Metagenomic Analysis Unveils the Microbial Landscape of Pancreatic Tumors

Sheema Khan
The University of Texas Rio Grande Valley

Goutam Banerjee
University of Illinois at Urbana-Champaign

Saini Setua
University of Tennessee Health Science Center, saini.setua@gmail.com

Daleniece Jones
University of Tennessee-Knoxville

Anupam Dhasmana
The University of Texas Rio Grande Valley, anupam.dhasmana@utrgv.edu

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/somrs

Part of the Neoplasms Commons

Recommended Citation
Khan, Sheema; Banerjee, Goutam; Setua, Saini; Jones, Daleniece; Dhasmana, Anupam; Chauhan, Bhavin; Banerjee, Pratik; Yallapu, Murali M.; Behrman, Stephen; and Chauhan, Subhash, "Metagenomic Analysis Unveils the Microbial Landscape of Pancreatic Tumors" (2024). *Research Symposium*. 47.
https://scholarworks.utrgv.edu/somrs/2024/posters/47

This Poster is brought to you for free and open access by the School of Medicine at ScholarWorks @ UTRGV. It has been accepted for inclusion in Research Symposium by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
Presenter Information (List ALL Authors)
Sheema Khan, Goutam Banerjee, Saini Setua, Daleniece Jones, Anupam Dhasmana, Bhavin Chauhan, Pratik Banerjee, Murali M. Yallapu, Stephen Behrman, and Subhash Chauhan

This poster is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/somrs/2024/posters/47
Metagenomic Analysis Unveils the Microbial Landscape of Pancreatic Tumors

Sheema Khan¹,²*, Goutam Banerjee⁵, Saini Setua³,⁴, Daleniece Higgins Jones⁶,⁷, Bhavin V. Chauhan⁶, Anupam Dhasmana¹, Pratik Banerjee⁵,⁶*, Murali Mohan Yallapu¹,², Stephen Behrman⁸*, Subhash C. Chauhan¹,²*

¹ Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, United States
² South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
³ Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center; Memphis, TN, USA
⁴ Center for Blood Oxygen Transport & Hemostasis (CBOTH), Department of pediatrics, University of Maryland, Baltimore
⁵ Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, 1302 W. Pennsylvania Avenue, Urbana, IL 61801
⁶ Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, TN, USA
⁷ Department of Public Health, University of Tennessee-Knoxville, TN, USA
⁸ Department of Surgery, Baptist Memorial Hospital and Medical Education, Memphis, TN 38120, USA

Background: The composition of resident microbes in the human body is linked to various diseases and their treatment outcomes. Although studies have identified pancreatic ductal adenocarcinoma (PDAC) associated bacterial communities in the oral and gut samples, herein we hypothesize the prevalence of microbiota in pancreatic tumor tissues is different as compared to their matched adjacent, histologically normal appearing tissues and these microbial molecular signatures can be highly useful for PDAC diagnosis/prognosis.

Methods: In this study, we performed comparative profiling of bacterial populations in pancreatic tumors and their respective adjacent normal tissues using 16S rRNA-based metagenomics analysis.

Results: This study revealed a higher abundance of Proteobacteria and Actinomycetota in tumor tissues compared to adjacent normal tissues. Interestingly, the Linear Discriminant Analysis (LDA) scores unambiguously revealed an enrichment of Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter exhibited depletion in tumor tissues. Furthermore, we analyzed the microbial composition between different groups of patients with different tumor differentiation stages. The bacterial genera, Delftia and Staphylococcus were very high in G1 stages (well differentiated) compared to G2 (well to moderate/moderately differentiated) and G3/G4 (poorly differentiated). However, the abundance of Actinobacter and Cloacibacterium was found to be very high in G2 and G3, respectively. Additionally, we evaluated the correlation of PD-L1 expression with the abundance of bacterial genera in tumor lesions. Our results indicated that three genus such as Streptomyces, Cutibacterium, and Delftia have a positive correlation with PD-L1 expression.

Conclusion: Collectively, these findings demonstrate that PDAC lesions harbor relatively different microbiota compared to their normal tumor-adjacent tissues, and this information might be helpful for the diagnosis and prognosis of PADC patients.