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PHYSICAL REVIEW D VOLUME 57, NUMBER 2 15 JANUARY 1998

Hierarchical search strategy for the detection of gravitational waves from coalescing binaries:
Extension to post-Newtonian waveforms

S. D. Mohanty
Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune 411 007, India
(Received 21 February 1997; published 22 December)1997

The detection of gravitational waves from coalescing compact binaries would be a computationally intensive
process if a single bank of template wave forfose step searghis used. In an earlier paper we presented a
detection strategy, calledt@&o step searcfthat utilizes a hierarchy of template banks. It was shown that in the
simple case of a family of Newtonian signals, an on-line two step search=8atimes faster than an on-line
one step searctfor the initial LIGO). In this paper we extend the two step search to the more realistic case of
zero spin post-Newtonian wave forms. We also present formulas for detection and false alarm probabilities
which take statistical correlations into account. We find that for the case of &°pdstvtonian family of
templates and signals, an on-line two step search reqtidg21 the computing power that would be required
for the corresponding on-line one step search. This reduction is achieved when signals having a Strength
=10.34 are required to be detected with a probability of 0.95, at an average of one false event per year, and the
noise power spectral density used is that of the advanced LIGO. For the initial LIGO, the reduction achieved
in computing power is-1/27 for S=9.98 and the same probabilities for detection and false alarm as above.
The increase in the efficacy of a two step search in the' pdgewtonian case comes about chiefly because of
an increase in the number of signal parameters since thé g¥etvtonian signal depends on the binary
massesn; andm, separately unlike the Newtonian case where only a combination of these masses enters the
signal parametrization. The shift to pb&Newtonian signals also gives rise to some new problems which are
not encountered in the analysis of Newtonian wave forms. We describe these problems and take them into
account in our analysi$S0556-282(98)00404-4

PACS numbe(s): 04.80.Nn, 95.55.Ym, 95.75.Pq, 97.80.Af

I. INTRODUCTION bodies proceed towards merger. The signal becomes “vis-

ible” in the output of a detector when its instantaneous fre-

A radiation reaction driven inspiral of a binary composedquency exceeds the lower frequency cutoff of the output's

of compact massive objectéeutron stars, black holes bandwidth. This moment can be taken as the time of arrival

would emit gravitational waves that would lie, during the lastof the signal at the detector. Such a cutoff is required, for
few minutes before merger, in the sensitive bandwidth ofhstance, in the case of ground based detectors because of
laser interferometric detectors such as the Laser Interferd2XCessive seismic noise at low frequencies. There would, of
metric Gravitational Wave ObservatofylGO) [1], VIRGO  Course, be an L_mknown phase offset at t_he time of arrival. In
[2] and GEO600. Even though most such events will pro_add|t|or.1, the signal would be character_lzed by the masses
duce a signal amplitude well below the noise rms at an)f‘nd spins of _the two components, the (.j|sta.nce o the b_mary
given instant, the predictability of such wave forms would and geometrical factors such as the direction to the binary

allow the use of pattern matching techniques such agnd the orientation of the orbital plane.

matched filtering to considerably improve their chances of Thus, if matched filtering is used for such signals, it
detection[3]. In matched filtering, the detector output is would be necessary to employ a bank of filtéos template

. . .~ wave formg corresponding to different values of the signal
passed through a filter that is matched to the expected signgl 2 meters mentioned above. One would then compare the
wave form in some optimal sense. If the maximum of theyaimum over all the filtered outputs with a threshold. This
output crosses a pre-determined threshold, a signal is d%‘trategy is usually called ane-step searctEven though the
clared to be present in the data with a time of arrival givenime of arrival, initial phase and distance can be handled
by the location of the maximum. The flltel’lng of the detectoreasny, a One-step search would still be a Computationa"y
output can, of course, be substituted with a cross correlatioexpensive proposition. Estimatg$,5] of the computational
against a suitable template wave form that is matched to thgower that is required for an on-line one-step search using
expected signal. post-Newtonian templates turn out to be200 Gflops or
Generically, the wave form from an inspiraling binary is higher. This is with the omission of various other signal pro-
an amplitude and phase modulated sinusoid both of whoseessing overheads which can be expected to be present in a
instantaneous frequency and amplitude increase as the twealistic situation. Therefore, it is desirable to have compu-
tationally less expensive detection strategies without, how-
ever, compromising too much on the performance afforded
*Present address: LIGO project, California Institute of Technol-by matched filtering. One such strategy, calledwa step
ogy, MS 18-34, Pasadena, CA 91125. Email addresshierarchical search was investigated by us in an earlier
mohanty@ligo.caltech.edu work [6]. We found that this strategy reduces the computa-
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TABLE I. Minimum C.. as a function ofT for S;,=9.98, &na=140.482 secQq min=0.95, 7?
=8.314,1,=0.022 secl,=0.144 secN'=13279. The noise power spectral density used is that of the initial
LIGO. C3, . is the computational power required for an on-line two step sed@réhthe length used for the
detector output segment§,,., is the duration of the longest templateorresponding to the binary masses
m;=m,=0.5M, the lowest masses used in the analysiadS,;, is the lowest signal strength for which
a minimum detection probability d@4 i, is required at an average false alarm rate of 1 false event/yr. The
lengths of the sides of a unit cell in the second, finer stage of the hierarchy are giearml , which have
units of time since the signal parameter space is that of chirp tisess Sec. V for detailsC{L); . is the
computational power required if the second stage template grid is used for an amdiretep searciiN
being the total number of templates required in that cabhke threshold required in the second stage is
denoted by7® and that required in the first sta¢et the minimum ofC{2), ) is denoted by;Y. The ratios
of the lengths of the sides of a first stage unit cell to the corresponding sides of the second stage unit cell are
denoted byk, andk,. n'is the average number of false crossings in the first Sistygwn zero if<1) while
n? is the number of templates uséaver both the stagg®n the averageCgyyy, is the ratioClJ CEline.

T (SeO kl k2 77(1) ngv ntav Cg%])line (Gflopé Cg%])line (Gﬂops) Cgain

256.0 8 9 6.056 0 360 0.192 7.07 36.82
512.0 8 6 6.283 0 441 0.155 4.65 30.00
1024.0 8 5 6.484 0 490 0.152 412 27.11
2048.0 8 4 6.649 0 620 0.187 3.99 21.34
4096.0 8 4 6.649 1 682 0.207 4.02 19.42
8192.0 8 3 6.866 0 733 0.228 412 18.07

tional cost of detection significantlyithoutlosing out on the plates. Therefore, a non-spinning Fjlorg[\lewtonian template
performance of a one step search. This is because a two-stegmily appears to be a realistic one to use. We choose our
search utilizes information that was present in a one-stegamily of signals also to be the same since, as mentioned
search but which was neglected, namely, the correlation bey,gye, even higher order signal wave forms may be detect-
tween templates which allows a coarse scan of the parametgpe sing this family of templates. This choice of templates
space to predict the location of a threshold crossing peak,q signals should provide a realistic model for the assess-

amgng thelf|lt§red outpo[ts.t d 6] (h forth referred t ment of a two step hierarchical search while keeping the
ur analysis was restricted 8] (henceforth referred to analysis relatively simple. In the following we will refer to

as MD96 to the case of Newtonian wave forms and the n-spinnin 4E-Newtonian wave form imol
noise power spectral density used was that of the initial'© ﬂ.sp 9 po ewtonia ave forms as simply
LIGO. The main result of our analysis was that a two ste 0S -New_toman ones. . . . .
hierarchical search is 8 times faster than the corresponding 1 ne Main result of this paper is summarized in Tables |
one step search. This gain was achieved when the detecti@?d !I- In Table 1, the noise power spectral dendBSD)
probability desired was 0.95 for a signal to noise ratio of€XPected for the initial LIGA8] has been used, while in
8.80 at an average rate of false events of 1/yr. The NewtonJ@ble Il, the PSD used is that which is expected for the
ian template family will, however, not be good enough for @dvanced LIGQ9]. Columns 7 and 8 of each table show the
the detection of the true signal wave fofi. It was chosen ~computational power required for an on-line two-step search
in MD96 in order to keep the analysis simple since that work(C$lne and an on-line one-steefr),) search respectively
was in the nature of a first estimate and several other issuder the sameperformance parameters. That is, a detection
needed to be highlighted. This paper is an extension of thgrobability of 0.95 for all signals having strength $,, (as
two step search to a more realistic family of signals andgiven in the captions of the tablesnd an average false
templates, namely, the pdstNewtonian family. alarm rate of 1 false event/yr. These values of the computa-
Our choice is motivated by the result of Apostolaid$  tional requirement have been obtained for various lengths of
that a post®>Newtonian template family, having spin param- the input data segment which are tabulated in the first col-
etersB= o =0, is adequate for the detection of signals up toumn. &n,, is the length of the template having the lowest
(and possibly beyond post-Newtonian order, even for Vvalues for the binary masses; andm,, which we choose to
maximally spinning systems. However, this holds for spinsbe m;=m,=0.5M. The highest masses that we have used
that are aligned with the orbital angular momentum. In genin our analysis aredi; =m,=30.0M . These results show
eral, the signal from a misaligned system would suffer sigthat a two step hierarchical search can reduce computational
nificant phase and amplitude modulations that can considerequirements by about a factor ©f25 in a realistic scenario.
ably reduce the signal to noise rati®NR), for some Compared to the Newtonian case, a two step search is
detector-binary geometries, if non-spinning templates aréaster than a one step search in the case of pdétwtonian
used. The larger the opening angle between the orbital angignals because of an increase in the number of signal pa-
total angular momentum, the larger is the fraction oframeters. The Newtonian wave form depends on only a com-
detector-binary geometries which would be lost. But forbination, called thehirp mass of the binary masses,; and
moderate opening angles-@5° or les$, a sizable fraction m,. Hence, the template bank is effectively one dimensional.
of signals can still be detected with the non-spinning tem-However, the posf-Newtonian wave form is non-degenrate
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TABLE II. Minimum C$.. as a function ofT for Sy,=10.34, o= 5621.51 secQq min=0.95, 7?
=8.658,1,=0.116 sec],=0.560 secN}=300796. The noise power spectral density used is that of ad-
vanced LIGO. For an explanation of the symbols used, refer to the caption of Tghlg torresponds to the
duration of the template with binary masses=m,=0.5M, the lowest masses used in our analysis.

T (SeO kl I(2 77(1) ngv ntav CE)%])Iine (Gflops) CE):rL])Iine (Gﬂop9 Cgain

8192.0 5 9 6.649 11 10188 9.771 288.48 29.52
16384.0 4 7 7.002 6 13490 6.476 144.39 22.30
32768.0 4 7 7.002 16 14390 5.709 119.34 20.90
65536.0 4 7 7.002 35 16100 6.014 112.36 18.68
131072.0 4 6 7.060 56 18935 7.004 111.27 15.89

in the binary masses and the template bank is two dimenapproach but further investigations in this direction are post-
sional. The total computational gain in a two step search iponed to a later work. We also show, somewhat qualita-
then given roughly by the product of the two step gain alongively, that the assumption of statistical independence is jus-
each dimensiortwhich is about the same as in the Newton-tified as far as the false alarm is concerned. Thus, the results
ian cas¢ At the same time, however, an increase in thethat we have obtained can be considered to be fairly accurate
dimensionality leads to a larger number of templates angyithin the approximations that have been made due to other
hence a larger false alarm for a given threshold. This reducegasons, like the non-trivial boundary of the space of interest
the computational advantage somewhat and, hence, it is na@hd the location dependence of the intrinsic ambiguity func-
straightforward to obtain the computational reduction in thetjon.
post>Newtonian case by any simple extrapolation of the The rest of the paper is organized as follows. In Sec. Il we
Newtonian case. The same reason also prevents a simpi@ply the method ofmaximum likelihood detectioto the
extrapolation of results obtained with the initial LIGO power post-5-Newtonian family of signals. This is the rigorous for-
spectral density to the case of the advanced LIGO. malism behind the matched filtering algorithm mentioned
In the Newtonian case, the spacing of templates turns oubove. We end this section with the derivation dkat sta-
to be uniform because of the location independence of théistic whose value determines the choice between detection
intrinsic ambiguity function [6]. In the case of(zero-spin  and non-detection. In Sec. lIl, we study the probability dis-
post-Newtonian wave forms at orders higher than 1.5, theribution functions of the test statistic. Formulas for the de-
location independence property of this quantity is lost. Thisection and false alarm probability are derived. In Sec. IV the
makes the estimation of the number of templates more diffiproblem of optimaly placing templates in a one-step search is
cult in the latter case. Also, in the Newtonian case, the painvestigated. We obtain some approximations regarding the
rameter space was effectively one-dimensiofiahe of ar-  placement geometry, number of templates etc. Sec. V is de-
rival and initial phase being easy to handi&his further voted to the two-step hierarchical search and also contains

simplifies the counting of templates. In the case of zero-spifthe results of this paper. We conclude with Section VI.
post->-Newtonian signals the paramater space is two dimen-

sional and, for the choice of the post-Newtongirp times

as parameters, the shape of the astrophysically relevant re- Il. MAXIMUM LIKELIHOOD DETECTION

gion of parameter space is somewhat non-trivial and compli- OF POSTY5-NEWTONIAN SIGNALS

cates the counting of templates. Both these issues are ad-

dressed in detail in the present paper and we have attempted The method ofmaximum likelihoodietection entails the

to take their effects into account in our final results. It shouldmaximization of theposteriorprobability p(x(t)|®) over the

be emphasized here that when going over to higher ordegignal parameter®. Here x(t) is a segment of the output of

zero-spin post-Newtonian wave forms, essentially the sama detector angh(A|B) denotes the conditional probability of

problems will be encountered without the addition of any-A given B. Actually, one should maximize(®|x(t)) be-

thing fundamentally different. Thus, the results obtainedcause it isx(t) which is given, but when oua priori knowl-

from an in-depth analysis of the pbstNewtonian case edge of the frequencies with which various values of the

would also hold to a large extent for higher order waveparameters can occur is negligible, this is equivalent to the

forms. This is also another reason behind our choice of thenaximization ofp(x(t)|®). The maximum is then compared

post->-Newtonian wave form in the present paper. with a fixed threshold and a detection is announced if the
In MD96, the formulas used for detection and false alarnthreshold is crossed. Maximum likelihood detection also

probabilities used the assumption of statistical independencachieves the highestveragedetection probabilityaveraged

between certain random variables. This assumption failever ®) for a given false alarm probability. Actually, this

when templates are placed very closely and we were, thustatement is only true approximately but the approximation

limited in exploring the small spacing case more thoroughlybecomes better as the signal to noise ratio becomes larger

In the present paper, we present a much improved formulglO].

for the detection probability that reproduces the Monte Carlo If the detector noise is assumed to be a stationary Gauss-

results quite well. It also suggests an alternative approach t@n process, defined by (@ne-sided power spectral density

Monte Carlo simulations for parameter estimation whichS,(f), the above maximization reduces to the maximization,

should be orders of magnitude faster than the conventionalver ®, of the quantity



57 HIERARCHICAL SEARCH STRATEGY FOR TH . .. 633

Jm df _ (T e _EJW df _ T 16 A. Post->-Newtonian signal
7m—(f)x( )s*(f:0) 5 %—Sn(f)s( ;0)s*(f,0),

In the case of coalescing binary signals expressed up to
the post°>-Newtonian orderspin parameter=0), the sig-

. . nal parameters ar® = (A,t,,®, 75,71 5. The parameteid
where a tilde stands for the Fourier transform of the corre- Tar i :

. ; . . th I tant part of th lit f th I
sponding time domain function ans(t;®) stands for a 's the (nearly constant part of the amplitude of the signa

ber of the sianal familv. Thi tivates the definiti fthat takes into account the distance to the binary and the
member ot the signal family. This motivates the delinition of o . 1iive orientation of the detector and the coordinate
an inner product,

frames. The rapid rise of power in the seismic noise towards
lower frequencies would require that the detector output be
= odf o bandpass filtered with a cutoff at some low frequenasu-
(u®),v(t)= f_msn(f)u(f)”*(f)' (1) ally assumed to be 40 Hz for the initial LIGO and 10 Hz for
the advanced LIGD Similarly, a cutofff, will also be re-
quired at the high frequency end because of a rise in photon

and a corresponding norm shot noise. Usuallyf. is taken asf.=1000 Hz. Thus,
loosely speaking, the signal wave form from an inspiraling
Jul|=[{u,u)]¥2 (2)  binary would “start” in the output of the detector at the time

when its instantaneous frequency croskesThis instant is
called the time of arrival of the signal and is denotedtby
The phase of the wave form &tt, is denoted by®. The
remaining parameters have the dimension of time and de-
pend on the masses of the binary components. They have
1 been calledntrinsic parameters of the wave form in contrast
A=m®a>{(x(t),s(t,®)>— §<S(t'®)’s(t'®)> T t, and® which are known agxtrinsic parameters.
Actually, the post>-Newtonian wave form should be
characterized bthreeintrinsic parameters,7q, 71,71 5. The
This quantiw is known as theest statistic The test statistic Subscripts ofr denote the post-Newtonian order at which
is then Compared with a pre-determined threshold to deCidﬁ]at parameter occurs. Thus) is the Newtonian Chirp time
whether the giverx(t) contains a signal or not. It should be characterizing the lowest order wave form obtained using the
noted that the properties of stationarity and Gaussianity arguadrupole formalism and the pbgtewtonian wave form
only approximations for the noise that will be present in thewould haver, and r; as its intrinsic parameters. However,
interferometric detectors. However, these approximations arge have assumed the spins of the binary components to be
expected to be quite good and we will assume such a noise ¥ero and, hence, we are left with only timdependentn-
the following. trinsic parameters which we have chosenrasand 7, be-
Some clarification should be made here regarding th@ause they can be easily inverted to obtain the masses. In the
meaning of a detector output in the context of interferometriq_:.xpressiOn for the wave form, however, we retajiwith the
gravitational wave detectors. The final output at the phOtounderstanding that it is dependent eps and 7. In an ap-
detector would contain the response of the dete@ercal- proximate sense,ry+ 7,— 715 can be taken to be the time
culated using the geodesic deviation equatioonvolved |eft 1o the final merger of the binary, starting fror t.
with the detector's transfer functidd 1] (which depends on |y the following we will deal with therestrictedform of
the way the detector is configured, i.e., the kind of recyclinge post®-Newtonian signal in which post-Newtonian cor-
used, the reflectivities of mirrors elcThis signal would be  |actions are applied to only the phase of the signal. The
buried in noise that would behite Gaussian noise if photon egtricted wave form at any post-Newtonian level is expected

;hot noise were the only source of noise. So, stric.tly spea_kt—0 be a good model for the correct wave form at the same
ing, the detection strategy should be for the detection of thigg, g [9]. The restricted poP-Newtonian signal is
convolvedsignal in white noise. However, it is easy to prove

that this is equivalent to the detection of the deconvolved t—t
signal in a noise which has a power spectral denSiff) h(t;0)=Aa(t—t,;7)co f

Thus, maximum likelihood detection involves the computa-
tion of

adt'f(t';ro,rl_5)+CD ,
such that when this combination is “passed” throughagse N (4)
free interferometer, the output is the convolved signal and
white noise, as would be observed actually. CleaBy(f) where
should be inversely proportional to the modulus squared of
the detector’s transfer function. When the noise at the output t) v
is not white, as would be the case in practiggf) would be a(t)= ( 1- _> ' ®)
the power spectral density of the actual noise divided by the
modulus squared of the detector’s transfer function. Henceandf(t; ry, 7, ), the instantaneous frequency of the signal, is
forth, by the detector output we would mean tlezonvolved  given by an implicit equation
output which would have noise with a power spectral density
given by S,(f) and the signal would be just the bare re- t=7o+ 11— 115~ (1oX P+ rx 21 x ), (6)
sponse of the interferometer, i.e., the relative strain produced
in the two arms as computed using the geodesic deviatiowherex=f(t; 7,71 5)/f5. The chirp times are given by the
equation. following expressionsG@=c=1):
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FIG. 1. Thespace of interestor the case of the initial LIGO G.2. Th fi dor th  the ad 4LIGO
noise power spectral densityf (=40.0 H2. The vertices of the FIG. 2. Thespace of interesior the case of the advanced LI

space of interest correspond to the following points in time,(m,) noise p?\_/ver spectral dens(ijt)fa(=h10f.0"Hz)_. The_vert_ices of the
plane:A corresponds to (0.5,0.8) , B to (30.0,0.5M 5 andC to space of interest correspond to the following points in tng ;)

T« (sec)

(30.0,30.0M, . plane:A corresponds to (0.5,0.8) , B to (30.0,0.5M 5 andC to
(30.0,30.0M, .
5
- M5B -8i3 256 my+m,) 13
To 256/\/1 (’ﬂ'fa) y (7) —7-0(77fa 8/3:( 1 2) (13)
5 m;m,
:; 7_43+ 1_1 For every value ofry, the line of constant will intersect
1 2 7 (8) . .
192u(7f,)1 336 4 AB at a point where one of the masses, say is 0., .
Similarly, for BC, one of the masses, say,, would be
r :i(i (9) 30.0M ¢ at the point of intersection. The point wheA® and
1578l w23 BC meet falls on thery=74(30.0M,0.5M) line. Thus,

) . . for values of 7y larger than this, one of the masses in the
where M is the total mass of the binary, is the reduced  apove equation can be set toKL5 and the equation can be
mass,7=u/M and M= (M) is the chirp mass We  solved for the other mass to yield the value fars at the
have choserr, and 7,5 as our independent parameters. INpoint of intersection. For smaller values of, one of the

terms of these parameters, masses should be set to\8g, and r; 5 be obtained as before.
3715 4 |13 11 Thus, given a value ofry, the two limits of 75 can be
Tl:_j_2> o323, ToT1e, (100  computed. This allows the area of the space of intefesi
4032 57 24f, be computed using a standard 2D quadrature algor{tkien
13 use DO1DAF of the NAg library The area of the space of
1 S interest thus obtained is
M= ﬁz( 44—2) : (D
a\ T ToTL5 50.174se¢  for initial LIGO,
y 5 7e 2 [20389.542 séc foradvanced LIGo. +¥
32 m21of, We can write the right-hand sid®HS) of Eq. (4) as
Note that if 7; were used instead of, 5, then the inverse h(t;0)=Ahg(t—t,; 79,715 Cc0SD
relations form; and m, would be more complicated and .
would have to be solved numerically. T Aha(t—ta; 70,71 5)SIND, (15
In Fig. 1 and Fig. 2, we have shown thea{,m,) plane .
(the binary masses0.9Ms<m;,m,<30My, mapped into . — At f I
the (r,5,70) space forf,=40 Hz (initial LIGO) and f, Mo(ti70. 719 a(t'TO)CO{ —wdt e '70’71‘5))’
=10 Hz (advanced LIGQ respectively. The boundaries of (16)

the region, which we call thespace of interesfollowing

Apostolatog 5], can be obtained easily. The equation for the _ . L ™
curve AC, corresponding tan;=m, or M=4u, can be Rj2(ti 70, 71.9) = A(L; 79) CO wdt [t 70,718+ 5
found by directly substituting fox andM from Egs.(11) (17)
and(12). To obtain the other two segmen#sB andCB, we

use the following expression: This representation will be useful in what follows.
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The Fourier transform ofi(t;®) can be computed using Np=|h(t; A=1,,0)|, (29)
the stationary phase approximation. For our purpose, it suf- _ _
fices to give its overall form here, the details being availablghen it can be shown using E(L8) that

in other source$5,9]. For f>0,
No=No=Nz2. (30)

, Note that4=1 in the above. Equation&8), (30) also hold
to a very good approximation when the numerically com-
(18) puted Fourier transforms of the wave forms are ugbe
where the index e {0,1,1.3. The functionsy; are indepen- YPical variation i\, is <1% over®=[0,2x]). By this
we mean that first the wave forms are generated in the time

dent of the signal parameters. Fb«0, the transform is d ) ing Eq(6 d th he Fouri f
constructed using the Hermitian property of the Fourierd®main using Eq(6) and then the Fourier transforms are

~ = . . . computed using a fast Fourier transfofFFT). Henceforth,
transform,n(f) =h*(—f), sinceh(t,0) is a real function. we takeNy, to be independent gb and denote it simply by

. ) _ N. However,N does depend on the chirp times via the pro-
B. Test statistic and its computation portionality constant in Eq18).
Following the brief outline given earlier, the maximum At this point it is convenient to define a quantity which
likelihood detection strategy for pdstNewtonian signals We call thestrength Sof a signal[12,6],
would consist of the computation of a test statistiayiven
by P @ S=AN. (3D)

F(f;@))MAf‘mexp{—Zwi

fta+ > riwi(f)>+i<1>

_ . _ . . Henceforth, we usé& instead of A4 to parametrize a signal.
A=ma t),h(t; 0 1/2(h(t;®),h(t;0))]. (19 : U X ) :
o AXWN(EO) (h(t;0).h(t;0))]. (19 This quantity is essentially the same as the signal to noise
ratio [ S/N] as defined irf9].
For the sake of convenience in the following, we adopt the As a consequence of EQR7) and Eq.(29), the test sta-

notation tistic in Eq. (19) reduces to
0'=(t,,715,70), (20) A=maq{ C3(x;8")+C2,,(x;0")]"2, (32)
0/
0=(T15,70). (21)
Co(X;0")=(X(1),do(t—ta;0)), (33

Occasionally, we will also break up’ ast, and 4. The
maximization over the parametes and® can be carried Cr2(X;0")=(X(1),0dr2(t—t4; 0)). (34

out analytically to yield
y yioy The square root in Eq32) is, strictly speaking, not neces-

(X, G0) 2+ (X, 02y 2= (X, Qo) (X, U2} Ao s A2 sary but we retain it in order to make our analysis conform to
max

A= , some of the existing literature.
0’ 1—(qo,Gm2)? It has not been possible so far to analytically proceed
(22 further with the maximization involved in Eq32) and re-
where course must be taken to numerical techniques. Several nu-

merical methods are available for the maximization of func-

coy— A1 i tions [13]. The simpler ones among such methods, though

Ao(t; ) =No To(t; ), 23 very fast, tend to fail quite badly when confronted with a
(24) function involving many local maximéas would be the case

coy— AL .
Arr2(t0) =N 2 zy2(:6), here. For such functions, these methods have a tendency to

No=[lho(t; ) (25) converge on one of the local maxima rather than the required
0 EAREA global maximum. There exist more sophisticated numerical
methods such as simulated anneal , genetic algo-
Nrz= ot 6)]]. (26) gl o 9

rithms and some recent methods such as Price’s controlled

Ny and \V,/, are normalization constants that are chosen akandom searchild]. However, it is very difficult to quantify
above for later convenience. Singeoccurs in the phase of the performance of such methods in terms of false alarm and

the Fourier transforms dfy(t—t,: ) andh_,(t—t,: ), Ny detection probabilities. This is a necessity for gravitational
and \V.,, are independent o?, We c#all qo(ta' '9) 'and wave searches of binary inspirals, and also for other sources
oy a- 1

q.,»(t: 6) collectively thetemplatelocated atd anddo, g,/ in general, given the very small expected event rate. For

themselves as the “quadrature” components of the templatéhese reasons, most of the attention in the literature has been
éjirected towards a grid based search for the maximum which

Is simple enough that its performance can be analyzed theo-

form given in Eq.(18), that ) - i
retically to a large extent. The practical implementation of

No=N_/5, (27)  such a method, calledane-step seargtcan be motivated as
follows.
(9o,0m2)=0. (28 For a fixed 6= 6,, the computation ofCy(x;t,,6;) [or

C.2(X;ta,6)]1, as a function ot,, is equivalent to taking
In general, if the linear correlatiof15] of x(t) with the templateyy(t; 6;)
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(or g2 in the case oC,,). Since correlations can be com- absence of a signal and (A ; ®) in the presence of a signal,
puted efficiently using the FFT16], the maximization over then
t, alone is straightforward: The detector output would be

sampled at a rate greater than or equal to the Nyquis(iEte Qo 7)= fmpo(A)dA, (35)
this case~2000 H2, yielding a discrete time seriex 7

=(Xg,X1,s - - - Xn—1)- This time series can then be corre-

lated, using FFTs, with analogous time serigsand ., Qu(7:0)= prl(A;(@)dA. (36)
for the two quadrature components. However, the whole out- 7

put of such a correlation cannot be used since the use of a
FFT will yield a circular correlation instead of a linear one. !N order to construcp, andp;, we start at the lowest level,
It is, therefore, necessary to havepaddingof zeros at the namely, the density functions of a single sample of a rectified
end of each template time series. Let the duration of thi@utput. = .
padded part belp, sec for some template. Then, for that Letz(6') be a sample of some recztlﬂed ou'[2put. Now, this
. . . 0 y — ’ 1\11/2
template, only the firsTp sec of the correlation outputs will sample will be of the forme(6") =[Cg(6") +C7/2(6')]7
be the result of a linear correlation and the rest would have téhere the dependence &(t) has not been shown explicitly.
be discarded. Note that, will depend on the template pa- AS mentioned before, botly(6') and C»(0") are ob-
rameters since the duration of the wave form is parametei@ined from correlations involving the detector output. Thus,
dependent(approximately equal tor,+7,—7;2). Let the they are linear _combinations of the; samplgsx(jf) apd i.t
longest duration among the template wave forms hg sec follows that their marginal probability density function is a
(not to be confused with the Newtonian chirp time used inGaussian since the noise is assumed to be a Gaussian random
MD96). Then, the shortest linear correlation will have a du-process. In the presence of a sigrHl;S, 6;,P), their

ration of T9=T— &.,.., WhereT is the duration of the of the Mmean values would be
input time seriesx. We will assume in this paper that only P~ e L

the firstT(F’, sec will be kept in each correlation output even if Co(0)=(N(t;S,65.,Ps,),qolt~ ta; 0), (37)
the duration of a template wave form is much less thag.. — N e )
This appears as a wasteful procedure and a better use of Crra(6)=(h(t;S, 05, ®s),qmia(t—ta; 6)), 38
computational resources may be possible. However, we do (39)

not investigate this issue here since it is not directly relevanfyhiie in the absence of a signal, they will have zero means.
to this paper. L o With our choice ofA and A, in Egs.(25), (26), it can be
Having obtained the correlations witly, and q .., the  shown that the variance @y(6’) andC,,»(8’) is unity. It
first Tg sec of each correlation should be squared, correean also be shown, using E@8), thatC,(8’) andC,,,(6’)
sponding samples of the two outputs should be added and thege statistically independent of each other. Note that, in gen-
square root taken to yield a single time series. We call thigral, the covariance d€y(6;) andC,,»(65) need not vanish
final time series obtained for some template parameitén®  for ¢;+ 6,. Given these properties f&@, andC,,,, it fol-
rectified outpu{6] of the templated. Such rectified outputs |ows that the marginal probability density function of a rec-
can be constructed for several points in thed, 7o) space tified output sample is a Rician R when a signal is

and _the maximum found_over _eat_:h of them. F_inall_y, thepresent and a RayleigR(z) in the absence of a signal,
maximum of all these maxima will yield an approximation to

the test statistic\. This, essentially, is the scheme of a one
step search. We call the set of points in £, 7o) space for
which rectified outputs are generated tenk of templates
The coordinates of any rectified output sample are given by 72

' while those of a template are given lgy R(Z)ZZGXF{E}, (40

_ 1
R|(z)=zexr{— 5(22+d2) lo(zd), (39

Il. DISTRIBUTIONS OF THE TEST STATISTIC where

To quantify the performance of the detection strategy de- dzzdz(ef):Eg(a')JrEfﬂz(e'), (41)
scribed above, we need to calculate the probability of a false
alarm as well as that of detection for a given signal. Theandly(x) is the modified Bessel function of the first kirof
former is defined as the probability of the test statistic crosserder zerd. Forzd>1, the asymptotic form of RE) is,
ing the threshold when a signal is absenx{t). The latter is X
the probability of the test statistic crossing the threshold _ |z
when a signal is present. It should be noted that the detection Ri(z)~ mex;{ B E(Z_ d)z}' (42)
probability need not be the same for all signals in a signal
family. For instance, large amplitude signals should, obvi-Thus, forz=d, a Rician density goes over into a Gaussian.
ously, have a larger detection probability than weaker ones. Under the stationary phase approximation of Ek), it
We denote the detection probability of a signal with param-can be shown thad(6') is independent of the phase of
eters® by Q4(7;0®) where n denotes the threshold. We the signal. Again, this is a good approximation for the exact
denote the false alarm probability IQq( 7). If the probabil- numerical case. We assume henceforth th@') is inde-
ity density function ofA, the test statistic, ipg(A) in the  pendent of the signal phade. Let
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H(%,0a)=[<%(t—t§;9p),%(t—tg;0q)>2 Whel’edZZ,u,i-l- ,u,% In our analysisd~7.0 or larger. Fod
12 =7.0, the above probability is 0.008 and it decreases rapidly
+(Ao(t—1t5; 0p), Ama(t—13; 6) )12 for higher values. Thus, only a small fraction realizations

(43) would be such that their binomial expansion in terms of
[2 (1 6Xq+ w28X5) + 6X3+ 8X3]/(u3+ u3) would be non-
Sinced( ') is almost independent of the signbl it follows convergent. It would be a good approximation to neglect

from Egs.(37), (38), and(41) that such realizations and calculate the moment& bfy expand-
ing the RHS of Eq(45) in a binomial expansion and taking
d(6')=SH(¢',6,). (44)  the ensemble average for each term.

The same argument goes through for multivariate mo-
The quantityH(6,,6y) is related to theambiguityfunction =~ ments also except for the fact that the fraction of realizations
[10]. Note that sincet, occurs in the phase of a Fourier for which all the components of the moment can be ex-
transform, H(6},,6;) depends ont? and tg only through panded binomially will decrease as the number of different
At,=tP—td, variates increases. For instance, if the third moment

In order to obtain the distribution of the test statistiove ~ (Z1—@1)(Z2—82)(Z3—a;) is required around some point
need to know the joint distribution of, in general, all the (31,82,83), then the fraction of cases for which the above
samples. In the presence of a sufficiently strong signal, howexpansion will be invalid, taking~7 for all of them, would
ever, it can be expected thatwill occur almost always only Pe~0.008<3. In practice there would be a significant over-
among those samples of the rectified outputs which have &p of various cases since tig would be statistically cor-
high value ofd. For a typical number of samples in a single related and this fraction would actually be less. In any case,
rectified output of~10°, for instance, the location of is for low order moments, this method would still furnish a
restricted significantly if some samples have 5.0. Other- 900d approximation sin.ce the fr{action of realiz_ations with
wise, A occurs almost randomly anywhere within the outputNON-Cconvergent expansions is st|II_ small. For higher values
time series. Thus, to obtain the distribution/ofin the pres-  ©f d, the fraction of invalid expansions would go down rap-
ence of a signal, we need to consider only a restricted subsitly. bringing higher moments also under the purview of this
of all the samples, namely, those for whidk 1. The distri- Method. . _ .
bution of A would then be that of the maximum over this Now consider the restricted subset of rectified output
subset. We describe a general scheme for choosing this suBMples mentioned above. Let this set{de, . .. .Zp} and
set below, but for the present, we assume that it is given. A€  mean values of the Gaussian components
shown abovesee Eq.(42)], each sample of this set would 1(X11:X12), - - -, (Xm1,Xmz)} @ssociated with thzese szamples
have a marginal distribution that is approximately a Gaussbe{(#11,£#12), - - -, (4m1,#m2)}- That is,Zj=[X}; +X5]*?
ian. It is plausible that the joint distribution of such samplesandX;; = u;; andX;,= u;i,. Let the strength of the signal be
can also be approximated by a multivariate Gaussian. ThiS. Following the argument given above, we can express a
possibility can be investigated by computing the moments ofmoment (about mean valugsof the joint distribution of
the joint distribution and comparing them with those of a{z;,...,Z,} as
multivariate Gaussian.

We can express a Rician variatiie= X2+ X3, whereX;  E[(Z1=d)? ... (Zn—dp)°]

is a Gaussian random variable with mean as . [M115X11+ M125X12r Mm15Xm1+Mmz5szﬂ
Z=[(pa+ 6X9) >+ (pp+ 8X) 12, dr O
2(pq 8Xq+ urdXy) X2+ 6X3]12 +E{O[ 6x2(P* -+ T9/S]1, (47)

=Vpituy 1t

2 2 2 2
pat pat where H ] denotes an ensemble average. Note that the first
(450 term is independent of. Also, since 6X;; and 6X;, are

Gaussian random variables, this term is a moment of a mul-
where §X; and 6X, are zero mean Gaussian random vari-tivariate Gaussian distribution. The remaining terms are in-
ables with unit variances. In the above expression and in theersely dependent o8 as is shown schematically above. In
following, we will follow the customary practice of denoting general, the lowest order correction to the Gaussian moment
a random variable by an uppercase letter while denoting itsvill have anS™2 dependence for even moments andsan
value in a particular realization by the corresponding lower-dependence for odd moments.
case letter. The probability that 2¢5X;+ /,L25X2)+5X§ Thus, for a sufficiently higts, the moments of the joint
+ 5X§ is larger than/.[f+ ,u% can be obtained easily, distribution function of{Z;, ... Z,} are approximately the
same as the moments of a multivariate Gaussian distribution.
This implies that forS>1, the joint distribution of the set
{Z,, ... Zny} is given by amm-variate Gaussian distribution.
Itis not easy to see how small the corrections to the Gaussian

1 (2= 1 parts of the moments should be for a given error in the de-
=27y deex;{ - Edz( V1+cos| 6] cog 9])2}, tection probability. However, the above argument provides a
sufficiently strong motivation to proceed with the multivari-
(46) ate Gaussian approximation to the joint distribution of

=

2( 1 6Xq+ ppdXy) + 6X2+ 5X3
P 2+ 2
M T Mo
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{Z,,...., Zy}.Inorder to construct this distribution, we need 1
only compute the covariance matrix f6Z,, . .. . Z}. (Zn=dw) =55~ (54)
Suppose we have two sampl&sand Z; havmg coordi- m
nates®; = (th, 7, s, 7) and 6; —(ta,715,ro) respectively. It 1
is easy to show, using the statlonary phase Fourier transform, (Zy—dm)2=1— ex (55)
that the covariance matrix ¢¥;;,X;2,Xj1,X|2} is, with the 4d;,
columns of the matrix in the same order,
1 0 r S (Zm—dm)(Zy—dp)=0omnt Fmdn
0 1 -s r
C= _ , 48
r s 1 0 ( ) > 2(d2 +d2
s r 0 1 -~ 2d mdn
where - Umndmdn)], (56)
r=(go(t—ta: 0)),0o(t—th; ), (49 3
_ _ (Zm—dm) %= 24 (57)
s=(Qo(t—1tgy;6)),02(t—1};6))). (50) "
2
Both |r| and|s| are less than unity. The above form ©fis (Zo—d)2(Z,—d,)= 1Hrits;  omn_ 1
also approximately true when the numerically computed dn dn  2d,
Fourier transforms of the templates are used. The covariance o2
of Z, andZ, can now be computed using E@7) with the _ _mn 58
i _ : (58)
RHS truncated to the first term. We get dy

1 1 Ono . Omn , Omo
Tij = grg LT (Hinkja ¥ pigkja) ¥ S(Riakja— pizkjs)]- (Zn=dm)(Zn=dn)(Zo=do) = 5| —| 5=+ 5 d
iYj m o n
(51) -~ — o~ -
4o OomOnm OmnOon
The same kind of calculation also yieldg=oj=1. The dm d,
covariance matrix, for the s¢#,, ... ,Z,} above, can now o
be computed using E¢51). We can also express the cova- OomTon
riance asojj= \/r2+52X, where d, ' (59
v S where
x=tan?! B ey 22 —tant —} (52)
M2 41
a-ij =

Note that\r?+s? is precisely the quantityf (6; 07).

We list here the general expressions for the first three
multivariate moments obtained using E47), up to the low-
est order correction to the Gaussian part. The algebra in=
volved is tedious but a lot of it was automated using the?

m[r(ﬂilﬂjl_ﬂizﬂjz)+S(/’«i1:uj2+ Mizi1) ]
idj

(60)

Other moments up to third order can be constructed from the
above expressions by substituting appropriate indices.

symbolic computation packag@THEMATICA . Let the three
rectified output samples b&.,=[X5+X5]'?,

+Y2]1¥2andz,=

way)

Zn:[Y%
[W3+W3]*2 and the covariance matrix for
(X1,X5,Y1,Y5,W;,W,) be (columns ordered in the same

rq ST S,
0 1 —S; 1 —S, [y
I’l _Sl 1 O t U
C= (53
Sl rl 1 —u t
r, —s, t -u 1 0
S, Iy u t 0 1

The moments are

Given a bank of templates and the parameters of a signal,
the subse{Z,, ... ,Z,} can be chosen as follows. Let the
coordinate of the signal bé,=(t3,75s,7;). A set of tem-
plates is chosen from the template bank which lie in a neigh-
borhood of ¢} 5,75), where the size of this neighborhood is
adjustable. In the rectified output of each of these templates,
the sample with the largest value dfis identified. We de-
note the coordinate of such a sampleaéyj , Where the first
index stands for the intrinsic parameters £ and 7o) of the
template and the second stands for the location of the sample
within the rectified output of this template. From Eg4), it
follows that the location of this sample for a givencan be
found by maximizingH (6, ,,6;) over the time of arrivak.

For each&c’hj , we also chooser2neighboring samples in the
same rectified output, namely, the samglé§ ;. }, where
—n=<k=n andk#0. Finally, the set of all these samples,
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namely, the sefé,,;} andfor each(a,j), the set{6,, ;. : estimate of parameter estimation accuracy. One can also
—n<k=n,k#0} éives us the required subset of 'rectified record the values of the maximum and, thus, obtain the dis-
output samples. Note that(6),65) plays a central role in tribution of A. Note that a distribution obtained in this way
the determination of this subset. In our analysis we find thayould be free of any approximations. _

for most of the cases)=1 or keeping only the two nearest _ However, there are some limitations to this method. The
neighbors tod, ; is a good approximation. The choice of the first is computational. In a typical simulation in our context,
neighborhood of templates is intimately related to the placeeach realization of noisy data would haVﬁ04 samples(for
ment of the templates themselves and is the subject of th@ 1.4,1.M ¢ binary), for the case of the initial LIGO, and it

sections which follow. would be processed through5 templates. This leads to
The distribution of the test statistit, in the presence of a ~10° floating point operationgflop) for each realization
signal, is that of the maximum of the s&t,, ... ,Z,}. The [19]. A simulation with ~2000 realizations would thus in-

joint distribution of this set was shown above to be wellvolve performing~2x 10° flop (we have neglected the cost
approximated by a multivariate Gaussian when the strengtbf generating the noise realization itgelfhis is not a large

of the signal is sufficiently high. An analytical form for the requirement computationally, but when the same calculations
distribution of the maximum of a set of Gaussian randomgre repeated for the the advanced LIGO case, for signals
variables is k_nown only for the bivariate case. There arghaving comparable masses, this requirement beconig??
some approximate methoda7] for the calculation of the f55 This is because the duration of a signal with the above

distribution but these are impractical for more then four or,4cqes is:,~ 10° sec for the case of advanced LIGO. Even

f|}/e vgntates. Hct))wevetr_, thte éjlftrlbu&ontforca Ilargt_er nlurt‘r_1beron a 300 Mflops machinéwhere an Mflop is 10 flop and
of variates can be estimated from honte L.arlo simufa Ions"ﬂops” stands for flop/seg, a typical high end computing

A large number of realizations are generated, and for each

realization, the maximum value is recorded and finally anpovvler,. It v:jomtjldtt'akevlgtglipmpletelghﬁ smulqﬂog.fln our
estimate of of the required distribution is obtained. analysis, detection probabiiities Would be required for vari-

Given the covariance matri€y of a multivariate Gauss- ©US configurations+ 10%) of template placement and would,
. = o — thus, be quite impractical to compute using this method.
ian random variableX=(X4, ... Xy), a realization ofX . P
N There is also a more fundamental limitation. Pseudo-random

can be generated as follows. L{t; ;1<i<N} be the set of number generators have, in general, a finite pefail. For
eigenvalues ofcy. Let &, be anNXN matrix whoseith . 9 . N9 S P .

) k ) — instance, the basic generator provided in the NAg library of
column is the eigenvector &y corresponding to;. If W merical routines has a recommended maximum output of

=(Wy, ... Wy) is a zero mean multivariate Gaussian with 4 0x 10® random numbers. For the advanced LIGO case,
a covariance matrix given by diag(1,1 .,1),then therefore, it is actually not possible to generate more than
~200 realizations. This, of course, would lead to very poor

X1 Ny statistics.

X N On the other hand, the method represented by(&t).is

=Cve . . (61)  extremely fast, and since it does not depend on the signal
: duration, it is equally applicable to both the initial and ad-

XN \/EWN vanced LIGO cases. Let the number of samples in the set

16,,;} be M. Then the total number of samples in the set
If X has a non-zero mean vector, then this can be added &1, - - - .Zm} would bem=M X (2n+1). Given the covari-
the RHS of the above expression. It is easy to understand tfce matrix fo{Z,, ... ,Zy}, the number of operations re-
above expression geometrically. In Bindimensional Carte- quired to obtain a single realization would be essentiafy
sian space, realizations ¥ will be distributed in a spheri- 1YPically, M~5 andn=2 which leads to 225 flop per real-

cally symmetric “cloud.” Multiolving the components iV ization, a trivial quantity computationally. Also, since for
y sy . " pying the comp - " each realization only 15 samples need to be generated, the
by ﬁi turns this spehrical distribution into an ellipsoidal

number of trials can be made as large a$. However, we
one. This is the distribution expected for realizations<ah  find approximately 10 000 trials to be sufficient for a conver-
the principal axis frame o€y . Finally, a rotation from the gence of the estimated distribution. Though the computa-
principal axis frame to the actual frame is applied. Anothertjonal requirements for the simulation itself are small, there
method that can be usdd8] is to perform the Cholesky s a hidden cost in this method, namely, the computation of
decomposition oCx with the elements of one of the factors the 4, , r ands. If one were to employ FFTs for their com-
chosen in such a way as to give the correct covariances fqjutation, the method would again become time consuming.
the components oK. We use the method of E¢61) in our  However, these quantities can be computed quite accurately
analysis. by using the stationary phase Fourier transform also. This

An estimate of the distribution ok can also be obtained way, the computation of the covariance matrix also becomes
using the kind of Monte Carlo simulation that is convention-quite fast. Typically, the whole simulation including the gen-
ally used for studies of parameter estimation accuracy. leration of the covariance matrix takes a few seconds on a 30
such a method, a number of realizations of a noisy detectdviflops machine. This should be compared with the corre-
output time series are generated. For each such data segmespgpnding numbers obtained above for the conventional
rectified outputs are generated for a set of templates and theethod. It should be noted that this method may be used for
location of the maximum over the outputs is recorded. Thesimulations of parameter estimation accuracy also. Further
distributions of the coordinates of the maximum then give arinvestigations in this direction are in progress.
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FIG. 3. The relative error in detection probability as obtained using the multivariate Gaussian approximation and as obtained by
performing an exact simulation. Each figure shows the relative error for three values of signal strefgth,
=8.0 (solid line), 9.0 (dotted line), 10.0 (dashed line). As expected, the error decreases for larger signal strengths. The top left figure shows
the locations of the templatésrossel used in the calculation of the detection probabilities, and the signal locdsofid circles. The
basic unit cell which is composed of templates Nos. 1, 2, 3 and 4 is oriented along the eigenvectors of the Hessian at the location of template
No. 1. Templates Nos. 5 and 6 are included in the calculation to take into account any possible contribution that they may provide, because
of the shear of contours, to the detection probabilities of signal Nos. 3 and 2, respectively.

In Fig. 3, we compare the performance of the method ofwhere 0<e<1. This fit was assumed to hold for higher val-
multivariate Gaussian with the exact one. It can be seen thates of  also though they were beyond the range of the
the approximate method becomes better as the strength of tk@mulations since, as mentioned earlier, the period of pseudo-
signal is increased. In our analysis, a value of 0.95 for theandom number generators is finite and, consequently, it is
detection probability will be taken as fiducial and, as can benot possible to generate enough realizations for the estima-
seen from Fig. 3, the error in the approximate method igion of low probabilities. However, we subsequently found
negligible. that this problem was investigated by Rig&l] (in 1944,

We now turn to the calculation of false alarm probability. though only for the case ofgingletime series. The formulas
An exact expression for the distribution 4f in this case is  obtained in that work can also be interpreted in terms of an
easily obtained when all the rectified output samples beingffective number of samples but the parametelepends on
considered form a statistically independent set. In the presy and is not a constant. Specifically,approaches unity as
ence of statistical correlations between the samples, it apghe threshold is made higher. Therefore, the extrapolation of
pears that an analytical treatment is difficult. However, it waghe fit to Monte Carlo estimates that was made in MD96 is
found in MD96 that Monte Carlo estimates of false alarmnot valid. This does not affect the results of MD96 signifi-
probability, as a function of threshold, could be fit almostcantly, however, because the guantity required in that analy-
exactly by a formula obtained by assuming that all rectifiedsis was» for a given false alarm and it was shown to be
output samples were statistically independent but there werkighly insensitive toe. But it should be noted that this im-
aneffectivelylesser number of them. That is,@y(7) is the  plies thatQy( ») is affected significantly by small errors im
probability that the maximum oveN, rectified output and, hence, the threshold should be recomputed once the
samples crosses (in the absence of a signathen placement of templates is completed.

The extension of the derivation @,(7) given by Rice
) (actually, it was theate of false alarms that was derivetb
Qo(m)=1—exd —eN,e™ 77 (62)  a randomfield does not appear to be straightforward. Note
that the set of rectified outputs from a given template bank
can be considered to be the samples of an underlying 3-
dimensional random field, one of the dimensions being the
time of arrival and the other two being; 5 and 7,. We
(63 present here gqualitativeargument which can be extended to

(forp>1),

2
7
~Nreexr{ Y
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clusion regarding the behavior efshould hold.
The basis of this argument is the assumption that, in the
absence of a signal, any rectified output sample is equally r{ 2
=NXex

the case of random fields also and show that the same con- @ 72
n=NX J dzzxp — >
7

likely to be the location ofA. This can be expected to be true 5| (65

provided the random field is at leaside sensestationary.
Since the input noise is assumed to be a stationary rando : . .
process, it f(F))IIows that the rectified output of any o)rlwe tem-8Ut of thesen cases, some would be such in Whlc~h either
plate will also be stationary. However, the random field carZi—1 OF Zi+1 also crossy simultaneously. The ”Um[‘“ of
be non-stationary because of non-stationarityrjg and 7, ~ such cases in whichZ;_; crossesn would be n=n
or it is genuinely stationary but sampled non-uniformly in X p(z;_1>7n|z;>7), where p(A|B) is the probability of
T15,7p. For the random field to be wide-sense stationaryeventA given that event8 has occurred. The number of
[22], it is required that the correlation of any two samplescases in whiclZ; , ; crossesy simultaneously witlZ; would
should depend on only their relative displacement and nohlso ben. Now, each sample hasevents associated with it

their locations. _ that favor A> 7, but out of these, @ events are common
In the present case, the correlation of any two sam@es, \yith its immediate neighbors and these common events

andZ,, can be obtaineéxactlyin the absence of a signal. gpqid be counted only ondescall that, by assumption, the
The derivation given in the Appendix leads to the following nmper of events with more than two simultaneous crossings
expression for the correlation: is negligible. Thus, the total number of events that favor

P ' ' ;o a false alarm is
Z,Z,=2E[H(61,05)]1—-[1—H(67,05)%IK[H(67,65)],

(64)

ni=N,Xn+N,X(n—2n)
whereE is the complete elliptic integral of the second kind 2
andK is the_complete elliptic integral ,of t,he first kind. Thus, =N,[1-p(z_1>7]z> )] X Nex;{ — 77_} . (66)
the correlation depends only oH(6;,65). Therefore, if 2
H(#;,6;) were location independent, that is, if it were de-
pendent only on the differencied’ betweens), and 6}, then where boundary e_ffecf[s have been neglected. Hence, the
the rectified output field would be at leagide sense station- @lse alarm probability is
ary.
As discussed belovH (61, 65) is location independent in _ i '
the case of Newtonian ancli th2e pestewtonian wave forms Qo 7) =N 1=p(z 1> 72> n)]exp{
(#' is understood to be a different set of parameters for these
wave formg but not in the case of pdstNewtonian wave A comparison of the above with E¢63) explains why the
form. However, for simplicity, consider the case wherelatter expression produces a good fit to Monte Carlo esti-
H(#6;,65) is location independent. We apply our argument tomates but now it can be seen that p(z,_,>7|z>7) is
a singlerectified output first. not a constant as assumed in MD96 but dependg,on
Since we will be using an extremely low false alarm prob-
ability in our analysis, the threshold required will be quite 1 w o
high [typically, (8—9¢]. Suppose thay is so high that the €= —TJ f dudvPz 7 (up), (68
probability of two or more simultaneous crossingspfat F{ D\ S
widely separated locations in the time series, is almost zero. 2
By a wide separation we mean roughly that the locations are
not closer than the typical correlation length scale. Of coursevherePz 7 (u,v) is given in Eq.(A10). Even for such a
it is still possible for samples which are highly correlatedsimple argument, the above expression éoyields values
with the one at whichA occurs to simultaneously cross that are of the same order as those obtained by fitting the
Thus, if Z; is the sample at whiciA occurs(and crosses), Monte Carlo estimates. For instance, from E§8) we get
then we have assumed above that the probabili®;afross-  €=0.33 for »=6.0 andr?+s?=0.9. The typical value foe
ing 7 in the samerectified output is zero, wherej(-i|)At  that was obtained in MD96 was 0.7, for a single rectified
>L andL is the full width at half maximun{FWHM) (say) output.
of the autocorrelation function. We will further assume that It is also clear that the assumptions made above regarding
7 is sufficiently high so that if one of the neighboring simultaneous crossings of are not strictly necessary. The
samples ofZ; crossesy along withZ;, it is almost always essential point is that simultaneous crossings reduce the
eitherz;, , or Z; _;. number of favorable events and, since the number of such
To compute the false alarm probability, we need to couneventsper sampléds identical for all samplegunder the as-
the number of timeg\. crossesy in someN trials for N— o, sumption of stationarity this can be expressed as an effec-
Under the above assumptions, the number of favorable castéige reduction in the number of samples themselves. In this
can be counted approximately as follows. First, the numbeway, the extension of the above argument to a ranéleid
of times a given sampl&; exceedsyn is counted. ForN is obvious and leads to the same conclusion, namely, that
sufficiently large, it is just thenarginal frequencyn for that  e—1 for >1. In this paper, therefore, we use E§2) for
sample the false alarm probability but wite=1.

2

5| (67)




642 S. D. MOHANTY 57

In the following, we will need to estimate the threshold A. Intrinsic ambiguity function
that is required to obtain a given false alarm probability. For Using the stationary phase Fourier transform given in Eq.
small values of the false alarm probability, we get, from Eq.(lg) it can be shown easily that
(63), ’

2]\ 12 H(#, 6’)=£[F2 (05,00 +F2.(0,,00)1% (72
Nr a'’b ﬁ cos\ YarYb silf\ Ya»“b '
7~|In— (69
A fo_df 713
Feod 02,00)= | < f "coda(f)], (73
Let the number of templates in the template bankNse cosTarTh ta Sn(f)
Then,N,=NXNy, whereN is the number of samples in a
i ifi fo df
single rectified output. Therefore, Ea( 0L 00) = — =780 ar(F)], (74
fo Sn(f)
A AN
P (70)
7 7°Ng a(f)=2m| At,f+ >, Arap(f)|;
k
This shows that the threshold is very insensitive to the num- ke[0,1,1.5 (75)
ber of templates provided the false alarm is kept low. For e
instance, even if there is a relative error of 50% in estimating f. df
Nt, the relative error iny would just be~0.8%. As far as = C_f*7/3, (76)
the detection probability of a signal is concerned, such an fa Sn(f)
error is entirely negligible. This point will be of importance a b a b N
later in the paper. where At,=t;—t,, Ar,=r,— 7. The quantitiesF /B

andF;,/ B are nothing but the quantitiesands defined in
Eq. (49 and Eq.(50) but expressed in terms of the stationary
IV. PLACEMENT OF TEMPLATES FOR A ONE-STEP phase Fourier transform. They can, of course, be calculated
SEARCH exactly by generating the wave forms in time domain using

In the previous section, we described a method for théEd. (6) and computing their correlations using the FFT. We
calculation of the detection probability of a given signal. find that Fe.s and Fyj, reproduce the corresponding exact
This method consists of choosing a small set of samgles guantities quite faithfully for both the initial and advanced
from the rectified outputs of templates which are in somebIGO noise spectral densities. This also holds to a large
neighborhood of the signal. The s&tis supposed to be such extent whenf, is replaced by the least of the plunge cutoff
that the maximum, over all rectified output samples, almosfrequencies corresponding to the two wave forms. Thus,
always occurs among the members Bfand this requires H(64,6p) calculated using Eq(72) also reproduces faith-
that each of them should have a high valuedoftypically, ~ fully the corresponding exact results and this would also be
d=7.0). Thus, the neighborhood of templates should be suctue for provided the location of the maximum in Eq.1)
that the maximum of each rectified output, in the absence of obtained accurately.
noise, be sufficiently large. We obtain the location of the maximum in Eq@J) in two

This motivates the introduction of a quantity called thesteps. First, an initial estimate for the required valuatfis
intrinsic ambiguity functior(7% 5, 73; T? 5'7.3) which is de- obtained as described below. This is followed by a search for

fined as the true maximum around this initial guess using a bracket-
ing and golden search algorithWMNBRAK and GOLDEN in
_ ' 13]). In order to get the initial estimate, we solve the inte-
H( 6y, 0,) = maxH(6,,6]). 7y [13D.] ; ;|
(8a, 6) b (0a6) 7D grals in Eq.(73) and Eq.(74) using a stationary phase ap-
a a proximation but with the point of stationarity chosen in such

o ) .. away as to yield the maximum value for the RHS in Eq.
In other words, this is the maximum value that the rect|f|ed(72)_ Let the desired stationary point He=f,. Then, for

output of a templat@, will have if the input consists of only  fixeq values ofA 7, 5 and A7y, the condition of stationarity
a signalé, havingS=1. The role of templates and signals is, yields '
of course, interchangeable here. F&# 1, the maximum
value will simply beSH. We term this value thebserved Ata=—(A7o+ Am = A7 g + Arx®+ Aryx®— Ary o,
strength Gy of the signal. (77
Clearly, the larger the “width” of the intrinsic ambiguity
function, the more sparsely can templates be placed aroundweherex=[fo/f,]~ 2. Substituting the above back into the
signal in order to obtain the same detection probability. Inintegrands in Eq(72) and maximizing the resulting expres-
this sense, the intrinsic ambiguity plays a central role in thesion overf, yields the required value. This value &f is
determination of the density of templates and thus the comebtainedonly oncefor a particular choice ol 7, s and A 7.
putational cost of a one-step search. We first discuss, in theor any other A 7 5,A 75), the samevalue of f, is used to
following section, the calculation dff and some of its rel- obtain an initial estimate foAt, using Eq.(77). The algo-
evant properties. This is followed by a discussion of templateithm given above is quite fast as compared to the exact
placement for a one-step search. calculation.
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FIG. 4. The contours of the intrinsic ambiguity function
H(6,,0y,) for the initial LIGO. In this figure,d, is kept fixed at
0,=(1.3,25.0) sec and, is varied. Also shown are the semi-minor
and semi-major axes of the 0.97 contour as calculated from the
HessianH(6,). The axes do not appear at a right angle to one .—
another because the axes scales are different. O
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Contour plots ofH(6,,6), as a function off, with 6, ~
fixed, are shown in Fig. 4. Also shown are the eigenvectors o
of the Hessianof H which is defined as =~

50

19°H( 65, 6p)

Hii(0,)= 2
T2 560 06)

(78)

0p=16,

a

The HessiarH;;(6,) is identical to the metric on the signal
manifold introduced in4]. Since H(0,,0,+A#) is maxi-
mumat A #=0, theH surface is quadratic in a sufficiently
small neighborhood o, and, as shown in Fig. 4, the inner- .
most contours are elliptical. The orientation and axis lengths G- 5. The upper figure shows the contourd 40.974,) and
of such an elliptical contour can be obtained in terms of the"'e lower figure shows the contoursig{0.97/6,), in the space of
eigenvalues and eigenvectors of the Hessian. \gip,), 'mterestfor the initial LIGO.

N\o(6,) be the smaller and larger eigenvaluesH{(fd,) re-

spectively and le€,, and e,, be the corresponding eigen- 'espect to these eigenvectors. We call this shearof the
vectors(normalized to unity. Then, the length of the semi- contours. Typically;(6,) ande;, provide a good estimate
minor and semi-major axes of a contour at legedre given  of the size and orientation of the contours fa@e=0.95.

by The intrinsic ambiguityH is not independent of its loca-
tion in parameter space. That is, Afd=(A7,5,A7g) IS a
1 ,(e,0,)= Vi—e ’ (79 displacement vectorH(6,,0,+A0)*H(6y,0,+A8) in
V—A1(6,) general for@,# 6,. For our purpose, the most appropriate
way of characterizing this location dependence would be to
Jli—e€ investigate the change in the dimensions of the innermost
PICS aa):m! (80 contours ofH. This is because we are primarily interested in
a

the detection of signals with low strengths and for such sig-

respectively, while their orientation is given by the respec-nals the templates in a one step search would be placed
tive eigenvectors. Note that since the eigenvalues are neg§losely. For instance, we find from earlier work8D96 and

tive, |\1(6.)|=|N(6,)|. Since, we already have a nearly [4]) that for low val_ues of, the spacing of templates is such
accurate method for computing/, H;; can be calculated that the signal with the lowest detectlon_ probability has
simply by approximating the derivatives in EG8) by finite  7(6t,65)=0.97, for some templat®,. In Figs. 5, 6 and
differences. It should be noted that at a given location, théigs. 7, 8, we have plotteld (0.976,), 15(0.974,), the area
directions in which the contours at successively lower level®f the ellipserl,l, and the angle between the s axis and

are most elongated suffer progressively larger rotations witte;, as functions o, . The lowest contour level in each plot
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FIG. 6. The upper figure shows the area FIG. 7. The upper figure shows the contourd £40.976,) and
71,(0.976,)1,(0.976,) of the 0.97 contour of the intrinsic ambi- the lower figure shows the contourslg{0.974,), in the space of
guity function{ and the lower figure shows the contoursagf the interest for the advanced LIGO.
angle (in degrees betweene,, and ther, 5 axis, on the space of

interest for the initial LIGO. have already introduced formulas for detection and false

alarm probabilities in Sec. 1l which can be used in checking
I(Cl) and(C2). However, such a blind search in configuration
space is impossible to perform in practice since the number
of templates can be expected to be quite large. Instead one
can make some reasonable assumptions regarding the geom-
B. Geometrical configuration of a one-step template bank etry of the final configuration and then proceed to perform a
In MD96, we had introduced a set of criteria which a limited search within that framework. We will now present
template bank for a one-step search was required to satisfiin argument that suggests an approximation to the optimum
These criteria werdC1) every signal, having a streng® ~ geometry of template placement in the posilewtonian
greater than a given minimum streng®;,,, should have a ¢ase. This approximation should be good enough for estimat-
detection probability greater than a given minimum detectiori"d the performance of a two-step hierarchical search but a
probability Q¢ min and(C2) the false alarm should stay below More caref_ul analysis would be required when such a scheme
a specified leveQq max. Throughout the followingQq mn 'S @ctually implemented.
=0.95 andQ max iS chosen to be such that the average rate
of false events is 1 event/yr. Apart from the above criteria,
we also demandC3) that the templates be spaced as sparsely Consider, first, a simple hypothetical situation in which
as possible so as to minimize the computational cost. the intrinsic ambiguity is location independent, that is,
An obvious way to fix the template placement would be toH(6,,6,+ A 6) =H(A 6). Recall that the detection probabil-
search through all the possible placement configurations arity of a signal was determined by a subsg&tof samples
find the one satisfying the three criteria stated above. Wéelonging to the rectified outputs of templates in some neigh-

is close to the minimum value which that quantity takes ove
the whole of the space of interest.

1. Case of location independerit
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FIG. 9. The parameters of a unit cell which is a parallelogram.
8 Whenever the sides of the unit cell are assumed to be along the
3 eigenvectors of the Hessian, is taken to be along the semi-minor
axis whilel, is taken along the semi-major axis.
of is also independent of location. This is because the covari-
fo\ St ance matrixdetermined byH) of the set of sampleg’ need
o T not be location independent even though their mean values
2 (given byH) may be so. However, we will proceed with the
_ assumption that variation in the covariance matrix is a neg-
EO gt ligible effect. The validity of this assumption can be checked
Qt after the final results have been obtained, as we do below.
C An intrinsic ambiguity function which is location inde-
a pendent is not unrealistic since the Newtoniéri2] as well
i as the postNewtonian[4] wave forms are known to have
o

such an intrinsic ambiguity for the right choice of param-
eters. In fact, in these cases, the functid(¥y, 65) itself is
dependent only o 6. Thus, the detection probability of a
signal in the case of Newtonian or pb#ewtonian wave
FIG. 8. The upper figure shows the area forms depends strictly on the local configuration

711(0.978,)1,(0.978,) of the 0.97 contour of the intrinsic ambi- {A 6, ... ,Afp} alone. _ _ _

guity function and the lower figure shows contours @f, the ~Now consider a configuration of templates in which the
angle (in degrees betweene,;, and ther, 5 axis, in the space of distribution of te.mpllates in the space of interest is inhomo-
interest for the advanced LIGO. geneous but which is claimed to satigfy1), (C2), and(C3)

for someS,;,- It then follows that the detection probability
borhood of the signal. Thus, the detection probability of aof a signal withS=S,,;, in a region sparsely populated by
signal is determined entirely by thecal distribution of tem-  templates is at leasq nin. However, this implies that a
plates around it. Let the coordinates of the signalbpand  region where templates are spaced densely is overpopulated
that of the templates bgs+A 0., . .. ,05+A0p}, whereP because, as shown above, the same sparse local distribution
is the number of templates in the neighborhood. Also, theshould suffice everywhere. Therefore, a further reduction in
samples inZ which contribute most to the detection prob- computational cost can be brought about by removing some
ability are the ones which are located at the maxima of thef the templates from the overpopulated region. This implies
rectified outputgfor zero noisg of these templates. Let the that an inhomogeneous distribution cannot be an optimal

set of such samples b& ={Z/}C Z,i=1,...P. The re- one. Hence, whert{ is location independent, templates
maining samples typically contribute only a few percentshould be distributed homogeneously which is equivalent to
more to the detection probability. Then, placing them on aegular grid.
o A two dimensional regular grid is specified by a single
Z!=SH(6s,0s+A6,). (81 unit cell. In the present paper we will assume that this unit

cell is a parallelogram. Such a unit cell is specified by the
Now, if H is assumed to be location independent, two dif-lengths of two adjacent sidels, andl,, and the anglesy;,
ferent signals(having the same strengtiwould have the a5, thatl; andl, make with some reference directigpee
same detection probability provided the local configurationFig. 9). To find the optimal placement of templates, there-
of templates{A#,, ...,Af,} around them is the same. fore, a search can be performed in (,,a;,a,) space for
Strictly speaking, this statement is not true unlei§®, , 6;) the unit cell having the largest area under the constraint that
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the resulting grid of templates satisf¢1) and(C2). Such a
search would be computationally expensive even with the
fast methods that were introduced in the earlier sections.
Note, however, that the unit cell with the largest area, for a
givenl, andl,, is a rectangle. Hence, for a givépandl,,

a search should first be performed amongedtangularunit
cells to locate the ones that satigi@1) and (C2). This is
equivalent to just a rotation of the grid which involves only
one of the angles and, hence, saves significantly on compu-
tations. Once the largest rectangular unit cell that satisfies
(C1) and (C2 has been found, the search can then be ex-
tended to non-rectangular unit cells with larger areas.

The computational cost can be reduced further by making
an educated guess for the orientation of the rectangular unit 25 00
cell. For instance, let the contours&fbe ellipsoids with the
same orientation. Then it can be seen heuristically that the
largest rectangular unit cell should be obtained wheand
I, are oriented along the major and minor axes, that is, the
eigenvectors of the Hessia. If the contours exhibit a
shear, then the largest rectangular unit cells for different val-
ues ofS,,;, would, of course, be oriented differently. In such
a case also, the computation involved in the search can be
reduced bystarting with an orientation given by the eigen-
vectors ofH and then searching a small rangeagf around 24.96
this orientation. :

In order to check that the above argument is reasonable, 1.
consider Fig. 10. For a rectangular unit cell oriented along
the 7, 5 and 7y axes and having arbitrary dimensionsand
I,, we show the detection probability of signals, having the
same strength, which lie in the interior of the cell. The
threshold has also been chosen arbitrarily and samples for
the setZ were chosen from the rectified outputs of the four
templates at the vertices of the unit cell. Also superimposed
on this detection probability map are the contours-ofor
one of the templates. It is clear from the figure that, as ex-
pected, the detection probability map closely follows the
contours of the intrinsic ambiguity. Roughly speaking, the
detection probability contours are formed by the “overlap”
of the H contours. Therefore, it can be expected that if the
unit cell were oriented along the eigenvectordigfthen the
area can be made larger, keeping the minimum detection
probability the same, because this orientation would maxi-
mize the overlap of thé{ contours. In Fig. 10 we also show
the detection probability map, for the same threshold as FIG. 10. In the uppermost figure we show the detection prob-
above, when the unit cell is oriented along the eigenvectorQb”ity of signals in the interior of a rectangular unit cell which is

~ ~ . i d along ther; 5 and 7, axes with the top left vertex at
of H (I, alonge,, andl, alonge,,). The minimum detec- °"€"te 9 15 0 7 e
tion p(rébabili?y |1§ much2 Iarge? nzS?N which implies that the (1.1,25.0) sec. The length of the side along the, axis is 0.05 sec

area can now be increased further. In the following. we Wi”while the lengtH, of the other side is 0.150 sec. The threshold and
restrict the parameter space for .the unit cell tog,be onl signal strengths were chosearbitrarily) as 5=8.0 andS=9.0. In

. - . Yhe middle figure the contours of this detection probability map are
(I1,1,) and orient the sides along the eigenvectors of thesuperimposed on some of the conto(ashed ling of H(6, , 6,)

Hessian. That is, the sides of the unit cell are giveri gy,  with 6,=(1.1,25.0) sec. In the lowermost figure, we show the de-
and|2§23. tection probability map for the same unit cell but now wlifrandl,
oriented along the eigenvectoes, and e,,. The threshold and
2. Case ofpost-5-Newtonian signal strength are the same as in the figures above it. The values

along thex axis (oriented alongiela) andy axis(oriented alonéeZa)
are the serial numbers of the grid points.

24.98

tan_0 (sec)

24,97}

/

Consider the family of posf-Newtonian wave forms
now. As shown in the previous sectiof, is not location
independent in this case. However, if this variation is smalllMD96 and[4]), the typical spacing of templates for low
over the scale of few unit cells, then it can be expected thatalues ofS,,;, turned out to be such that for any signal, the
the optimum template placement for the gosewtonian  value of H was at least~0.97 in some template. In the
case would also be close to a regular grid. In earlier workgresent case, if templates are placed along the eigenvectors
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FIG. 11. The quantities,, &, andé, [see Eqs(82) and(83)] for the case of the initial LIGO. Each row of figures corresponds to a fixed
value of 7. (i) For the first row,r=60.0 sec(ii) for the second rowry=30.0 sec, andii) for the third row,7,=10.0 sec. The first column
corresponds td,, the second corresponds & and the third tod, . Thex axis is ther; 5 axis.

of the Hessian, this would imply that the typical lengths forlow 7, region. However, it is still small for the advanced
the sides of the unit cell are~21,(0.97§,) and LIGO though it may have some significant effect in the case
~21,(0.970,). Thus, the effect of the location dependenceof the initial LIGO. Thus, at least in the case of the advanced
of H on the placement of templates can be studied by comkIGO, one can expect that the optimum placement of tem-
paring the change ih, over a distancel2 alonge;, [thatis, ~ Plates will be along an “adiabatically” changing grid over
1,(0.97p,+8,)—1,(0.974,)], with the value ofl; at that most of the space of interest. Since the rate of detectable
ploint. Fgr thg sca{les useea i’n Fig. 5 and Fig. 7,Ia line alonVENts is not expected to be large for the initial LIGO, we

- : ill not investigate the placement of templates for the initial
any of the two eigenvectors would be ngarly horizontal atLIGO any furtger hereplnstead we will Fc):oncentrate on the
any point. Therefore, the change linalonge;, can be ob-

. ; . . advanced LIGO and assume that a quasi-regular grid will be
tained approximately by simply measuring the change oVer @pained for the initial LIGO also. Further, in the following

line of constantro. In Figs. 11, 12, we plot the quantity analysis, we will approximate the quasi-regular grid above
by a set of piecewise regular grids, that is, a set of patches

1[0.97(75, 115+ 210)]
1,[0.97(73,719]

8i(T15:79)= X100, (82)

wherel? is the value ofl; at the intersection of the,= 79
line and the boundarjB or BC as the case may §&3]. A
similar quantityd, can be constructed for the anglg that
the semi-minor axis makes with thg 5 axis,

0 0
aq(7g, 7151 215)
5 —| 2170 TsT 2l

a

X 100. (83

0
a1(79, 715

This has also been plotted in Figs. 11, 12.

covering the whole of the space of interest where the unit
cells in each patch are identical but differ in dimension and
orientation in different patches.

Though, in principle, the unit cell in each patch can be
determined by using the algorithm given earlier, this would
again be impractical because now a placement algorithm
would have to search a two dimensional parameter space,
andl,, for eachpatch. However, if the assumption that the
detection probability is almost completely determinedHyy
alone were true, then the search would collapse to just two
dimensions. This can be seen as folloimge call this as-
sumption Asl for convenience in the followind-or a small

It is evident that the variation of the dimensions and ori-displacement 6=x,€;,+ X,€5, at 6,

entations of the unit cells, over the scale of a single unit cell
itself, is quite small over a large portion of the space of
interest for both the initial and advanced LIGO. In general,
this variation becomes more rapid towards the high mass, awhere we have rotated the coordinate system locally so that

H(0a, 0.+ A0 =1—[N1(6)X5+No(0)%3],  (84)
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FIG. 12. The quantitie$,, 5, and §, [see Eqs(63) and(64)] for the case of the advanced LIGO. Each row of figures corresponds to
a fixed value ofry. (i) For the first row,7,=3000.0 sec(ii) for the second rowr,=2000.0 sec, andii) for the third row,r,=800.0 sec.
The first column corresponds #), the second corresponds & and the third tos, . The abscissa is the, 5 axis (in seconds

H(6,) is diagonalized. Consider a different locatiah Now, suppose that the optimum solution compatible with all
where\,(6,) = a;\i(6,). Then, for a small displacement at the three criterigC1), (C2), and(C3) has been obtained by
6y [in a rotated coordinate system that diagonaliz¢®,)] Some means. That is, the sides of the largest unit cell com-
and at the same order of approximation as in m)’ patlble with (Cl) n eaChpatCh as well as a common thresh-
old have been found. From As2 and Asl, it then follows that

if the unit cell dimensions arl andl, in any one patch, the
- dimensions of a unit cell in any other patch mustl b&/a;
(85) and |,/\/a,. Hence, when searching theNg parameter
space of unit cell dimensionsNf, being the number of
Now, suppose that the unit cell 85, having dimensions;  patcheg only the subspack, |, for any one unit cell needs
and|,, satisfies(C1) for a given threshold. This implies that to be searched. We should emphasize here that the above
every signal in the interior of the cell has a detection prob-2rgument is by no means a rigorous proof. Given the com-
ability greater tharQg min- Let the relative coordinates of Plicated interdependences of various quantitfesinstance,
such a signal bé,= (€11, €5l,), where O<e<1. If Aslis €ven the number of patches and also the extent of a patch
true, then the detection probability must depend only org?f?}’ dI?F;end 0? :L‘e dimglnsior_]stof th? qutaeimiwd bet' I
_ _ - ifficult to cast the problem into a tractable mathematica
Ha=H(0at6s,00),  Ho=Tt(0at b5, 0ot hiCra), Mg (o7 However, we find the above argument sufficiently sug-
szgaJr Os,0at12€10) and  Hy=T(0a+ 65,02+ 1161 gestive and the conclusions reached as plausible. The as-
+12€5,) (we have neglected the contribution from other tem-symption As2 is actually not required since it can be ex-
plates for the present but this does not affect the argumentpected that the total number of templates, hence the
It then follows from Eq(85) that, for the same threshold, the threshold for a given false alarm, will only depend on the
detection probability of a signal with relative COOI‘dinateSareas of the unit cells in each patch and not on their indi-
(e1l1/\ a1, €151\ ay) at g, will be the same as that @i, at  vidual dimensions. Thus, one can always choose the opti-
0, . Hence, for a given threshold, if a unit cell with sidgs  mum solution to be the one where unit cells are scaled ver-
|, at 6, satisfies(C1), then so would a unit cell with sides isons of each other, without violating2) or (C3).
|1 /Ny, 1,1\ a, at 6, . How large carl; andl, be in the post>Newtonian case
Assume that for a given threshold the largest unit cell thabefore the detection probability for scaled unit cells starts
is compatible withC1) is unique(note that the orientation of showing significant errors? We have checked this empiri-
unit cells has already been fixed and only rectangular unitally and the results are presented in Figs(ib&ial LIGO)
cells are being consideredWe call this assumption As2. and 14(advanced LIGQ In each figure we present our re-

H| Oy, 0+ 2 Xi€in /e | =H| 0a,05+ > Xi€ia
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S=11.0 S=11.0

FIG. 13. The relative error in detection probability for corre-  FIG. 14. The relative error in detection probability for corre-
sponding signals in two widely separated unit cells. Let the loca-sponding signals in two widely separated unit cells. Let the loca-
tions of the unit cells b&, and 8, . In this figure, we consider the tions of the unit cells be&, and 6, . In this figure, we consider the
case of the initial LIGO and place the top left templates of the unitcase of the advanced LIGO and place the top left templates of the
cells at,=(1.3,50.0) sec and,=(1.5,10.0) sec. The value used unit cells atf,=(13.0,2000.0) sec ané,=(15.0,400.0) sec. The
for the signal strengtl is shown at the top of each plot. The effect value used for the signal strendBis shown at the top of each plot.

of plunge cutoff has been incorporated in the calculations. The effect of plunge cutoff has been incorporated in the calcula-
tions.

sults for different values o8,,;, which are chosen to encom-

pass the typical range @&, that will be considered later. Qi

The detection probability that we consider throughout our ma{l— 0—9'5 X 100.

analysis is 0.95. Hence, we compute the errors in detection '

probability at the 0.95 level. Also, it is not enough to com-
pute the error for only one signal point since it may dependrhus, we are plotting thenaximumrelative error in the de-
on the signal location. Therefore, the maximum error amongection probability(at the 0.95 levelas a function of the unit
three different signals is shown. cell dimensions. As mentioned earlier, the typical one-step
For each plot, we take two widely separated locati6gs spacings that can be expected aré,(@.97¢,) and
and fg . Thex axis andy axis are the values df andl, at  21,(0.979,). For these values, we see from the figures that
6, . The corresponding quantities &g are|i:|1/\/y_1 and the typical error is<2%. In fgct, thg errors stay small for
1=1,/\/y,, wherey,=\;(6g)/\;(6,4). At each location the much larger values of the unit cell dimensions. Hence, for a
detection probabilities of three representative signals are ol2n€-step template placement involving low valuesSgf,,
tained (this anticipates the discussion of the Sec. Iy D ASl can be assumed to be valid for posiewtonian wave

namely, the signalsf;,= 6,+ (11€1.+1,65.)/2, 6,5= 0, forms.
+11€1,/2 and 63,= 6,+1,€,,/2, wherea=A or B. Let the
threshold at which the detection probability 6fy equals
0.95 ben; . Let the detection probability of;z at the same

thresholdzn; be Qg;. The quantity plotted on theaxis is the In order to obtain the computational cost of a one-step
maximum relative error among the three signals. That is, search as well as the threshold for a given false alarm, the

C. Number of templates for a one-step search
for post'>-Newtonian wave forms
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FIG. 15. A schematic illustration of a quasi-regular grid of unit cells near the vériithe space of intereginitial LIGO). The lengths
used for the sides of the unit cells dre=0.02 sec andl,=0.120 sec. These lengths have been chosen arbitrarily but represent typical values
obtained in a one-step search. The boundary of the space of interest is shown by the lighter lines. The top left corner of each unit cell is
placed on the left most boundary which is the image of the principal diagonal imthegr() plane.

number of templates in a grid has to be obtained. This is not The effect of the variation in the area of tf€ contours

a straightforward task, however, because of the non-triviabn the number of templates can be incorporated approxi-
shape of the boundary and the variation in the area of th@ately as follows. Recall that in the previous section we
contours with a change in location. showed that unit cells in different patches can be taken as

The non-trivial shape of the boundary would cause somd&caled versions of a standard unit cell, where the scale fac-
fors were the ratio of the corresponding eigenvalues of the

templates in any regular grid to fall outside the space o : X > . .
interest. However, as can be seen from Figs. 1 and 2, iges&a_n. Thus, the area of a unit cell will vary with location
. ) . ccording to these scale factors only and, hence, the relative
which the unit cells are almost horizontal because of theange in the area will be the same as that in the area of the
scales used, such an effect would be significant only near th§ 97 contour which is shown in Figs. 6 and 8.
region around verteA. In this region, even a single unit cell Let I, andl, be the dimensions of the unit cell in that
may span both the boundary segmeAtS and AB. Note,  region of the space of interest where the variation in the area
however, that the segmemd, as well asBC, are not strict  is small(say, maximum relative change of15 %). For the
limits. That is, astrophysically valid templates can also existnitial LIGO this is roughly the region between vertéxand
beyond them. This is not true, however, for the segm#eBt  the contour at 0.002 s&én Fig. 6, while it is the area be-
which is the image of the principal diagonal in th&,(,m,) tween A and the contour at 0.04 Seéor the case of the
plane. Thus, although no template should be placed on thadvanced LIGO. Lef\c, ¢, be the area between contours
left of AC, it is acceptable if some templates in a grid breachc, andc, anda=1,1,. Then, for the case of initial LIGO, the
AB or BC. This allows a quasi-regular grid to be placed in number of templates that lie i go2_0.goavould be approxi-
the region neaA, as shown schematically in Fig. 15. This mately A go2-0.004(1.58) since the area of the contour in-
patch of templates can be used to cover the space of interesteases by~50 % in this region. Similarly, the number of
from A until that value ofrq at which the width of the space templates inAg gg3_g.00aWould be ~Ag g93_0.00d(2.08) and
of interest becomes comparable to the lenigtiof the unit SO on. LetBc c,=Ac, -c,/A, whereA is the area of the
cell. whole of the space of intere§see Eq.(14)] andN% be the
From Fig. 15, it appears that it may not be necessary tumber of templates in the region where the variation in area
include the templates on the right hand edges of the unif fast(i.e., below the 0.002 sécontou). Then,
cells. However, these templates would be required in the
region where the size of the unit cell becomes comparable to B0.002-0.003 £0.003-0.004 0.004-0.005 0.005-0.006

the width of the space of interest, in which case the signal at Ny= 15 20 25 3.0

the centroid of the unit cellswhich needs the right hand

templates for achieving the required detection probability B0.006-0.007 Bo.oo7—o.oos+ é 86)
would lie inside the space of interest. For simplicity in the 3.5 4.0 T la’

counting algorithm we include the right hand templates for _
unit cells which lie higher ugnear vertex A also. The num- Where we have not taken more terms because their corre-

ber of extra templates thus added will not be significant comsPonding — areas are  negligible (even  Ag o7-0.008
pared to the total number of templates that will be required to=0-07A0.002—0.00}- The values ofBc ¢, are Boooz-0.003
cover all of the space of interest and, hence, will not signifi-=0.193, B 003-0.007 0.090, B 0024-0.005= 0.061, By 005-0.006
cantly alter the final results. =0.048, Bo.006-0.007 0-041 andB gg7—0.005 0-031. We call
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the coefficient ofA/a on the RHS of Eq(86) «. For the case
of the initial LIGO, thereforex=0.233. Similarly, for the
case of the advanced LIGO,

:/30.04—0.05 Bo.os-0.06 Bo.06-0.07
1.25 15 1.75 '’

(87)

(sec)

where B 04-0.05=0.183, Boos_0.06=0.062 and Bgoe_0.07
=0.020 which givex=0.199. To understand what these val- Ny

ues fork mean, assume that the number of templates in the
remaining region of the space of interégtat is, the region
with a slow variation can be obtained by simply dividing its
area by that of the unit cell. Then the total number of tem-
platesN} would be

(sec)

Sk 89 L

(1 Ez%,

- . . . t FIG. 16. The number of templates for the case of the initial
For the initial LIGO 2'81_0'464’ which - gives Ny LIGO as a function of the unit cell dimensiohsandl,. The solid

- imi t
0.76%/a. Similarly for the advanced LIGO,Nt  contours are obtained by using the algorithm that takes the variation
=0.934/a. This clearly shows that the variation in the areapf ynit cell areas into account. The dashed contours are for the

of unit cells has a small effect in the case of the advancegalues obtained by simply dividing the area of the space of interest
LIGO. by 11X1,.

We combine the two approximations discussed above to
give the following algorithm for estimating the total number plates will increase significantly, not much will be gained in
of templates. Recall that in the region of largg all the terms of the range of detectable binary systems.
three quantitie$,, |, and a; vary quite slowly. For the pur- The boundary can also be made simple by going over to a
pose of counting the number of templates, therefore, we wiltlifferent set of parameters, such as the massgsrf,). But
assume the orientation and dimensions of a unit cell to beve found that in such cases the intrinsic ambiguity function
constants in the region®) between verteXA and the 0.002 shows excessive location dependence. However, there may
se€ contour for the initial LIGO andb) between verteA  exist a coordinate system in which both the boundary of the
and the 0.04 séccontour for the advanced LIGO. We space of interest is simple and the intrinsic ambiguity func-
choose an average value®f=38° for the initial LIGO and tion does not show much variation. This approach needs to
a,=45° for the advanced LIGO, whew, is the angle be- be explored more thoroughly. The problems with the count-
tween the semi-minor axis and thes axis. The final results ing of templates, discussed above, are also present for the
are quite insensitive to the choice of these angular values. lpoordinates used if#,5].
the first step of the algorithm, we count the number of tem-
plates in the region neak by placing unit cells as shown R A LU NSNS
schematically in Fig. 15. The unit cells are “stacked” below of \ N ]
each other until the length of the segment alongra ’
=const line equals,. Let this value ofry be 75%(1,) and the
number of templates thus obtained N§%. The areaA.,,
between the verteR and thery= 15%(1,) line is then found.
The total number of templates is then obtained as

L, (sec)

A
Ni=NS9+| 1 23, TR

(89

The output of this algorithm is shown in Fig. 16 and Fig. 17,

where we have also shown the values obtained if the numbe
of templates is estimated simply #da. Again, it can be

™
s}

w |

ey )
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0.16

seen that the effect of variation # contours is small for the

advanced LIGO. l1
Almost all the problems associated with the non-trivial

shape of the boundary of the space of interest can be elimi- £ 17 The number of templates for the case of the advanced

nated if instead of the segmenteB, a rectangular corner |Go as a function of the unit cell dimensiohsand!,. The solid

ADB were used. That ish) has the abscissa & and the  contours are obtained by using the algorithm that takes the variation

ordinate of A. However, the region between the segmentsof unit cell areas into account. The dashed contours are for the

AB, AD andDB is then mapped, in then{;,m,) plane, onto  values obtained by simply dividing the area of the space of interest

a negligibly small area. Thus, although the number of temby I, X1,.

(sec)
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To summarize, the following conclusions emerge fromprecisely what happens when the approximate count of tem-
the discussion presented so féin. In the case where the plate is usedprovided the effect of the boundary near vertex
intrinsic ambiguity is location independefdas happens, for A is negligible, which should be so for small unit célls
instance, in the Newtonian and pb$tewtonian cas@stem- Second, given a unit cell, it is sufficient to check that
plates should be placed on a regular grniéglecting bound- signals that have the least detection probability be detectable
ary effects. (ii) The unit cell of the grid should have the with a probability =Q4 »=0.95. For a rectangular cell,
largest aredin order to satisfy(C3)] while satisfying(C1)  there exist three such signals, namely, the signals at the mid-
and(C2). Assuming that the unit cell is a parallelogram, we points ofl; andl, and the signal at the the centroid of the
gave a practical algorithm to find the four parametersrectangle. This is also borne out by Fig. {@wermosj
(14,15, @1,ay) of this optimum unit cell.(iii) The location  which shows that these three signals lie at the minima of the
dependence df in the post>-Newtonian case is quite weak detection probability map. This is also the reason that such a
over most of the space of interdst least for the case of the set of signals was used in Figs. 13, 14.
advanced LIGQas shown in Fig. 11 and Fig. 12. This im-  The algorithm for one-step template placememt: The
plies that the placement of templates in this case should alsealue of S, is fixed. We make a few preliminary coarse
be on an approximately regular gridly) We can make a runs to find out the range of values $f;, for which the unit
piecewise approximation to this grid where each piece, ocells are sufficiently smallso that the shear is unimportant
patch, is regulafformed by translating the same unit gell As mentioned earlier, we keeRq min=0.95 andQq max IS
(v) If the detection probability of a signal were to be deter-kept such that the average rate of false events is 1/yr. Let the
mined almost completely by the intrinsic ambiguity, thenduration of each input data segmentbesec. Then,
only a single unit cell for any one patch needs to be deter-
mined. We checked that this assumption is true for the Qomax= (T~ &max)/ (365X 24X 3600, (90
post->-Newtonian wave form(vi) Since the segmermB is
not a strict boundary, it is acceptable if some templates fromwhere &, is the duration of the longest templafgee Sec.

a grid near verteXA breach it. We therefore put a quasi- Il B). Recall that we denot& — &, by Tg.

regular grid of single unit cells “stacked” vertically neér. (i) We choose a point in ther( 5,79) space such that
In the remaining region, variation in the area of unit cellswhen a unit cell is constructed around it, all the templates lie
was approximately taken into account while estimating thewell within the boundary. For instance, in the case of the
number of unit cells. We emphasize here that these conclunitial LIGO, we choose the point (1.3,50.0). Let this point
sions will not hold for large values o8, but only for bed,.

values that are sufficiently low so as to make the unit cells jij) The unit eigenvectors;, ande,, of H are found at

small. 6,. We consider rectangular unit cells such tiat 6, is
always the same vertex for all of them afiil the sides are

Iléla and| 2é2a with 1,>0,1,>0. The values of; andl, are

. . _chosento lie on a regular grid ih,(,1,) space. Typically, we
We now present the algorithm that we have used in th'skeep(a) I, €(0.01,0.05) sec anth e (0.05,0.2) sec for the

paper for the determination of the parametgrandl, of the  ,itial LIGO (b) 1, € (0.04,0.1) sec anth e (0.2,0.6) sec for

optimum one-step unit cell. Although the algorithm that wasine gdvanced LIGO. The number of grid points is kept at

obtained earlier is practical enough, we can simplify it fur- _ 0% 10.

ther as follows. (iv) Given a point (4,1,), the thresholdy required to get
First, as has .alreadylbeen shown earli®ec. lll), the a false alarmQq .y is computed using Eq62). The total

threshold is very insensitive to the number of templates Whe@umber of rectified output samples & = NtTXTE,X 2048,

the required false alarm is small. Since, as shown in Fig. 1 0 : N . .
and Fig. 17, the relative error between the approximate cour%'f’.here-rP is the padding in the time series of the template

Al/a and the “exact” count is~30% or less, the threshold is with the longest duratioisee Sec. Il Band Ny is the total

affected negligibly if the approximate count is used in itsnumber of templates which is taken as
determination.

D. Algorithm for the determination of the optimum unit cell

However, it must be emphasized here that the false alarm L= e of the space of interest 91)
is very sensitive to changes in the threshold and, therefore, T areaoftheunitcelE |, 1, -
ultimately the threshold should be fixed very accurately. For
instance, let the number of templates b& B® and the (v) For each unit cell we consider the signal poiSs

length of a data segment be 8192 sec with a sampling rate of 0.+ (1./2)e = 0.4 (1./2)8,.. and Sa= 0.+ (1./2)e
2048 Hz(typical values for the advanced LIGOThen, for 2 (11/2)81a, S,=0at (12/2)€2 ANASy= 0+ (11/2)84
an average false alarm rate of 1 event/yr, the required thres

old is 8.661. If an error of, say; 5 % is made in the deter- i o S >
mination of this threshold, then the false alarm rate become Igorithm based on a multivariate Gaussian joint der(sige

~38 events/yr while if the error made 5%, then the ec. lll). The setZ is chosen from among the rectified out-

false event rate falls to 0.02 events/yr. The latter situation i®Uts of the templates ad,, 6a+tli€1a, Oat12€2a, a
definitely more preferable, however, since the detectiont| €5+ 1565,, Oat11€1a— 1260, and 0,—1,€,+1565,.
probability of signals will not drop too mucltypically by  The last two templates are included in order to take care of
5 %). This in turn implies that an overestimation of the num-any contribution to the detection probability due to the shear
ber of templates is better than an underestimation and that ia H contours.

JC(IZIZ)éZa. Their respective detection probabiliti€g ;,
a2 and Qq 3, for the thresholdy, are computed using an
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(vi) If the minimum among{Qq,Qq2,Qq 3 IS larger  up a two-step hierarchical search in the Newtonian case. Let
thanQq min, then the pointi(;,I,) is recorded or else not. Let the spacing between consecutive templaiederms of 7,)

the set of unit cells which qualify thus e in the one-step template bank, for giv&;,, Qg min and
(vii) The unit cell with the largest area amohds chosen Qg max b€ 8,. Then the first stage spacidy is taken to be
as the optimum unit cell. 61=Kkéd,, k=23, ... . Foreaché,, the first stage threshold

We do not proceed further to find a largaton- 7, was kept such that a signal with stren@h;,, lying in
rectangular unit cell because for the values &, used, the middle of two consecutive templates, has a detection
there will not be much of an improvement. probability Qg min. The average number of false crossings
among the first stage templates can then be computed which,
given the number of second stage templates to employ

V. TWO STEP HIERARCHICAL SEARCH around each first stage crossing, in turn allows the overall

Our scheme for a two-step hierarchical search involvegverage computation cost to be calculated. The minimum of
the use of two banks of templates, in both of which we uséhis cost was then found as a functionlof
the same family of templates. In one of the banks, templates In the present case, a similar approach can be followed to
are spaced sparsely {intrinsic) parameter space and this is space the first stage templates as was done for the Newtonian
called thefirst stagebank. Thesecond stagéemplate bank case. Here, there will be two spacings to fix, namely, along
consists of templates placed more finely. The detector outpiihe minor and major axes of the one-step unit cells, and these
is first processed through the first stage templates and than be chosen as integral multiples of the corresponding one
locations of those templates are noted in whose rectified oustep spacingk, andl,. For convenience in the following, we
puts there was at least one crossing of a threshgldthe = denote a first stage unit cell at the locatiof, as
first stage threshold The value ofy; is kept sufficiently low U, (ky,k2,6,), where the sides of the unit cells have lengths
so that, even though the templates are sparsely spaced, KiIXI; andk,XI,. There are, however, a few complications
signals(with strength greater than sorfg,,,) can produce at that arise in this approach. First, if a first stage unit cell
least one crossing in a nearby template with a probability ofJ;(Ky,K2,0,) satisfies(C1), it is not implied that a unit cell
~0.95. In the next step, for each of the first stage template¥ (K ,K2, ) at a different location will also do so. This is
that produce a crossing af,, the detector output is pro- because the dimensions of a first stage unit cell would be
cessed through a neighborhood of second stage templat@site large and Figs. 13 and 14 show that the error in detec-
around it. The maximum over these second stage outputs ton probability rises with an increase in the dimensions.
then compared with second stage thresholg, to check for ~ Thus the samek( ,k,) at two different locations would lead
a detection. In this way a significant saving in computationto different values ofy; since the first stage threshold is
occurs since the number of templates used on the whole @etermined by the detection probability. We take this effect
much less than if the second stage bank alone were used.into account as follows. For eaclk,(k;), we take two

The first stage templates cannot be spaced too coarsehyjdely separated location®, and 6, and compute the
however, becausg, has to be lowered and at some point thethresholds »,, and #,, that are required to make both
number of crossings because of noise alone becomes lardd,(k;.,kz,0,) and U (ky,k,,0p) satisfy (C1). We then
Since each such a false crossing would involve the use afhoose the minimum among these two as the first stage
second stage templates, the computational cost starts risingtifresholdz; .
the first stage templates are spaced too coarsely. Thus, there The second complication is the boundary near veftext
is a non-trivial optimization problem that needs to be solvedhe space of interest which also disallows the sakjek),
while setting up a two-step hierarchy. as in the broader parts of the space of interest, from being

It was shown in MD96 that the correlations between tem-used in this region. Recall that the one step template grid in
plates allows a false evertrossing of », due to noise this region was constructed out afingle unit cells
alone to slip through the hierarchy in spite of the presence”stacked” vertically (see Fig. 1% Hence, ifk,>1, extra
of two thresholds. This is essentially because of the fact thasecond stage templates would be required in the region to the
the hierarchy is designed to allow the easy passage of a sigight of AB which would increase the number of one-step
nal, and if a noise realization is such as to produce a crossirigmplates without adding significantly to the range of binary
of #,, which is quite high(typically ~8.0), then it would masses being detected. However, note that,{k,,k,,6,),
have sufficient “resemblance” to some sigr@ its phase for k,>1, satisfies(C1) for some thresholdy;, then so
information to allow it to pass through the hierarcig24].  would U,(kq,1,0,), since the templates at the vertices will
Stated in another way, this is because, for a first stage termow be closer to all the signals in the cell’s interior. There-
plate and its neighborhood of second stage templates, tHere, while calculating the number of first stage templates in
crossing ofys is not statistically independent of a crossing of this region, we simply divide the number of one step tem-
77. This implies that the second stage template bank anglates byk;.
threshold should be determined in the same way as a one- Finally, the number of second stage templates that would
step bank for the given values &, Qg min aNd Qg max- be employed per first stage crossing will now depend on
The function of a two-step hierarchy is, therefore, limited towhether the crossing occurs in the narrow region near vertex
providing an estimate of the location of the global maximum.A or in the broader part of the space of interest. Let this
For this it utilizes the information that the occurrence of anumber ben. In the broader part of the space of interest,
(high) threshold crossing must generate in templates that are
relatively far away from it. _

We give here a brief review of the algorithm used to set n=4(k;—1)(k,—1)+2(k;—1)+2(k,—1). (92
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Now, the minimum of the computational cost of a two-steptransformed series would then have to be squared and added
search occurs when the number of false crossings in the firgtut only the firstTS sec of each series is required. This, thus,
stage becomes 1. But most of the first stage templates will |eads to ggys flop. Thus, the total number of operations,
be located in the broader part of the space of interest anquﬂop, involved in a one step search is
hence, most of the false crossings will also occur in this
region. This implies thah will be as given in Eq(92) for
most cases. We therefore taketo be the above for all
crossings. Note that this assumption would lead to an over- . _
estimate of the computational requirements for the first stagE®" @non-iine one-step searctq,, operations would have
and is, thus, “safe” in this sense. to be performed iflp sec. Thus,

Let the number of false crossings for a given input data
segment ben.. Then the total number of templates which

Npop=N{' X (2N +6Nlog,N+3TR ). (96)

i ) N
will Be emplo;ieq for that data segrr_1ent would bél Cgﬂmez flgpxlo—g Gflops. (97)
+n¢n, wheren§ )is the total number of first stage templates. P

In the presence of a signal, there would be an extra term of . . .
in the above sum, but since the event rate of signals is e>£‘ similar estimate for an on.-llne two step search leads to an
! averagecomputational requirement of

pected to be quite low, this term can be neglected. If we
assume that the first stage rectified output are all statistically

independent of each other, as would be the case if they are )

spaced widely apart, then the average number of false cross- 2 _ Niop X 10~ °Gflops (98)
ings 2 would be onfine™ 10

Ng'=ncX Qo 71)- (93 where
Qo( 1) is the probability of at least one crossing #f in a
singlerectified outpufsee Eq(62)], Nfap= N (2N +6Nlog,N+ 3TPvy). (99)
_1_ _T0 2
Qo(x)=1—exf — Tprsexp(—x*/2)], 94 We call the quantiC®) /C2). _the computational advan-

tage Gyain Of a two-step search. This is the factor by which a

wherevs is the sampling rate an'B(F’, was defined in Sec. Il B two-step hierarchical search would be faster than the corre-

to be the_ padding in the timg series of the _template WaV%ponding one-step search in an on-line detection.
form having the Iongest du_ra'glon. _Note that sm¢pwou|d_ . We now present our results in the form of Table |, for the
be ~6.0, the effective statistical independence of rectlfledinitial LIGO. and Table Il for the advanced LIGO. The value
output samkples.ma)ibellesds aaghould be Ie_ss than :;F\I/ty. of S, for each table has been taken sufficiently low so that
However, keepinge=1 leads to an overestimation ok~ ¢ yesylting one-step unit cells obtained are small. It was
and, hence, an underestimation of the computational advaRyqwn in MD96 that. for a given number of templates, the
tage of a two step search. . one-step threshold is almost independent dbr low false
The average total computational cost for a two-step giarms. This implies that the unit cell dimensions will also be
search would be independent ofl (the variation of the threshold in the ad-
vanced LIGO case is larger but it is still negligihl& here-
fore, the values of; andl,, for the one-step unit cell, are

In order to compare the performance of a two-step search Ve I the caption of each table. These values are for a unit

- - - Il located at (1.3,25.0) sec for the case of the initial LIGO
with the corresponding one-step seafttat is, for the same ce ’
Sein Og.rin anng maj we uséothe computational powers and (13.0,1000.0) sec for the advanced LIGO. The values of

required for implementing the two strategies on litteat is, the one-step threshol@vhich is the second stage threshold

. X . 2 - -
the input data should be processed in the same time as ré&- for the two-step seargrand the total number of one

quired in its collection The number of floating point opera- step tgmplatesobtained by t"?"“”g the variation of unit cell
tions required in a one-step search to processec of data areas into accounare also given.

can be estimated as follow§) The number of flop involved The first column in each table is the valueTafSince the

. . . ~ sampling rate used in our calculation i8'2 2048 Hz and a
in the discrete Fourier transforfDFT) x of the detector FFT is most efficient when the number of samples is a power

output time seriesx would be Nlog,N where N=vsT.  of 2, we choosél to be a power of 2 also. The second and
However, this transform needs to be computed only oncenird columns are the values &f andk, at which the aver-
and, thus, does not contribute significantly to the total comage computational cost of the two-step search is minimized.
putational cost(ii) For each template locatiofl,, two cor-  The fourth column is the corresponding first stage threshold
relations would be required, namely, with the quadrature,(1) anq the fifth and sixth columns are the corresponding
componentsy, andq .. This involves computing the prod- values ofn%’andnf’. We have kept only the integral part of
uct of X with the DFTs ofq, and q,,, followed by an  n2'andn?’ and, thereforen?’=0 means than2'~1 or less.
inverse DFT for each of the resulting series. Hencl, 2 The seventh column is the computational power required for
+6Nlog,N flop will be required here(iii) Each of these an on-line two-step search followed by the computational

n&=n{Y+n2xn. (95)
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power required for an on-line one-step search in the eigthys the numbem, of second stage templates would be more
column. The last column list€ ,p. involved in such a case. We postpone an investigation of this
Even though we have used large value3 péspecially in  problem to a later work.

Table IlI, such values would be difficult to use in a practical
implementation because of memory restrictions. We have
used these values only to show the existence of a minimum
in the computational power requirement as a functiorT of We have investigated the performance of a two step hier-
[25]. It should be noted here that for the case of the advancedrchical search for the detection of gravitational wave signals
LIGO, the storage of the pre-computed template wave formemitted during the inspiral of a compact binary. This work
is also a significant problem. For instance, even if we conextends the investigations of MDg6] to the more realistic
sider the average duration of templates in the advance@ase of zero spin postNewtonian template and signal wave
LIGO case to be~100 sec, the amount of storage requiredforms.
for all the ~6x 10° quadrature Fourier transforms would be ~ AS in MD96, we find that a two-step search brings about
~100x 2048% 6 X 8/10=983 Gbytes(assuming that each a S|gn|f|can_t redL_Jc_tl_on in computatlonal requirements. For
sample value requires 8 bytes of storagkhis is a very low f[he case (_)fl) the initial LIGO noise PSD, gtwo-step search
bound since the duration of a significant number of templateés ~2..7'0 times faster than the correspondmg one-step search,
will be much larger. gnd(u) for_ the advanced LIGO noise PSD_, a two-step search
The results obtained above can be checked approximate ~23.0 times faster than the corresponding one-step search.

as follows. The one-step template placement criteriopdpf <h§0 (r)a\t/lnge ougzorln fo<r3'éh(eMmasserr1 and m; is 0.5<m,
requires the templates to be placed such that, for any signal, In.theOéna.Iysis 20f Mb966the dominant problem was the

H=0.97 in at least ?ne nearby template. Then the number 0(talculation of detection probability in the presence of strong
one-step templately would be the area of the space of  gistical correlations between rectified output samples. A

interest divided by the area of the 0.97 contour. For the adgg|ytion to this problem was found in this paper in the form
vanced LIGO, Ny=20 389.5/0.04509 739. Thus, the of a semi-analytic method that reproduces the exact Monte
threshold ? required, for a false alarm rate of 1 false Carlo estimates quite well. It is also shown here that statis-
event/yr, would ben(?’=8.722 forT=8192.0 sec. For the tical correlations are unimportant for the calculation of false
detection probability formula used in MD96, it was found alarm probability when the threshold is kept sufficiently
that the minimumobservedstrength required for a signal so high. Therefore, theffectivesampling rate used in MD96 is
that its detection probability be 0.95%,¢<~ 7(?)+0.67. The  not required.

actual strength should, therefore, 8g,= Sy,/0.97=9.682. . Though the issues of detec_tion an.d false alarm probabili-
Roughly speaking, the decreasenfif, with an increase ik, ~ 1€S have been addressed satisfactorily here, some new prob-

andk,, is halted whemZ' becomes of order unity. Assuming lems crop up in the present analysis, namely,(théocation

that the number of first stage templates that is finally Ob_dependence of thantrinsic ambiguityfunction and(ii) the

) . o i . non-trivial shape of the boundary of the space of interest.
ta(T)ed is~10", it would 'mP'y that, for't.he above vglue Gf’, Both these problems were dealt with by making some ap-
7''~17.026. For a detection probability of 0.95 in the first ,oximations. The location dependence of the intrinsic am-
stage, therefore, the value 8f,=Syin?' should be 7.697, piguity function seems weak enough, at least in the case of
where H’ is the value of the intrinsic ambiguity in the the advanced LIGO, for us to assume that the grid of one-
middle of the sides of a first stage unit cell, i.€4"  step templates will be an “adiabatically” changing regular
=H(0,,0,+ kiliéialz)- The quantityk; can then be calcu- grid. This allows us to approximately take the effect of varia-
lated as the ratio of the dimension of th& contour along tions in the area of the contours into account. The non-trivial
2 ' : : boundary has a significant effect only near one of the vertices
€y t0 1;(0.970,). From the aboveH'=0.79 which gives ; ) .
k'la: 7.6|7(, kzz’ia.)BS (we have allowg{dq o be non-intgc’egral (vertex A of Fig. 1). We take this effect into account by

here. These values are about the same as those in Tables H!acmg a single st_ack of unit cells in this region. .
. L . The results of this paper show that the use of hierarchical
However, this approximation is crude in many ways and can

| indicator for the kind of val ethods of detection can be very useful for the case of coa-
?Or;)l/(serve as an indicator for the kind of values one may geFescing binary signals and provide a strong motivation for
i .

) ) ) ) ) more detailed investigations. Such methods would be indis-
The savings in computational requirements achieved by Bensable if the number of signal parameters required be-
two-step search can be more than what is obtained here if thgmes large. For instance, if the orbital and total angular
first stage template grid is rotated relative to the second stag@omenta of the binary are misaligned, there would be sig-
grid. This is because of the shear of the contours. In thejificant modulations of the phase and amplitude which can
argument given above, the quantitiks and k, were ob-  reqyce the signal to noise ratio if these effects are neglected
tained as the ratios df(0.976,) and the corresponding di- iy the template family. For such signals, a template family
mension Of the |0Wer IeVel ContOlH'. HOWeVer, the direC' W|th a |arger number of parameters may be required‘

tion in which the' contour is most elongated different Many other hierarchical strategies are also conceivable
from that of the eigenvectors, . If the first stage grid were and it remains to be seen whether they can be more effective
oriented along the direction of maximal elongation7f, than the two-step search analyzed here. For instance, one
the first stage unit cell may turn out to be larger. However,obvious strategy is to use a lower order template family as
the calculation of the number of first stage templates as welhe first stage of the search and use the true wave forms,

VI. CONCLUSIONS
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having a larger number of parameters, as the second stagetliis work was being completed. | thank Caltech and the
is not enough, though, to only provide estimates of theirlLIGO project for hospitality.
performance since at some stage such strategies need to be
implem_ented in praptice and, as seen in. this paper, the detailsAPPENDlx: THE BIVARIATE PROBABILITY DENSITY
of the implementation can also be an involved issue. Also, P AND 7.7

: H H Z,,Z2 142
the robustness of the placement configuration against 122
changes in the noise power spectral density needs to be in- Here, we outline the steps in the derivation of Egd).
vestigated. The efficacy of hierarchical methddet neces- The algebraic manipulations were performed using
sarily a two-step seargishould also be investigated for the maTHEMATICA . First, the general expression for the joint bi-
detection of continuous wave sources where the estimateghriate probability density is derived without assuming the
computational requirements are extremely large and far bemean values of the Gaussian components to be zero. Let the
yond presently available computing power. Further investipjvariate cumulative distribution function ofZ;=[X}
gations in this direction are in progress. +X21Y2 and Z,=[Y2+Y2]¥2 pe Fz,2,(21,2,), where
(X1,X5,Y1,Y5) is a set of jointly Gaussian random variables
with a covariance matrix give in Eq48) and mean values
| thank Professor S. V. Dhurandhar for many helpful dis-X;= 1, Xo=u,, Y1=v1, Y,=v,. Changing the variables

cussions. | acknowledge the support provided by the Councibf integration toX;=Rcosp, X,=Rsing, Y,;=Qcos) and
of Scientific and Industrial Resear¢SIR) of India while  Y,=Qsiny, we get
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A (2 2 7y 2 1 R2+Q2
le,zz(zlizz)zzfo dQJO dlﬁfo dRJO d¢RQeXF{_§[l_(r2+Sz)]

Q
eXF{l_(r2+52) [(vy—rmy+suz)cosy

+(va—suy—rpz)sing]

R
exf{mz_)[(/il—er—SVz)COQi)-F(,uz-FSvl—rvz)sinqS]

RQ o
Xex;{m(rco&bcosp+rsm¢sm¢) , (A1)
where
A=;ex - ! 1( 24 s+ v+ v —r( + )—s( - ) (A2)
2mde{C]H2 1-(r?+s?)\ 2 M1 T HoT VT V3 M1V H2V2 M1Vo— M2V1) | |-
Equation(Al) can be rewritten as
A (% (2 (n (2= 1 RI+Q? QEcog Y+ x1)
le,zz(zlﬁzz)—EJ’O dQJo dl//JO dRJO dd)RQex‘{_E[l—(rh—sz)] S )
Rcog ¢+
Xe ;{%[(r%szmh2DQ\/r?+37cos(¢;+X2)+Dz]lfz}, (A3)
where
E=[(vy—rus+Sup)®+ (vo— T up—sur)?]Y2 (A4)
D=[(my—rva+svy)?+(uy—rvi—svy)?]*, (A5)
_ Mg —Sua— vy
Xl_arCta+r,u2+S,u1—V2 : (AB)
g —Spp— v(r?+5%)
X2_arda+r,u2+3,u,1—Vz(r2+32) . (A7)

The integral overp can be performed to yield



57 HIERARCHICAL SEARCH STRATEGY FOR TH . .. 657

Z z 27 1 R2+Q2 QECOS((p—i- )
le,zz(zl,22):Af02deoldRRQfo dwexr{_i[l—(r%s?)] exr{ 1—(r2+s§)1
R
Xl m[(r2+SZ)Q2+ 2DQrZ+s2coq ¢+ x») +D?]Y?, A8)

wherel y(x) is the modified Bessel function of the first kind of order zero. The probatiitysityfunction, Pz, .z, can be

obtained now as

PFz, 2,(U,v)
leyzz(u,v)= WZUUAEX -

X1

o1- (r+s

u2+v2
2 (1—(r?+5%)

27 vECOY ¢+ x1)
e

[(r2+sz)v +2DQ\/r?+s?cos<l//+X2)+DZ]”Z} (A9)

In the absence of a signhal,; = w,=v;=v,=0 and the joint probability density reduces to

B, (U) uv u?+op? Upré+s? (AL0)
u,v)= exp — .
ke JdeC 2[1-(r?+8)]] [ 1-(r2+8)
Thus, the correlatiomy can be obtained as
v2 u?+p2 Upr2+s?
U= f f - 0 . (A11)
2+$2) 2[1—(r?+s%)]| |1—(r?+s?)

The above double integral is solved[id6] from which we get

U =2E[ VrZ+s2]—[1—(r2+s?) K[ Vr2+s7], (A12)

whereE is a complete elliptic integral of the second kind afds a complete elliptic integral of the first kind.
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