*/C")(3)=4.95 [54].
Using Eqgs.(B3) and (B4) in conjunction with the values of

c.(D=2) from Table | and withc (D=3)=0.94, and
c_(D=3)=1.24 yields the values ob. quoted in Table
lll. We note that the accuracy of the quoted value of
In this appendix we determine the universal amplitudesw_(D=3) is unknown because the accuracy of the afore-
w. [see E@s(3.16 and (3.17)] and the universal scaling mentioned value oR:(D=3) is not given reliably{50].
functions F.(x.) [see Eqs(2.31) and (2.32]. The corre- Next we outline how the universal scaling functions

(A11b)

1 7
F(g)/[Zﬂ- 23’4F(§> } =0.654308,D=2,
N=
[
I'( n)sm<7)/(2w2) =0.078196,D=3.
(BS)

APPENDIX B: AMPLITUDES . AND SCALING
FUNCTIONS F.(X.)

sponding mean-field resulfsee Eqs(4.22 and (4.19, re-
spectively hold inD=4. ForD=3 and 2 results are avail-
able[49-54 for the Fourier transform of the bulk two-point
correlation function introduced in E¢2.32), i.e.,

s)= [ rev @m0y, @D
which can be written in the scaling form
Si(p)=C=[t|"7g.(pé-). (B2)

The universal scaling functionts. (Y-.) are fixed by the nor-
malization conditiong..(0)=1 and the choice of. as the
true correlation length fof=T,. The nonuniversal ampli-
tudesC* and the universal bulk critical exponemt= v(2
— 1) characterize the bulk susceptibility,(t)=S;(0)
=C~|t|~7 in the critical regimet— 0. Numerical values of
the universal bulk critical exponeny are given byz(D
=2)=1/4 and n(D=3)=0.031[33] [compare Eq.2.5].
Inserting Eq.(2.32) into Eq.(B1) and using Eq(3.17) yields

c, 2Pv
Ws=——=
0p Q-

with Qp=27P%/ T(D/2). The universal number®. are
given by

(B3)

NR277Qz, T>T,,

(B4)

with the universal amplitude ratiQ;=D (&7)2~7/C" in-
troduced by Tarko and Fish€s1]. The amplitudesg(f1 cor-

F.+(x+) introduced in Eq(2.32 can be inferred from pres-
ently available results fog..(Y.) [see Egs(B1l) and(B2)].

(a8 D=3. In this case the scaling functiots.(x-.) are
given by

Fae(Xs)=KexJ fw dY. Y. sin(Yoix.)g+(Y2),
0
(B6)

with the amplitudesk. fixed by the conditionF.(0)=1
which allows one to express the nonuniversal amplitutiés
in terms ofBy, and &, . For the cas@>T, the approxima-
tion for g, (Y,) proposed by Bray53] can be regarded to
be reliable. Accordingly, for value¥ ;<20 the function
g.(Y,) can be inferred from the first column in Table V of
Ref. [53] whereas forY . >20 the asymptotic expansion by
Fisher and Lang€e49] is applicable, i.e.,

C C C
Zin 1+ (lfza)/v+ ls;v
Y Yi Yi

9. (Y )=

(B7)

with coefficientsC; and the bulk critical exponentg, «,
and »v. Using in Egs. (B6) and (B7) the values 7
=0.041, »=0.638, anda=0.086 as quoted in Ref53]
yields C;=0.909, C,=3.593, C;=—4.493[53], and k.
=0.7166. Unfortunately, foT<T. and D=3 we are not
aware of an accurate estimategf(Y_).

(b) D=2. In this case the scaling functiot3.(x-.) are
given by

fi(xt):k:: Xi”f dY. Vi Jo(Yaxs)g=(Yas),
0
(B8)

respond to correlation length defined via the second momenthereJ, is a modified Bessel functiof#5]. In D=2 exact

[51] of the correlation function, i.e.£. 1=&54|t|™". The

results forg. (Y.) can be deduced from Rg¢62]. However,
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some care is necessary regarding the definition of the scalirgnd the two linear differential equations

variabley used in Ref[52]: whereasy=Y, for T>T., one
has y=1.959Y_ for T<T,. The numerical prefactor in
front of Y_ equals (3, R_)~* with 3, from Table IV in
Ref.[52] [see Eq.(3.7) in Ref.[52]] and with the universal
amplitude ratioR_=&,/£,,=1.615 inD=2 [50]. For the
amplitudesk . in Eq. (B8) one obtainsk; =0.5874 anck
=0.05055.

APPENDIX C: SMALL CURVATURE EXPANSION
OF THE EXCESS ADSORPTION

In this appendix we outline how the coefficiemﬁD and
bcfD introduced in Eq(3.11) can be calculated within mean-
field theory, i.e., forD=4. Since the approaches foe>T,
(+) and for T<T, (—) are quite similar we restrict our
presentation to the cage>T,.

According to Egs(4.3) and(4.7) for D=4 the universal
scaling functionP (X, ,y.) satisfies the nonlinear differen-
tial equation(in the following we drop the subscript+" in
order to simplify the notation

d-1
P”(le) + m P'(XaY) - P(le) = P3(X!y)1 (Cla

where the derivatives are taken with respect to the variable
The parameted with 1<d<4 can be chosen arbitrarily.
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P{—P,—3P&P,=—(d—1)P, (C6a
2

P1(0)=—g(d—1), Pi(»)=0, (Céb)

and

Py—P,—3PZP,=—(d—1)P;+3PoPZ+(d—1) xP,
(C7a

£2<d—1>2+§<d—1>, Pa()=0,

P3(0)=- %

(C7b

for P;(x) and P,(x), respectively. For the boundary condi-
tions in the second parts of the above equations compare
Egs.(4.16 and(4.7). By using

w a1
()—/+1 =1+(d-1)xy?!

1
+5(d=1)(d-2) X2y~ 2+... (C®

in the integrand on the RHS of E¢C2) in conjunction with

Equation(C1a is supplemented by the boundary conditionsgq. (C4) we find for the coefficients in EC3) the expres-

2
P(X_’O’y)_)\/T_’ P(»,y) =P, , =0. (C1b

The scaling functionG(y)=G, (y,) from Eg. (3.6) then
reads

d-1
P(X,y) —Po(X)

G(y)= wdx §+l (C2
0 y

with P(x,y) defined by Eq(C1) and the half-space profile
Po(X)=P(x,2)=P,(x,) given by the first part of Eq.
(2.9). Note that the singularity at=0 of the first term in
curly brackets in Eq(C2) is cancelled by the second term.
According to Eq.(3.11) the functionG(y) can be expanded
as

G(y—®)=agy ‘+bgy ?+--- (C3)
with the coefficientsay=a,’, andby=b,’, which we want to
determine. To this end we expa®{x,y) as

P(x,y—®)=Po(X)+Py(x) y t+Py(x) y 2+ -+
(C4

By inserting Eq(C4) into Eq.(C1g and equating terms with
the same power iy one derives the familiar nonlinear dif-
ferential equation for the half-space profitg(x), i.e.,

P;—Po="Pg, (C53)
2
Po(X—>O)—>\/7_, Po()=0, (C5b)

sions
ad=(d—1)fxdx X Py(x) + fxdx Pi(x) (C9
0 0
and

1 0 o
bd=§(d—1)(d—2)fo dx %2 Po(x)+(d—1)J0 dx x Py(X)

+ fxdx Py(x), (C10
0

where Py(x), P1(x), and P,(x) are the solutions of Egs.
(CH5—(C7). While Py(x) is given by the first part of Eq2.9)
we now turn to the calculation oP,(x) and P,(x). It is
important to retain the dependence of the latter functions on
d in analytical form in order to be able to carry out the
consistency check of Eq3.13 for the present casb=4.

(i) FunctionP,(x). Both the RHS of Eq(C6g and the
boundary condition in the first part of E¢C6b) depend ord
via the term @—1). We note that even the full function
P,(x) exhibits this simple dependence dnThe reason is
that Eq.(C64 is linear with respect t®; so that Eq(C6) is
solved by the ansatz

P1(x)=(d=1) U(x), (C1y

whereU(x) is independent ofl and satisfies the inhomoge-
neous linear differential equation

U"—U-3PZU=—P}, (C129
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U(O)Z—%E, U(%)=0. (C12p

The solution of Eq(C12) can be given analyticallisee, e.g.,
Ref.[43]):

cosh(x) — sinh(x)
- 6+/2 sini? (x)
—3x cosh(2x) + 3 sinh(2x) — 3x sinh(2x)].
(C13

(i) FunctionP,(x). By using Eq.(C1]) the differential
equation(C73 turns into

[2 coshi2x) —2—3x

P,—P,—3P¢P,=—(d—1)2U’+(d—1)23P,U?
+(d—1) xPg (C14

with U(x) from Eqg.(C13). In this case both on the RHS of

Eqg. (C14 and in the boundary condition in the first part of

Eq. (C7b different dependences omh arise via the terms
(d—1)%? and @—1). Again it is crucial to observe that Eq.
(C14) is linear with respect t®, so that its dependence dn
takes the simple form

P,o(x)=(d—1)?V(x)+(d—1) W(x) (C15

CRITICAL ADSORPTION ON CURVED OBJECTS

5099

whereV(x) andW(x) are independent af and satisfy sepa-
rately the inhomogeneous linear differential equations

V'—V-3PZV=—U"+3P,U? (C16a

2
V’(0)=—£, V(«)=0, (C16b

36

and

W' —W-3PZW=xPy, (C17a

2
W’(0)=\/F—, W(%)=0. (C17bH

EquationgC16) and(C17) can be solved numerically, which
is facilitated by the fact that both/(x) and Py(x) on the
RHS of Eqgs.(C1639 and (C173 are known in analytical
form. By inserting the resulting functio®,(x) from Eqg.
(C195 and the functiorP4(x) from Eg.(C11) into Eqs.(C9)
and (C10 one obtains the dependences &f,=a, and
bys=bg ond as given by Eq(3.13 with the curvature pa-
rameters given in the first parts of E@.21). The procedure
in the caseT<T,; is completely analogous to that far
>T. as outlined above and yields the curvature parameters
in the second parts of E¢4.21).
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