Exploring the Anti-Cancer Potential of Anthocyanins via Autophagy Overactivation

Tripti Saini
The University of Texas Rio Grande Valley, tripticoa@pau.edu

Anyssa Rodriguez
The University of Texas Rio Grande Valley, anyssa.rodriguez01@utrgv.edu

Sumeet Chauhan
The University of Texas Rio Grande Valley, sumeet.chauhan01@utrgv.edu

Sasmita Sahoo
The University of Texas Rio Grande Valley, sasmita.sahoo@utrgv.edu

Manish Tripathi
The University of Texas Rio Grande Valley, manish.tripathi@utrgv.edu

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/somrs

Part of the Cancer Biology Commons, Cell Biology Commons, Food Chemistry Commons, and the Medicine and Health Sciences Commons

Recommended Citation

Saini, Tripti; Rodriguez, Anyssa; Chauhan, Sumeet; Sahoo, Sasmita; Tripathi, Manish; Dearth, Robert K.; Chauhan, Subhash C.; and Sahoo, Nirakar, "Exploring the Anti-Cancer Potential of Anthocyanins via Autophagy Overactivation" (2024). *Research Symposium*. 33.
https://scholarworks.utrgv.edu/somrs/2024/posters/33

This Poster is brought to you for free and open access by the School of Medicine at ScholarWorks @ UTRGV. It has been accepted for inclusion in Research Symposium by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact Justin.White@utrgv.edu, William.Flores01@utrgv.edu.
Presenter Information (List ALL Authors)
Tripti Saini, Anyssa Rodriguez, Sumeet Chauhan, Sasmita Sahoo, Manish Tripathi, Robert K. Dearth, Subhash C. Chauhan, and Nirakar Sahoo

This poster is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/somrs/2024/posters/33
Exploring the Anti-Cancer Potential of Anthocyanins via Autophagy Overactivation

Authors:
Tripti Saini¹, Anyssa Rodriguez¹, Sumeet Chauhan¹, Sasmita Sahoo¹, Samantha Lopez², Manish K. Tripathi², Robert K. Dearth¹, Subash C. Chauhan²,³, and Nirakar Sahoo¹,³*

¹School of Integrative Biological and Chemical Sciences University of Texas Rio Grande Valley, Edinburg, Texas.
²Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas
³South Texas Center of Excellence in Cancer Research, University of Texas Rio Grande Valley, Edinburg, Texas

*Author for correspondence: Dr. Nirakar Sahoo, Email: nirakar.sahoo@utrgv.edu

Abstract:

Background: Anthocyanins are natural plant pigments that give fruits and vegetables their colors. They are well known for their health benefits, such as antioxidant, anti inflammatory and anticancer properties. In recent years there has been an increased interest in using natural plant products to treat diseases. One specific anthocyanin called Dracorhodin derived from the fruit of Daemonorops draco (also known as ‘dragons blood’) has shown anticancer effects. However the precise molecular mechanisms through which Dracorhodin Perchlorate (DP) a derivative of Dracorhodin exerts its antitumor activities are still not fully understood. In this study we aimed to investigate whether DP can induce autophagy—a process of cellular self digestion—in colorectal cancer cells. Methods: We employed an approach that involved techniques such as immunocytochemistry, western blotting and microscopy to explore how DP triggers cytotoxic autophagy, in colorectal cancer cells. Results: Our findings demonstrated that DP effectively suppressed the proliferation of cancer cells (SW620) by excessively activating autophagy. Further analysis revealed that DP achieved this by inhibiting the target of rapamycin (mTOR) signaling pathway and promoting the activation of transcription factor EB (TFEB) a key regulator of autophagy. Additionally DP enhanced lysosome function, an essential aspect of autophagic processes. We also observed that DP activated the calcium signaling pathway by mobilizing calcium stores and facilitating dephosphorylation of TFEB to further promote autophagy. Furthermore our investigation unveiled that DP led to caspase 3 degradation, an event associated with both autophagy and apoptosis. Conclusions: Based on our findings, DP exhibits anticancer properties by triggering a combination of autophagy and apoptosis. This means that DP induces autophagy through coordinated actions on mTOR TFEB and calcium signaling making it a promising drug, for cancer treatment.