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CONDITIONAL CONSTRAINED AND UNCONSTRAINED QUANTIZATION FOR

PROBABILITY DISTRIBUTIONS

1MEGHA PANDEY AND 2MRINAL K. ROYCHOWDHURY

Abstract. In this paper, we present the idea of conditional quantization for a Borel probability measure
P on a normed space R

k. We introduce the concept of conditional quantization in both constrained
and unconstrained scenarios, along with defining the conditional quantization errors, dimensions, and
coefficients in each case. We then calculate these values for specific probability distributions. Additionally,
we demonstrate that for a Borel probability measure, the lower and upper quantization dimensions and
coefficients do not depend on the conditional set of the conditional quantization in both constrained and
unconstrained quantization.

1. Introduction

Quantization involves the process of discretizing signals. In the context of probability distributions,
quantization refers to finding the best approximation of a k-dimensional probability distribution P using
a discrete probability distribution with a specified number n of supporting points (referred to as the
optimal set of n-points). In other words, it aims to find the best approximation of a k-dimensional
random vector X with distribution P using a random vector Y that has nearly n values in its range.

A plethora of research is given on quantization for probability distributions without using any con-
straint. The concept of constrained quantization was recently introduced by Pandey and Roychowd-
hury (see [PR1, PR2, PR3]). This new approach allows us to categorize quantization into two types:
unconstrained quantization and constrained quantization. Unconstrained quantization is tradition-
ally known as quantization. For some recent work in the direction of unconstrained quantization,
one can see [GL, DFG, DR, GL2, GL3, KNZ, PRRSS, P1, R1, R2, R3]. Quantization theory has
broad applications in communications, information theory, signal processing, and data compression (see
[GG, GL1, GN, P, Z1, Z2]). This paper deals with conditional quantization in both constrained and
unconstrained cases. Conditional quantization also has significant interdisciplinary applications: for ex-
ample, in radiation therapy of cancer treatment to find the optimal locations of n centers of radiation,
where k centers for some k < n of radiation are preselected, the conditional quantization technique can
be useful.

Let P be a Borel probability measure on R
k equipped with a metric d induced by a norm ‖ · ‖ on R

k,
and r ∈ (0,∞). Let N := {1, 2, 3, · · · } be the set of natural numbers. For a finite set γ ⊂ R

k and a ∈ γ,
by M(a|γ) we denote the set of all elements in R

k which are nearest to a among all the elements in γ,
i.e., M(a|γ) = {x ∈ R

k : d(x, a) = min
b∈γ

d(x, b)}. M(a|γ) is called the Voronoi region in R
k generated by

a ∈ γ.

Definition 1.1. Let {Sj ⊆ R
k : j ∈ N} be a family of closed sets with S1 nonempty. Let β ⊂ R

k be

given with card(β) = ℓ for some ℓ ∈ N. Then, for n ∈ N with n ≥ ℓ, the nth conditional constrained

quantization error for P , of order r, with respect to the family of constraints {Sj ⊆ R
k : j ∈ N} and the

set β, is defined as

Vn,r := Vn,r(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)rdP (x) : α ⊆
n
⋃

j=1

Sj, 0 ≤ card(α) ≤ n− ℓ
}

, (1)

where card(A) represents the cardinality of the set A.
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Notice the error Vn,r explicitly depends on β. For any α ⊆ R
k, the number

Vr(P ;α) :=

∫

min
a∈α

d(x, a)rdP (x) (2)

is called the distortion error for P , of order r, with respect to the set α. We assume that
∫

d(x, 0)rdP (x) <
∞ to make sure that the infimum in (1) exists (see [PR1]).

Definition 1.2. A set α ∪ β, where α ⊆ ⋃n

j=1 Sj and P (M(b|α ∪ β)) > 0 for b ∈ β, for which the

infimum in (1) exists and contains no less than ℓ elements, and no more than n elements is called an

optimal set of n-points for P , or more specifically a conditional optimal set of n-points for P . Elements

of an optimal set are called optimal elements.

Definition 1.3. Instead of the family of constraints {Sj ⊆ R
k : j ∈ N} if there is a single constraint S,

i.e., if Sj = S for all j ∈ N, then Definition 1.1 reduces to

Vn,r := Vn,r(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)rdP (x) : α ⊆ S, 0 ≤ card(α) ≤ n− ℓ
}

,

which is called the nth conditional constrained quantization error for P , of order r, with respect to the

single constraint S and the set β.

Write V∞,r(P ) := lim
n→∞

Vn,r(P ). The numbers

Dr(P ) := lim inf
n→∞

r logn

− log(Vn,r(P )− V∞,r(P ))
and Dr(P ) := lim sup

n→∞

r log n

− log(Vn,r(P )− V∞,r(P ))
, (3)

are called the conditional lower and the conditional upper constrained quantization dimensions of the
probability measure P of order r, respectively. If Dr(P ) = Dr(P ), the common value is called the
conditional constrained quantization dimension of P of order r and is denoted by Dr(P ). For any κ > 0,
the two numbers lim infn n

r

κ (Vn,r(P ) − V∞,r(P )) and lim supn n
r

κ (Vn,r(P ) − V∞,r(P )) are, respectively,
called the κ-dimensional conditional lower and conditional upper constrained quantization coefficients

for P of order r. If both of them are equal, then it is called the κ-dimensional conditional constrained

quantization coefficient for P of order r.

Definition 1.4. In Definition 1.1 if Sj = R
k for all j ∈ N, then for n ∈ N with n ≥ ℓ, the nth

conditional unconstrained quantization error for P , of order r, with respect to the set β, is defined as

Vn,r := Vn,r(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)rdP (x) : α ⊆ R
k, 0 ≤ card(α) ≤ n− ℓ

}

.

The corresponding quantization dimension and the κ-dimensional quantization coefficient, if they ex-

ist, are called the conditional unconstrained quantization dimension and the κ-dimensional conditional

unconstrained quantization coefficient for P , respectively.

Remark 1.5. The set β that occurs in any of the above definitions is referred to as the conditional

set. Notice that in unconstrained quantization, if α ∪ β is a conditional optimal set of n-points with
α nonempty, then all the elements in α are the means, i.e., the conditional expectations in their own
Voronoi regions. The elements of the conditional set β are not necessarily the means of their own
Voronoi regions.

This paper deals with r = 2 and k = 2, and the metric on R
2 as the Euclidean metric induced by

the Euclidean norm ‖ · ‖. Thus, instead of writing Vr(P ;α) and Vn,r := Vn,r(P ) we will write them as
V (P ;α) and Vn := Vn(P ).

Remark 1.6. Although all the work done in the sequel is for uniform distributions, interested re-
searchers can explore them for any probability distribution.

Delineation. In this paper, first we have given the preliminaries. Then, in Section 3, we have in-
vestigated the conditional constrained quantization for a uniform distribution on the boundary of a
semicircular disc; in Section 4, we have investigated the conditional unconstrained quantization for a
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uniform distribution on an equilateral triangle; in Section 5, with some examples, we mentioned whether
a conditional optimal set of n-points always exist or not. In the last section, Section 6, we have proved
two theorems: first theorem shows that if αn are the optimal sets of n-means for P for all n ∈ N, then
∞∪
n=1

αn is dense in the support of P ; and in the 2nd theorem we have shown that in both constrained

and unconstrained quantization, the lower and upper quantization dimensions, and the lower and upper
quantization coefficients for a Borel probability measure do not depend on the conditional set.

2. Preliminaries

Let N be the set of natural numbers and R be the collection of all real numbers. Recall that the
boundary of the Voronoi regions of any two elements p and q in an optimal set is the perpendicular
bisector of the line segment joining the elements. Hence, for any element e on the boundary of the
Voronoi regions of p and q, we have

ρ(p, e)− ρ(q, e) = 0, (4)

where for any two elements (a, b) and (c, d) in R
2, ρ((a, b), (c, d)) represents the squared Euclidean

distance between the two elements. Equation (4) is known as a canonical equation. Let us now give the
following two propositions.

Proposition 2.1. Let P be a uniform distribution on the closed interval [a, b]. Let a ≤ c < d ≤ b. Let

αn be an optimal set of n-points for P such that αn contains m elements, for some m ≤ n, from the

closed interval [c, d] including the endpoints c and d, then

αn ∩ [c, d] = {c+ j − 1

m− 1
(d− c) : 1 ≤ j ≤ m}.

Then, the distortion error contributed by these m elements in the closed interval [c, d] is given by

V (P, αn ∩ [c, d]) :=
1

12

(d− c)3

b− a

1

(m− 1)2
.

Proof. P being a uniform distribution on the closed interval [a, b], its density function is given by
f(x) = 1

b−a
if x ∈ [a, b], and zero otherwise. Also, notice that the closed interval [a, b] can be represented

by
[a, b] := {(t, 0) : a ≤ t ≤ b}.

Let c1, c2, c3, · · · , cm be the m elements that αn contains from the closed interval [c, d] such that c =
c1 < c2 < · · · < cm = d. Since the closed interval [c, d] is a line segment and P is a uniform distribution,
we have

c2 − c1 = c3 − c2 = · · · = cm − cm−1 =
cm − c1
m− 1

=
d− c

m− 1
implying

c2 = c1 +
d− c

m− 1
= c +

d− c

m− 1
,

c3 = c2 +
d− c

m− 1
= c +

2(d− c)

m− 1
,

c4 = c3 +
d− c

m− 1
= c +

3(d− c)

m− 1
,

and so on.



4 M. Pandey and M.K. Roychowdhury

Thus, we have cj = c+ j−1
m−1

(d− c) for 1 ≤ j ≤ m. The distortion error contributed by the m elements
in the closed interval [c, d] is given by

V (P ;αn ∩ [c, d]) =

∫

[c,d]

min
x∈αn∩[c,d]

ρ((t, 0), x) dP

=
1

b− a

(

2

∫

c1+c2
2

c1

ρ((t, 0), (c1, 0)) dt+ (m− 2)

∫

c2+c3
2

c1+c2
2

ρ((t, 0), (c2, 0)) dt
)

=
1

12

(d− c)3

b− a

1

(m− 1)2
.

Thus, the proof of the proposition is complete. �

Proposition 2.2. Let P be a uniform distribution on the closed interval [a, b]. Let αn be an optimal set

of n-points for P such that αn contains n elements from the closed interval [a, b] including the endpoint

a. Then,

αn =

{

a +
2(j − 1)(b− a)

2n− 1
: 1 ≤ j ≤ n

}

with the conditional unconstrained quantization error

Vn =
(b− a)2

3(2n− 1)2
.

Proof. As mentioned in Proposition 2.1, here the probability density function is given by f(x) = 1
b−a

if
x ∈ [a, b], and zero otherwise, and

[a, b] := {(t, 0) : a ≤ t ≤ b}.
Let c1, c2, c3, · · · , cn be the n elements that αn contains from the closed interval [a, b] including the
endpoint a, i.e., c1 = a. Let cn = d, where d < b. Since the closed interval [a, d] is a line segment and
P is a uniform distribution, we have

c2 − c1 = c3 − c2 = · · · = cn − cn−1 =
cn − c1
n− 1

=
d− a

n− 1

implying

c2 = c1 +
d− a

n− 1
= a+

d− a

n− 1
,

c3 = c2 +
d− a

n− 1
= a+

2(d− a)

n− 1
,

c4 = c3 +
d− a

n− 1
= a+

3(d− a)

n− 1
,

and so on.

Thus, we have cj = a+ j−1
n−1

(d− a) for 1 ≤ j ≤ n. The distortion error contributed by the n elements is
given by

V (P ;αn) =

∫

min
x∈αn

ρ((t, 0), x) dP

=
1

b− a

(

∫
c1+c2

2

c1

ρ((t, 0), (c1, 0)) dt+ (n− 2)

∫
c2+c3

2

c1+c2
2

ρ((t, 0), (c2, 0)) dt

+

∫ b

cn−1+cn

2

ρ((t, 0), (cn, 0)) dt
)

=

(a−d)3

(n−1)2
− 4(b− d)3

12(a− b)
,
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the minimum value of which is (b−a)2

3(2n−1)2
and it occurs when d = b − b−a

2n−1
. Putting the values of d, we

have

cj = a +
2(j − 1)(b− a)

2n− 1
for 1 ≤ j ≤ n

with the conditional unconstrained quantization error

Vn =
(b− a)2

3(2n− 1)2
.

Thus, the proof of the proposition is complete. �

Proposition 2.3. Let P be a uniform distribution on the closed interval [a, b]. Let αn be an optimal set

of n-points for P such that αn contains n elements from the closed interval [a, b] including the endpoint

b. Then,

αn =

{

a +
(2j − 1)(b− a)

2n− 1
: 1 ≤ j ≤ n

}

with the conditional unconstrained quantization error

Vn =
(b− a)2

3(2n− 1)2
.

Proof. As mentioned in Proposition 2.1, here the probability density function is given by f(x) = 1
b−a

if

x ∈ [a, b], and zero otherwise, and

[a, b] := {(t, 0) : a ≤ t ≤ b}.
Let c1, c2, c3, · · · , cn be the n elements that αn contains from the closed interval [a, b] including the
endpoint b, i.e., cn = b. Let c1 = d, where a < d. Since the closed interval [c1, b] is a line segment and
P is a uniform distribution, we have

c2 − c1 = c3 − c2 = · · · = cn − cn−1 =
cn − c1
n− 1

=
b− d

n− 1

implying

c2 = c1 +
b− a

n− 1
= d+

b− d

n− 1
,

c3 = c2 +
b− a

n− 1
= d+

2(b− d)

n− 1
,

c4 = c3 +
b− a

n− 1
= d+

3(b− d)

n− 1
,

and so on.

Thus, we have cj = d+ j−1
n−1

(b− d) for 1 ≤ j ≤ n. The distortion error contributed by the n elements is
given by

V (P ;αn) =

∫

min
x∈αn

ρ((t, 0), x) dP

=
1

b− a

(

∫

c1+c2
2

a

ρ((t, 0), (c1, 0)) dt+ (n− 2)

∫

c2+c3
2

c1+c2
2

ρ((t, 0), (c2, 0)) dt

+

∫ cn

cn−1+cn

2

ρ((t, 0), (cn, 0)) dt
)

=
4(a− d)3 + (d−b)3

(n−1)2

12(a− b)
,
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the minimum value of which is (b−a)2

3(2n−1)2
and it occurs when d = a + b−a

2n−1
. Putting the values of d, we

have

cj = a +
(2j − 1)(b− a)

2n− 1
for 1 ≤ j ≤ n

with the conditional unconstrained quantization error

Vn =
(b− a)2

3(2n− 1)2
.

Thus, the proof of the proposition is complete. �

Remark 2.4. Although a detailed proof is given, the elements in αn in Proposition 2.3 can be obtained
from the elements in αn given in Proposition 2.2 by translating the elements to the right in the amount
of b−a

2n−1
.

3. Conditional constrained quantization for a uniform distribution on the boundary
of a semicircular disc

Let L be the boundary of the semicircular disc x2
1 + x2

2 = 1, where x2 ≥ 0. Let the base of the
semicircular disc be AOB, where A and B have the coordinates (−1, 0) and (1, 0), and O is the origin
(0, 0). Let s represent the distance of any point on L from the origin tracing along the boundary L in
the counterclockwise direction. Notice that L = L1 ∪ L2, where

L1 = {(x1, x2) : x1 = t, x2 = 0 for − 1 ≤ t ≤ 1}, and

L2 = {(x1, x2) : x1 = cos t, x2 = sin t for 0 ≤ t ≤ π}.
Let P be the uniform distribution on the boundary of the semicircular disc. Then, the probability
density function for P is given by

f(x1, x2) =

{

1
2+π

if (x1, x2) ∈ L,
0 otherwise,

On both L1 and L2, we have ds =
√

(dx1

dt
)2 + (dx2

dt
)2 dt = dt yielding dP (s) = P (ds) = f(x1, x2)ds =

f(x1, x2)dt. In the definition of conditional constrained quantization error, let β := {(−1, 0), (1, 0)},
and let L be the single constraint. Upon the given set β, the nth conditional constrained quantization
errors are defined for all n ≥ 2. Notice that the boundary L has ‘maximum symmetry’ with respect to
the y-axis. By the maximum symmetry of L with respect to the y-axis, it is meant that if two regions
of the same geometrical shapes are equidistant and are on opposite sides from the line, then they have
the same probability. In finding the conditional optimal sets of n-points, we will use this property.

Notice that the conditional optimal set of two-points is the set β itself. In the sequel of this section, we
investigate the conditional optimal sets of n-points for n ≥ 3. Let us now give the following proposition,
which plays a vital role in this section.

Proposition 3.1. Let αn be a conditional optimal set of n-points for P for some n ≥ 3. Let card(αn ∩
L1) = n1 and card(αn ∩ L2) = n2 with corresponding conditional quantization error Vn := Vn1,n2

(P ) for
some n1, n2 ≥ 2. Then,

αn ∩L1 = {(−1+
2(j − 1)

n1 − 1
, 0) : 1 ≤ j ≤ n1}, and αn ∩L2 = {(cos (j − 1)π

n2 − 1
, sin

(j − 1)π

n2 − 1
) : 1 ≤ j ≤ n2},

with

Vn1,n2
(P ) =

2

3(2 + π)

( 1

(n1 − 1)2
− 6(n2 − 1) sin

( π

2(n2 − 1)

)

+ 3π
)

.

Proof. By the hypothesis, card(αn ∩L1) = n1 and card(αn ∩L2) = n2 for some n1, n2 ≥ 2. The proof of

αn ∩ L1 = {(−1 +
2(j − 1)

n1 − 1
, 0) : 1 ≤ j ≤ n1}
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directly follows from Proposition 2.1. Moreover, as shown in Proposition 2.1, the distortion error for
these n1 elements is obtained as

V (P ;αn ∩ L1) =
2

3(2 + π)

1

(n1 − 1)2
.

Let αn ∩ L2 = {(cos θj , sin θj) : 1 ≤ j ≤ n2}, where θ1 = 0, and θn2
= π. L2 being a circular arc and P

is a uniform distribution, we have

θ2 − θ1 = θ3 − θ2 = · · · = θn2
− θn2−1 =

θn2
− θ1

n2 − 1
=

π

n2 − 1
.

Thus, proceeding in a similar way as Proposition 2.1, we have θj =
(j−1)π
n2−1

for 1 ≤ j ≤ n2 yielding

αn ∩ L2 = {(cos (j − 1)π

n2 − 1
, sin

(j − 1)π

n2 − 1
) : 1 ≤ j ≤ n2}.

The distortion error due to these n2 elements is obtained as

V (P ;αn ∩ L2) =
1

2 + π

(

2

∫

θ1+θ2
2

0

ρ((cos t, sin t), (1, 0)) dt+ (n2 − 2)

∫

θ2+θ3
2

θ1+θ2
2

ρ((cos t, sin t), (cos θ2, sin θ2)) dt
)

=
2

3(2 + π)

(

− 6(n2 − 1) sin
( π

2(n2 − 1)

)

+ 3π
)

.

Thus, we have

Vn = Vn1,n2
(P ) = V (P ;αn ∩ L1) + V (P ;αn ∩ L2)

=
2

3(2 + π)

( 1

(n1 − 1)2
− 6(n2 − 1) sin

( π

2(n2 − 1)

)

+ 3π
)

.

Hence, the proof of the proposition is complete. �

Remark 3.2. Proposition 3.1 plays a significant role in calculating the optimal sets of n-points for
the probability distribution P on the boundary of the semicircular disc, as shown in the following two
propositions.

Proposition 3.3. The conditional optimal set of three-points is given by {(1, 0), (0, 1), (−1, 0)} with

conditional constrained quantization error V3 =
2

2+π
(−2

√
2 + 1

3
+ π).

Proof. Let α be an optimal set of three-points. By the hypothesis (1, 0), (−1, 0) ∈ α. Due to maximum
symmetry, we can assume that either (0, 0) or (0, 1) ∈ α. If (0, 0) ∈ α, then as n1 = 3 and n2 =
2, using Proposition 3.1, we have the distortion error as V3,2(P ) = 0.476477. If (0, 1) ∈ α, then as
n1 = 2 and n2 = 3, we have V2,3(P ) = 0.251478. Since V2,3(P ) < V3,2(P ), the conditional optimal
set of three-points is given by {(1, 0), (0, 1), (−1, 0)} with conditional constrained quantization error
V3 =

2
2+π

(−2
√
2 + 1

3
+ π). Thus, the proof of the proposition is complete (see Figure 1). �

Proposition 3.4. The conditional optimal set of four-points is given by {(0, 0), (1, 0), (0, 1), (−1, 0)}
with conditional constrained quantization error V4 =

−24
√
2+12π+1

12+6π
.

Proof. Let α be an optimal set of four-points. By the hypothesis (1, 0), (−1, 0) ∈ α. Due to maximum
symmetry, we can assume that the other two elements in α are on the axis of symmetry, or they are
symmetrically located on L. Thus, the following cases can occur:

Case 1. The two elements in α \ {(1, 0), (−1, 0)} are on the axis of symmetry.

In this case, we can assume that (0, 0), (0, 1) ∈ α. Then, as n1 = 3 and n2 = 3, the distortion error is
V3,3(P ) = 0.154232.

Case 2. The two elements in α \ {(1, 0), (−1, 0)} are symmetrically located on L.
In this case, the two elements are either symmetrically located on L1 or on L2. If they are symmet-

rically located on L1, then the distortion error is V4,2(P ) = 0.458469. If they are symmetrically located
on L2, then the distortion error is V2,4(P ) = 0.184739.
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Figure 1. Optimal configuration of n-points for 3 ≤ n ≤ 11.

Considering all the above possible distortion errors, we see that the distortion error is minimal when
n1 = 3 and n2 = 3. Thus, {(0, 0), (1, 0), (0, 1), (−1, 0)} forms the conditional optimal set of four-

points with conditional constrained quantization error V4 = −24
√
2+12π+1

12+6π
, which is the proposition (see

Figure 1). �

Let us now give the following theorem, which gives the main result in this section.

Theorem 3.5. Let αn be a conditional optimal set of n-points for P for some n ≥ 3. Let card(αn∩L1) =
n1 be known. Then,

αn = {(−1 +
2(j − 1)

n1 − 1
, 0) : 1 ≤ j ≤ n1}

⋃

{(cos (j − 1)π

n− n1 + 1
, sin

(j − 1)π

n− n1 + 1
) : 2 ≤ j ≤ n− n1 + 1}

with the conditional constrained quantization error

Vn =
2

3(2 + π)

( 1

(n1 − 1)2
− 6(n− n1 + 1) sin(

π

2n− 2n1 + 2
) + 3π

)

.

Proof. Let αn be a conditional optimal set of n-points for P . Let card(αn∩L1) = n1 and card(αn∩L2) =
n2. Notice that αn ∩ L1 ∩ L2 = {(−1, 0), (0, 1)}, and hence n1 + n2 = n + 2 yielding n2 = n − n1 + 2.
Thus, if n1 is known, one can easily calculate n2, and then the conditional optimal set αn of n-points
and the corresponding conditional constrained quantization error can be deduced by Proposition 3.1,
and they are given by

αn = {(−1 +
2(j − 1)

n1 − 1
, 0) : 1 ≤ j ≤ n1}

⋃

{(cos (j − 1)π

n2 − 1
, sin

(j − 1)π

n2 − 1
) : 2 ≤ j ≤ n− n1 + 1}

with Vn = Vn1,n−n1+2 =
2

3(2+π)

(

1
(n1−1)2

−6(n−n1+1) sin( π
2n−2n1+2

)+3π
)

. Thus, the proof of the theorem

is complete. �

For a given positive integer n ≥ 3, to determine the positive integer n1 as mentioned in Theorem 3.5,
we proceed as follows:

Definition 3.6. Define the sequence {a(n)} such that a(n) = ⌊5(n+4)
13

⌋ for n ≥ 1, i.e.,

{a(n)}∞n=1 ={1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, · · ·},
where ⌊x⌋ represents the greatest integer not exceeding x.
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The following algorithm helps us to determine the exact value of n1 mentioned in Theorem 3.5.

3.7. Algorithm. Let n ≥ 3, and let V (n, n1) := Vn1,n−n1+2, as given by Theorem 3.5, denote the
distortion error if an optimal set αn contains n1 elements from the base of the semicircular disc. Let
{a(n)} be the sequence defined by Definition 3.6. Then, the algorithm runs as follows:

(i) Write n1 := a(n).
(ii) If n1 = 2 go to step (v), else step (iii).
(iii) If V (n, n1 − 1) < V (n, n1) replace n1 by n1 − 1 and go to step (ii), else step (iv).
(iv) If V (n, n1 + 1) < V (n, n1) replace n1 by n1 + 1 and return, else step (v).
(v) End.
When the algorithm ends, then the value of n1, obtained, is the exact value of n1 that an optimal set

αn contains from the base of the semicircular disc.

Remark 3.8. If n = 50, then a(n) = 20, and by the algorithm we also obtain n1 = 20; if n = 80, then
a(n) = 32, and by the algorithm we also obtain n1 = 32. If n = 1200, then a(n) = 463, and by the
algorithm, we obtain n1 = 468; if n = 2000, then a(n) = 770, and by the algorithm, we obtain n1 = 779;
and if n = 3000, then a(n) = 1155, and by the algorithm, we obtain n1 = 1168. Thus, we see that
with the help of the sequence and the algorithm, one can easily determine the exact value of n1 for any
positive integer n ≥ 3.

4. Conditional unconstrained quantization for a uniform distribution on an
equilateral triangle

Let △OAB be an equilateral triangle with vertices O(0, 0), A(1, 0), B(1
2
,
√
3
2
). Let L1, L2, L3 be the

sides OA,AB and BO, respectively. Let P be the uniform distribution defined on the equilateral triangle
△ formed by the sides L1, L2, L3. Let s represent the distance of any point on △ from the origin tracing
along the boundary of the triangle in the counterclockwise direction. Then, the points O,A,B are,
respectively, represented by s = 0, s = 1, s = 2. The probability density function (pdf) f of the uniform
distribution P is given by f(s) := f(x1, x2) =

1
3
for all (x1, x2) ∈ L1 ∪L2 ∪L3, and zero otherwise. The

sides L1, L2, L3 are represented by the parametric equations as follows:

L1 = {(t, 0)}, L2 =
{(

1− t

2
,

√
3t

2

)}

, L3 =
{(1− t

2
,

√
3(1− t)

2

)}

,

where 0 ≤ t ≤ 1. Again, dP (s) = P (ds) = f(x1, x2)ds. On each Lj for 1 ≤ j ≤ 3, we have
(ds)2 = (dx1)

2 + (dx2)
2 = (dt)2 yielding ds = dt. In the definition of conditional unconstrained

quantization error, let β := {(0, 0), (1, 0), (1
2
,
√
3
2
)}. Let L := L1 ∪ L2 ∪ L3 which is the support of P .

Upon the given set β, the nth conditional unconstrained quantization errors are defined for all n ≥ 3.
Notice that the conditional optimal set of three-points is the set β itself. In the sequel of this section,
we investigate the conditional optimal sets of n-points for n ≥ 4.

Consider the following two affine transformations:

T1(x, y) = (−1

2
x+ 1,

√
3

2
x) and T2(x, y) = (−1

2
x+

1

2
,−

√
3

2
x+

√
3

2
). (5)

Let us now give the following proposition, which plays a vital role in this section. In this regard, one
can also see [RR].

Proposition 4.1. Let αn be a conditional optimal set of n-points for P for some n ≥ 4. Let card(αn ∩
L1) = n1, card(αn ∩L2) = n2 and card(αn ∩L3) = n3 with corresponding conditional quantization error
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Vn := Vn1,n2,n3
(P ) for some n1, n2, n3 ≥ 2. Then,

αn ∩ L1 =
{

(
j − 1

n1 − 1
, 0) : 1 ≤ j ≤ n1

}

,

αn ∩ L2 =
{

T1(
j − 1

n2 − 1
, 0) : 1 ≤ j ≤ n2

}

, and

αn ∩ L3 =
{

T2(
j − 1

n3 − 1
, 0) : 1 ≤ j ≤ n3

}

,

with

Vn1,n2,n3
(P ) =

1

36

( 1

(n1 − 1)2
+

1

(n2 − 1)2
+

1

(n3 − 1)2

)

.

Proof. By the hypothesis, card(αn ∩ L1) = n1 for some n1 ≥ 2. Let

αn ∩ L1 = {(aj, 0) : 1 ≤ j ≤ n1}, (6)

By Proposition 2.1, we have aj =
j−1
n1−1

for 1 ≤ j ≤ n1 implying

αn ∩ L1 = {( j − 1

n1 − 1
, 0) : 1 ≤ j ≤ n1}.

Given card(αn ∩ L2) = n2. If card(αn ∩ L1) = n2, then as before we have

αn ∩ L1 = {( j − 1

n2 − 1
, 0) : 1 ≤ j ≤ n2}.

Hence, T2 being an affine transformation such that T2(L1) = L2, we have

αn ∩ L2 = {T1(
j − 1

n2 − 1
, 0) : 1 ≤ j ≤ n2}.

Similarly, we have

αn ∩ L3 = {T2(
j − 1

n3 − 1
, 0) : 1 ≤ j ≤ n3}.

To find the quantization error, we proceed as follows. Let V (P ;αn ∩ Lj) denote the distortion error
contributed by the elements in αn ∩ Lj for j = 1, 2, 3. Then,

Vn1,n2,n3
(P ) = V (P ;αn ∩ L1) + V (P ;αn ∩ L2) + V (P ;αn ∩ L3).

By Proposition 2.1, we have

V (P ;αn ∩ L1) =
1

36 (n1 − 1) 2
.

Due to rotational symmetry, we have

V (P ;αn ∩ L2) =
1

36 (n2 − 1) 2
and V (P ;αn ∩ L3) =

1

36 (n3 − 1) 2
.

Hence,

Vn1,n2,n3
(P ) =

1

36

( 1

(n1 − 1)2
+

1

(n2 − 1)2
+

1

(n3 − 1)2

)

.

Thus, the proof of the proposition is complete. �

Note 4.2. Let αn(Lj) be the set consisting of all the elements in αn ∩ Lj except the right endpoint for
each j = 1, 2, 3. Then,

αn(L1) =
{

(
j − 1

n1 − 1
, 0) : 1 ≤ j ≤ n1 − 1

}

,

αn(L2) =
{

T1(
j − 1

n2 − 1
, 0) : 1 ≤ j ≤ n2 − 1

}

, and

αn(L3) =
{

T2(
j − 1

n3 − 1
, 0) : 1 ≤ j ≤ n3 − 1

}
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Figure 2. Optimal configuration of n-points for 4 ≤ n ≤ 12.

with card(αn(L1)) = n1 − 1, card(αn(L2)) = n2 − 1, and card(αn(L3)) = n3 − 1. Notice that the sets
αn(Lj) are disjoints and (n1 − 1) + (n2 − 1) + (n3 − 1) = n.

Lemma 4.3. Let nj ∈ N for j = 1, 2, 3 be the numbers as defined in Proposition 4.1. Then, |ni−nj | = 0,
or 1 for 1 ≤ i 6= j ≤ 3.

Proof. We first show that |n1−n2| = 0, or 1. Write m := (n1− 1)+ (n2 − 1). Now, the distortion error
contributed by the m elements in α1(L1) ∪ αn(L2) is given by

1

36

( 1

(n1 − 1)2
+

1

(n2 − 1)2

)

.

The above expression is minimum if n1 − 1 ≈ m
2
and n2 − 1 ≈ m

2
. Thus, we see that if m = 2k for

some positive integer k, then n1 − 1 = n2 − 1 = k, and if m = 2k + 1 for some positive integer k, then
either (n1 − 1 = k + 1 and n2 − 1 = k) or (n1 − 1 = k and n2 − 1 = k + 1) which yields the fact that
|n1 − n2| = 0, or 1. Similarly, we can show that |ni − nj | = 0, or 1 for any 1 ≤ i 6= j ≤ 3. Thus, the
proof of the lemma is complete. �

Let us now give the following theorem, which gives the main result in this section.

Theorem 4.4. Let αn be a conditional optimal set of n-points for P for some n ≥ 4. Then,

αn =
{

(
j − 1

n1 − 1
, 0) : 1 ≤ j ≤ n1 − 1

}

⋃

{

T1(
j − 1

n2 − 1
, 0) : 1 ≤ j ≤ n2 − 1

}

⋃

{

T2(
j − 1

n3 − 1
, 0) : 1 ≤ j ≤ n3 − 1

}
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with the conditional unconstrained quantization error

Vn =
1

36

( 1

(n1 − 1)2
+

1

(n2 − 1)2
+

1

(n3 − 1)2

)

,

where n1, n2, n3 are given as follows: For some k ∈ N, if n = 3k, then n1 − 1 = n2 − 1 = n3 − 1 = k; if
n = 3k+1, then n1−1 = k+1 and n2−1 = n3−1 = k; and if n = 3k+2, then n1−1 = n2−1 = k+1
and n3 − 1 = k.

Proof. Let αn(Lj) be the sets defined by Note 4.2 for j = 1, 2, 3. Notice that for j = 1, 2, 3, the sets
αn(Lj) are nonempty, and so we can find three positive integers nj ≥ 2 as defined in Proposition 4.1
such that card(αn(Lj)) = nj − 1. Since

αn =

3
⋃

j=1

αn(Lj),

the expression for αn follows by Note 4.2. The expression for the conditional constrained quantization
error Vn follows from Proposition 4.1. By Lemma 4.3, it follows that for some k ∈ N, if n = 3k, then
n1 − 1 = n2 − 1 = n3 − 1 = k; if n = 3k + 1, then n1 − 1 = k + 1 and n2 − 1 = n3 − 1 = k; and if
n = 3k+2, then n1−1 = n2−1 = k+1 and n3−1 = k. Thus, the proof of the theorem is complete. �

Using Theorem 4.4, the following example can be obtained.

Example 4.5. A conditional optimal set of four-points is given by {(0, 0), (1
2
, 1), (1, 0), (1

2
,
√
3
2
)} with

conditional constrained quantization error V4 = 1
16
; a conditional optimal set of five-points is given by

{(0, 0), (1
2
, 1), (1, 0), (1

4
,
√
3
4
), (1

2
,
√
3
2
)} with conditional constrained quantization error V5 =

1
24
; and so on

(see Figure 2).

Theorem 4.6. The conditional unconstrained quantization dimension D(P ) of the probability measure

P exists, and D(P ) = 1, and the D(P )-dimensional unconstrained quantization coefficient for P exists

as a finite positive number and equals 3
4
.

Proof. For n ∈ N with n ≥ 4, let ℓ(n) be the unique natural number such that 3ℓ(n) ≤ n < 3(ℓ(n) + 1).
Then, V3(ℓ(n)+1) ≤ Vn ≤ V3ℓ(n). We can take n large enough so that V3ℓ(n) < 1. Then,

0 < − log V3ℓ(n) ≤ − log Vn ≤ − log V3(ℓ(n)+1)

yielding
2 log 3ℓ(n)

− log V3(ℓ(n)+1)

≤ 2 logn

− log Vn

≤ 2 log 3(ℓ(n) + 1)

− log V3ℓ(n)

.

Notice that

lim
n→∞

2 log 3ℓ(n)

− log V3(ℓ(n)+1)

= lim
n→∞

2 log 3ℓ(n)

− log 1
12(ℓ(n)+1)2

= 1, and

lim
n→∞

2 log 3(ℓ(n) + 1)

− log V3ℓ(n)

= lim
n→∞

2 log 3(ℓ(n) + 1)

− log 1
12(ℓ(n))2

= 1.

Hence, limn→∞
2 logn
− log Vn

= 1, i.e., the conditional unconstrained quantization dimension D(P ) of the

probability measure P exists and D(P ) = 1. Since

lim
n→∞

n2Vn ≥ lim
n→∞

(3ℓ(n))2V3(ℓ(n)+1) = lim
n→∞

(3ℓ(n))2
1

12(ℓ(n) + 1)2
=

3

4
, and

lim
n→∞

n2Vn ≤ lim
n→∞

(3(ℓ(n) + 1))2V3ℓ(n) = lim
n→∞

(3(ℓ(n) + 1))2
1

12(ℓ(n))2
=

3

4
,

by the squeeze theorem, we have limn→∞ n2Vn = 3
4
, i.e., the D(P )-dimensional unconstrained quantiza-

tion coefficient for P exists as a finite positive number and equals 3
4
. Thus, the proof of the theorem is

complete. �
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5. Observations

To distinguish, let Vc,n(P ) denote the nth conditional quantization error for n-points, and Vn(P )
denote the nth unconstrained quantization error for n-means for a Borel probability measure P . Also,
to distinguish we denote the conditional quantization dimension by Dc(P ) and the unconstrained quan-
tization dimension by D(P ), respectively.

In the following remarks, we give some observations.

Remark 5.1. Conditional optimal sets of n-points for a Borel probability measure can exist with
Vc,n > Vn for all n ∈ N with n ≥ ℓ, where ℓ is the number of elements in the conditional set β. In this
regard, we give the following example: Let P be a Borel probability measure on R, which is uniform
on its support [0, 1], and let β := {0} be the conditional set. Then, by Proposition 2.2, we see that the
conditional optimal sets of n-points for all n ≥ 1 are given by

{2(j − 1)

2n− 1
: 1 ≤ j ≤ n

}

with Vc,n(P ) =
1

3(2n− 1)2
.

On the other hand, P is a uniform distribution, the optimal sets of n-means are given by
{2j − 1

2n
: 1 ≤ j ≤ n

}

with Vn(P ) =
1

12n2
.

Thus, we see that for all n ≥ 1, the conditional optimal sets of n-points exist in this case and

Vc,n =
1

3(2n− 1)2
=

1

3(n+ n− 1)2
>

1

3(n+ n)2
=

1

12n2
> Vn.

Moreover, we see that Dc(P ) = D(P ) = 1.

Remark 5.2. In unconstrained quantization, for a Borel probability measure with infinite support,
an optimal set of n-means contains exactly n elements. It is not true in constrained quantization (see
[PR1]). In constrained quantization for a Borel probability measure with infinite support, an optimal set
of n-points for all n may not contain exactly n elements. Let k be the largest positive integer for which
an optimal set of k-points contains exactly k elements. In this case, there is no conditional optimal set
of n-points for any n ≥ (k + 1).

Remark 5.3. Optimal sets of n-points for all positive integers can exist, but a conditional optimal set
may not exist for all n. In this regard, we give the following example:

Let P be a probability measure on R
2 with its support the closed interval {(t, 0) : 0 ≤ t ≤ 1}, and let

P be uniform on its support. Let β := {(0, 1
100

)} be the conditional set. Let α := {(0, 1
100

)} ∪ {(tj, 0) :
1 ≤ j ≤ n} be a conditional optimal set of (n + 1)-points such that t1 < t2 < · · · < tn. Let the
boundary of the Voronoi regions of (0, 1

100
) and (t1, 0) intersect the support of P at the point (d, 0).

Clearly 0 ≤ d < t1
2
. Also, notice that tj = d+ (2j−1)(1−d)

2n
for j = 1, 2, · · ·n. Then, the distortion error is

given by

V (P ;α) = distortion error contributed by (0,
1

100
) + distortion error contributed by all tj

=

∫ d

0

ρ((t, 0), (0,
1

100
)) dt+

(1− d)3

12n2

=
d3

3
+

d

10000
+

(1− d)3

12n2

the minimum value of which is

n
(

4n
(

n
√
10001− 4n2 + 249925

)

− 10001
√
10001− 4n2

)

+ 250075

750000 (1− 4n2)2

and it occurs when d = 50−n
√
10001−4n2

50−200n2 . Notice that d is a decreasing sequence of real numbers for
n = 1, 2, · · · , 50, and becomes imaginary if n ≥ 51. In fact, we see that d > 0 if 1 ≤ n < 50, and d = 0
if n = 50. Hence, we can say that the conditional optimal sets of n-points exist for 1 ≤ n ≤ 49, and it
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does not exist if n ≥ 50. But, notice that the optimal sets of n-points for all n ≥ 50 still exist which
are given by {(2j−1

2n
, 0) : 1 ≤ j ≤ n} with quantization error 1

12n2 .

Remark 5.4. In Section 4, we have seen that for a uniform distribution defined on the equilateral
triangle, the conditional unconstrained quantization dimension is one, and the conditional unconstrained
quantization coefficient is 3

4
. These values are the same as the unconstrained quantization dimension

and the unconstrained quantization coefficient for the uniform distribution on the equilateral triangle
(see [RR]). In the next section, we give a general proof to show that the lower and upper quantization
dimensions and the lower and upper quantization coefficients for a Borel probability measure do not
depend on the underlying conditional set.

6. Some important properties

In this section, in the first theorem, we show that in unconstrained quantization, the union of the
optimal sets of n-means is dense in the support of P . In the next theorem, we show that in both
constrained and unconstrained quantization, the lower and upper quantization dimensions and the lower
and upper quantization coefficients for a Borel probability measure do not depend on the conditional
set of the conditional quantization.

Theorem 6.1. Let P be a Borel probability measure on R
k. Let αn be the optimal sets of n-means for

P for all n ∈ N. Then,
∞∪
n=1

αn is dense in the support of P .

Proof. Let x ∈ Supp(P ). Our aim is to show that for each ǫ > 0, B(x, ǫ) ∩
∞
⋃

n=1

αn 6= ∅. We prove it by

contradiction. Let there exists an ǫ > 0 such that B(x, ǫ) ∩⋃∞
n=1 αn = ∅. Then,

Vn,r(P ) =

∫

d(x, αn)
rdP (x) ≥ ǫrP (B(x, ǫ) ∩ Supp(P )).

We claim that P (B(x, ǫ) ∩ Supp(P )) > 0. Assume that P (B(x, ǫ) ∩ Supp(P )) = 0. This implies that
x /∈ Supp(P ), which is a contradiction. Thus P (B(x, ǫ) ∩ Supp(P )) > 0. Therefore, we get

lim
n→∞

Vn,r(P ) ≥ ǫrP (B(x, ǫ) ∩ Supp(P )) > 0,

which contradicts the fact that limn→∞ Vn,r(P ) = 0. This implies that for each ǫ > 0, we have B(x, ǫ)∩
∞
⋃

n=1

αn 6= ∅. Thus,
∞
⋃

n=1

αn is dense in the support of P . This completes the proof. �

Theorem 6.2. In both constrained and unconstrained quantization, the lower and upper quantization

dimensions and the lower and upper quantization coefficients for a Borel probability measure do not

depend on the conditional set.

Proof. Since the unconstrained quantization is a special case of constrained quantization, we give the
proof of the theorem for constrained cases only. Let β ⊂ R

k be a conditional set with card(β) = ℓ for
some ℓ ∈ N. Let Vn,r(P ) and Vc,n,r(P ) denote the nth constrained and the nth conditional constrained
quantization errors, respectively. Take n > ℓ. Then, one can easily see that

Vn,r(P ) ≤ Vc,n,r(P ) ≤ Vn−ℓ,r(P ). (7)

By the previous inequalities and application of the squeeze theorem, we have V∞,r(P ) = Vc,∞,r(P ).
Thus, by (7), we have

Vn,r(P )− V∞,r(P ) ≤ Vc,n,r(P )− Vc,∞,r(P ) ≤ Vn−ℓ,r(P )− V∞,r(P ). (8)

Again, by the previous inequalities and application of the squeeze theorem, we obtain that the lower and
upper constrained quantization coefficients are the same in both constrained and conditional constrained
cases. Choose n ∈ N large enough such that Vn−ℓ,r(P )− V∞,r(P ) < 1. Then, by Equation (8), we get

r log n

− log(Vn,r(P )− V∞,r(P ))
≤ r logn

− log(Vc,n,r(P )− Vc,∞,r(P ))
≤ r log n

− log(Vn−ℓ,r(P )− V∞,r(P ))
.



Conditional constrained and unconstrained quantization for probability distributions 15

Thus, by the squeeze theorem, we see that the lower and upper constrained quantization dimensions
are the same in both constrained and conditional constrained cases. This completes the proof of the
theorem. �

References

[DFG] Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM
Review, Vol. 41, No. 4 (1999), pp. 637-676.

[DR] C.P. Dettmann and M.K. Roychowdhury, Quantization for uniform distributions on equilateral triangles, Real
Analysis Exchange, Vol. 42(1), 2017, pp. 149-166.

[GG] A. Gersho and R.M. Gray, Vector quantization and signal compression, Kluwer Academy publishers: Boston, 1992.
[GL] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics

1730, Springer, Berlin, 2000.
[GL1] A. György and T. Linder, On the structure of optimal entropy-constrained scalar quantizers, IEEE transactions on

information theory, vol. 48, no. 2, February 2002.
[GL2] S. Graf and H. Luschgy, The Quantization of the Cantor Distribution, Math. Nachr., 183 (1997), 113-133.
[GL3] S. Graf and H. Luschgy, Quantization for probability measures with respect to the geometric mean error, Math.

Proc. Camb. Phil. Soc. (2004), 136, 687-717.
[GN] R.M. Gray and D.L. Neuhoff, Quantization, IEEE Transactions on Information Theory, Vol. 44, No. 6, October

1998, 2325-2383.
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