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CONDITIONAL OPTIMAL SETS AND THE QUANTIZATION COEFFICIENTS

FOR SOME UNIFORM DISTRIBUTIONS

1EVANS NYANNEY, 2MEGHA PANDEY, AND 3MRINAL KANTI ROYCHOWDHURY

Abstract. Bucklew and Wise (1982) showed that the quantization dimension of an absolutely contin-
uous probability measure on a given Euclidean space is constant and equals the Euclidean dimension of
the space, and the quantization coefficient exists as a finite positive number. By giving different exam-
ples, in this paper, we have shown that the quantization coefficients for absolutely continuous probability
measures defined on the same Euclidean space can be different. We have taken uniform distribution as a
prototype of an absolutely continuous probability measure. In addition, we have also calculated the con-
ditional optimal sets of n-points and the nth conditional quantization errors for the uniform distributions
in constrained and unconstrained scenarios.

1. Introduction

The process of transformation of a continuous-valued signal into a discrete-valued one is called ‘quan-
tization’. It has broad applications in engineering and technology. We refer to [GG, GN, Z2] for surveys
on the subject and comprehensive lists of references to the literature; see also [AW, GKL, GL1, Z1].

Definition 1.1. Let P be a Borel probability measure on R
k equipped with a metric d induced by a

norm ‖ · ‖ on R
k. Let S be a nonempty closed subset of Rk. Let β ⊂ R

k be given with card(β) = ℓ for
some ℓ ∈ N. Then, for n ∈ N with n ≥ ℓ, the nth conditional constrained quantization error for P with
respect to the constraint S and the conditional set β, is defined by

Vn := Vn(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)2dP (x) : α ⊆ S, 0 ≤ card(α) ≤ n− ℓ
}

, (1)

where card(A) represents the cardinality of the set A.

Definition 1.2. A set α ∪ β, where α ⊆ S and P (M(b|α ∪ β)) > 0 for b ∈ β, for which the infimum
in (1) exists and contains no less than ℓ elements, and no more than n elements is called a conditional
constrained optimal set of n-points for P with respect to the constraint S and the conditional set β.

We assume that
∫

d(x, 0)2dP (x) < ∞ to make sure that the infimum in (1) exists (see [PR1]). For
a finite set γ ⊂ R

2 and a ∈ γ, by M(a|γ) we denote the set of all elements in R
2 which are nearest to

a among all the elements in γ, i.e., M(a|γ) = {x ∈ R
2 : d(x, a) = min

b∈γ
d(x, b)}. M(a|γ) is called the

Voronoi region in R
2 generated by a ∈ γ.

Write V∞(P ) := lim
n→∞

Vn(P ). The numbers

D(P ) := lim inf
n→∞

2 logn

− log(Vn(P )− V∞(P ))
and D(P ) := lim sup

n→∞

2 logn

− log(Vn(P )− V∞(P ))
, (2)

are called the conditional lower and the conditional upper constrained quantization dimensions of the
probability measure P , respectively. If D(P ) = D(P ), the common value is called the conditional
constrained quantization dimension of P and is denoted by D(P ). For any κ > 0, the two numbers

lim infn n
2

κ (Vn(P )−V∞(P )) and lim supn n
2

κ (Vn(P )−V∞(P )) are, respectively, called the κ-dimensional
conditional lower and conditional upper constrained quantization coefficients for P . If both of them are
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2 E. Nyanney, M. Pandey, and M.K. Roychowdhury

equal, then it is called the κ-dimensional conditional constrained quantization coefficient for P , and is
denoted by limn n

2

κ (Vn(P )− V∞(P )).
If there is no conditional set, then by the nth constrained quantization error for P with respect to

the constraint S ⊆ R
k, it is meant that

Vn := Vn(P ) = inf
{

∫

min
a∈α

d(x, a)2dP (x) : α ⊆ S and 1 ≤ card(α) ≤ n
}

, (3)

and then the numbers D(P ) and limn n
2

κ (Vn(P ) − V∞(P )), if they exist, are called the constrained
quantization dimension and the κ-dimensional constrained quantization coefficient for P , respectively.
A set α ⊆ S for which the infimum in (3) exists is called a constrained optimal set of n-points for P .

If there is no constraint, i.e., if S = R
k, then by the nth conditional unconstrained quantization error

with respect to the conditional set β, it is meant that

Vn := Vn(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)2dP (x) : α ⊆ R
k, 0 ≤ card(α) ≤ n− ℓ

}

, (4)

and then the numbers D(P ) and limn n
2

κ (Vn(P ) − V∞(P )), if they exist, are called the conditional
unconstrained quantization dimension and the κ-dimensional conditional unconstrained quantization
coefficient for P , respectively. A set α ⊆ S for which the infimum in (3) exists is called a conditional
unconstrained optimal set of n-points for P .

If there is no constraint and no conditional set, then by the nth unconditional quantization error it
is meant that

Vn := Vn(P ) = inf
{

∫

min
a∈α

d(x, a)2dP (x) : α ⊆ R
k, 1 ≤ card(α) ≤ n

}

, (5)

and then the numbers D(P ) and limn n
2

κ (Vn(P ) − V∞(P )), if they exist, are called the unconstrained
quantization dimension and the κ-dimensional unconstrained quantization coefficient for P , respectively.
A set α ⊆ S for which the infimum in (3) exists is called an optimal set of n-means for P . It is known
that if the support of P contains infinitely many elements than an optimal set of n-means contains
exactly n elements, and V∞ = limn→∞ Vn = 0.

Constrained quantization and conditional quantization have recently been introduced by Pandey
and Roychowdhury (see [PR1, PR2, PR4]). After the introduction of constrained quantization, the
quantization theory has now two classifications: constrained quantization and unconstrained quantiza-
tion. Unconstrained quantization is traditionally known as quantization. Thus, the nth unconditional
quantization error, given by (5), will traditionally be refereed to as nth quantization error. Likewise,
unconstrained quantization dimension and the κ-dimensional unconstrained quantization coefficient for
P will be refereed to as quantization dimension and the κ-dimensional quantization coefficient for P ,
respectively. For some other papers in the direction of constrained quantization and conditional quan-
tization one can see [HNPR, BCDR, BCDRV, OR, PR3, PR5]. For unconstrained quantization, one
can see [DFG, DR, GG, GL, GL1, GL2, GL3, GN, KNZ, P, P1, R1, R2, R3, Z1, Z2] and the references
therein.

Bucklew and Wise (1982) showed that the quantization dimension of an absolutely continuous prob-
ability measure on a given Euclidean space is constant and equals the Euclidean dimension of the space
where the support of the probability measure is defined, and the quantization coefficient exists as a fi-
nite positive number. By giving different examples, in this paper, we have shown that the quantization
coefficients for absolutely continuous probability measures defined in the same Euclidean space can be
different. We have taken uniform distribution as a prototype of an absolutely continuous probability
measure. To determine the quantization coefficient for a Borel probability measure P , we sometimes
have calculated the conditional quantization coefficient for P as the quantization coefficient does not
depend on the conditional set. In addition, we have also calculated the conditional optimal sets of
n-points and the nth conditional quantization errors with respect to some given conditional sets in
constrained and unconstrained scenarios.
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1.3. Delineation. In Section 2 we give the basic preliminaries. In Section 3, for a uniform distribution
on a line segment taking different conditional sets we have calculated the conditional optimal sets of
n-points and the nth conditional quantization errors. Then, for each conditional set we have calculated
the quantization coefficient, and see that the quantization coefficient does not depend on the conditional
set, but depends on the length of the line segment. In Section 4, we have calculated the conditional
optimal sets of n-points, the nth conditional quantization errors, the conditional quantization dimension,
and the conditional quantization coefficient, in constrained scenario, for a uniform distribution defined
on a circle of radius r with respect to a given conditional set and a constraint. In addition, for the
same probability distribution we have investigated the optimal sets of n-means and the nth quantization
errors, and the quantization coefficient in unconstrained scenario. From the work in this section, we see
that the quantization coefficient for a uniform distribution defined on a circle depends on the radius of
the circle. In Section 5, we have calculated the conditional optimal sets of n-points, the nth conditional
quantization errors, and the conditional quantization coefficient for a uniform distribution defined on
the boundary of a regular polygon which is inscribed in a circle of radius r with respect to a given
conditional set. From the work in this section, we see that the quantization coefficient for a uniform
distribution defined on the boundary of a regular m-sided polygon depends on both the number of sides
of the polygon and the length of the sides.

2. Preliminaries

For any two elements (a, b) and (c, d) in R
2, we write

ρ((a, b), (c, d)) := (a− c)2 + (b− d)2,

which gives the squared Euclidean distance between the two elements (a, b) and (c, d). Let p and q

be two elements that belong to an optimal set of n-points for some positive integer n, and let e be an
element on the boundary of the Voronoi regions of the elements p and q. Since the boundary of the
Voronoi regions of any two elements is the perpendicular bisector of the line segment joining the two
elements, we have

ρ(p, e)− ρ(q, e) = 0.

We call such an equation a canonical equation.
Let P be a Borel probability measure on R which is uniform on its support the closed interval [a, b].

Then, the probability density function f for P is given by

f(x) =

{

1
b−a

if a ≤ x ≤ b,

0 otherwise.
(6)

Hence, we have dP (x) = P (dx) = f(x)dx for any x ∈ R.
Let us now state the following proposition. For the details of the proof see [BCDR].

Proposition 2.1. (see [BCDR]) Let P be a uniform distribution on the closed interval [a, b] and c, d ∈
[a, b] be such that a < c < d < b. For n ∈ N with n ≥ 2, let αn be a conditional unconstrained optimal
set of n-points for P with respect to the conditional set β = {c, d} such that αn contains k elements
from the closed interval [a, c], ℓ elements from the closed interval [c, d], and m elements from the closed
interval [d, b] for some k, ℓ,m ∈ N with k,m ≥ 1 and ℓ ≥ 2. Then, k + ℓ +m = n+ 2,

αn ∩ [a, c] =
{

a+
(2j − 1)(c− a)

2k − 1
: 1 ≤ j ≤ k

}

,

αn ∩ [c, d] =
{

c+
j − 1

ℓ− 1
(d− c) : 1 ≤ j ≤ ℓ

}

, and

αn ∩ [d, b] =
{

d+
2(j − 1)(b− d)

2m− 1
: 1 ≤ j ≤ m

}

with the conditional unconstrained quantization error

Vn := Vk,ℓ,m(P ) =
1

3(b− a)

( (c− a)3

(2k − 1)2
+

1

4

(d− c)3

(ℓ− 1)2
+

(b− d)3

(2m− 1)2

)

.
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Remark 2.2. If nothing is specified, by conditional optimal sets of n-points and the conditional quan-
tization errors, it is meant the conditional unconstrained optimal sets of n-points and the conditional
unconstrained quantization errors, respectively.

The following theorem is known.

Theorem 2.3. (see [PR4]) In both constrained and unconstrained quantization, the lower and upper
quantization dimensions and the lower and upper quantization coefficients for a Borel probability measure
do not depend on the conditional set.

Remark 2.4. Given that the underlying spaces for all considered probability measures P in this work are
one dimensional, their quantization dimensions are given by D(P ) = 1 (see [BW]). Hence, in the sequel
we are mostly interested to calculate the quantization coefficients for different uniform distributions,
though in some cases we have also calculated the conditional optimal sets of n-points and the nth
conditional quantization errors in constrained and unconstrained scenarios.

In the following sections we give the main results of the paper.

3. Conditional optimal sets of n-points and the quantization coefficients for
uniform distributions on line segments

Without any loss of generality we can assume the line segment as a closed interval [a, b], where
0 < a < b < +∞. Let P be the uniform distribution defined on the closed interval [a, b]. Then, the
probability density function f for P is given by (6). Let us now give the following theorem.

Theorem 3.1. Let P be the uniform distribution on the line segment joining a and b, where a, b ∈ R

with a < b. Then we have:
(i) the conditional optimal set of n-points with respect to the conditional set β := {a, b} is

{

a +
j − 1

ℓ− 1
(b− a) : 1 ≤ j ≤ n

}

with conditional quantization error Vn =
(b− a)2

12(n− 1)2
;

(ii) the conditional optimal set of n-points with respect to the conditional set β := {a} is
{

a+
2(j − 1)(b− a)

2n− 1
: 1 ≤ j ≤ n

}

with conditional quantization error Vn =
(b− a)2

3(2n− 1)2
;

(iii) the conditional optimal set of n-points with respect to the conditional set β := {b} is
{

a+
(2j − 1)(b− a)

2n− 1
: 1 ≤ j ≤ n

}

with conditional quantization error Vn =
(b− a)2

3(2n− 1)2
.

Proof. The proof of the theorem follows by Proposition 2.1 upon substitutions c = a and d = b,
c = d = a, and c = d = b, respectively. �

Theorem 3.2. Let P be the uniform distribution on the line segment joining a and b, where a, b ∈ R

with a < b. Then, the conditional quantization coefficients for P with respect to the conditional sets

{a, b}, {a}, and {b} exist as finite positive numbers and each equals (a−b)2

12
.

Proof. By Theorem 3.1(i), we obtain the nth conditional quantization error for the uniform distribution
P with respect to the conditional set β := {a, b} as

Vn =
(b− a)2

12(n− 1)2
.

Then,

V∞ = lim
n→∞

Vn = 0 yielding lim
n→∞

n2(Vn − V∞) =
(a− b)2

12
.

Similarly, if the conditional set is β := {a} or β := {b}, by (ii) and (iii) in Theorem 3.1, we obtain

lim
n→∞

n2(Vn − V∞) = (a−b)2

12
. Thus, the proof of the theorem is complete. �
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Remark 3.3. By Theorem 2.3 and Theorem 3.2, we see that the quantization coefficient for the uniform
distribution P on a line segment depends on the length of the line segment, and does not depend on
the conditional sets.

4. Optimal sets of n-points and the quantization coefficients for the uniform
distributions on the circles

In this section, we have two subsections. In the first subsection, we calculate the conditional con-
strained optimal sets of n-points and the nth conditional constrained quantization errors, the condi-
tional constrained quantization dimension, and the conditional constrained quantization coefficient for
a uniform distribution P defined on a circle of radius r with respect to a given conditional set and a con-
straint. In the second subsection, for the same probability distribution, we investigate the optimal sets
of n-means and the nth quantization errors, and the quantization coefficient in unconstrained scenario.

Let L be the circle of radius r. Without any loss of generality, we can take the equation of the circle
as x2

1 + x2
2 = r2, i.e., the parametric equations of the circle is given by L := {(x1, x2) : x1 = r cos θ, x2 =

r sin θ for 0 ≤ θ ≤ 2π}. Notice that any point on the circle can be given by (r cos θ, r sin θ), which will
be identified as θ, where 0 ≤ θ ≤ 2π. Let the positive direction of the x1-axis cut the circle at the point
A, i.e., A is represented by the parametric value θ = 0. Let s be the distance of a point on L along the
arc starting from the point A in the counterclockwise direction. Then,

ds =

√

(dx1

dθ

)2

+
(dx2

dθ

)2

dθ = rdθ.

Then, the probability density function (pdf) f(x1, x2) for P is given by

f(x1, x2) =

{

1
2πr

if (x1, x2) ∈ L,

0 otherwise.

Thus, we have dP (s) = P (ds) = f(x1, x2)ds =
1
2π
dθ. Moreover, we know that if θ̂ radians is the central

angle subtended by an arc of length S of the circle, then S = rθ̂, and

P (S) =

∫

S

dP (s) =
1

2π

∫

S

dθ =
θ̂

2π
.

4.1. Conditional quantization in constrained scenario. In this subsection to investigate the con-
ditional quantization in constrained scenario for the uniform distribution P on the circle L, we take the
circle L as the constraint and the set {(r, 0)} as the conditional set. Let us define a function

T : L → [0, 2πr] such that T (θ) := T ((r cos θ, r sin θ)) = rθ,

where 0 ≤ θ ≤ 2π. Then, notice that T : L \ {(r, 0)} → (0, 2πr) is a bijective function. Let Q be the
image measure of P under the function T , i.e., Q = TP such that for any Borel subset A ⊆ [0, 2πr], we
have

Q(A) = TP (A) = P (T−1(A)).

Lemma 4.1.1. The image measure Q is a uniform distribution on [0, 2πr].

Proof. Since P is a uniform distribution on L, we can assume that P is also a uniform distribution
on L \ {(r, 0)}, as the deletion, or addition, of a finite number of points from, or with, the support of
a continuous probability measure does not change the distribution. Take any [c, d] ⊆ (0, 2πr), where
0 < c < d < 2πr. Since T is a bijection, there exist θ1, θ2, where 0 < θ1 < θ2 < 2π, such that
T (θ1) = rθ1 = c and T (θ2) = rθ2 = d. Then,

Q([c, d]) = P (T−1([c, d])) = P ({(r cos θ, r sin θ) : θ1 ≤ θ ≤ θ2}) =
θ2 − θ1

2π
=

rθ2 − rθ1

2πr
=

d− c

2πr
.

Notice Q([c, d]) = λ([c, d]), where λ is the normalized Lebesgue measure on (0, 2πr). Hence, we can
conclude that Q is a uniform distribution on (0, 2πr), i.e., Q is a uniform distribution on [0, 2πr]. Thus,
the lemma is obtained. �
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Notation 4.1.2. For any two elements c, d ∈ [0, 2πr], by ℓ({c, d}) it is meant the distance between the
two elements c, d, i.e., ℓ({c, d}) = d − c. Similarly, for any two elements θ1, θ2 ∈ L with θ1 < θ2, by
ℓ({θ1, θ2}) it is meant the arc distance between the two elements θ1 and θ2, i.e., the length of the arc
on L subtended by the angle θ2 − θ1, i.e., ℓ({θ1, θ2}) = r(θ2 − θ2).

Lemma 4.1.3. The function T : L \ {(r, 0)} → (0, 2πr) preserves the distance.

Proof. Take any c, d ∈ (0, 2πr) such that 0 < c < d < 2πr. The lemma will be proved if we can
prove that ℓ({c, d}) = ℓ(T−1({c, d})). Since T : L \ {(r, 0)} → (0, 2πr) is a bijection, there exist
θ1, θ2 ∈ L \ {(r, 0)} such that T (θ1) = rθ1 = c and T (θ2) = rθ2 = d. Then,

ℓ(T−1({c, d})) = ℓ({θ1, θ2}) = r(θ2 − θ1) = d− c = ℓ({c, d}).

Thus, the lemma is yielded. �

Lemma 4.1.4. The conditional unconstrained optimal set for the uniform distribution Q with respect
to the conditional set {0, 2πr} is given by

{(j − 1)2πr

n− 1
: 1 ≤ j ≤ n

}

with conditional unconstrained quantization error Vn(Q) =
π2r2

3(n− 1)2
.

Proof. The lemma is followed by Proposition 2.1 upon substitution a = c = 0 and b = d = 2πr. �

Remark 4.1.5. Let {a1, a2, · · · , an} be a conditional unconstrained optimal set of n-points for Q with
respect to the conditional set {0, 2πr}, where a1 = 0 and an = 2πr, Since both P and Q are uniform
distributions, and Q is the image measure of P under the function T , and T : L \ {(r, 0)} → (0, 2πr)
preserves the distance, we can say that the set T−1({a1, a2, · · · , an}), i.e., the set {T−1(aj) : 1 ≤ j ≤
n−1} forms a conditional constrained optimal set of (n−1)-points for P with respect to the conditional
set {(r, 0)} and the constraint L, as T−1(0) = T−1(2πr) = (r, 0).

Let us now prove the following theorems, which give the main results in this subsection.

Theorem 4.1.6. Let P be the uniform distribution on the circle of radius r with center (0, 0). Then,

the set {(r cos (j−1)2π
n

, r sin (j−1)2π
n

) : 1 ≤ j ≤ n} forms a conditional constrained optimal set of n-points
with respect to the conditional set {(r, 0)} and the constraint L with conditional constrianed quantization
error

Vn = 2r2(1−
n

π
sin

π

n
).

Proof. By Lemma 4.1.4, we know that the set { (j−1)2πr
n−1

: 1 ≤ j ≤ n} forms a conditional unconstraied

optimal set of n-points for Q with respect to the conditional set {0, 2πr}, where n ≥ 2. Hence, by

Remark 5.3, the set {T−1( (j−1)2πr
n−1

) : 1 ≤ j ≤ n − 1} forms a conditional constrained optimal set of
(n−1)-points for P with respect to the conditional set {(0, π)} and the constraint L, where (n−1) ≥ 1.
Now, notice that

{T−1(
(j − 1)2πr

n− 1
) : 1 ≤ j ≤ n− 1} = {

(j − 1)2π

n− 1
: 1 ≤ j ≤ n− 1}

= {(cos
(j − 1)2π

n− 1
, sin

(j − 1)2π

n− 1
) : 1 ≤ j ≤ n− 1}.

Hence, replacing n by n + 1, we deduce that the set {(r cos (j−1)2π
n

, r sin (j−1)2π
n

) : 1 ≤ j ≤ n} forms
a conditional constrained optimal set of n-points with respect to the conditional set {(0, π)} and the
constraint L. Due to rotational symmetry, we obtain the conditional constrained quantization error as

Vn = n(distortion error contributed by the element (r, 0))

=
n

2π

∫ π
n

−
π
n

ρ((r cos θ, r sin θ), (r, 0)) dθ

= 2r2(1−
n

π
sin

π

n
).
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Thus, the proof of the theorem is complete. �

Theorem 4.1.7. Let P be the uniform distribution on the circle of radius r with center (0, 0). Then,
with respect to the conditional set {(r, 0)} and the constraint L, the conditional constrained quantization
dimension D(P ) exists and equals one, and the conditional constrained quantization coefficient for P

exists as a finite positive number and equals π2r2

3
, i.e., lim

n→∞

n2(Vn − V∞) = π2r2

3
.

Proof. By Theorem 4.1.6, we obtain the nth conditional constrained quantization error for the uniform
distribution P with respect to the conditional set {(r, 0)} and the constraint L as Vn = 2r2(1− n

π
sin π

n
).

Then, V∞ = lim
n→∞

Vn = 0. Hence,

D(P ) = lim
n→∞

2 logn

− log(Vn − V∞)
= 1 and lim

n→∞

n2(Vn − V∞) =
π2r2

3
.

Thus, the proof of the theorem is complete. �

Remark 4.1.8. By Theorem 2.3, we know that quantization dimension and the quantization coefficient
in constrained and unconstrained cases do not depend on the conditional set. Thus, by Theorem 4.1.7,
we see that constrained quantization dimension of the uniform distribution P with respect to the
constraint L equals one, which is the dimension of the underlying space where the support of the
probability measure is defined, and does not depend on the radius r of the circle. This fact is not true,
in general, in constrained quantization, for example, one can see [PR1, PR3]. However, we see that
the constrained quantization coefficient for the uniform distribution P with respect to the constraint L
depends on the radius r of the circle.

4.2. Quantization in unconstrained scenario. In this subsection, we investigate the optimal sets of
n-means, nth quantization errors, and the quantization coefficient for the uniform distribution P when
there is no constraint and no conditional set. The following lemma is a generalized version of a similar
theorem that appears in [RR].

Theorem 4.2.1. Let αn be an optimal set of n-means for the uniform distribution P on the circle
x2
1 + x2

2 = r2 for n ∈ N. Then,

αn :=
{nr

π

(

sin(
π

n
) · cos((2j − 1)

π

n
), sin(

π

n
) · sin((2j − 1)

π

n
)
)

: j = 1, 2, · · · , n
}

forms an optimal set of n-means, and the corresponding quantization error is given by r2(1− n2

π2 sin
2 π
n
).

Proof. Let αn := {a1, a2, · · · , an} be an optimal set of n-means for P . Let the boundaries of the Voronoi
regions of ak intersect L at the points given by the parameters θk−1 and θk such that θk−1 < θk for
1 ≤ k ≤ n. Without any loss of generality, we can assume that θ0 = 0 and θn = 2π. Since, P is a
uniform distribution and the circle L is rotationally symmetric, without going into the much details of
calculations, we see that

θ1 − θ0 = θ2 − θ1 = θ3 − θ2 = · · · = θn − θn−1 =
θn − θ0

n
=

2π

n
.

implying θk = 2πk
n

for 0 ≤ k ≤ n. It is well-known that in unconstrained quantization, the elements in
an optimal set are the conditional expectations in their own Voronoi regions. Hence, for 1 ≤ k ≤ n, we
have

ak =
2π

θk − θk−1

∫ θk

θk−1

1

2π
(r cos θ, r sin θ)dθ =

r

θk − θk−1
(sin θk − sin θk−1, cos θk−1 − cos θk) ,

yielding

ak =
nr

π

(

sin(
π

n
) · cos((2k − 1)

π

n
), sin(

π

n
) · sin((2k − 1)

π

n
)
)

.
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Let Vn be the nth quantization error. Due to symmetry, the distortion errors contributed by ak in their
own Voronoi regions are equal for all 1 ≤ k ≤ n. Again, notice that θ0 = 0, θ1 = 2π

n
− θ0 = 2π

n
, and

a1 =
r
θ1
(sin θ1, 1− cos θ1). Hence,

Vn =
n

2π

∫ θ1

θ0

ρ((r cos θ, r sin θ), a1) dθ = r2(1−
n2

π2
sin2 π

n
).

Thus, the proof of the theorem is complete. �

Theorem 4.2.2. Let P be the uniform distribution on the circle of radius r with center (0, 0). Then,

the quantization coefficient for P exists as a finite positive number and equals π2r2

3
.

Proof. By Theorem 4.2.1, we have Vn = r2(1 − n2

π2 sin
2 π
n
), and hence lim

n→∞

n2Vn = π2r2

3
, which is the

theorem. �

Remark 4.2.3. Theorem 4.2.2 implies that the quantization coefficient for a uniform distribution on a
circle of radius r, though exists as a finite positive number, depends on the radius r of the circle.

5. Conditional optimal sets and the quantization coefficients for the uniform
distributions on the boundaries of the regular polygons

In this section, for a uniform distribution defined on the boundary of a regular m-sided polygon, we
calculate the conditional optimal sets of n-points and the nth conditional quantization errors, and the
conditional quantization coefficient taking the conditional set as the set of all vertices of the polygon.

Let P be the uniform distribution defined on the boundary L of a regular m-sided polygon given
by A1A2 · · ·Am for some m ≥ 3. Without any loss of generality we can assume that the polygon is
inscribed in the circle x2+y2 = r2 which has center O(0, 0) and radius r with the Cartesian coordinates
of the vertex A1 as (r, 0). Let θ be the central angle subtended by each side of the polygon, and let
θj be the polar angles of the vertices Aj . Then, we have θ = 2π

m
and θj = (j − 1)2π

m
. Then, the polar

coordinates of the vertices Aj are given by (r cos θj , r sin θj). Hence, if ℓ is the length of each of the sides
AjAj+1 for 1 ≤ j ≤ m, where the vertex Am+1 is identified as the vertex A1, then we have

ℓ = length of AjAj+1 =
√

ρ((r cos θj , r sin θj), (r cos θj+1, r sin θj+1)) = 2r sin
π

m
.

The probability density function (pdf) f for the uniform distribution P is given by f(x, y) = 1
mℓ

for all
(x, y) ∈ A1A2 · · ·Am, and zero otherwise. Moreover, we can write

L =
m
⋃

j=1

Lj , where Lj represents the side AjAj+1 for 1 ≤ j ≤ m.

Notice that

AjAj+1 = {(1− t)(r cos θj , r sin θj) + t(r cos θj+1, r sin θj+1) : 0 ≤ t ≤ 1}.

for 1 ≤ j ≤ m. Write

aj : = − sec
π

m

(

j sin
2π(j − 1)

m
− (j − 1) sin

2πj

m

)

, (7)

bj : = −2 sin
π

m
csc

2π

m

(

(j − 1) cos
2πj

m
− j cos

2π(j − 1)

m

)

, (8)

cj : = 2(j − 1)r sin
π

m
. (9)

Let us consider the affine transformation

T : L → [0, 2mr sin
π

m
] such that T (x, y) = ajx+ bjy if (x, y) ∈ AjAj+1,
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where aj and bj are given by (7) and (8) for all 1 ≤ j ≤ m. Then, notice that T : L \ {(r, 0)} →
(0, 2mr sin π

m
) is a bijective function. Let Q be the image measure of P under the function T , i.e.,

Q = TP such that for any Borel subset A ⊆ [0, 2mr sin π
m
], we have

Q(A) = TP (A) = P (T−1(A)).

By the distance between any two elements in [0, 2mr sin π
m
], it is meant the Euclidean distance between

the two elements. On the other hand, by the distance between any two elements on L, it is meant the
Euclidean distance between the two elements along the polygonal arc L in the counterclockwise direction.
Let Tj be the restriction of the mapping T to the set AjAj+1, i.e., Tj = T |AjAj+1

for 1 ≤ j ≤ m. Notice
that each Tj is a bijective function.

Lemma 5.1. The function T : L \ {(r, 0)} → (0, 2mr sin π
m
) preserves the distance.

Proof. Notice that

[0, 2mr sin
π

m
] =

m
⋃

j=1

[cj , cj+1] and T (AjAj+1) = Tj(AjAj+1) = [cj , cj+1],

where cj are given by (9) for all 1 ≤ j ≤ m. Since the length of AjAj+1 equals the length of the closed
interval [cj, cj+1], and Tj is a bijection, we can say that T : L \ {(r, 0)} → (0, 2mr sin π

m
) preserves the

distance. Thus, the lemma is yielded. �

The following lemma which is similar to Lemma 4.1.1 is also true here.

Lemma 5.2. The image measure Q is a uniform distribution on [0, 2mr sin π
m
].

Remark 5.3. Let {a1, a2, · · · , an} be a conditional unconstrained optimal set of n-points for Q with
respect to the conditional set {cj : 1 ≤ j ≤ m+1} such that a1 < a2 < · · · < an. Then, by the definition
of conditional set, we have n ≥ m+ 1. Moreover, notice that a1 = c1 = 0 and an = cm+1 = 2mr sin π

m
.

Since both P and Q are uniform distributions, and Q is the image measure of P under the function T ,
and T : L\{(r, 0)} → (0, 2mr sin π

m
) preserves the distance, we can say that the set T−1({a1, a2, · · · , an}),

i.e., the set {T−1(aj) : 1 ≤ j ≤ n− 1} forms a conditional unconstrained optimal set of (n− 1)-points
for P with respect to the conditional set {T−1(cj) : 1 ≤ j ≤ m}, i.e., with respect to the conditional set
{Aj : 1 ≤ j ≤ m}.

Lemma 5.4. Let γn be a conditional optimal set of n-points for the uniform distribution Q with respect
to the conditional set {cj : 1 ≤ j ≤ m + 1} for any n ≥ m + 1. Let nj = card(γn ∩ [cj , cj+1]) for
1 ≤ j ≤ m. Then, nj ≥ 2 and n1 + n2 + · · · + nm = n + m − 1, and |ni − nj | = 0 or 1 for all
1 ≤ i 6= j ≤ m.

Proof. Let γn be a conditional optimal set of n-points and nj be the positive integers as defined in the
hypothesis. Notice that each of the sets γn ∩ [cj , cj+1] always contains the end elements cj, cj+1 for
1 ≤ j ≤ m, where n ≥ m + 1. Moreover, except the two elements c1 and cm+1 all the end elements cj
are counted two times. Hence, nj ≥ 2 and n1 + n2 + · · ·+ nm = n+ (m+ 1− 2) = n+m− 1. Since Q

is a unform distribution and the lengths of the intervals [cj , cj+1] for 1 ≤ j ≤ m are all equal, the proof
of |ni − nj | = 0 or 1 for all 1 ≤ i 6= j ≤ m is routine. Thus, the lemma is yielded. �

Let us now give the following proposition.

Proposition 5.5. Let γn be a conditional optimal set of n-points and Vn(Q) be the nth conditional
quantization error for the uniform distribution Q with respect to the conditional set {cj : 1 ≤ j ≤ m+1}
for any n ≥ m+ 1. Let n = mk + 1 + q, where 0 ≤ q < m. Then, if q = 0, we have

γn =

m
⋃

j=1

{cj +
2(i− 1)r sin π

m

k
: 1 ≤ i ≤ k + 1} with Vn(Q) =

r2 sin2 π
m

3k2
.
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On the other hand, if 0 < q < m, then there are mCq possible sets γn, one such set is given by

γn =
(

q
⋃

j=1

{cj +
2(i− 1)r sin π

m

k + 1
: 1 ≤ i ≤ k + 2}

)

⋃

(

m
⋃

j=q+1

{cj +
2(i− 1)r sin π

m

k
: 1 ≤ i ≤ k + 1}

)

with Vn(Q) =
r2q sin2 π

m

3m(k+1)2
+

r2(m−q) sin2 π
m

3mk2
.

Proof. First assume that q = 0, then we have n = mk + 1, i.e., γn contains k − 1 elements from each of
the intervals [cj, cj+1] except the boundary elements cj and cj+1. Hence, if nj = card(γn ∩ [cj, cj+1]), we
have nj = k − 1 + 2 = k + 1. Hence, by (i) of Theorem 3.1, we have

γn =
m
⋃

j=1

{cj +
i− 1

k
(cj+1 − cj) : 1 ≤ i ≤ k + 1} =

m
⋃

j=1

{cj +
2(i− 1)r sin π

m

k
: 1 ≤ i ≤ k + 1}

with Vn =

m
∑

j=1

(cj+1 − cj)
2

12mk2
=

m
∑

j=1

r2 sin2 π
m

3mk2
=

r2 sin2 π
m

3k2
.

On the other hand, if 0 < q < m, then due to Lemma 5.4, we can assume that γn contains k elements
from each of the first q intervals except the boundary elements, and γn contains (k−1) elements from each
of the remaining m−q intervals except the boundary elements implying n1 = n2 = · · · = nq = k+2 and
nq+1 = nq+2 = · · · = nm = k + 1. Hence, the expressions for γn and the corresponding nth conditional
quantization errors are obtained by (i) of Theorem 3.1 as

γn =
(

q
⋃

j=1

{cj +
2(i− 1)r sin π

m

k + 1
: 1 ≤ i ≤ k + 2}

)

⋃

(

m
⋃

j=q+1

{cj +
2(i− 1)r sin π

m

k
: 1 ≤ i ≤ k + 1}

)

with

Vn =

q
∑

j=1

(cj+1 − cj)
2

12m(k + 1)2
+

m
∑

j=q+1

(cj+1 − cj)
2

12mk2
=

q
∑

j=1

r2 sin2 π
m

3m(k + 1)2
+

m
∑

j=q+1

r2 sin2 π
m

3mk2

yielding

Vn =
r2q sin2 π

m

3m(k + 1)2
+

r2(m− q) sin2 π
m

3mk2
.

Notice that if n = mk + q, the optimal set γn can be constructed in mCq ways. Thus, the proof of the
proposition is complete. �

The following two theorems give the main results in this section.

Theorem 5.6. Let αn be a conditional optimal set of n-points and Vn(P ) be the nth conditional quan-
tization error for the uniform distribution P with respect to the conditional set {Aj : 1 ≤ j ≤ m} for
any n ≥ m. Let n = mk + q, where 0 ≤ q < m. Then, if q = 0, we have

αn =

m
⋃

j=1

T−1
j {cj +

2(i− 1)r sin π
m

k
: 1 ≤ i ≤ k + 1} with Vn(P ) =

r2 sin2 π
m

3k2
.

On the other hand, if 0 < q < m, then there are mCq possible sets αn, one such set is given by

αn =
(

q
⋃

j=1

T−1
j {cj +

2(i− 1)r sin π
m

k + 1
: 1 ≤ i ≤ k + 2}

)

⋃

(

m
⋃

j=q+1

T−1
j {cj +

2(i− 1)r sin π
m

k
: 1 ≤ i ≤ k + 1}

)

with Vn(P ) =
r2q sin2 π

m

3m(k+1)2
+

r2(m−q) sin2 π
m

3mk2
.
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Proof. For n = mk+1+q, let γn be a conditional optimal set of n-points forQ as given by Proposition 5.5.
By Remark 5.3 and Proposition 5.5, it follows that the set αn given by the statement of the theorem
forms a conditional optimal set of n-points for P for n = mk+q. Notice that the (mk+q)th-conditional
quantization error with respect to the uniform distribution P remains same as the (mk + 1 + q)th-
conditional quantization error with respect to the uniform distribution Q. This happens due to the fact
that the bijective functions Tj preserve the distance as well as the collinearity of the elements in each
interval [cj , cj+1]. �

Theorem 5.7. Let P be the uniform distribution defined on the boundary of a regular m-sided polygon
inscribed in a circle of radius r with center (0, 0). Then, the conditional quantization coefficient for P

exists as a finite positive number and equals 1
3
m2r2 sin2( π

m
), i.e., lim

n→∞

n2(Vn(P )−V∞(P )) = 1
3
m2r2 sin2 π

m
.

Proof. Let n ∈ N be such that n ≥ m. Then, there exists a unique positive integer k such that
n = mk + q for some 0 ≤ q < m. Then, by Theorem 5.6, we have

Vn(P ) =
r2q sin2 π

m

3m(k + 1)2
+

r2(m− q) sin2 π
m

3mk2
=

m2r2 sin2
(

π
m

)

(m2 + 2mn− 3mq + n2 − 4nq + 3q2)

3(n− q)2(m+ n− q)2
.

Then, we see that V∞(P ) = limn→∞ Vn(P ) = 0. In fact, we have

lim
n→∞

n2(Vn(P )− V∞(P )) =
1

3
m2r2 sin2 π

m
.

Thus, the proof of the theorem is complete. �

Remark 5.8. By Theorem 2.3 and Theorem 5.7, we can say that the quantization coefficient for the
uniform distribution P defined on the boundary of a regular m-sided polygon is 1

3
m2r2 sin2 π

m
, which is

a finite positive number, but it is not a constant as it depends on both m and r, where m is the number
of sides of the polygon and r is the radius of the circle in which the polygon is inscribed, and this lead
us to conclude that the quantization coefficient for a uniform distribution defined on the boundary of
a regular m-sided polygon depends on both the number of sides of the polygon and the length of the
sides.
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