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Abstract: Indoor air quality (IAQ) poses a significant public health concern, and exposures to high
levels of fine particulate matter (PM2.5) and carbon dioxide (CO2) could have detrimental health
impacts. This study focused on assessing the indoor air pollutants in a residential house located
in the town of Mission, Hidalgo County, South Texas, USA. The PM2.5 and CO2 were monitored
indoors: the kitchen and the bedroom. This investigation also aimed to elucidate the effects of
household activities such as cooking and human occupancy on these pollutants. Low-cost sensors
(LCSs) from TSI AirAssure™ were used in this study. They were deployed within the breathing
zone at approximately 1.5 m above the ground. Calibration of the low-cost sensors against Federal
Equivalent Method (FEM) instruments was undertaken using a multiple linear regression method
(MLR) model to improve the data accuracy. The indoor PM2.5 levels were significantly influenced by
cooking activities, with the peak PM2.5 concentrations reaching up to 118.45 µg/m3. The CO2 levels
in the bedroom increased during the occupant’s sleeping period, reaching as high as 1149.73 ppm.
The health risk assessment was assessed through toxicity potential (TP) calculations for the PM2.5

concentrations. TP values of 0.21 and 0.20 were obtained in the kitchen and bedroom, respectively.
The TP values were below the health hazard threshold (i.e., TP < 1). These low TP values could be
attributed to the use of electric stoves and efficient ventilation systems. This research highlights the
effectiveness of low-cost sensors for continuous IAQ monitoring and helps promote better awareness
of and necessary interventions for salubrious indoor microenvironments.

Keywords: indoor air quality (IAQ); fine particulate matter (PM2.5); carbon dioxide (CO2); cooking;
low-cost sensor; toxicity potential

1. Introduction

Indoor air pollution is a major health concern in any society and every person on
this planet should have the wherewithal to live in a salubrious indoor microenvironment.
Indoor air quality (IAQ) is of paramount importance, especially in developed nations,
as people spend approximately 90% of their time indoors, such as in schools, offices, or
homes [1–4]. The US Environmental Protection Agency (EPA)’s Science Advisory Board has
ranked indoor air pollution as one of the top five environmental risks to public health [5].
Research has documented that indoor air pollutant levels may be 2 to 5 times higher than
outdoor levels, and at times, these can even be 100 times higher than outdoor pollutant
concentrations [1,5,6]. According to the World Health Organization [7], an estimated
3.2 million deaths in 2020 were attributed to household air pollution.
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Indoor air quality (IAQ) can be influenced by various household activities, such as
cooking, cleaning, vacuuming, resuspension of dust particles, second-hand tobacco smoke
exposure, chemical products for cleaning, decorating, painting, furnishings, building, inad-
equate ventilation, excess moisture, using room air fresheners, using products for arts and
crafts, and other hobbies, as well as using electrical equipment such as photocopiers [8–12].
Indoor air pollutants typically comprise PM10 (inhalable particles, with diameters 10 µm and
smaller), PM2.5 (fine inhalable particles with diameters 2.5 µm and smaller), volatile organic
compounds (VOCs), gases like carbon dioxide (CO2), ozone (O3), carbon monoxide (CO),
and nitrogen oxide (NO2), and biological particles (pollen, bacteria, and fungi), which are
detrimental to human health [13–15]. Among various household activities, cooking is the
most common activity that significantly impacts indoor spaces [16–18]. Specifically, cooking
on gas stoves is associated with negative health outcomes as it generates PM2.5 [19–21] and
harmful gases such as CO2, NO2, and CO [22–24]. Inadequate ventilation systems in the
indoor microenvironment can also impact the air quality [17,18,25–28].

PM2.5 and CO2 are the most common and regularly monitored household indoor air
pollutants, as they have the potential to impact indoor air quality deleteriously [6,29]. PM2.5
is one of the six criteria for air pollutants regulated by the US Environmental Protection
Agency [30]. It has the potential to penetrate the respiratory tract, reach the alveoli, and
even enter the bloodstream [11,31–33]. Several studies have found increases in mortality
due to short-term and long-term exposures to PM2.5 [34–37]. PM2.5 has significant health
impacts even at low concentrations [38–40]. Hence, it is paramount that a comprehensive
analysis of the PM2.5 levels in various indoor and outdoor settings is undertaken. CO2
is an odorless, colorless, and mostly harmless gas, and its primary source in the indoor
microenvironment is human exhalation. It is observed that occupied indoor spaces have
higher CO2 levels compared to the outdoor microenvironment [41–43]. High levels of
CO2 could be attributed to inadequate ventilation and are a marker of poor indoor air
quality [27,42,44,45]. Several studies have also demonstrated that high levels of indoor CO2
(500–5000 ppm) can cause headaches, drowsiness, lethargy, anxiety, and stuffiness, as well
as memory loss and cognitive difficulties [42,43,45,46].

In recent years, low-cost sensors (LCSs) have gained a lot of traction in regard to
indoor IAQ [6,16,47]. Low-cost sensors are very handy to use and help elucidate the
spatiotemporal analysis of pollutants at a fraction of the cost compared to traditional
reference monitors [48]. However, data from low-cost sensors come with some uncertainties,
such as accuracy (bias) issues when compared with the Federal Reference Method (FRM) or
Federal Equivalent Method (FEM). However, these issues could be overcome by subjecting
the data to calibration with multiple linear regression (MLR) methods [49–51].

In this study, the IAQ was assessed for a one-month period in a residential home,
in the kitchen and bedroom, using low-cost sensors. The measurements were carried
out at a high school student’s residence located in the city of Mission, Hidalgo County,
South Texas. The main purposes of this research study were to (1) characterize the indoor
levels of PM2.5 and CO2 using LCSs; (2) calibrate the LCSs for improved accuracy using
algorithm models; (3) identify potential sources of indoor pollutants; and (4) analyze the
potential health hazard assessment of indoor PM2.5. Additionally, ambient PM2.5 data
were downloaded from the nearest Texas Commission on Environmental Quality (TCEQ)
Continuous Ambient Monitoring Station (CAMS), i.e., C-43 in Mission, located near the
residential home. This aided in comparing the ambient air concentrations of PM2.5 with the
indoor air data collected during the study period. The RGV of South Texas is part of the
U.S.–Mexico border region and is an understudied region in terms of monitoring indoor air
quality. To the best of our knowledge, no study has been conducted on monitoring IAQ
using low-cost sensors in this region and this research endeavor, therefore, has the potential
to contribute to the growing repository of knowledge on indoor air pollution.
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2. Materials and Methods
2.1. Study Design

This study was conducted between 15 June 2024 and 16 July 2024 at a residential
home in Mission, Hidalgo County, Rio Grande Valley, South Texas. This study focused on
evaluating the exposure to indoor pollutants, namely, PM2.5 (µg/m3) and CO2 (ppm), using
LCSs. These were placed in the kitchen and bedroom, approximately 1.5 m from the ground
level, within the “breathing zone”. The primary PM2.5 sources in the residence included
cooking activities (lunch and dinner) and the influence of ambient air, whereas for CO2, the
primary sources included human exhalation and ventilation systems. Some of the physical
features of the residence included a heating, ventilation, and air conditioning (HVAC)
system and the use of electrical appliances like an electric stove for cooking purposes. A
total of three people resided in this house, which was situated approximately 4.02 km miles
away from E Interstate Highway 2 and 0.96 km away from N Mayberry Road. Figure 1
shows the selected residential house and the nearest TCEQ C-43, which were approximately
2.41 km from each other. The floor plan of the residence and the two microenvironments,
namely, the kitchen (3.9 m × 3.6 m × 3 m) and bedroom (3.9 m × 3.9 m × 3.9 m), where
the sensors were deployed, are shown in Figure 2.
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2.2. Instrumentation

In this study, we used two TSI AirAssure™ IAQ Monitors (Model:8144-6, TSI Inc.,
Shoreview, MN, USA) to monitor the PM2.5 and CO2 (Figure 2). TSI AirAssure IAQ
Monitors are designed for indoor air monitoring and are portable, lightweight, easy-to-
install, low-cost sensors (17.1 cm × 8.9 cm × 3.3 cm, ~0.23 g). These LCSs have built-in
light-scattering optical and non-dispersive infrared (NDIR) sensors that are capable of
measuring both particulate matter and gases [52]. The time resolution for the data collection
was set at an interval of 15 min.
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2.3. Statistical Data Analysis

For this study, Microsoft Excel (v.16.06, Microsoft Inc., Redmond, WA, USA) was
used to clean the raw data and convert them into the 1 h averages. Origin Pro (Origin
Lab Corporation, Northampton, MA, USA, Version 2024) was used for the graphical
visualization and descriptive statistical analysis of the 1 h averaged data. The graphical
visualization included hourly time series and hourly box plots. The spatial distribution of
the selected residence, along with the nearest TCEQ C-43, was plotted using ArcGIS Pro
(v.3.2.0, 2023).

3. Results and Discussion
3.1. Collocation Between LCSs and FEMs

LCS measurements require correction as they come with accuracy challenges [48,49,51,53].
In order to address this issue, calibration was performed by collocating the two LCSs (TSI
AirAssure monitors) with FEMs, namely, the Q-Trak™ Indoor Air Quality Monitor (Model:
7575, TSI Inc., Shoreview, MN, USA) and GRIMM Portable Aerosol Spectrometer (Model:
11-D, Grimm Aerosol Technik GmbH & Co., KG, Germany) to ensure the accuracy [50,54,55].
The Q-Trak instrument (Figure 3a) is a multi-function electrochemical sensor capable of mea-
suring carbon dioxide (CO2), carbon monoxide (CO), temperature (T), and relative humidity
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(RH). The data can be recorded at multiple time resolutions: 6 s, 1 min, 5 min, 10 min,15 min,
30 min, and 1 h [56]. The Grimm 11-D instrument (Figure 3b) is designed to measure the total
particle number concentrations, size distribution, and mass concentration, including PM1,
PM2.5, PM4, and PM10. The data can be recorded at 6 s and 1 min intervals [57]. The two
TSI AirAssure sensors were positioned approximately 0.5 m apart indoors with the Q-Trak
and GRIMM instruments. The collocation period spanned seven days, after which the LCSs
were deployed in the bedroom and the kitchen. All the datasets (both LCS and FEMs) were
converted into 1 h averages.
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Spectrometer, Model: 11-D [57].

To ensure a strong correlation between the performance of the two LCSs and the FEMs
instruments, we developed an MLR model. MLR is an extensively researched calibration
method and is widely used [58,59]. It is an extensive version of linear regression (LR) that
includes more than one independent variable (such as the raw LCS measurement (CO2
or PM2.5), relative humidity, and temperature). Therefore, to predict the corrected PM2.5,
we considered the 1 h averaged TSI AirAssure raw PM2.5 (µg/m3), temperature (◦C), and
relative humidity (%) as independent variables for our MLR model [59]. Similarly, we
considered the 1 h averaged TSI AirAssure raw CO2, temperature, T (◦C), and relative
humidity, RH (%) as independent variables to predict the corrected CO2 [58]. The MLR
model is expressed as the following equations:

PM2.5, corrected = β0 + β1 × PM2.5, LCS + β2 × TLCS + β3 × RHLCS (1)

CO2, corrected = α0 + α1 × CO2, LCS + α2 × TLCS + α3 × RHLCS (2)

where PM2.5, corrected is the corrected PM2.5 using the MLR model; β0 is the intercept;
β1–β3 are the regression coefficients; and PM2.5, LCS is the raw TSI AirAssure readings.
Similarly, CO2, corrected is the corrected CO2 using the MLR model; α0 is the intercept;
α1–α3 are the regression coefficients; and CO2, LCS is the raw CO2 TSI AirAssure readings.
TLCS and RHLCS are the temperature (◦C) and relative humidity (%), respectively, measured
by the TSI AirAssure monitors.

The MLR models for PM2.5 and CO2 were developed using MS Excel and Origin Pro
(Table 1). This model was evaluated based on performance metrics like the root mean square
error (RMSE measured in µg/m3 for PM2.5 and ppm for CO2), coefficient of determination
(R2), and mean absolute error (MAE). The model showed better R2, lower RMSE and an
MAE with a significant improvement in accuracy (Table 1). The RMSE for PM2.5 decreased
from 2.73 µg/m3 in the raw data to 1.57 µg/m3 post-correction, and the MAE reduced
from 2.27 to 1.05. The R2 value, which indicates the correlation between the observed
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and predicted values or proportion of variance by the model, increased from 0.75 to
0.79 (Figure 4a), indicating improved predictive accuracy. The correction model for PM2.5
is expressed as follows:

PM2.5,corrected = –13.23 + 1.48 × PM2.5,LCS + 0.06 × TLCS + 0.23 × RHLCS (3)

where PM2.5,LCS represents the raw LCS PM2.5 readings, TLCS is the temperature (◦C) from
the sensor, and RHLCS is the relative humidity (%).

Table 1. Calibration results on a 1 h average basis with the performance evaluations.

Indoor Pollutants Raw Data Corrected Data (MLR)

PM2.5 (µg/m3)
RMSE = 2.73 µg/m3

MAE = 2.27
R2 = 0.75

RMSE = 1.57 µg/m3

MAE = 1.05
R2 = 0.79
PM2.5,corrected = −13.23 + 1.48 × PM2.5, LCS +0.06 × TLCS + 0.23 × RHLCS

CO2 (ppm)
RMSE = 203.62 ppm
MAE = 198.02
R2 = 0.59

RMSE = 40.33 ppm
MAE = 30.98
R2 = 0.64
CO2,corrected = −30.89 + 0.65 × CO2, LCS +13.42 × TLCS − 4.86 × RHLCS

Environments 2024, 11, x FOR PEER REVIEW 7 of 14 
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The CO2 data also show significant improvement after applying the MLR correction.
The RMSE was reduced from 203.62 ppm in the raw data to 40.33 ppm in the corrected data,
and the MAE decreased from 198.02 to 30.98. Additionally, the R2 value increased from 0.59
in the raw data to 0.64 after correction (Figure 4b), indicating better model performance.
The correction model for CO2 is expressed as follows:

CO2,corrected = −30.89 + 0.65 × CO2,LCS +13.42 × TLCS − 4.86 × RHLCS (4)

where CO2, LCS represents the low-cost sensor’s CO2 readings, TLCS is the temperature
(◦C) from the sensor, and RHLCS is the relative humidity (%). This correction leads to a
more accurate and reliable estimation of the CO2 levels, aligning better with the refer-
ence measurements. Therefore, the MLR model demonstrated better performance during
calibration for both pollutants, as shown in the time series (Figure 5). Consequently, we
incorporated the MLR model to calculate the final data for analysis for the study period.
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3.2. 1 h Averaged Indoor Concentration

This study was conducted for one summer month in a residential house occupied by
three occupants. The house was fully ventilated and maintained at a constant temperature,
and there were no external disturbances, with non-openable windows. This study focused
on the primary sources of PM2.5 (generated during cooking activities) and CO2 (primarily
from human exhalation, especially after 11:00 p.m. when all the occupants were sleeping).
Figure 6 presents the time series plot of the 1 h averaged PM2.5 and CO2 concentrations
in the kitchen and the bedroom. The highlighted section (Figure 6) corresponds to the
period from 23 June to 29 June 2024, when the house was unoccupied. During this time, a
noticeable decrease in the PM2.5 and CO2 values was observed, attributed to the absence of
cooking and human activities. The lack of occupants resulted in a decline in the PM2.5 and
CO2 levels, demonstrating the impact of cooking activities and human exhalation on the
indoor air quality, respectively.

An increase in the PM2.5 levels was observed in the kitchen during cooking periods,
specifically from 10:00 a.m. to 11:00 a.m. and 7:00 p.m. to 8:00 p.m. (Figure 7). This
corroborates the impact of meal preparation on the IAQ [28]. However, cooking activities
did not significantly affect the PM2.5 levels in the bedroom compared to the kitchen. Notably,
on 15 July 2024, at around 4:00 p.m., the PM2.5 concentrations exceeded 60 µg/m3 in
both the kitchen and the bedroom during heavy meal preparation. The mean (SD) of
the 1 h PM2.5 concentration was 3.34 (7.29) µg/m3 in the kitchen and 3.00 (3.99) µg/m3

in the bedroom. The 1 h averaged PM2.5 concentrations ranged from 0.01 µg/m3 to
118.45 µg/m3 in the kitchen and from 0.01 µg/m3 to 72.63 µg/m3 in the bedroom, as
shown in Table 2. Interestingly, the PM2.5 levels also increased in the bedroom, but they
were less affected by cooking activities compared to the kitchen. This suggests that the
distribution of particulate matter within a home can vary depending on the proximity to
the pollution source. Other studies [17,20,21] found elevated PM2.5 levels during cooking,
mainly when frying meats or cooking at high temperatures, as these activities generate
higher levels of particulate emissions. Therefore, this study corroborates the findings
of previous studies demonstrating that cooking activities significantly contribute to the
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indoor PM2.5 concentrations [16,17,21,60]. Similarly, an increase in the CO2 concentration
was observed in the bedroom, particularly during the sleeping period from 11:00 p.m. to
8:00 a.m., corresponding to the occupant’s sleeping hours (Figure 7). These peaks in the CO2
levels were attributed to human exhalation throughout the night and were notably higher
compared to those observed in the kitchen. The mean (SD) of the 1 h CO2 concentration
was 606.56 (113.73) ppm in the kitchen and 644.64 (154.90) ppm in the bedroom. The 1 h
averaged CO2 concentrations ranged from 369.80 ppm to 826.42 ppm in the kitchen and
from 381.93 ppm to 1149.73 ppm in the bedroom (Table 2). The findings indicate that human
occupancy, particularly during sleeping hours, significantly contributes to increased CO2
concentrations in indoor environments [61,62]. A study by Satish et al. in 2012 [42] also
reported elevated indoor CO2 levels associated with occupancy and limited ventilation.
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Table 2. The 1 h averaged descriptive statistics of the PM2.5 and CO2 for different environments.

Pollutant & Environment Site N Total Mean SD Min Max

PM2.5 (µg/m3)—Indoor
Kitchen 695 3.34 7.29 0.01 118.45

Bedroom 755 3.00 3.99 0.01 72.63

PM2.5 (µg/m3)—Ambient Mission (C-43) 749 11.91 6.22 2.10 39.10

CO2 (ppm)—Indoor Kitchen 755 606.56 113.73 369.80 826.42
Bedroom 755 644.64 154.90 381.93 1149.73

SD—standard deviation, N—number of samples, min–minimum value, max–maximum value.

3.3. Comparison Between Indoor and Ambient PM2.5

PM2.5 data from the TCEQ CAMS site were analyzed to explore the relationship
between the ambient and indoor concentrations. The ambient data were retrieved from the
TCEQ website [63] for the CAMS (C43) in Mission, the nearest federal reference monitoring
station to the study site. The mean (SD) of the 1 h averaged PM2.5 concentration at
the TCEQ CAMS in Mission (C-43) was 11.91 (6.22) µg/m3, with values ranging from
2.10 µg/m3 to 39.10 µg/m3, as shown in Table 2. However, the analysis did not reveal
a strong correlation between the indoor and ambient PM2.5 concentrations, suggesting
that the house’s ventilation system was effective and well-functioning. We also did not
observe any identical pattern in the PM2.5 concentration levels between indoors (kitchen
and bedroom) and ambient (C-43), as shown in Figure 8. In a study by Zenissa et al.
in 2020 [28], it was observed that opening windows during cooking led to higher indoor
PM2.5 levels due to outdoor PM2.5 entering the indoor microenvironment. Therefore, proper
ventilation and filtration systems help prevent outdoor air pollutants from infiltrating the
building [6,27,28]. Additionally, the indoor CO2 measurement could not be compared to
any CAMS data, as the TCEQ CAMS does not monitor CO2.
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Figure 8. Time series showing the 1 h averaged PM2.5 for the kitchen and bedroom during the
1-month study period, including the ambient PM2.5 obtained from Mission C-43 (Note: C-43 does not
monitor CO2). The highlighted section represents the days when the house was unoccupied.

3.4. Health Risk Assessment of Indoor PM2.5

Cooking is the primary source of indoor PM2.5. It poses a great risk to human health.
The health risk associated with indoor air quality during cooking activities was evaluated
by calculating the toxicity potential (TP). The TP quantifies the potential of a pollutant
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released into the air to cause adverse health effects on residents within a specific area.
The TP is calculated using the following formula [64,65]. The TP was calculated using
Equation (5) as below:

Toxicity potential (TP) = (Cp/Sp) (5)

where Cp represents the measured concentration of PM2.5 in the indoor environment, and
Sp represents the World Health Organization (WHO)’s standard for PM2.5 (i.e., 15 µg/m3).

A TP value exceeding 1 signifies a potential health hazard associated with the selected
pollutant within a particular area. Therefore, the accepted ratio of TP is 1 [60,65]. According
to the updated WHO guidelines of 2021, the standard for PM2.5 has been revised to
15 µg/m3 from 25 µg/m3 for a 24 h exposure period [66].

The toxicity potential of the 24 h average PM2.5 for the kitchen and bedroom is shown
in Table 3. The TP values for PM2.5 in the kitchen ranged from 0.03 to 0.56, while in the
bedroom, they ranged from 0.04 to 0.42. It was observed that the average TP values of
PM2.5 for the kitchen (0.21) and bedroom (0.20) were much lower than 1. This indicates that
PM2.5 is not associated with potential health hazards in this residence. Akteruzzaman et al.,
in 2023 [60], assessed the impact of cooking in households in Bangladesh by calculating the
toxicity potential in eight kitchens (gas and mud stoves) and living rooms of four selected
households (with limited ventilation systems) and the value ranged between 0.82 and 8.3,
whereas our study’s values ranged between 0.05 and 0.6. Therefore, our results indicate that
proper ventilation systems and the usage of electric stoves for cooking may help maintain
a cleaner indoor environment.

Table 3. Toxicity potential (TP) in the kitchen and bedroom during the study period.

Microenvironments Mean ± SD (TP Values) Range (TP Value)

Kitchen 0.21 ± 0.14 0.03 to 0.56
Bedroom 0.20 ± 0.09 0.04 to 0.42

There is a caveat concerning the calculated toxicity potential obtained in this study in
that it provides a health risk assessment of PM2.5 based on its mass concentrations. How-
ever, it is important to note that the actual toxicity of PM2.5 particles varies considerably
depending on the chemical compositions, sizes, and sources [67]. Since we used low-cost
sensors, the toxicity potential calculations rely solely on the mass concentrations, which
may oversimplify the potential health risks. Therefore, future studies should also consider
the chemical analysis of PM2.5 particles to determine the toxicity potential.

4. Limitations and Conclusions

Our study has some limitations. First, we could not evaluate the impact of the air
exchange rates on the indoor air quality due to the lack of ventilation data. Secondly, the
research was conducted in only one residential home, limiting the findings’ applicability to
other homes with different architectural designs, occupant behaviors, and environmental
conditions. This study did not incorporate outdoor sensors for monitoring air quality, so we
could not measure the infiltration rate of outdoor pollutants into the indoor environment.
Also, the focus was limited to PM2.5 and CO2, excluding other potentially harmful indoor
pollutants. This study investigated the IAQ over a one-month period, focusing on the PM2.5
and CO2 concentrations within a residential setting: the kitchen and bedroom. LCSs were
used in this study. Prior to the study, these LCSs were calibrated against FEM instruments
through a multiple linear regression (MLR) model to improve the data accuracy. The
temporal trends indicated that cooking activities were the primary source of indoor PM2.5,
with notable peaks observed between 10:00 a.m. to 11:00 a.m. and 7:00 p.m. to 8:00 p.m.
during meal preparation times, while the CO2 levels in the bedroom showed increased
concentrations from 11:00 p.m. to 8:00 a.m., correlating with the occupants’ sleep period.

This study also found minimal correlation between the indoor and ambient PM2.5
levels, suggesting that effective ventilation prevented the infiltration of outdoor pollutants
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into the indoor microenvironment. The health risk assessment through toxicity potential
(TP) calculations revealed that the indoor PM2.5 concentrations in the kitchen and bedroom
were well below the threshold for health hazards, with mean TP values of 0.21 and 0.20,
respectively. These low TP values could be attributed to the use of electric stoves and
efficient ventilation systems. The findings underscore the importance of maintaining proper
ventilation systems to prevent the infiltration of outdoor particulate pollution in the indoor
microenvironment. This study also highlights the value of calibrated LCS data in accurately
assessing the IAQ. This study recommends that the indoor microenvironment, especially in
residential kitchens, should be the subject of more attention due to the pollution emanating
from cooking activities. In addition, increasing the public’s awareness of indoor pollutants
and their primary sources is necessary to understand the health risk of said pollutants.
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