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ABSTRACT 

 

 

Hinson, Ivy M. Developing multispectral imaging techniques to determine canopy coverage and 

carbon storage of seagrasses in the Gulf of Mexico. Master of Science (MS), August 2019, 65 

pp, 8 tables, 14 figures, references, 42 titles. 

Although seagrass beds provide global ecosystem services, coverage is in rapid decline, 

with the capacity of seagrasses to sequester carbon of special concern. Current seagrass 

monitoring methods are labor intensive and may not offer a complete picture of coverage. 

Remote sensing offers the ability to oversee landscapes but water in coastal environments 

presents challenges, as the commonly used near-infrared wavelength dissipates in water.  

 This project aimed to provide reliable methodology to assess seagrass coverage using 

multispectral imagery taken from an unmanned aerial vehicle and to provide evidence for the 

link between seagrass coverage and stored belowground carbon for common seagrasses in the 

Gulf of Mexico. Reflectance values from multispectral imagery produced coverage estimates that 

were compatible with in-water surveys and canopy coverage proved to be a reliable predictor of 

below-ground carbon storage, in the first 10 cm. Further research of carbon storage in gaps in 

seagrass cover is needed.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Seagrasses are a globally distributed group of marine plants with relatively low 

taxonomic diversity (Orth et al., 2006). Only 60 species of seagrasses are known, yet unique 

adaptations have allowed these plants to thrive in water temperatures ranging from 4°C to greater 

than 24°C (Orth et al., 2006). Seagrasses have also evolved to grow in anoxic and often sulfide-

rich sediments by enriching rhizomes and the surrounding rhizosphere with oxygen (Hemming 

and Durate, 2000). Seagrass rhizomes can be extensive, with 60-90% of a plant’s biomass 

underground (Fourqurean et al., 2012). Seagrass beds can include algae, seaweed, and stray 

corals and often have naturally occurring bare patches and varying levels of plant density (Ruiz-

Reynés, 2017). 

 

Seagrass in the Western Gulf of Mexico 

 

The Laguna Madre is a large, productive, hypersaline bay in the western Gulf of Mexico 

that spans from Corpus Christi, Texas, south to Port Isabel, Texas, near the U.S.-Mexico border, 

totaling a surface area of 1,658 km2. The bay’s productivity is due, in part, to the presence of 

seagrass under a relatively shallow 75-cm average water depth (Quammen and Onuf, 1993). 

With 80% of the seagrass biomass in Texas, extensive seagrass meadows characterize the lagoon 

(Kaldy et al., 2002). Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass), 
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and Halodule wrightii (shoal grass) are the most common seagrass species found within the 

lagoon (Kowalski et al., 2009). The bay is divided into the Upper Laguna Madre, dominated by 

H. wrightii and S. filiforme, and the Lower Laguna Madre, which has been trending towards T. 

testudinum dominance since the creation of the Port Mansfield Cut, which allowed for greater 

exchange between the ocean and the bay, decreasing the overall salinity of the bay (Congdon and 

Dunton, 2016; Onuf, 2007). 

 

Ecosystem Services of Seagrasses 

Seagrass and algae beds are largely considered to be some of the most valuable systems 

in terms of the ecosystem services that they provide (Costanza et al., 1997). Seagrasses supply as 

much as 12% of marine net ecosystem production even though seagrass are only present in 

0.15% of the ocean floor’s total surface area (Duarte and Cebrián, 1996). Biodiversity and faunal 

density has also been found to be higher in areas vegetated by seagrass compared to unvegetated 

areas (Hemminga and Durate, 2000). This biodiversity enrichment is worth $3,500 ha-1 yr-1 in 

value for commercial fisheries (McRoy and Helfferich, 1977). A stable isotope analysis by Fry 

and Parker (1979) found that many estuarine species’ diets relied heavily on seagrass. Fish and 

shrimp were especially dependent on seagrass (Fry and Parker, 1979). Additionally, the structure 

of seagrass beds provides habitat in bays and estuaries and may even be more important than the 

plant’s primary production in some environments (Kaldy et al., 2002).  

 Coastal vegetation, such as seagrass, is also considered an ecosystem engineer, with the 

capability to alter the surrounding environment (Borsje et al., 2010). The capacity of seagrass to 

absorb wave energy and stabilize sediments in bays and estuaries has been well documented 

(Borsje et al., 2010). Even in heavily grazed, short canopy patches, seagrass has been shown to 
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reduce sediment erosion three times more than unvegetated areas (Christianen et al., 2013). 

Accretion of sediments by seagrasses can even aid in mitigating the effects of sea level rise in 

coastal communities (Van der Wal and Pye, 2004). Considering the current and imminent 

climatic changes caused by excess carbon in the atmosphere, perhaps one of the most relevant 

ecosystem services provided by seagrasses is the ability of these marine plants to sequester 

carbon. 

 

Carbon Dynamics in Seagrasses 

 High rates of primary productivity by seagrasses allows for short-term storage in plant 

biomass for the lifespan of the plant, while anoxic and saline soils slow decomposition, allowing 

for long-term carbon storage in sediment. Seagrass sediments have been shown in some areas to 

stay deposited over thousands of years (Mcleod et al., 2011). The rate of carbon sequestration in 

seagrass beds is second only to mangrove and tidal marsh ecosystems (Mcleod et al., 2011). As 

seagrasses also trap and accrete matter from the water column, stored carbon in sediment 

surrounding seagrasses has been found to be at least 50% of external origin (Kennedy et al., 

2010). While terrestrial carbon storage is relatively well-documented, submerged carbon stores 

have not been fully assessed, though estimates place global seagrass carbon storage between 4.2 

and 8.4 Pg (1015 g) of carbon, which is greater than terrestrial carbon storage and rivals storage in 

mangrove systems (Fourqurean et al., 2012). There is evidence that different species of 

seagrasses store carbon at different rates, and that mixed species seagrass beds may store carbon 

differently than homogeneous seagrass beds (Stankovic et al., 2018). Concerns have been raised 

that seagrass bed degradation could not only lead to the loss of carbon sinks but also allow for 

associated sediments to become carbon sources (Fourqurean et al., 2012).  
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 Despite the major benefits of maintaining healthy seagrass communities, many areas 

worldwide have experienced severe losses in seagrass coverage (Orth et al., 2006). An extensive 

study by Waycott et al. (2009) found that seagrass cover area has decreased an average of 1.5% 

yr-1 since records began in 1879. The rate of loss has increased in the past 20-30 years, with less 

than a 1% yr-1 loss before 1940 to greater than 5% yr-1 loss after 1980 (Waycott et al., 2009). If 

seagrass coverage loss continues, 299 Tg of stored carbon could be released into the atmosphere 

(Fourqurean et al., 2012). Valuations of carbon stocks in seagrass meadows estimate that this 

release of stored carbon and loss of carbon sequestration services could result in a global 

economic loss of US$1.9 – 13.7 billion yr-1 (Pendleton et al., 2012). 

 

Threats to Seagrass Communities 

Although natural disasters such as tsunamis or disease outbreaks may disrupt seagrass 

populations, human activity appears to be the largest driver behind loss of seagrass coverage 

(Waycott et al., 2009). While seagrass beds can counteract the effects of nutrient loading from 

upstream waste and fertilizer inputs, heavy enrichment, such as that from industrialized 

agriculture or aquaculture, can be detrimental to seagrass health (Ralph et al., 2007; Waycott et 

al., 2009). Coastal development has also encroached on seagrass habitat and increased turbidity, 

limiting light availability and hence constraining photosynthesis (Orth et al., 2006). Influxes of 

introduced species and overfishing of apex predators can cause surges in herbivores, which may 

lead to overgrazing of seagrass meadows (Myers, 2007; Orth et al., 2006). In areas that are 

shallow and heavily trafficked by boats, as in the Laguna Madre, scarring by boat propellers is a 

common detriment to seagrass coverage (Fletcher et al., 2009). The far-reaching effects of 



5 

 

climate change will likely only exacerbate these issues and present new threats to seagrass 

communities (Orth et al., 2006). 

 

Current Seagrass Monitoring Methods 

 The most prominent current efforts to monitor seagrass coverage in Texas are made by 

the Texas Seagrass Monitoring Project. These methods rely on satellite imagery from 

LANDSAT 8 to generate vegetation maps that are then used to draw 500-750 m wide hexagons. 

Hexagon size is dependent on the size of the system. For the Lower Laguna Madre, 750 m wide 

hexagons are used. A single point is randomly selected within each hexagon and observations by 

divers are made within four 0.25m2 quadrat at each point. Hexagons are only assigned in ≤ 2 m 

of water, unless there is evidence of seagrass at greater depths in the area. From this point-based 

data, seagrass coverage within the hexagon is interpolated using ArcGIS software.  

Methods that rely on point-data are the most commonly used mapping techniques 

worldwide, as few alternatives to this practice currently exist. This method of estimating seagrass 

coverage is time- and labor-intensive. LANDSAT 8 satellite imagery has a spatial resolution of 

30 meters, so smaller bare patches within or surrounding seagrass beds could be easily missed, 

and small losses from sampling season to sampling season may not be readily apparent. Point 

data may also result in over- or underestimation of seagrass coverage. Since seagrass density is 

often not heterogeneous within a given area, any data that only uses areas with >50% coverage 

can fail to account for areas with scattered coverage.  

In order to effectively monitor seagrass ecosystems, management agencies need accurate, 

repeatable, large-scale mapping techniques that can be completed with limited personnel 

(Roelfsema et al., 2009). Recent research in resource management emphasizes the need for 

seascape-scale monitoring and planning (de la Torre-Castro and Rönnbäck, 2004). Remote 
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sensing provides a versatile way to oversee large portions of landscapes, although the presence 

of water in coastal ecosystems provides unique challenges. Depth, tidal influence, water clarity, 

benthic type, and sunglint all influence the ability of sensors to provide valid imagery. One of the 

most commonly used vegetation indices in terrestrial vegetation mapping is the Normalized 

Difference Vegetation Index (NDVI). NDVI uses the near-infrared (NIR) wavelength that is 

more strongly reflected in green vegetation to calculate vegetation coverage. One of the most 

notable complexities of mapping submerged vegetation is that the NIR wavelength is attenuated 

in the first few meters of water, depending on water clarity and quality.  

The accessibility of multispectral sensors and Unmanned Aerial Vehicles (UAVs) has 

increased in recent years, promoting innovative uses in seascape management. Spectral imaging 

is the study of how light reflects from various substances. Multispectral sensors consist of 2-10 

distinct bands, each of which represents a portion of the electromagnetic spectrum. Several 

satellites equipped with multispectral sensors provide organizations with imagery for various 

mapping purposes, including environmental monitoring. Although satellite data tends to be 

readily available, satellite-mounted sensors generally produce data that has coarse spectral 

resolution (i.e., single pixels representing large, often highly variable spatial areas). Close-water 

remote sensing, such as that supplied by sensors mounted on UAVs, can provide a solution to the 

issue of spectral resolution presented by satellite data. 

 

Study Objectives 

 The first objective of this study was to develop reliable methodology to assess seagrass 

coverage using near-water aerial multispectral sensing techniques by establishing the relationship 

between spectral reflectance and seagrass canopy coverage. The second goal of this project was 
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to provide evidence for the link between seagrass coverage and stored below-ground carbon, 

which has not been adequately studied in seagrass. By establishing the link between 

belowground carbon storage and canopy coverage while refining the use of near-water 

multispectral imagery, future studies may be able to better estimate carbon storage using remote 

sensing.  

Hypotheses 

 

Hypothesis I: Distinct spectral signatures will be detectable between fringe seagrass, full 

seagrass, and bare sediment patches.  

a) Vignetting, or the darkening of pixels away from the center of an image, and directional 

bias from solar interference will cause greater variance across reflectance values. 

b) More variance will be explained if factors such as water depth, sediment bulk density, 

and flight altitudes are considered. 

c) Using ratios of bands (wavelengths) or calculated metrics using relationships between 

bands will produce better models than models using single bands.  

d) Extracting reflectance values for the same quadrat across multiple images will produce 

stronger relationships (i.e., provide better estimates of seagrass cover). 

e) NDVI will not be a useful index to predict seagrass cover as NIR and red are quickly 

attenuated in water.  

 

Hypothesis II: Sedimentary carbon will be higher in areas with more seagrass cover, with 

the highest sedimentary carbon levels in the shallowest 0-10 cm section of the core and 

carbon decreasing with depth. 
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Hypothesis III: Because canopy cover positively relates to belowground carbon storage and 

spectral reflectance can estimate canopy cover, reflectance values could be used to predict 

belowground carbon storage, once a baseline has been established for the area. 
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CHAPTER 2 

 

 

METHODOLOGY 

 

 To investigate the link between reflectance, seagrass cover, and sedimentary carbon a 

combination of remote sensing and ground-truthing methods were employed (Fig 1). 

III. Sedimentary carbon 

predictions from RS 

reflectance values 

Figure 1: Flow chart of methodology, which included collection of remotely sensed data, in-situ observations, and sediment core 

collection. 

UAV Flights Sediment Core Collection 

Image Processing 

I. Seagrass cover 

predictions from RS 

reflectance values 

II. Sedimentary carbon 

predictions from 

seagrass cover 

Remote Sensing  

Data 
Ground-truthing 

Data 

Reflectance Values 

In-situ Seagrass Estimations 

Elemental Analysis 
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Data Collection 

Study Site 

The study site was located near the city of South Padre Island, Texas in the Lower 

Laguna Madre between 26.141106, -97.184133 and 26.137399, -97.179298 (Fig. 2). The depth 

averaged 75 cm. Tides range from 30-60 cm, with the greatest tidal changes driven by wind, 

rather than lunar cycle. The climate is subtropical, with average high air temperatures in August 

of 28.7°C and average low air 

temperatures in January of 

14.7°C.  Water temperatures 

average 14.4°C in winter and 

26.6°C in summer, with an 

average yearly rainfall in the area is 

702 mm. Any influx of nutrients or 

suspended particles into this area comes 

largely from an agricultural region via the 

Arroyo Colorado  (Onuf, 2007). The site is 

dominated by T. testudinum, with some H. wrightii fringing in the shallows. This site was 

selected for water clarity and variation in seagrass coverage. 

 

Ground-truthing 

Ground-truthing was used to calibrate our interpretation of the images taken by the 

drone-mounted multispectral camera. A diver  estimated seagrass coverage in situ with a series 

of forty (40) 0.25-m2 quadrats. Quadrats were located at points previously identified as falling 

Figure 2: The study site was located near-shore on the Laguna 

Madre side of mid-South Padre Island. 

 

Port Isabel, TX 

South Padre Island, TX 

Laguna Madre 
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within one of four coverage categories: bare, gap, fringe, and full. Bare patches were defined as 

being areas devoid of seagrass beds outside of seagrass patches, while gap areas were smaller 

patches (generally between 1-3 meters in diameter) without seagrass within a larger seagrass 

matrix. Fringe seagrass areas were the seagrass areas bordering gaps. The diver estimated the 

actual canopy cover percentage within each of the quadrats. A total of 10 quadrats were surveyed 

for each of the four categories.  

 

Remote Sensing 

Various multispectral camera setups were tested before the MAIA MV 9-band 

multispectral camera was found to have the least interference from sunglint. The MAIA camera 

was designed to be compatible with satellite imagery from WorldView-2 and is capable of 

detecting wavelengths from 385 to 950 nm. MAIA’s Incoming Light Sensor was designed to 

work with the camera, detecting and correcting variations in incoming solar radiation. The 

camera was attached to a Matrice 600 PRO unmanned aerial vehicle via a Gremsy T3 gimbal 

(Figure 3). Multispectral data was collected above the anchored quadrats. Maps Made Easy 

open-source software was used to design flight paths. Mapping and in-water surveys were 

completed in mid-October 2018. Flights over bare patches were later added in early March 2019. 



12 

 

 

 

 

Retrieving Sediment Cores 

After imagery was obtained one approximately 30-cm sediment 

core was extracted within each sampling quadrat, for a total of 40 

cores, using a 50 cm x 7.5 cm PVC pipe. A homemade coring 

device featuring a ball valve to create and release suction was 

used for the actual core extraction (Fig. 4). The PVC pipes were 

inserted into the coring device, and the rubber coupling was 

tightened as much as possible. With the ball valve open, the pipe 

was inserted by hand into the sediment up to the rubber coupling. 

A rubber mallet was used to complete the insertion to 

Figure 3: Photograph of the UAV, gimbal, and camera setup (left) and images of the MAIA Camera and Incoming 

Light Sensor (right). 

Figure 4: 

Photograph of 

the homemade 

coring device 

used to collect 

sediment 

samples. 

1. MAIA Incoming Light 

Sensor 

2. GPS Units 

3. Matrice 600 Pro Drone 

4. Gremsy T3 Gimbal 

5. Homemade camera 

mount 

6. MAIA WV Multispectral 

Sensor 

1 
2 

3 

4 

5 

6 

1 

6 

Front Back 
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approximately 40 cm, if necessary. The ball valve was then closed and the entire device was 

pulled from the soil, with care taken to keep the sample upright. The bottom of the core was then 

capped using a 7.6 cm U-LINE polyurethane cap. The cores were placed in a freezer at -17°C 

within 6 hours of collection.  

 

Sample and Data Analysis 

 

Assessment of Carbon Stocks 

Once frozen , each core was cut into three 10-cm segments (0-10, 10-20, 20-30 cm). Any 

deeper segments of sediment were discarded. Cores (n = 120) were processed in accordance with 

The Blue Carbon Initiative guidelines for assessing coastal blue carbon (Howard et al., 2014). 

Each sample was  weighed and dried at 65°C until no weight change was observed. After dry 

weight was obtained, several height measurements along the PVC ring were taken and used to 

calculate a more precise sample volume to account for minor variability in cut locations or cut 

angles. Each sample was then homogenized using a mortar and pestle. The sample was then 

passed through a series of sieves with only granules less than 63 μm in size were retained for 

further processing. The sieves, mortar, and pestle were cleaned between samples using 

compressed air. Tin capsules were weighed, a small sediment sample (approximately 0.05 mg) 

was added, and then each capsule was carefully sealed and re-weighed for CHN analysis.  

Since the CHNS elemental analyzer (PerkinElmer, Waltham, Massachusetts, USA) 

quantifies total carbon content, subsamples from each soil sample (n = 120) were weighed, 

placed into a muffle furnace at 500°C for 3 hours, and then re-weighed to quantify loss on 

ignition. Organic carbon volatilizes at 500°C, thus only mineral carbon (inorganic C) is left 
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behind. Combusted and un-combusted paired sets of soil samples were analyzed, which 

determined the total carbon and nitrogen content of paired sets of samples, and allowed us to 

quantify inorganic carbon content as well as organic carbon content using two different methods. 

The first was by subtracting inorganic carbon content (the ashed subsample) from total carbon 

content (original sample) as measured by the elemental analyzer. The second method aimed to 

eliminate error margins from the EA by only using the mass lost from a sample after combustion 

(ashing) in the muffle furnace. This method for finding organic carbon is known as the mass loss 

on ignition (LOI) method. 

 

Image Processing 

 The images taken from the multispectral sensors were stitched together using MAIA - 

MultiCam Stitcher Pro photogrammetry software. GPS locations and drone headings were taken 

from the sensor’s logfile. The latitude and longitudes were converted to UTM. Using the UTM 

coordinates and drone heading, a MATLAB script was used to generate accurate coordinates for 

each image. The multichannel images generated by MAIA’s software were then georeferenced 

using ESRI’s ArcGIS and the adjusted coordinates. Of the 40 quadrats placed, 37 could be found 

within the images. Within each quadrat, the centermost nine pixels were selected using the pixel 

identifier tool in ArcMap. Other pixels within the quadrat were excluded due to bleed from the 

white PVC of the quadrats into surrounding pixels. The reflectance values for each of the 8 

bands from the centermost pixels were then averaged to provide one reflectance value per band 

per image. This process was repeated using 3 additional images for each quadrat. Quadrat 

distance from the center of the image was measured to allow us to assess if any darkening of 

pixels away from the center of the image, also known as the vignetting effect, was present. The 
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maximum possible reflectance value for a given band in a digital image = 2n, where n = number 

of bits; therefore, the raw reflectance values were divided by the maximum possible value to find 

actual reflectance. Since the original images were taken using a 12-bit camera, the values were 

divided by 4096 (212 = 4096) to find actual reflectance. These values were then multiplied by 100 

to find the reflectance percentage for each band. The spectral profiles for each quadrat were then 

compared to the seagrass coverage estimations made via diver surveys.  

 

Statistical Analysis 

 The relationships between remotely sensed data, on-the-ground seagrass surveys, and the 

results of laboratory soil analyses were assessed by fitting a series of generalized linear models. 

After the remote sensing data was processed, we first considered potential sources of error (noise 

in our reflectance data) by performing simple and multiple regression analyses to examine the 

relationships between spectral reflectance values and (a) the distance of sampled pixels from the 

center of the image (to test for vignetting effects), (b) water depth, (c) flight altitude, and (d) 

sediment bulk density; and by using ANOVA to examine the relationships between reflectance 

values and the drone heading’s prevailing cardinal direction (to test for directional bias in 

reflectance strength). Principal Components Analysis (PCA) was performed to examine the 

multivariate relationships between these potential confounding environmental factors.  

To address Hypothesis I, 141 simple regression analyses were performed to examine the 

relationships between total seagrass coverage values acquired via diver surveys and remotely 

sensed reflectance data within individual spectral categories and across a broad range of 

composite spectral indices or ratios. These regressions included considerations of 47 individual 

spectral bands or indices/ratios for each of three data subsets, namely either (a) one reflectance 
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value derived from a single image of each quadrat, (b) four reflectance values for each quadrat 

with one derived from each of the four images captured of each quadrat, or (c) the average of the 

four reflectance values for each quadrat.  

Next, to address Hypothesis II, 12 regression analyses were used to examine relationships 

between seagrass bed characteristics and Sedimentary carbon content (organic via loss on 

ignition, and organic, inorganic, and total C via elemental analyzer) at each soil depth (0-10, 10-

20, and 20-30 cm depth).  

Finally, to address Hypothesis III, we performed three sets of 188 regression analyses to 

examine the relationships between remotely sensed spectral data and Sedimentary carbon 

content. This included regressions relating each of the same 47 individual spectral bands or 

indices/ratios to each of the four Sedimentary carbon response variables (organic via loss on 

ignition, and organic, inorganic, and total via elemental analyzer), and doing so for each of the 

three soil layers taken from cores (0-10, 10-20, and 20-30 cm depth) for a total of 564 

regressions (47 reflectance metrics × 4 carbon variables × 3 soil depths).  

In all cases we considered linear models fit using ordinary least squares regressions, and 

for models of interest we additionally considered nonlinear (e.g., sigmoidal) models fit using 

ordinary least squares regressions. Where more than one model was fit for a given set of 

variables, we identified the function that provided the best goodness of fit based on model R2 

values. Linear regression model fitting and evaluation was conducted using Tableau 2019.1. 

Nonlinear regression model fitting was performed using SigmaPlot 11. Multiple regressions and 

PCA were performed using R statistical software version 3.4 via the lm() function in the base 

package and the rda() function (which performs a PCA if there are no categorical variables) in 
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the ‘vegan’ package. The rda() function was chosen over the base prcomp() function because of 

its superior graphing capabilities.  
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CHAPTER 3 

 

 

RESULTS 

 

 

Part I: Prediction of Seagrass Cover from Reflectance Values 

 

 

Flight Trials 

 

To establish methodology to map submerged vegetation, evaluating altitude and time of 

day for flights was necessary. Flights were done at both 100 and 50 m. In October, images from 

the flights at 100 m were used because these had the least interference from sunglint. The second 

round of flights in March were at 50 m to procure more fine-scale resolution. At 100 m, each 

image covered an area of approximately 2,466 m2 and each pixel corresponded to a horizontal 

distance of ca. 4.5 cm on the ground. At 50 m, each pixel corresponded to a horizontal ground 

distance of ca. 2.25 cm. March 2019 images were comparable in terms of sunglint, but 

interference from waves was exacerbated at the lower height. Sunglint was further mitigated by 

flying within three hours of solar noon.  

 

Spectral Signatures and Seagrass Coverage 

 Reflectance values were used to predict seagrass cover using single bands, band to band 

ratios, various band indices, and angles of spectral curves (Table 1). To explore whether better 

cover predictions could be made using reflectance values from the same quadrat in multiple 

images, models using 3 additional images were also fit after plotting the reflectance values from 
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replicate photos of each quadrat as individual points. Finally, average reflectance for each 

quadrat across the 4 images was used to predict seagrass cover from reflectance (see Methods 

sections above for more information on model fitting. 

  

Single Image Models. Linear regressions were generated using the reflectance of each of the 

spectral bands to determine the relationship between reflectance and seagrass cover. Within each 

quadrat, seagrass coverage was significantly predicted by reflectance values for each spectral 

band except red-edge and near-infrared. Low R2 values (≤ 0.342) across single band reflectance 

indicate that cover predictions using single band reflectance do not explain variance within the 

model particularly well. Because the purple band was consistent across seagrass cover, and 

because red-edge band tended to have a negative relationship with the blue, green, orange, and 

red bands, the purple and red-edge bands were used most often to create ratios and indices. 

Ratios of spectral bands showed more significant and stronger relationships with seagrass 

cover than single bands alone in most instances. Ratios of the purple band to blue, green, orange, 

and red all had p-values < 0.0001, with R2 values ranging from 0.366 to 0.474. The linear 

regression using the ratio of purple to red-edge was borderline significant, with a low R2 value of 

0.097. Of the purple ratios, purple:green and purple:orange predicted seagrass cover most 

accurately with the least unexplained variance. Averaging the purple ratios also produced a 

highly significant (p < 0.0001) model, with an R2 value of 0.434. Ratios of the other bands to the 

red-edge band produced similar results. Of the red-edge ratios, the red-edge:orange model best 

predicted seagrass cover (R2 = 0.406). Averages of the red-edge ratios also produced highly 

significant models. 
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Table 1: Linear relationships between cover and reflectance for various single band reflectance, band ratios, inverse 

band ratios, reflectance indices, and spectral calculations from single image, multiple images, and averages across 4 

images.                                                                                                                                                                                

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = **** 

Predictor 
Single image 4 images 

Average of 4 

images 

R2 P R2 P R2 P 

Single band Purple 0.219 ** 0.179 **** 0.240 ** 

Single band Blue 0.308 *** 0.295 **** 0.337 *** 

Single band Green 0.342 *** 0.322 **** 0.356 **** 

Single band Orange 0.334 *** 0.312 **** 0.355 *** 

Single band Red 0.283 *** 0.275 **** 0.324 *** 

Single band Red Edge 0.000 ns 0.030 * 0.000 ns 

Single band Near IR 0.000 ns 0.060 ** 0.082 . 

Ratio Blue Purple 0.434 **** 0.452 **** 0.516 **** 

Ratio Green Purple 0.473 **** 0.426 **** 0.481 **** 

Ratio Orange Purple 0.474 **** 0.437 **** 0.497 **** 

Ratio Red Purple 0.366 **** 0.377 **** 0.444 **** 

Ratio Red Edge Purple 0.097 . 0.159 **** 0.267 ** 

Average Ratios Purple 0.434 **** 0.402 **** 0.451 **** 

Ratio Purple Red Edge 0.123 * 0.161 **** 0.260 ns 

Ratio Blue Red Edge 0.302 *** 0.391 **** 0.515 *** 

Ratio Green Red Edge 0.382 **** 0.414 **** 0.527 **** 

Ratio Orange Red Edge 0.406 **** 0.451 **** 0.592 **** 

Ratio Red Red Edge 0.357 **** 0.445 **** 0.609 **** 

Average Ratios Red Edge 0.357 **** 0.422 **** 0.556 **** 

Inverse band Green 0.538 **** 0.515 **** 0.567 **** 

Inverse ratio Blue Purple 0.480 **** 0.528 **** 0.610 **** 

Inverse ratio Blue Red Edge 0.399 **** 0.481 **** 0.646 **** 

Inverse ratio Red Red Edge 0.465 **** 0.538 **** 0.713 **** 

Inverse average Ratios Purple 0.495 **** 0.480 **** 0.551 **** 

Inverse average Ratios Red Edge 0.464 **** 0.515 **** 0.676 **** 

NDVI (Ratio) Near IR - Red / Near IR + Red 0.200 ** 0.245 **** 0.496 **** 

Ratio Near IR - Red Edge / Near IR + Red Edge 0.564 **** 0.555 **** 0.753 **** 

Ratio Purple - Blue / Purple + Blue 0.461 **** 0.497 **** 0.556 **** 

Ratio Purple - Green / Purple + Green 0.528 **** 0.483 **** 0.562 **** 

Ratio Purple - Orange / Purple + Orange 0.532 **** 0.505 **** 0.597 **** 

Ratio Purple - Red / Purple + Red 0.409 **** 0.432 **** 0.513 **** 

Ratio Purple - Red Edge / Purple + Red Edge 0.111 * 0.168 **** 0.286 *** 

Average Ratios Above B G O R RE -/+ V Values 0.434 **** 0.415 **** 0.449 **** 

Ratio Red Edge - Purple / Red Edge + Purple 0.111 * 0.173 **** 0.253 **** 

Ratio Red Edge - Blue / Red Edge + Blue 0.367 **** 0.470 **** 0.608 **** 

Ratio Red Edge - Green / Red Edge + Green 0.480 **** 0.512 **** 0.634 **** 

Ratio Red Edge - Orange / Red Edge + Orange 0.497 **** 0.546 **** 0.686 **** 

Ratio Red Edge - Red / Red Edge + Red 0.428 **** 0.526 **** 0.684 **** 

Average Ratios Above V B G O R -/+ RE Values 0.412 **** 0.496 **** 0.641 **** 

Angle Purple Blue 0.371 **** 0.359 **** 0.447 **** 

Angle Purple Green 0.382 **** 0.353 **** 0.441 **** 

Angle Purple Orange 0.376 **** 0.343 **** 0.461 **** 

Sum Angles Purple 0.381 **** 0.358 **** 0.452 **** 

Angle Red Edge Red 0.483 **** 0.440 **** 0.564 **** 

Angle Red Edge Orange 0.482 **** 0.437 **** 0.548 **** 

Angle Red Edge Green 0.453 **** 0.419 **** 0.497 **** 

Sum Angles Red Edge 0.478 **** 0.439 **** 0.543 **** 
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Several inverse ratios also produced highly significant relationships between seagrass 

cover and reflectance. The inverse ratio of green reflectance (1/G) was a highly significant 

predictor of seagrass cover and explained variance well (R2 = 0.538). Additionally, inverse ratios 

of blue:purple (1/B:P), blue:red-edge (1/B:RE), and red:red-edge (1/R:RE) had p-values of < 

0.0001, with R2 values from 0.399 – 0.495. 

NDVI (NIR − R/NIR + R), a commonly used index for terrestrial vegetation, could 

predict seagrass cover (p = 0.006), but the lower R2 value of 0.200 indicates that our other 

models are likely better suited for submerged vegetation such as seagrass. A similar index using 

NIR and red-edge instead of red (NIR − RE/NIR + RE) predicted seagrass cover more accurately 

and was actually the single best predictor of seagrass cover when using the reflectance values 

from a single image, with a p-value < 0.0001 and a R2 value = 0.564.  

Purple indices (P − Band / P + Band) also correlated strongly with seagrass cover for 

blue, green, orange, and red bands (p-values < 0.0001, R2 values of 0.409 – 0.532). Red-edge 

indices (RE – band / RE + band) also proved useful in seagrass cover predictions, showing a 

significant relationship using purple and highly significant relationships for all other bands, but 

slightly lower R2 values (0.367–0.497) than the corresponding purple indices. 

The angle predictor metrics were calculated by generating an average spectral curve for 

each cover category. For each category, the angle between the purple and blue, purple and green, 

and purple and orange was taken. This was repeated for the three bands closest to the red-edge, 

generating red-edge to red, red-edge to orange, and red-edge to green values. The angles between 

the purple band and other bands of reflectance curves were also highly significant (p < 0.0001) 

indicators of seagrass cover, although R2 values were relatively low (0.371 – 0.382). The angles 
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of red-edge to other bands produced better seagrass cover models, with p-values < 0.0001 and R2 

values > 0.453.  

 

Multiple Image Models. Single band reflectance for purple, blue, green, orange, and red also 

showed significant relationships with seagrass cover when taken from 4 images, although these 

were relatively weakly correlated (R2 values ≤ 0.322). Red-edge and NIR relationships were 

significant but explained far less variance than other bands (R2 = 0.030 and 0.060, respectively).  

 Purple ratios (Band:P) all produced p-values < 0.0001 with R2 values ranging from 0.159 

for red-edge:purple to 0.452 for blue:purple. Red-edge ratios (Band:RE) had similar results, with 

low p-values (< 0.0001) and comparable R2 values (0.161–0.451). The band:red-edge and 

band:purple averaged ratios also produced similarly low p-values, with R2 values of 0.422 and 

0.402, respectively. Relationships between seagrass cover and the inverse ratios of 1/G, 1/B:P, 

1/B:RE, 1/R:RE were highly significant and had R2 values comparable to when the single-image 

data subset was used. Of the inverse ratio models, 1/B:P and 1/R:RE had the least unexplained 

variance (R2 values = 0.528 and 0.538, respectively). 

 NDVI was more closely correlated with seagrass cover (p < 0.0001, R2 = 0.245) when 

using multiple images than when only single image values were used, although the R2 value for 

this index remained low. The similar index that used red-edge in place of red again showed a 

strong correlation with seagrass cover, with relatively less unexplained variance (R2 = 0.555). As 

with the single-image data subset, this was the reflectance metric that best predicted seagrass 

cover (based on its R2) within the 4-image data subset.  

Indices using the purple band produced significant correlations across all bands, with the 

index using red-edge (P – RE/ P + RE) explaining the least variance (R2 = 0.168) and the index 
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using orange (P – O/ P + O) explaining the most (R2 = 0.505). Red-edge indices had less 

unexplained variance when using multiple images than when using reflectance values from a 

single image. Of the red-edge indices, the models using orange (RE – O/ RE + O) and red (RE – 

R / RE + R) explained the most variance (R2 = 0.543 and 0.526, respectively), while the model 

using purple (RE – P/ RE + P) explained the least (R2 = 0.173).  

The models using the angle of purple to other bands were all significantly correlated with 

seagrass cover, although relatively weakly (R2 = 0.343 – 0.359). All of the models using red-

edge angles showed significant correlations with seagrass cover, with modestly higher R2 values 

(0.419 – 0.440). R2 values for both the purple and red-edge angle models were similar when 

using either multiple or single-image data subsets, but were consistently slightly lower when 

using multiple images. 

 

Average Reflectance from Multiple Images. Using the averages of single band reflectance 

values from four images produced similar statistical significance as using reflectance from a 

single image and generally reduced significance when compared to using multiple images, but 

models using average reflectance values typically explained more variance. Only the reflectance 

from the green band was significantly correlated with seagrass cover in the single band average 

models (p < 0.0001). R2 values remained consistently low (≤ 0.356) across all single band 

models using averages.  

 Averages of simple purple ratios produced highly significant models (p < 0.0001), 

excluding red-edge:purple. The average of these average band to purple ratios also generated a 

highly significant relationship, with a relatively high R2 value of 0.451. Averages of the red-edge 

ratios had highly significant relationships with seagrass cover for all bands except red-edge: 
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purple, which had no significant relationship. Of these ratios, orange:red-edge and red:red-edge 

explained the most variance (R2 = 0.592 and 0.609, respectively). Averaging these averages of 

red-edge ratios derived from multiple images produced high significance and a R2 value of 

0.556.  

The inverse of purple and red-edge ratios had the same high significance across single 

image, multiple image, and multiple image average models, although the multiple image average 

models consistently had the highest R2 values. Of these, the 1/red:red-edge model explained the 

most variance (R2 = 0.713), and was one of the models that best predicted seagrass cover overall. 

 The NDVI model was improved by averaging multiple photos (p < 0.0001 and R2 = 

0.496), as was the modified index using red-edge in place of red. NIR − RE / NIR + RE had the 

least unexplained variance of any model considered and was highly significantly correlated to 

seagrass cover. In other words, it was the single best predictor of seagrass cover compared to all 

of the other reflectance metrics. All of the models using purple (P − band/ P + band) and red-

edge (RE − band/ RE + band) indices were improved in the multi-image average models. All 

red-edge index models using reflectance averages had R2 values ≥ 0.608, except purple which 

had a low R2 value of 0.253. 

 Multi-image averages slightly improved R2 values across all models using reflectance 

angles. All angle models remained highly significant. Red-edge angle models had the least 

unexplained variance, with R2 values from 0.497 for red-edge:green to 0.564 for red-edge:red.  
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Confounding Factors  

Vignetting. The vignetting effect refers to the reduction of pixel brightness away from the center 

of an image, resulting in objects near the edge of the image appearing darker than objects near 

the center. Often, 

vignetting can be 

attributed to optical 

limitations within a 

camera lens. To 

correct for this, 

reflectance values 

from within the 

same quadrats at 4 

varying distances 

away from the 

center of the images 

were extracted. We 

found no significant 

difference in band 

reflectance at a 

flight altitude of 100 m 

(Flight 1) for all bands 

except red-edge (Fig. 5).  For the second flight (flight altitude = 50 m), reflectance values 

increased for all bands except NIR 1 and NIR 2. This increase could not be attributed to the 

Figure 5: Reflectance values are either not influenced by distance (flight 1, left) or 

increase (flight 2, right) from the center of the image. This cannot be attributed to the 

vignetting effect.   

 p ≤ 0.05 = *      p ≤ 0.01 = **      p ≤ 0 .001 = ***         p < 0.0001 = **** 
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vignetting effect. As R2 values were low for all (≤ 0.263), distance from center of image was not 

a compelling factor in assessing the relationship between reflectance and seagrass coverage. As 

differences were consistent across wavelengths for a given flight day, we used band ratios rather 

than single bands to improve our models.  

 

Directional bias from sun angle. As sunlight was entering the water column from southeast of 

the study area at the time of collection, the images appeared to be brightest in the southeast 

corner. To account for any variance that this may have caused in reflectance values, each 

quadrat’s general position within the image was recorded for the 4 images sampled. Directional 

Figure 6: Location of quadrat within the image causes a bias in reflectance values. This bias differs across flight days 

but is consistent across a given wavelength. 



27 

 

bias was seen in quadrats in both of the flight days (Fig. 6). This bias was more pronounced in 

the second flight images, which was at a lower altitude (approximately 50 m). Which directions 

had more bias to reflection varied by flight day. As this bias was consistent across wavelengths, 

using ratios of bands to each other (as opposed to single band reflectance values) helped to 

remedy the issue. 

 

Other considerations. Other factors can affect reflectance values. In addition to accounting for 

distance from center of the image and directional bias from solar angle, we also explored the 

effects of flight altitude, soil bulk density, and water depth on reflectance values (Fig. 7).   

 On the first flight day, the effect of water depth was apparent across all wavelengths, 

except purple. Blue, green, orange, and red bands all had weak but significant positive 

correlations with water depth (R2 = 0.088 – 0.175). Red-edge and NIR bands were negatively 

correlated with water depth, although variance was not well explained by the model (R2 values = 

0.109 and 0.080, respectively).  On the second flight day, purple was weakly negatively 

correlated with water depth (p = 0.018, R2 = 0.203), but the blue, green, orange and red bands 

showed no significant relationship. Red-edge and NIR reflectance values were both negatively 

correlated with water depth, with p-values ≤ 0.05. R2 values of 0.191 and 0.227, respectively) on 

the second flight day.  

On the first flight day, flight altitude, which ranged from 96 to 100 m, had no effect on 

reflectance values. At the lower flight altitude (34-42 m) on the second flight day, all reflectance 

bands were affected by flight height. Reflectance for each band showed a negative correlation 

with altitude, with R2 values of 0.271 – 0.578. Green, orange, and red bands had the strongest 

correlations (p < 0.001) with the most explained variance (R2 = 0.527 – 0.578). 
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Sediment bulk density did not have any effect on reflectance values on the first flight day. 

On the second flight day, bulk density showed borderline significance with red-edge reflectance 

(p = 0.058, R2 = 0.136) and some correlation with the purple band (p = 0.031, R2 = 0.173). All 

other bands from the second flight day did not appear to be affected by sediment bulk density.  

 

 

 

 

Figure 7: Confounding factors across the 2 flight days. Reflectance across wavelengths was affected by water 

depth, flight altitude, and sediment bulk density.               

p ≤ 0.05 = *      p ≤ 0.01 = **      p ≤ 0 .001 = ***         p < 0.0001 = **** 
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II. Seagrass Cover and Belowground Stored Carbon 

 

 

 The second goal of this study was to explore the link between seagrass cover and 

belowground stored carbon 

(Table 2). Linear and 

sigmoidal relationships were 

used to analyze this 

suspected association. 

Organic carbon from both 

mass loss on ignition (LOI) 

and elemental analysis, as 

well as inorganic and total C 

from elemental analysis, 

were examined from each 

cover category for the top 

(0-10 cm), middle (10-20 

cm), and bottom (20-30 cm) layers of sediment (Table 3). As quadrats from the gap produced 

outliers, models were also generated that excluded the gap category.  

 

Category Layer 
Total C 

(%) 
Cinorg (%) 

Corg (%)        

(via EA) 

Corg          

(via % 

mass 

LOI) 

Full 

Top  5.419 1.755 3.664 0.110 

Mid 5.375 1.737 3.638 0.110 

Bottom 5.362 1.735 3.627 0.110 

Fringe 

Top  5.501 1.850 3.651 0.111 

Mid 5.444 1.825 3.619 0.110 

Bottom 5.429 1.820 3.609 0.110 

Gap 

Top  5.508 1.850 3.658 0.111 

Mid 5.473 1.850 3.623 0.110 

Bottom 5.422 1.819 3.603 0.110 

Bare 

Top  4.058 1.193 2.865 0.086 

Mid 3.819 1.144 2.674 0.081 

Bottom 3.800 1.155 2.644 0.081 

Table 2: Average percent (%) total carbon, inorganic carbon, and organic 

carbon for seagrass cover categories for the top 10 cm, middle 10 cm, and 

bottom 10 cm of sediment collected.  
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Models Using All Quadrats. Few of the models generated using all coverage categories (bare, 

fringe, gap, and full) produced significant results. Organic, inorganic, and total carbon in the 

middle (10-20 cm) layer was weakly correlated to seagrass cover in the linear model (p  ≤ 0.05) 

but low R2 values (0.098 – 0.120) indicate that these models do not explain variance well.  

 

 

Core depth Data group Model type 
Mass LOI (%) Organic C Inorganic C Total C 

R2 P R2 P R2 P R2 P 

0-10 cm 

All quadrats 
Linear 0 ns 0 ns 0 ns 0 ns 

Sigmoidal 0 ns 0 ns 0 ns 0 ns 

Gaps excluded 
Linear 0.225 ** 0.103 . 0.202 * 0.191 * 

Sigmoidal 0.307 * 0.185 . 0.278 * 0.295 * 

10-20 cm 

All quadrats 
Linear 0 ns 0.098 * 0.106 * 0.120 * 

Sigmoidal 0 ns 0 ns 0 ns 0 ns 

Gaps excluded 
Linear 0 ns 0 ns 0 ns 0 ns 

Sigmoidal 0 ns 0 ns 0 ns 0 ns 

20-30 cm 

All quadrats 
Linear 0 ns 0 ns 0 ns 0 ns 

Sigmoidal 0 ns 0 ns 0 ns 0 ns 

Gaps excluded 
Linear 0 ns 0 ns 0.323 ** 0 ns 

Sigmoidal 0 ns 0 ns 0 ns 0 ns 

Table 3: Linear and sigmoidal relationships between sedimentary carbon and seagrass cover.                           

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = **** 
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Models Excluding Gaps.  Models that excluded the gap cover category indicated a more 

significant relationship 

between cover and 

sedimentary carbon (Fig. 8). 

Both linear and sigmoidal 

relationships were 

significant or borderline 

significant across all carbon 

metrics but only in the top 

layer of sediment. Seagrass 

cover’s relationships to EA-

derived organic carbon in 

the top 10 cm of sediment 

were the only borderline 

significant relationships. 

The relationship between 

organic carbon from mass LOI, 

inorganic carbon and total carbon was best explained by the sigmoidal models, with R2 values of 

0.307, 0.278, and 0.295, respectively.  

 

 

 

Figure 8: Linear and sigmoidal relationships between seagrass cover and 

sedimentary carbon when the gap category of cover (outliers) is excluded. 
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III. Predicting Belowground Stored Carbon from Spectral Reflectance  

 

 

 As we theorized that reflectance could predict seagrass cover and that seagrass cover 

could predict belowground stored carbon, we also speculated that reflectance could also be used 

to predict sedimentary carbon.  As seagrass cover and belowground stored carbon relationships 

were stronger when the gap category was excluded, models were generated that excluded the gap 

category for this hypothesis as well. As sediment depth greatly influenced the reliability of these 

models, results are discussed by sediment layer. 

 

Carbon Predictions in the Top Sediment Layer 

 

Models Using All Cover Categories. Reflectance from the purple band was a better predictor of 

organic carbon storage from elemental analysis and from mass LOI (p ≤ 0.001, R2 = 0.299 and 

0.298, respectively). Other single bands were also relatively good predictors of organic carbon 

storage (Table 4). Predictions of sedimentary organic carbon were also strongly correlated with 

the angles from the reflectance curves of red-edge:green, purple:blue, and purple:green (p ≤ 0.01, 

R2 = 0.258, 0.252 and 0.245, respectively) for organic carbon derived from mass LOI.  
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Predictor 

0-10 cm 

All data Gaps excluded 

Mass LOI  

(%) Organic C Inorganic C Total C Mass LOI (%) Organic C Inorganic C Total C 

R2 P R2 P R2 P R2 P R2 P R2 P R2 P R2 P 

Purple 0.299 *** 0.298 *** 0.093 . 0.259 ** 0.318 ** 0.396 *** 0.112 . 0.282 ** 

Blue 0.293 *** 0.248 ** 0.133 * 0.268 ** 0.368 *** 0.392 *** 0.200 * 0.353 ** 

Green 0.274 *** 0.228 ** 0.137 * 0.260 ** 0.371 *** 0.390 *** 0.220 * 0.367 *** 

Orange 0.242 ** 0.211 ** 0.112 * 0.228 ** 0.330 ** 0.366 *** 0.180 * 0.324 ** 

Red 0.233 ** 0.221 ** 0.093 . 0.216 ** 0.304 ** 0.360 *** 0.148 * 0.296 ** 

Red Edge 0.178 ** 0.270 *** 0.026 ns 0.163 * 0.124 . 0.255 ** 0.009 ns 0.106 . 

NIR 0.231 ** 0.297 *** 0.052 ns 0.212 ** 0.192 * 0.348 ** 0.035 ns 0.181 * 

B:P 0.183 ** 0.087 . 0.145 * 0.168 * 0.350 ** 0.243 ** 0.306 ** 0.340 ** 

G:P 0.165 * 0.087 . 0.140 * 0.165 * 0.376 *** 0.286 ** 0.332 ** 0.383 *** 

O:P 0.110 * 0.055 ns 0.093 . 0.107 * 0.294 ** 0.231 * 0.246 ** 0.296 ** 

R:P 0.095 . 0.061 ns 0.060 ns 0.088 . 0.234 * 0.201 * 0.172 * 0.230 * 

RE:P 0.007 ns 0.001 ns 0.022 ns 0.005 ns 0.101 ns 0.057 ns 0.131 . 0.113 . 

Avg(P ratios) 0.132 * 0.075 . 0.101 . 0.129 * 0.287 ** 0.225 * 0.235 * 0.285 ** 

P:RE 0.036 ns 0.000 ns 0.056 ns 0.023 ns 0.189 * 0.079 ns 0.238 ** 0.186 * 

B:RE 0.164 * 0.047 ns 0.156 * 0.140 * 0.441 *** 0.274 ** 0.441 *** 0.439 *** 

G:RE 0.166 * 0.058 ns 0.160 * 0.152 * 0.466 **** 0.314 ** 0.457 *** 0.475 **** 

O:RE 0.129 * 0.037 ns 0.132 * 0.115 * 0.434 *** 0.294 ** 0.421 *** 0.441 *** 

R:RE 0.123 * 0.041 ns 0.110 * 0.106 * 0.425 *** 0.301 ** 0.390 *** 0.428 *** 

Avg(RE ratios) 0.142 * 0.042 ns 0.140 * 0.124 * 0.441 *** 0.289 ** 0.434 *** 0.446 *** 

1/G 0.235 ** 0.162 * 0.110 * 0.196 ** 0.445 *** 0.409 *** 0.255 ** 0.402 *** 

1/B:P 0.157 * 0.077 . 0.123 * 0.145 * 0.391 *** 0.307 ** 0.332 ** 0.396 *** 

1/B:RE 0.097 . 0.019 ns 0.108 * 0.082 . 0.396 *** 0.258 ** 0.400 *** 0.405 *** 

1/R:RE 0.069 ns 0.017 ns 0.062 ns 0.054 ns 0.353 ** 0.262 ** 0.313 ** 0.356 ** 

1/Avg(P ratios) 0.110 * 0.065 ns 0.080 . 0.106 * 0.322 ** 0.283 ** 0.250 ** 0.329 ** 

1/Avg(RE ratios) 0.081 . 0.017 ns 0.089 . 0.068 ns 0.381 *** 0.262 ** 0.372 *** 0.391 *** 

NDVI 0.011 ns 0.045 ns 0.003 ns 0.009 ns 0.059 ns 0.006 ns 0.161 * 0.074 ns 

NIR-RE/NIR+RE 0.087 . 0.024 ns 0.079 . 0.071 ns 0.384 *** 0.280 ** 0.345 ** 0.387 *** 

P-B/P+B 0.174 * 0.087 . 0.137 * 0.162 * 0.390 *** 0.297 ** 0.333 ** 0.391 *** 

P-G/P+G 0.139 * 0.072 ns 0.114 * 0.135 * 0.386 *** 0.315 ** 0.329 ** 0.399 *** 

P-O/P+O 0.090 . 0.045 ns 0.074 ns 0.086 . 0.309 ** 0.262 ** 0.248 ** 0.315 ** 

P-R/P+R 0.082 . 0.055 ns 0.048 ns 0.075 ns 0.258 ** 0.241 ** 0.180 * 0.258 ** 

P-RE/P+RE 0.019 ns 0.001 ns 0.040 ns 0.012 ns 0.154 * 0.068 ns 0.201 * 0.158 * 

Avg(P-/P+) 0.106 * 0.071 ns 0.072 ns 0.104 . 0.269 ** 0.243 ** 0.200 * 0.272 ** 

RE-P/RE+P 0.019 ns 0.001 ns 0.040 ns 0.012 ns 0.154 * 0.068 ns 0.201 * 0.158 * 

RE-B/RE+B 0.120 * 0.028 ns 0.126 * 0.102 . 0.420 *** 0.268 ** 0.422 *** 0.424 *** 

RE-G/RE+G 0.110 * 0.031 ns 0.115 * 0.098 . 0.422 *** 0.296 ** 0.410 *** 0.436 *** 

RE-O/RE+O 0.082 . 0.018 ns 0.090 . 0.070 ns 0.386 *** 0.270 ** 0.369 *** 0.394 *** 

RE-R/RE+R 0.087 . 0.024 ns 0.079 . 0.071 ns 0.384 *** 0.280 ** 0.345 ** 0.387 *** 

Avg(RE-/RE+) 0.092 . 0.019 ns 0.100 . 0.077 . 0.397 *** 0.265 ** 0.391 *** 0.405 *** 

Angle PB 0.252 ** 0.179 ** 0.154 * 0.242 ** 0.376 *** 0.350 ** 0.273 ** 0.382 *** 

Angle PG 0.245 ** 0.189 ** 0.144 * 0.241 ** 0.372 *** 0.369 *** 0.256 ** 0.381 *** 

Angle PO 0.196 ** 0.157 * 0.110 * 0.193 ** 0.312 ** 0.327 ** 0.203 * 0.321 ** 

Sum(P angles) 0.237 ** 0.179 ** 0.140 * 0.231 ** 0.361 *** 0.354 ** 0.250 ** 0.369 *** 

Angle RER 0.199 ** 0.138 * 0.118 * 0.186 ** 0.365 *** 0.348 ** 0.257 ** 0.370 *** 

Angle REO 0.219 ** 0.149 * 0.135 * 0.207 ** 0.377 *** 0.355 ** 0.266 ** 0.380 *** 

Angle REG 0.258 ** 0.177 ** 0.162 * 0.247 ** 0.416 *** 0.382 *** 0.302 ** 0.420 *** 

Sum(RE angles) 0.222 ** 0.153 * 0.136 * 0.210 ** 0.384 *** 0.361 *** 0.273 ** 0.389 *** 

 

Table 4: The relationship of different reflectance band combinations on belowground stored carbon in the upper 

sediment layer (0-10 cm).                                                                                                                                                  

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = **** 
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Total carbon was best predicted by the blue, green, and purple (p ≤ 0.001, R2 = 0.268, 0.260, and 

0.259, respectively). The angles from the reflectance curves of red-edge:green, purple:blue, and 

purple:green were also significantly correlated (p ≤ 0.01) with total belowground stored carbon. 

Only three models showed high significant (p < 0.0001) for reflectance correlations with organic 

carbon storage, although those were different for the two methods used to derive organic carbon 

and R2 values were low (0.270-0.299), indicating unexplained variance in the models. No models 

indicated a highly significant relationship between reflectance and inorganic carbon storage. The 

relationship between reflectance values from 15 different models and total carbon had p-values 

of ≤ 0.001, but R2 values were also low (≤ 0.268). 

 

Models Excluding Gaps.  When the gap cover category was excluded, our models improved. 

For organic carbon derived via mass LOI, 27 reflectance combinations had a highly significant 

relationship, with higher R2 values (0.361 – 0.466) than all other models that included gaps. 

Green:red-edge (G:RE) was the most highly significant predictor of organic C (via mass LOI), 

inorganic carbon, and total carbon (R2 = 0.466, 0.457, and 0.475, respectively, while the 

relationship of organic carbon derived from the EA was best predicted by 1/green (p = 0.0003, 

R2 = 0.409). A total of 26 band combinations demonstrated a highly significant relationship with 

total carbon, with R2 = 0.367 – 0.475). Inorganic carbon had a highly significant relationship 

with 11 different band combinations (R2 = 0.369 – 0.457).  

 

 

Carbon Predictions in the Lower Sediment Layers 

 Both the complete data models and the gap-exclusive data models showed little 

correlation between reflectance and belowground stored carbon for the lower layers of sediment. 
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In the 10-20 cm layer, NDVI was weakly correlated with organic carbon mass LOI (p ≤ 0.05, R2 

= 0.134) and showed a borderline significant relationship with organic carbon from the EA, 

inorganic carbon, and total carbon, with low R2 values (0.098, 0.075, and 0.092, respectively) 

(Table 5). In the 20-30 cm layer, 14 models (all using some ratio of red-edge) showed borderline 

significance with inorganic carbon, though low R2 values (0.109 – 0.143) indicate high variance  

within the models (Table 6). No other relationships were found.  
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Predictor 

10-20 cm 

All data Gaps excluded 

Mass LOI (%) Organic C Inorganic C Total C Mass LOI (%) Organic C Inorganic C Total C 

R2 P R2 P R2 P R2 P R2 P R2 P R2 P R2 P 

Purple 0.039 ns 0.014 ns 0.025 ns 0.025 ns 0.027 ns 0.000 ns 0.007 ns 0.002 ns 

Blue 0.029 ns 0.008 ns 0.020 ns 0.018 ns 0.031 ns 0.000 ns 0.021 ns 0.008 ns 

Green 0.023 ns 0.005 ns 0.019 ns 0.016 ns 0.028 ns 0.000 ns 0.025 ns 0.009 ns 

Orange 0.017 ns 0.004 ns 0.016 ns 0.013 ns 0.018 ns 0.000 ns 0.023 ns 0.007 ns 

Red 0.017 ns 0.004 ns 0.015 ns 0.013 ns 0.016 ns 0.000 ns 0.016 ns 0.004 ns 

Red Edge 0.068 ns 0.038 ns 0.042 ns 0.046 ns 0.035 ns 0.003 ns 0.000 ns 0.002 ns 

NIR 0.075 ns 0.034 ns 0.043 ns 0.046 ns 0.046 ns 0.003 ns 0.000 ns 0.002 ns 

B:P 0.012 ns 0.005 ns 0.006 ns 0.007 ns 0.050 ns 0.020 ns 0.053 ns 0.050 ns 

G:P 0.006 ns 0.001 ns 0.006 ns 0.005 ns 0.033 ns 0.009 ns 0.055 ns 0.037 ns 

O:P 0.001 ns 0.000 ns 0.002 ns 0.001 ns 0.015 ns 0.009 ns 0.048 ns 0.034 ns 

R:P 0.001 ns 0.000 ns 0.002 ns 0.001 ns 0.013 ns 0.009 ns 0.028 ns 0.024 ns 

RE:P 0.056 ns 0.062 ns 0.028 ns 0.042 ns 0.026 ns 0.040 ns 0.007 ns 0.009 ns 

Avg(P ratios) 0.007 ns 0.003 ns 0.006 ns 0.006 ns 0.031 ns 0.015 ns 0.044 ns 0.039 ns 

P:RE 0.019 ns 0.024 ns 0.015 ns 0.020 ns 0.000 ns 0.006 ns 0.018 ns 0.000 ns 

B:RE 0.000 ns 0.003 ns 0.000 ns 0.001 ns 0.017 ns 0.000 ns 0.054 ns 0.019 ns 

G:RE 0.000 ns 0.002 ns 0.000 ns 0.000 ns 0.018 ns 0.001 ns 0.059 ns 0.022 ns 

O:RE 0.004 ns 0.007 ns 0.001 ns 0.003 ns 0.006 ns 0.000 ns 0.059 ns 0.019 ns 

R:RE 0.007 ns 0.010 ns 0.002 ns 0.004 ns 0.003 ns 0.000 ns 0.046 ns 0.012 ns 

Avg(RE ratios) 0.002 ns 0.006 ns 0.001 ns 0.002 ns 0.009 ns 0.000 ns 0.054 ns 0.017 ns 

1/G 0.003 ns 0.000 ns 0.002 ns 0.001 ns 0.019 ns 0.001 ns 0.028 ns 0.013 ns 

1/B:P 0.000 ns 0.001 ns 0.000 ns 0.000 ns 0.020 ns 0.003 ns 0.050 ns 0.025 ns 

1/B:RE 0.019 ns 0.026 ns 0.012 ns 0.018 ns 0.001 ns 0.002 ns 0.044 ns 0.006 ns 

1/R:RE 0.032 ns 0.032 ns 0.018 ns 0.025 ns 0.001 ns 0.003 ns 0.026 ns 0.002 ns 

1/Avg(P ratios) 0.000 ns 0.001 ns 0.000 ns 0.000 ns 0.011 ns 0.003 ns 0.038 ns 0.020 ns 

1/Avg(RE ratios) 0.025 ns 0.031 ns 0.014 ns 0.021 ns 0.000 ns 0.004 ns 0.038 ns 0.004 ns 

NDVI 0.134 * 0.098 . 0.075 ns 0.092 . 0.050 ns 0.023 ns 0.027 ns 0.000 ns 

NIR-RE/NIR+RE 0.021 ns 0.024 ns 0.011 ns 0.016 ns 0.000 ns 0.002 ns 0.033 ns 0.005 ns 

P-B/P+B 0.002 ns 0.000 ns 0.001 ns 0.001 ns 0.029 ns 0.007 ns 0.052 ns 0.033 ns 

P-G/P+G 0.000 ns 0.001 ns 0.000 ns 0.000 ns 0.016 ns 0.001 ns 0.047 ns 0.020 ns 

P-O/P+O 0.002 ns 0.002 ns 0.000 ns 0.001 ns 0.005 ns 0.003 ns 0.042 ns 0.021 ns 

P-R/P+R 0.001 ns 0.001 ns 0.000 ns 0.000 ns 0.004 ns 0.003 ns 0.023 ns 0.014 ns 

P-RE/P+RE 0.038 ns 0.043 ns 0.024 ns 0.033 ns 0.007 ns 0.018 ns 0.014 ns 0.001 ns 

Avg(P-/P+) 0.001 ns 0.000 ns 0.002 ns 0.001 ns 0.016 ns 0.007 ns 0.034 ns 0.025 ns 

RE-P/RE+P 0.038 ns 0.043 ns 0.024 ns 0.033 ns 0.007 ns 0.018 ns 0.014 ns 0.001 ns 

RE-B/RE+B 0.009 ns 0.016 ns 0.006 ns 0.010 ns 0.004 ns 0.001 ns 0.049 ns 0.010 ns 

RE-G/RE+G 0.011 ns 0.019 ns 0.005 ns 0.009 ns 0.002 ns 0.002 ns 0.047 ns 0.007 ns 

RE-O/RE+O 0.021 ns 0.024 ns 0.010 ns 0.016 ns 0.000 ns 0.002 ns 0.045 ns 0.007 ns 

RE-R/RE+R 0.021 ns 0.024 ns 0.011 ns 0.016 ns 0.000 ns 0.002 ns 0.033 ns 0.005 ns 

Avg(RE-/RE+) 0.019 ns 0.025 ns 0.010 ns 0.016 ns 0.000 ns 0.003 ns 0.042 ns 0.005 ns 

Angle PB 0.018 ns 0.003 ns 0.014 ns 0.011 ns 0.031 ns 0.001 ns 0.038 ns 0.016 ns 

Angle PG 0.017 ns 0.003 ns 0.015 ns 0.012 ns 0.026 ns 0.000 ns 0.033 ns 0.012 ns 

Angle PO 0.008 ns 0.001 ns 0.010 ns 0.007 ns 0.013 ns 0.000 ns 0.031 ns 0.010 ns 

Sum(P angles) 0.015 ns 0.002 ns 0.014 ns 0.010 ns 0.024 ns 0.000 ns 0.035 ns 0.013 ns 

Angle RER 0.001 ns 0.001 ns 0.003 ns 0.001 ns 0.006 ns 0.001 ns 0.030 ns 0.005 ns 

Angle REO 0.004 ns 0.000 ns 0.006 ns 0.003 ns 0.010 ns 0.000 ns 0.036 ns 0.008 ns 

Angle REG 0.011 ns 0.001 ns 0.011 ns 0.007 ns 0.022 ns 0.000 ns 0.037 ns 0.010 ns 

Sum(RE angles) 0.004 ns 0.000 ns 0.006 ns 0.003 ns 0.011 ns 0.000 ns 0.034 ns 0.007 ns 

Table 5: The relationship of different reflectance band combinations on belowground stored carbon in the middle 

sediment layer (10-20 cm).                                                                                                                                                

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = ****  

 



37 

 

                                                                                                                                                                                                                                                                          

 

Predictor 

20-30 cm 

All data Gaps excluded 

Mass LOI (%) Organic C Inorganic C Total C Mass LOI (%) Organic C Inorganic C Total C 

R2 P R2 P R2 P R2 P R2 P R2 P R2 P R2 P 

Purple 0.072 ns 0.014 ns 0.038 ns 0.003 ns 0.077 ns 0.036 ns 0.044 ns 0.009 ns 

Blue 0.071 ns 0.007 ns 0.036 ns 0.005 ns 0.079 ns 0.016 ns 0.055 ns 0.000 ns 

Green 0.065 ns 0.006 ns 0.038 ns 0.007 ns 0.075 ns 0.010 ns 0.057 ns 0.000 ns 

Orange 0.049 ns 0.005 ns 0.032 ns 0.006 ns 0.059 ns 0.007 ns 0.052 ns 0.001 ns 

Red 0.050 ns 0.005 ns 0.033 ns 0.006 ns 0.059 ns 0.008 ns 0.054 ns 0.000 ns 

Red Edge 0.043 ns 0.003 ns 0.038 ns 0.010 ns 0.050 ns 0.006 ns 0.011 ns 0.001 ns 

NIR 0.063 ns 0.007 ns 0.050 ns 0.011 ns 0.061 ns 0.021 ns 0.024 ns 0.006 ns 

B:P 0.031 ns 0.002 ns 0.016 ns 0.003 ns 0.042 ns 0.001 ns 0.041 ns 0.003 ns 

G:P 0.025 ns 0.003 ns 0.022 ns 0.005 ns 0.040 ns 0.001 ns 0.059 ns 0.006 ns 

O:P 0.006 ns 0.003 ns 0.011 ns 0.001 ns 0.015 ns 0.000 ns 0.045 ns 0.012 ns 

R:P 0.006 ns 0.002 ns 0.014 ns 0.003 ns 0.014 ns 0.000 ns 0.043 ns 0.012 ns 

RE:P 0.001 ns 0.012 ns 0.002 ns 0.014 ns 0.002 ns 0.047 ns 0.075 ns 0.009 ns 

Avg(P ratios) 0.014 ns 0.002 ns 0.018 ns 0.005 ns 0.026 ns 0.000 ns 0.038 ns 0.010 ns 

P:RE 0.012 ns 0.007 ns 0.000 ns 0.005 ns 0.014 ns 0.045 ns 0.064 ns 0.010 ns 

B:RE 0.040 ns 0.006 ns 0.009 ns 0.000 ns 0.051 ns 0.022 ns 0.103 ns 0.000 ns 

G:RE 0.036 ns 0.005 ns 0.016 ns 0.001 ns 0.051 ns 0.014 ns 0.110 . 0.001 ns 

O:RE 0.017 ns 0.007 ns 0.008 ns 0.000 ns 0.029 ns 0.010 ns 0.109 . 0.003 ns 

R:RE 0.018 ns 0.006 ns 0.010 ns 0.000 ns 0.030 ns 0.013 ns 0.130 . 0.003 ns 

Avg(RE ratios) 0.027 ns 0.006 ns 0.010 ns 0.000 ns 0.040 ns 0.017 ns 0.113 . 0.001 ns 

1/G 0.028 ns 0.019 ns 0.020 ns 0.000 ns 0.039 ns 0.029 ns 0.093 ns 0.001 ns 

1/B:P 0.019 ns 0.010 ns 0.012 ns 0.000 ns 0.031 ns 0.011 ns 0.099 ns 0.002 ns 

1/B:RE 0.010 ns 0.019 ns 0.001 ns 0.008 ns 0.017 ns 0.046 ns 0.124 . 0.003 ns 

1/R:RE 0.001 ns 0.019 ns 0.001 ns 0.008 ns 0.005 ns 0.033 ns 0.143 . 0.000 ns 

1/Avg(P ratios) 0.006 ns 0.008 ns 0.014 ns 0.000 ns 0.016 ns 0.003 ns 0.094 ns 0.008 ns 

1/Avg(RE ratios) 0.004 ns 0.020 ns 0.001 ns 0.008 ns 0.011 ns 0.040 ns 0.133 . 0.001 ns 

NDVI 0.027 ns 0.015 ns 0.014 ns 0.034 ns 0.014 ns 0.006 ns 0.120 . 0.007 ns 

NIR-RE/NIR+RE 0.005 ns 0.015 ns 0.003 ns 0.003 ns 0.012 ns 0.026 ns 0.141 . 0.000 ns 

P-B/P+B 0.025 ns 0.006 ns 0.015 ns 0.001 ns 0.037 ns 0.007 ns 0.078 ns 0.002 ns 

P-G/P+G 0.016 ns 0.010 ns 0.017 ns 0.000 ns 0.030 ns 0.010 ns 0.095 ns 0.002 ns 

P-O/P+O 0.001 ns 0.008 ns 0.008 ns 0.000 ns 0.007 ns 0.002 ns 0.081 ns 0.009 ns 

P-R/P+R 0.002 ns 0.006 ns 0.011 ns 0.000 ns 0.008 ns 0.001 ns 0.083 ns 0.012 ns 

P-RE/P+RE 0.005 ns 0.010 ns 0.001 ns 0.011 ns 0.006 ns 0.052 ns 0.070 ns 0.012 ns 

Avg(P-/P+) 0.006 ns 0.005 ns 0.015 ns 0.001 ns 0.015 ns 0.000 ns 0.062 ns 0.009 ns 

RE-P/RE+P 0.005 ns 0.010 ns 0.001 ns 0.011 ns 0.006 ns 0.052 ns 0.070 ns 0.012 ns 

RE-B/RE+B 0.019 ns 0.014 ns 0.003 ns 0.003 ns 0.028 ns 0.037 ns 0.117 . 0.001 ns 

RE-G/RE+G 0.013 ns 0.018 ns 0.005 ns 0.003 ns 0.024 ns 0.038 ns 0.128 . 0.001 ns 

RE-O/RE+O 0.003 ns 0.016 ns 0.001 ns 0.005 ns 0.009 ns 0.025 ns 0.125 . 0.000 ns 

RE-R/RE+R 0.005 ns 0.015 ns 0.003 ns 0.003 ns 0.012 ns 0.026 ns 0.141 . 0.000 ns 

Avg(RE-/RE+) 0.009 ns 0.016 ns 0.002 ns 0.005 ns 0.017 ns 0.037 ns 0.130 . 0.001 ns 

Angle PB 0.062 ns 0.003 ns 0.030 ns 0.008 ns 0.073 ns 0.004 ns 0.060 ns 0.002 ns 

Angle PG 0.058 ns 0.003 ns 0.035 ns 0.009 ns 0.070 ns 0.005 ns 0.061 ns 0.002 ns 

Angle PO 0.036 ns 0.002 ns 0.026 ns 0.006 ns 0.047 ns 0.001 ns 0.053 ns 0.006 ns 

Sum(P angles) 0.054 ns 0.003 ns 0.031 ns 0.008 ns 0.065 ns 0.003 ns 0.059 ns 0.003 ns 

Angle RER 0.040 ns 0.005 ns 0.022 ns 0.003 ns 0.050 ns 0.008 ns 0.078 ns 0.002 ns 

Angle REO 0.041 ns 0.005 ns 0.023 ns 0.003 ns 0.052 ns 0.007 ns 0.067 ns 0.002 ns 

Angle REG 0.061 ns 0.005 ns 0.031 ns 0.005 ns 0.073 ns 0.011 ns 0.070 ns 0.000 ns 

Sum(RE angles) 0.046 ns 0.005 ns 0.025 ns 0.003 ns 0.057 ns 0.008 ns 0.073 ns 0.001 ns 

Table 6: The relationship of different reflectance band combinations on belowground stored carbon in the lower 

sediment layer (20-30 cm).                                                                                                                                               

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = ****  
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CHAPTER 6 

 

 

DISCUSSION AND CONCLUSIONS 

 

 

Hypothesis I: Seagrass cover can be predicted from multispectral reflectance values.  

 

1.a. Vignetting, Directional Bias, and Other Variance Factors 

Our initial hypothesis theorized that vignetting, directional bias, flight altitude, water 

depth and sediment bulk density may create noise within the data. The vignetting effect would 

cause quadrats farther away from the center of the image to have lower reflectance values than 

the same quadrats closer to the center of a different image. Because there is often no relationship, 

or the reflectance values are higher farther from the center, we reject our hypothesis that the 

vignetting effect would be present in the images.  

 Another possible source of image noise was the angle of solar radiation entry that would 

cause a directional bias in the reflectance values for a given quadrat. As the sunlight was entering 

the water from the southeast at the time of both flights, we expected that quadrats in the 

southeast corner of the images would have lower reflectance across wavelengths than the same 

quadrats in different sections of other images. We found that some cardinal directions have 

higher reflectance values than others and which directions have the highest reflectance differs 

between days and across individual images. This cannot be attributed to interference from solar 

angle. However, these directional biases are consistent across wavelengths, and using ratios of 
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the bands to each other rather than single bands helps rectify this issue.  

 Reflectance values did vary based on date, depth, altitude, and sediment bulk density. 

The amount of variance is not consistent across different cover categories. In some cases, as in 

the case of variance by flight day, these 

factors have non-additive interactions and 

are difficult to separate from each other. 

For example, the second day of imagery 

was in a different season, at a different 

altitude, and imaged a particular cover 

category in an area that was typically 

deeper and had higher bulk density. For 

example, soil bulk density was a more 

influential factor on the purple and red-

edge bands on the second flight day than 

the first, but this is likely due to the fact 

that the spread of bulk density values was 

greater on the second day (0.3774 – 

1.1308 g/cm3) than on the first (0.1444 – 

0.5529 g/cm3).  Date, altitude, depth, and bulk density are confounded with each other, and with 

other predictors like seagrass cover category (Fig. 9). Some of the variance in reflectance is 

likely due to factors like altitude or water depth, but the effects of these factors cannot be reliably 

isolated from the variance resulting from actual differences in seagrass cover. One solution is to 

use ratios of reflectance values, which are not as subject to variation arising from these abiotic 

Figure 9:  Confounding factors by seagrass cover category.  
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confounding factors as are individual reflectance values. One possible solution to these issues is 

to use reflectance ratios, which are not as subject to variation arising from being measured on 

different days or at different altitudes. This is not a perfect solution, however, because some 

wavelengths are influenced more or differently by certain factors than others. For example, red 

wavelengths are more influenced by water depth than blue, so using ratios does not entirely 

rectify this problem.  

 

1.b. Ratios versus Single Band Models 

 As we hypothesized, ratios of bands to each other were better predictors of reflectance 

than single band reflectance alone, although single bands were more useful than expected. The 

inverse of the green band (1/G) was a particularly good predictor of seagrass cover (p < 0.0001, 

R2 = 0.515 – 0.567). Furthermore, some ratios and other calculations, including spectral angle 

calculations, are not particularly good indicators of seagrass cover. 

 

1.c. Single versus Multi-image Models 

In many cases, single image reflectance values explained about as much or more variance 

in seagrass cover than when using four reflectance values as separate data points. Single image 

reflectance metrics produced similarly significant models for predicting seagrass cover as 

multiple images. In some instances, multiple images were better, in other cases, single images 

were better or produced similar significance. However, the average values for different reflection 

metrics derived from multiple images were nearly always better predictors than either the single 

image values or the four values considered as separate data points (Fig. 10). 
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Figure 10: Amount of variance (R2) in various reflectance models explained by a single image, 4 images, and the 

multi-image averages. 

 

1.d. NDVI as a Predictor of Seagrass Cover 

NDVI, calculated as (NIR − Red) / (NIR + Red), was not useful when considering single 

images (R2 = 0.200) or multiple images as separate data points (R2 = 0.245), but it was a 

reasonably good predictor when considering its average across multiple images (R2 = 0.556). 

Furthermore, the best predictor of seagrass cover that we found was a variation of NDVI, which 

we calculated as (NIR − Red Edge) / (NIR + Red Edge). Red-edge falls just between red and 

NIR on the spectrum. 

The reliability of metrics that use red-edge and/or NIR is questionable in deeper waters. 

Our sample area was shallow (<1.5 m) with generally clear water, so attenuation of red and IR 

wavelengths was less than would be expected in many other areas where seagrass grows. Our 

images still showed some detail in NIR, although NIR was less detailed than the shorter 
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wavelengths (Fig. 13). We expect that the reliability of any predictor that include NIR or red 

edge wavelengths will decrease as the depth of the water being surveyed increases. A similar 

study using multispectral imagery to predict seagrass cover found a similar NIR in dense 

seagrass cover but excluded NIR from consideration due to light scattering (Schweizer et al., 

2005). Previous studies have created models that account for NIR reflectance in waters that NIR 

scattering may not be as prevalent, although further study of our site would be needed to 

accurately create a model that accounted for this (Bailey et al., 2010). 
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Figure 11: The same area in 

red/green/blue composite (natural 

color), violent, blue, green, orange, 

red, red-edge, and NIR. At this 

depth, red-edge and NIR still show 

some detail, although less than 

shorter wavelengths.  

 

Violet Blue 

Green Orange Red 

Red-Edge NIR 

Red/Green/

Blue  
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Summary 

Applying this research on a larger scale may introduce new challenges. UAVs are 

sensitive to weather conditions, such as wind and rain and, and while UAV surveys can produce 

very fine-scale spatial resolution, mounting a multispectral sensor onto a low-flying aircraft may 

be more appropriate for annual mapping. Applications of UAVs could provide low cost solutions 

for small management organizations that only wish to create baseline surveys. UAVs also could 

be especially useful in monitoring small areas affected by human activity, such as construction 

projects.  

Our results suggest that predicting seagrass cover from multispectral reflectance values is 

possible. Accounting for factors that influence reflectance outside of seagrass cover can improve 

predictions. Averaging reflectance values across multiple images and using band ratios and 

indices instead of single bands also improves the fit of prediction models. At shallow depths, red, 

red-edge, and NIR prove useful in predicting seagrass cover (Table 7). When excluding models 

that use red, red-edge, or NIR metrics, the ratio of blue to purple model explains variance well 

(R2 = 0.610). If only red, green, and blue wavelengths are available (as is the case with a 

standard camera), the inverse ratio of green can be useful in predicting seagrass cover. 
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Table 7: Ranking of reflectance metrics’ goodness-of-fit (R2) and significance (p), listed in descending order of 

based on the amount of variance explained by the four-image average.                                                                                            

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = **** 

 

Predictor 
Average of 4 Images 

R2 P Rank 

Ratio Near IR - Red Edge / Near IR + Red Edge 0.753 **** 1 

Inverse ratio Red Red Edge 0.713 **** 2 

Ratio Red Edge - Orange / Red Edge + Orange 0.686 **** 3 

Ratio Red Edge - Red / Red Edge + Red 0.684 **** 4 

Inverse Average Ratios Red Edge 0.676 **** 5 

Inverse ratio Blue Red Edge 0.646 **** 6 

Average Ratios Above P B G O R -/+ RE Palues 0.641 **** 7 

Ratio Red Edge - Green / Red Edge + Green 0.634 **** 8 

Inverse ratio Blue Purple 0.610 **** 9 

Ratio Red Red Edge 0.609 **** 10 

Ratio Red Edge - Blue / Red Edge + Blue 0.608 **** 11 

Ratio Purple - Orange / Purple + Orange 0.597 **** 12 

Ratio Orange Red Edge 0.592 **** 13 

Inverse band Green 0.567 **** 14 

Angle Red Edge Red 0.564 **** 15 

Ratio Purple - Green / Purple + Green 0.562 **** 16 

Ratio Purple - Blue / Purple + Blue 0.556 **** 17 

Average Ratios Red Edge 0.556 **** 18 

Inverse Average Ratios Purple 0.551 **** 19 

Angle Red Edge Orange 0.548 **** 20 

Sum Angles Red Edge 0.543 **** 21 

Ratio Green Red Edge 0.527 **** 22 

Ratio Blue Purple 0.516 **** 23 

Ratio Blue Red Edge 0.515 *** 24 

Ratio Purple - Red / Purple + Red 0.513 **** 25 

Angle Red Edge Green 0.497 **** 26 

Ratio Orange Purple 0.497 **** 27 

NDVI (Ratio) Near IR - Red / Near IR + Red 0.496 **** 28 

Ratio Green Purple 0.481 **** 29 

Angle Purple Orange 0.461 **** 30 

Sum Angles Purple 0.452 **** 31 

Average Ratios Purple 0.451 **** 32 

Average Ratios Above B G O R RE -/+ P Palues 0.449 **** 33 

Angle Purple Blue 0.447 **** 34 

Ratio Red Purple 0.444 **** 35 

Angle Purple Green 0.441 **** 36 

Single band Green 0.356 **** 37 

Single band Orange 0.355 *** 38 

Single band Blue 0.337 *** 39 

Single band Red 0.324 *** 40 

Ratio Purple - Red Edge / Purple + Red Edge 0.286 *** 41 

Ratio Red Edge Purple 0.267 ** 42 

Ratio Purple Red Edge 0.260 Ns 43 

Ratio Red Edge - Purple / Red Edge + Purple 0.253 **** 44 

Single band Purple 0.240 ** 45 

Single band Near IR 0.082 . 46 

Single band Red Edge 0.000 Ns 47 
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Hypothesis II: Seagrass cover predicts belowground carbon storage. 

 

Mind the Gap. The significant linear relationships observed between seagrass cover and organic 

carbon (via mass LOI), inorganic carbon, and total carbon (as measured via an elemental 

analyzer) for the 10-20 cm layer when considering all samples, including gaps, are negative. A 

negative relationship is contrary to expectations and to our understanding of seagrass ecology 

and biogeochemistry. These patterns are driven by the inclusion of seagrass bed gaps, which 

have zero seagrass cover but enriched sedimentary carbon, even relative to dense seagrass beds 

nearby, and dominate the relatively subtle relationships between seagrass cover and sedimentary 

carbon.  

Although these gaps, often termed underwater fairy circles, are a documented 

phenomenon, there is little agreement in the scientific community as to why they form. 

Considering gaps were found to at greater depths than the surrounding and that the upper layer of 

sediment was of a lower bulk density, we theorized that these patches are areas of recent seagrass 

loss. This may help explain why carbon stocks were higher in these areas than the surrounding 

areas, as the decomposition of seagrass biomass that had previously occupied the area would 

contribute to sedimentary carbon. Studies of underwater fairy circles in Mediterranean eelgrass 

beds (Zostera marina)  supported the theory that these are areas of seagrass death due to 

competition, i.e. seagrass shoot density becomes so great in these areas that seagrass dies out 

from the center (Ruiz-Reynés et al., 2017). This also explains why the fringe seagrass category 

generally had higher organic carbon content than the surrounding seagrass beds, as shoot density 

is highest surrounding these circles and therefore may trap more particulate organic matter 
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(POM), as well as deposit more plant matter (Ruiz-Reynés et al., 2017). Another study on Z. 

marina found that nutrient limitation is the driving factor in fairy circle formation (Borum et al., 

2014). Another possible explanation would be the oscillation of water currents in these deeper, 

circular patches that could cause POM. An isotopic analysis of sedimentary carbon in the area 

could help explain the origin of the gaps often found in seagrass cover.  

Carbon Storage Estimates Excluding Gaps. Excluding the gap category improved our 

prediction models in the top layer of sediment. Organic carbon (via mass LOI), inorganic carbon, 

and total carbon all showed a positive relationship with seagrass cover, although these 

relationships were weaker than expected (Fig. 12). As expected, organic carbon also decreased 

with depth in the sediment layer (Fig 13).  

The dynamic nature of seagrass bed patterns may help explain why the relationships 

between aboveground cover and belowground stored carbon is weaker in our study area than 

would be expected in a terrestrial ecosystem. A study on Z. marina found than in the 7 years 

between mapping efforts, 39-62% of seagrass cover had changed (either died off or made a 

comeback) (Frederiksen et al., 2004). This further highlights the need for frequent assessments.  
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Figure 12: The linear relationships between seagrass cover and percent (%) total carbon, inorganic carbon, and 

organic carbon, when excluding seagrass gaps in the topmost layer of sediment (0-10 cm).                

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = ****  

Figure 13:  Percent (%) sedimentary total, inorganic, and organic carbon decreases with depth and the top 10 cm of 

sediment has the most variability in the amount of belowground stored carbon. 
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Hypothesis III: Multispectral reflectance can be used to estimate sedimentary carbon. 

 

 Recently, advances in making Sedimentary carbon estimates from remotely sensed data 

have emerged. Generally, these studies have worked with terrestrial systems. Chen et al. (2019) 

found that reflectance was a key component in determining soil organic matter (SOM) in 

croplands. NIR, red, blue, and green bands were all used to generate soil models, though 

additional environmental factors such as soil moisture content were also used in the models. A 

similar study found that NDVI, when used in conjunction with field measurements, could help 

provide litter and Sedimentary carbon estimates for forested areas (Cao et al., 2019). 

As using reflectance to create models that predict belowground stored carbon in 

terrestrial ecosystems is a fairly new approach, few instances of these types of models exist for 

use in underwater systems. Our attempts to generate these models showed some promise, though 

only in the topmost (0-10 cm) layer of sediment. Models generated for this layer (and excluding 

the gap category) in our study have shown that reflectance can be a reasonably good indicator of 

belowground stored carbon, with some relationship showing high significance (p < 0.0001) and 

R2 values as high as 0.475 (Table 8).  Different ratios of green and red-edge and the inverse of 

green reflectance produced the most significant models across all carbon categories, although 

metrics using red, red-edge, and NIR could be less useful in deeper water. Purple, blue, and 

green reflectance, which would not dissipate as readily in deeper water, also showed promise in 

predicting organic carbon storage.  
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Table 8: A ranking of the relationship between various reflectance predictors and sedimentary carbon for the top 

layer (0-10 cm) of sediment, when the gap cover category is excluded.  

p ≤ 0.051 – 0.06 .          p ≤ 0.05 = *          p ≤ 0.01 = **      p ≤ 0 .001 = ***        p < 0.0001 = **** 

0-10 cm depth, gaps excluded 

Rank 
Organic C (%, via LOI) Organic C (%, via EA) Inorganic C (%, via EA) Total C (%, via EA) 

Predictor R2 P Predictor R2 P Predictor R2 P Predictor R2 P 

1 G:RE 0.466 **** 1/G 0.409 *** G:RE 0.457 *** G:RE 0.475 **** 

2 1/G 0.445 *** Purple 0.396 *** B:RE 0.441 *** Avg(RE ratios) 0.446 *** 

3 Avg(RE ratios) 0.441 *** Blue 0.392 *** Avg(RE ratios) 0.434 *** O:RE 0.441 *** 

4 B:RE 0.441 *** Green 0.390 *** RE-B/RE+B 0.422 *** B:RE 0.439 *** 

5 O:RE 0.434 *** Angle REG 0.382 *** O:RE 0.421 *** RE-G/RE+G 0.436 *** 

6 R:RE 0.425 *** Angle PG 0.369 *** RE-G/RE+G 0.410 *** R:RE 0.428 *** 

7 RE-G/RE+G 0.422 *** Orange 0.366 *** 1/B:RE 0.400 *** RE-B/RE+B 0.424 *** 

8 RE-B/RE+B 0.420 *** Sum(RE angles) 0.361 *** Avg(RE-/RE+) 0.391 *** Angle REG 0.420 *** 

9 Angle REG 0.416 *** Red 0.360 *** R:RE 0.390 *** Avg(RE-/RE+) 0.405 *** 

10 Avg(RE-/RE+) 0.397 *** Angle REO 0.355 ** 1/Avg(RE ratios) 0.372 *** 1/B:RE 0.405 *** 

11 1/B:RE 0.396 *** Sum(P angles) 0.354 ** RE-O/RE+O 0.369 *** 1/G 0.402 *** 

12 1/B:P 0.391 *** Angle PB 0.350 ** NIR-RE/NIR+RE 0.345 ** P-G/P+G 0.399 *** 

13 P-B/P+B 0.390 *** NIR 0.348 ** RE-R/RE+R 0.345 ** 1/B:P 0.396 *** 

14 P-G/P+G 0.386 *** Angle RER 0.348 ** P-B/P+B 0.333 ** RE-O/RE+O 0.394 *** 

15 RE-O/RE+O 0.386 *** Angle PO 0.327 ** 1/B:P 0.332 ** 1/Avg(RE ratios) 0.391 *** 

16 Sum(RE angles) 0.384 *** P-G/P+G 0.315 ** G:P 0.332 ** P-B/P+B 0.391 *** 

17 NIR-RE/NIR+RE 0.384 *** G:RE 0.314 ** P-G/P+G 0.329 ** Sum(RE angles) 0.389 *** 

18 RE-R/RE+R 0.384 *** 1/B:P 0.307 ** 1/R:RE 0.313 ** NIR-RE/NIR+RE 0.387 *** 

19 1/Avg(RE ratios) 0.381 *** R:RE 0.301 ** B:P 0.306 ** RE-R/RE+R 0.387 *** 

20 Angle REO 0.377 *** P-B/P+B 0.297 ** Angle REG 0.302 ** G:P 0.383 *** 

21 G:P 0.376 *** RE-G/RE+G 0.296 ** Sum(RE angles) 0.273 ** Angle PB 0.382 *** 

22 Angle PB 0.376 *** O:RE 0.294 ** Angle PB 0.273 ** Angle PG 0.381 *** 

23 Angle PG 0.372 *** Avg(RE ratios) 0.289 ** Angle REO 0.266 ** Angle REO 0.380 *** 

24 Green 0.371 *** G:P 0.286 ** Angle RER 0.257 ** Angle RER 0.370 *** 

25 Blue 0.368 *** 1/Avg(P ratios) 0.283 ** Angle PG 0.256 ** Sum(P angles) 0.369 *** 

26 Angle RER 0.365 *** NIR-RE/NIR+RE 0.280 ** 1/G 0.255 ** Green 0.367 *** 

27 Sum(P angles) 0.361 *** RE-R/RE+R 0.280 ** 1/Avg(P ratios) 0.250 ** 1/R:RE 0.356 ** 

28 1/R:RE 0.353 ** B:RE 0.274 ** Sum(P angles) 0.250 ** Blue 0.353 ** 

29 B:P 0.350 ** RE-O/RE+O 0.270 ** P-O/P+O 0.248 ** B:P 0.340 ** 

30 Orange 0.330 ** RE-B/RE+B 0.268 ** O:P 0.246 ** 1/Avg(P ratios) 0.329 ** 

31 1/Avg(P ratios) 0.322 ** Avg(RE-/RE+) 0.265 ** P:RE 0.238 ** Orange 0.324 ** 

32 Purple 0.318 ** 1/Avg(RE ratios) 0.262 ** Avg(P ratios) 0.235 * Angle PO 0.321 ** 

33 Angle PO 0.312 ** P-O/P+O 0.262 ** Green 0.220 * P-O/P+O 0.315 ** 

34 P-O/P+O 0.309 ** 1/R:RE 0.262 ** Angle PO 0.203 * Red 0.296 ** 

35 Red 0.304 ** 1/B:RE 0.258 ** P-RE/P+RE 0.201 * O:P 0.296 ** 

36 O:P 0.294 ** Red Edge 0.255 ** RE-P/RE+P 0.201 * Avg(P ratios) 0.285 ** 

37 Avg(P ratios) 0.287 ** Avg(P-/P+) 0.243 ** Blue 0.200 * Purple 0.282 ** 

38 Avg(P-/P+) 0.269 ** B:P 0.243 ** Avg(P-/P+) 0.200 * Avg(P-/P+) 0.272 ** 

39 P-R/P+R 0.258 ** P-R/P+R 0.241 ** Orange 0.180 * P-R/P+R 0.258 ** 

40 R:P 0.234 * O:P 0.231 * P-R/P+R 0.180 * R:P 0.230 * 

41 NIR 0.192 * Avg(P ratios) 0.225 * R:P 0.172 * P:RE 0.186 * 

42 P:RE 0.189 * R:P 0.201 * NDVI 0.161 * NIR 0.181 * 

43 P-RE/P+RE 0.154 * P:RE 0.079 ns Red 0.148 * P-RE/P+RE 0.158 * 

44 RE-P/RE+P 0.154 * P-RE/P+RE 0.068 ns RE:P 0.131 . RE-P/RE+P 0.158 * 

45 Red Edge 0.124 . RE-P/RE+P 0.068 ns Purple 0.112 . RE:P 0.113 . 

46 RE:P 0.101 ns RE:P 0.057 ns NIR 0.035 ns Red Edge 0.106 . 

47 NDVI 0.059 ns NDVI 0.006 ns Red Edge 0.009 ns NDVI 0.074 ns 
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Limitations to Using Reflectance to Predict Carbon Storage 

 

Carbon Storage Varies by Species and the Surrounding Ecosystem. Previous studies have 

documented the variability of carbon storage in seagrass beds across both large and small spatial 

scales. Different seagrass species have different carbon storage rates and generally larger species 

have a greater storage potential than smaller species (Lavery et al., 2013). Mixed species beds 

may also store carbon differently than single species beds. Productivity, which is dependent on 

short-term nutrient availability, and long-term nutrient history both affect carbon storage rates 

(Lavery et al., 2013, Armitage and Fourqurean, 2016).  

Since as much as 50% of carbon stored within seagrass beds comes from allochthonous 

sources, the larger landscape surrounding seagrass beds and well as prevailing currents in the 

areas could also influence carbon deposition (Kennedy et al., 2010). Additionally, other abiotic 

factors such as water depth affect carbon storage potential of seagrass beds (Serrano et al., 2014). 

The best solution for accounting for these factors is to establish baselines for each species within 

a large area and then use reflectance data to extrapolate the carbon storage potential of a larger 

area.  

 

Gaps. As gaps contain higher belowground stored carbon than the surrounding seagrass beds and 

much higher carbon than bare patches, while producing similar reflectance to bare patches, 

making carbon estimates without accounting for these anomalies may produce inaccurate 

estimations. To remedy this, gaps should be included in establishing a baseline carbon storage 

for an area. Questions as to whether this carbon should be considered as stored also arise and 

depend on the origin (and therefore long-term storage potential) of the carbon. If the carbon 
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came from outside sources, will the bare area be able to bury that carbon as well as areas of 

dense seagrass? If the carbon came from locally decomposing seagrass, do these bare patches 

represent a release of carbon back into the atmosphere or do the surrounding seagrass beds aid in 

recapturing the suspending organic matter? Gaps within the seagrass matrix present an 

interesting case for future study. 

 

Reflectance May Vary by Season. Senescence, or the seasonal yellowing of leaves, can present 

an issue for vegetation mapping. Some seagrasses also experience this yearly die-off. Since this 

causes a change in the 

amount of chlorophyll in the 

leaf tissue, the wavelengths 

that the leaves reflect also 

change (Fig. 14). To prevent 

this issue, reflectance values 

should be gathered at 

approximately the same time 

each year, especially in more 

temperate areas.  

. 

 

 

 

 

Figure 14: Difference in reflectance values of green and brown blades of T. 

testudinum. 
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Conclusions 

 

Seagrass maps that rely on point data can be both time consuming and over- or 

underestimate total coverage. One model suggests that seagrass beds may occupy more than 

twice the current estimates from traditional mapping techniques (Jayathilake and Costello, 2018). 

Methods for estimating seagrass coverage are essential for planning and management. Remote 

sensing using multispectral sensors may provide a better methodology. Our use of drones to 

measure spectral reflectance to estimate seagrass cover can be used to generate maps that have 

fine spatial (give resolution) and temporal scales and are less time and labor intensive. This 

technique can be scaled up for larger areas or used with UAVs to achieve fine-scale resolution.  

Terrestrial belowground carbon storage has been found to coincide with aboveground 

vegetation density (Ryan, 1991). This link is suspected but not well studied in aquatic 

ecosystems. This research has shown that seagrass coverage relates to belowground carbon 

storage, within the upper soil profile. Establishing this relationship has implications for how 

carbon storage is estimated within seagrass meadows. Previous studies have concluded that 

organic carbon storage is influenced by many factors, including abiotic and biotic variables, so 

baselines for different geographic areas need to be further explored (Samper‐Villarreal, 2016). 

Since seagrasses are one of the largest carbon sinks worldwide, being able to easily map and 

from these maps accurately predict carbon storage will have implications for protecting seagrass 

habitat and for scientists attempting to mitigate the effects of climate change.  
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APPENDIX A 

 

MAIA WV MULTISPECTRAL CAMERA SPECIFICATIONS 

 

 

  

MAIA MV 9-band multispectral 

camera and associated Incoming Light 

Sensor. Spectral sensitivity of the MAIA MV sensor. 

Distinct bands of the MAIA MV sensor, from Sal Engineering© 
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APPENDIX B 

 

MATRICE 600 PRO SPECIFICATIONS 
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APPENDIX C 

 

 LIST OF REFELECTANCE ABBREVIATIONS  

Predictor Abbreviation 

Single band Purple Purple 

Single band Blue Blue 

Single band Green Green 

Single band Orange Orange 

Single band Red Red 

Single band Red Edge Red Edge 

Single band Near IR NIR 

Ratio Blue Purple B:P 

Ratio Green Purple G:P 

Ratio Orange Purple O:P 

Ratio Red Purple R:P 

Ratio Red Edge Purple RE:P 

Average Ratios Purple Avg(P ratios) 

Ratio Purple Red Edge P:RE 

Ratio Blue Red Edge B:RE 

Ratio Green Red Edge G:RE 

Ratio Orange Red Edge O:RE 

Ratio Red Red Edge R:RE 

Average Ratios Red Edge Avg(RE ratios) 

Inverse band Green 1/G 

Inverse ratio Blue Purple 1/B:P 

Inverse ratio Blue Red Edge 1/B:RE 

Inverse ratio Red Red Edge 1/R:RE 

Inverse 

Average 
Ratios Purple 

1/Avg(P ratios) 

Inverse 

Average 
Ratios Red Edge 

1/Avg(RE ratios) 

NDVI (Ratio) Near IR - Red / Near IR + Red NDVI 

Ratio Near IR - Red Edge / Near IR + Red Edge NIR-RE/NIR+RE 

Ratio Purple - Blue / Purple + Blue P-B/P+B 

Ratio Purple - Green / Purple + Green P-G/P+G 

Ratio Purple - Orange / Purple + Orange P-O/P+O 

Ratio Purple - Red / Purple + Red P-R/P+R 
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Predictor Abbreviation 

 

Ratio 
Purple - Red Edge / Purple + Red Edge 

P-RE/P+RE 

Average Ratios Above B G O R RE -/+ P Palues Avg(P-/P+) 

Ratio Red Edge - Purple / Red Edge + Purple RE-P/RE+P 

Ratio Red Edge - Blue / Red Edge + Blue RE-B/RE+B 

Ratio Red Edge - Green / Red Edge + Green RE-G/RE+G 

Ratio Red Edge - Orange / Red Edge + Orange RE-O/RE+O 

Ratio Red Edge - Red / Red Edge + Red RE-R/RE+R 

Average Ratios Above P B G O R -/+ RE Palues Avg(RE-/RE+) 

Angle Purple Blue Angle PB 

Angle Purple Green Angle PG 

Angle Purple Orange Angle PO 

Sum Angles Purple Sum(P angles) 

Angle Red Edge Red Angle RER 

Angle Red Edge Orange Angle REO 

Angle Red Edge Green Angle REG 

Sum Angles Red Edge Sum(RE angles) 

 

 

 

 

 

 

 

 

 



 

65 
 

BIOGRAPHICAL SKETCH 

 

 

Ivy M. Hinson graduated from the University of Texas Rio Grande Valley in August 

2019. She completed her Master of Science in Ocean, Coastal, and Environmental Science under 

Dr. Christopher A. Gabler and Dr. Abdullah F. Rahman. She previously completed her 

undergraduate degree at the University of North Carolina Wilmington in 2012 with a Bachelor’s 

of Science in Biology. She may be contacted at ivyhinson@gmail.com.  


	Developing Multispectral Imaging Techniques to Determine Canopy Coverage and Carbon Storage of Seagrasses in the Gulf of Mexico
	Recommended Citation

	tmp.1683661961.pdf.kljqk

