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CONDITIONAL QUANTIZATION FOR UNIFORM DISTRIBUTIONS ON LINE

SEGMENTS AND REGULAR POLYGONS

1PIGAR BITENG, 2MATHIEU CAGUIAT, 3TSIANNA DOMINGUEZ, AND 4MRINAL KANTI ROYCHOWDHURY

Abstract. Quantization for a Borel probability measure refers to the idea of estimating a given proba-
bility by a discrete probability with support containing a finite number of elements. If in the quantization
some of the elements in the support are preselected, then the quantization is called a conditional quan-
tization. In this paper, we have investigated the conditional quantization for the uniform distributions
defined on the unit line segments and m-sided regular polygons, where m ≥ 3, inscribed in a unit circle.

1. Introduction

The process of transformation of a continuous-valued signal into a discrete-valued one is called ‘quan-
tization’. It has broad applications in engineering and technology. We refer to [GG, GN, Z2] for surveys
on the subject and comprehensive lists of references to the literature; see also [AW, GKL, GL1, Z1].
For mathematical treatment of quantization one is referred to Graf-Luschgy’s book (see [GL1]). Re-
cently, Pandey and Roychowdhury introduced the concepts of constrained quantization and the con-
ditional quantization (see [PR1, PR2, PR4]). A quantization without a constraint is known as an
unconstrained quantization, which traditionally in the literature is known as quantization. After the
introduction of constrained quantization, and then the conditional quantization, the quantization the-
ory is now much more enriched with huge applications in our real world. For some follow up papers
in the direction of constrained quantization, one can see [BCDRV, HNPR, PR3, PR5]). On uncon-
strained quantization there is a number of papers written by many authors, for example, one can see
[DFG, DR, GG, GL, GL1, GL2, GL3, GN, KNZ, P, P1, R1, R2, R3, Z1, Z2]. This paper deals with con-
ditional unconstrained quantization, which traditionally, in the sequel will be refereed to as conditional
quantization.

Definition 1.1. Let P be a Borel probability measure on R
2 equipped with a Euclidean metric d induced

by the Euclidean norm ‖ · ‖. Let β ⊂ R
2 be given with card(β) = ℓ for some ℓ ∈ N. Then, for n ∈ N

with n ≥ ℓ, the nth conditional quantization error for P with respect to the conditional set β, is defined

as

Vn := Vn(P ) = inf
α

{

∫

min
a∈α∪β

d(x, a)2dP (x) : card(α) ≤ n− ℓ
}

, (1)

where card(A) represents the cardinality of the set A.

We assume that
∫

d(x, 0)2dP (x) < ∞ to make sure that the infimum in (1) exists (see [PR1]). For
a finite set γ ⊂ R

2 and a ∈ γ, by M(a|γ) we denote the set of all elements in R
2 which are nearest to

a among all the elements in γ, i.e., M(a|γ) = {x ∈ R
2 : d(x, a) = min

b∈γ
d(x, b)}. M(a|γ) is called the

Voronoi region in R
2 generated by a ∈ γ.

Definition 1.2. A set α ∪ β, where P (M(b|α ∪ β)) > 0 for b ∈ β, for which the infimum in Vn exists

and contains no less than ℓ elements, and no more than n elements is called a conditional optimal set

of n-points for P with respect to the conditional set β.
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Write V∞(P ) := lim
n→∞

Vn(P ). Then, the number

D(P ) := lim
n→∞

2 logn

− log(Vn(P )− V∞(P ))

if it exists, is called the conditional quantization dimension of P and is denoted by D(P ). The con-
ditional quantization dimension measures the speed at which the specified measure of the conditional
quantization error converges as n tends to infinity. For any κ > 0, the number

lim
n

n
2

κ (Vn(P )− V∞(P )),

if it exists, is called the κ-dimensional conditional quantization coefficient for P .
In this paper, we have investigated the conditional quantization for uniform distributions on the unit

line segments and on regular m-sided polygons, where m ≥ 3, inscribed in a unit circle.

1.3. Delineation. In this paper, there are total three sections in addition to the section that contains
the basic preliminaries. In Section 3, we have determined the conditional optimal sets of n-points and
the nth conditional quantization errors for a uniform distribution with two interior elements as the
conditional set for all n ≥ 2 on a unit line segment. In Section 4, we have calculated the conditional
optimal sets of n-points and the nth conditional quantization errors for a uniform distribution with
(k − 1) interior elements and one boundary element in the conditional set for all n ≥ k on a unit line
segment. Section 5, deals with a uniform distribution defined on the boundary of a regular m-sided
polygon. Let P be a uniform distribution defined on the boundary of a regularm-sided polygon inscribed
in a unit circle. In the paper [HMRT], in unconstrained scenario, Hansen et al. in a proposition, first
determined the optimal sets of n-means and the nth quantization errors for the probability distribution
P when n is of the form n = mk for some k ∈ N. Then, with the help of the proposition, they have
shown that the quantization coefficient for P exists, and equals 1

3
m2 sin2

(

π
m

)

, i.e.,

lim
n→∞

n2Vn(P ) =
1

3
m2 sin2 π

m
.

After the introduction of conditional quantization, we know that the quantization dimension and the
quantization coefficient, in both constrained and unconstrained scenario, for a Borel probability measure
do not depend on the conditional set (see [PR4]). Using this scenario, in Section 5, we calculate the
quantization coefficient for the uniform distribution P defined on the boundary of the regular m-sided
polygon inscribed in the unit circle by calculating the conditional quantization coefficient for P with
respect to the conditional set β, which consists of all the vertices of the regular polygon. The significance
of our work in Section 5 is that, the work in this section is much more simpler than the work to calculate
the quantization coefficient done by Hansen et al. in the paper [HMRT]. In addition, we have also
given an explicit formula to calculate the conditional optimal sets of n-points and the nth conditional
quantization errors for the uniform distribution P for all n ≥ m, where m is the number of vertices of
the m-sided polygon.

2. Preliminaries

For any two elements (a, b) and (c, d) in R
2, we write

ρ((a, b), (c, d)) := (a− c)2 + (b− d)2,

which gives the squared Euclidean distance between the two elements (a, b) and (c, d). Let p and q

be two elements that belong to an optimal set of n-points for some positive integer n, and let e be
an element on the boundary of the Voronoi regions of the elements p and q. Since the boundary of
the Voronoi regions of any two elements is the perpendicular bisector of the line segment joining the
elements, we have

ρ(p, e)− ρ(q, e) = 0.
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We call such an equation a canonical equation. Notice that any element x ∈ R can be identified as an
element (x, 0) ∈ R

2. Thus,

ρ : R× R
2 → [0,∞) such that ρ(x, (a, b)) = (x− a)2 + b2,

where x ∈ R and (a, b) ∈ R
2, defines a nonnegative real-valued function on R×R

2. On the other hand,

ρ : R× R → [0,∞) be such that ρ(x, y) = x2 + y2,

where x, y ∈ R, defines a nonnegative real-valued function on R× R.
Let P be a Borel probability measure on R which is uniform on its support the closed interval [a, b].

Then, the probability density function f for P is given by

f(x) =

{

1
b−a

if a ≤ x ≤ b,

0 otherwise.

Hence, we have dP (x) = P (dx) = f(x)dx for any x ∈ R.

Notation 2.1. Let α be a discrete set. Then, for a Borel probability measure µ and a set A, by
V (µ; {α,A}), it is meant the distortion error for µ with respect to the set α over the set A, i.e.,

V (µ; {α,A}) :=

∫

A

min
a∈α

d(x, a)2 dµ(x). (2)

The following proposition is a generalized version of Proposition 2.1, Proposition 2.2 and Proposi-
tion 2.3 that appear in [PR4]. For the readers’ convenience, we give the complete proof here.

Proposition 2.2. Let P be a uniform distribution on the closed interval [a, b] and c, d ∈ [a, b] be such

that a < c < d < b. For n ∈ N with n ≥ 2, let αn be a conditional unconstrained optimal set of n-points

for P with respect to the conditional set β = {c, d} such that αn contains k elements from the closed

interval [a, c], ℓ elements from the closed interval [c, d], and m elements from the closed interval [d, b]
for some k, ℓ,m ≥ 1. Then, k + ℓ+m = n+ 2,

αn ∩ [a, c] =
{

a+
(2j − 1)(c− a)

2k − 1
: 1 ≤ j ≤ k

}

,

αn ∩ [c, d] =
{

c+
j − 1

ℓ− 1
(d− c) : 1 ≤ j ≤ ℓ

}

, and

αn ∩ [d, b] =
{

d+
2(j − 1)(b− d)

2m− 1
: 1 ≤ j ≤ m

}

with the conditional unconstrained quantization error

Vn := Vk,ℓ,m(P ) =
1

3(b− a)

( (c− a)3

(2k − 1)2
+

1

4

(d− c)3

(ℓ− 1)2
+

(b− d)3

(2m− 1)2

)

.

Proof. Notice that the element c in the conditional set β is common to both the intervals [a, c] and [c, d],
the element d in the conditional set β is common to both the intervals [c, d] and [d, b], and so c and d

are counted two times. Hence, k + ℓ+m = n + 2. We have

[a, b] := {t : a ≤ t ≤ b}.

Let αn be a conditional unconstrained optimal set of n-points such that

card(αn ∩ [a, c]) = k, card(αn ∩ [c, d]) = ℓ, and card(αn ∩ [d, b]) = m, where k,m ≥ 1 and ℓ ≥ 2.

Then, we can write

αn ∩ [a, c] = {a1, a2, · · · , ak}, αn ∩ [c, d] = {c1, c2, · · · , cℓ} and αn ∩ [d, b] = {d1, d2, · · · , dm},

such that

a < a1 < a2 < · · · < ak = c = c1 < c2 < · · · < cℓ = d = d1 < d2 < · · · < dm < b.
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Since the closed intervals [a, c] is a line segments and P is a uniform distribution, we have

a2 − a1 = a3 − a2 = · · · = ak − ak−1 =
ak − a1

k − 1
=

c− a1

k − 1

implying

a2 = a1 +
c− a1

k − 1
= a1 +

c− a1

k − 1
,

a3 = a2 +
c− a1

k − 1
= a1 + 2

c− a1

k − 1
,

a4 = a3 +
c− a1

k − 1
= a1 + 3

c− a1

k − 1
,

and so on.

Thus, we have aj = a1 + (j − 1) c−a1
k−1

for 1 ≤ j ≤ k. The distortion error due to the elements αn ∩ [a, c]
is given by

V (P ; {αn ∩ [a, c], [a, c]}) =

∫

[a,c]

min
x∈αn∩[a,c]

ρ(t, x) dP

=
1

b− a

(

∫

a1+a2
2

a

ρ(t, a1) dt+ (k − 2)

∫

a2+a3
2

a1+a2
2

ρ(t, a2) dt+

∫ ak

ak−1+ak

2

ρ(t, ak) dt
)

=
4a3(k − 1)2 − 3a1 (4a

2(k − 1)2 − c2) + 3a21 (4a(k − 1)2 − c)− c3 + a31 (−4k2 + 8k − 3)

12(k − 1)2(a− b)
,

the minimum value of which is (c−a)3

3(b−a)(2k−1)2
and it occurs when a1 = a+ c−a

2k−1
. Putting the values of a1,

we have

aj = a+
(2j − 1)(c− a)

2k − 1
for 1 ≤ j ≤ k with V (P ; {αn ∩ [a, c], [a, c]}) =

(c− a)3

3(b− a)(2k − 1)2
.

Since the closed interval [c, d] is a line segment and P is a uniform distribution, we have

c2 − c1 = c3 − c2 = · · · = cℓ − cℓ−1 =
cℓ − c1

ℓ− 1
=

d− c

ℓ− 1

implying

c2 = c1 +
d− c

ℓ− 1
= c+

d− c

ℓ− 1
,

c3 = c2 +
d− c

ℓ− 1
= c+

2(d− c)

ℓ− 1
,

c4 = c3 +
d− c

ℓ− 1
= c+

3(d− c)

ℓ− 1
,

and so on.

Thus, we have cj = c+ j−1
ℓ−1

(d− c) for 1 ≤ j ≤ ℓ. The distortion error contributed by the ℓ elements in

the closed interval [c, d] is given by

V (P ; {αn ∩ [c, d], [c, d]}) =

∫

[c,d]

min
x∈αn∩[c,d]

ρ((t, 0), x) dP

=
1

b− a

(

2

∫
c1+c2

2

c1

ρ((t, 0), (c1, 0)) dt+ (ℓ− 2)

∫
c2+c3

2

c1+c2
2

ρ((t, 0), (c2, 0)) dt
)

=
1

12

(d− c)3

b− a

1

(ℓ− 1)2
.
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Again, the closed interval [d, b] is a line segment and P is a uniform distribution, we have

d2 − d1 = d3 − d2 = · · · = dm − dm−1 =
dm − d1

m− 1
=

dm − d

m− 1

implying

d2 = d1 +
dm − d

m− 1
= d+

dm − d

m− 1
,

d3 = d2 +
dm − d

m− 1
= d+ 2

dm − d

m− 1
,

d4 = d3 +
dm − d

m− 1
= d+ 3

dm − d

m− 1
,

and so on.

Thus, we have dj = d+ (j− 1)dm−d
m−1

for 1 ≤ j ≤ m. The distortion error contributed by the m elements
is given by

V (P ; {αn ∩ [d, b], [d, b]}) =

∫

[d,b]

min
x∈αn∩[d,b]

ρ(t, x) dP

=
1

b− a

(

∫

d1+d2
2

d1

ρ(t, d1) dt+ (m− 2)

∫

d2+d3
2

d1+d2
2

ρ(t, d2) dt+

∫ b

dm−1+dm

2

ρ(t, dm) dt
)

=
−4b3(m− 1)2 + 3dm (4b2(m− 1)2 − d2)− 3d2m (4b(m− 1)2 − d) + d3 + (4m2 − 8m+ 3) d3m

12(m− 1)2(a− b)

the minimum value of which is (b−d)3

3(b−a)(2m−1)2
and it occurs when dm = d+ 2(m−1)(b−d)

2m−1
. Putting the values

of dm, we have

dj = d+
2(j − 1)(b− d)

2m− 1
for 1 ≤ j ≤ m with V (P ; {αn ∩ [d, b], [d, b]}) =

(b− d)3

3(b− a)(2m− 1)2
.

Since aj = a+ (2j−1)(c−a)
2k−1

for 1 ≤ j ≤ k, cj = c+ j−1
ℓ−1

(d−c) for 1 ≤ j ≤ ℓ, and dj = d+ 2(j−1)(b−c)
2m−1

for 1 ≤
j ≤ m, and

Vn := Vk,ℓ,m = V (P ; {αn ∩ [a, c], [a, c]}) + V (P ; {αn ∩ [c, d], [c, d]}) + V (P ; {αn ∩ [d, b], [d, b]}),

the proposition is yielded. �

In the following sections, we give the main results of the paper.

3. Conditional optimal sets of n-points and the conditional quantization errors

with two interior elements in the conditional set for all n ≥ 2 on a unit line

segment

In this section, for the uniform distribution P on the line segment [0, 1] with respect to the conditional
set β := {1

4
, 2
4
}, we calculate the conditional optimal sets of n-points and the nth conditional quantization

errors for all n ∈ N with n ≥ 2. Let αn be a conditional optimal set of n-points with the nth conditional
quantization error Vn for all n ∈ N. Let card(αn∩[0,

1
4
]) = k, card(αn∩[

1
4
, 1
2
]) = ℓ, and card(αn∩[

1
2
, 1]) =

m. Then, k,m ≥ 1, and ℓ ≥ 2. By Proposition 2.2, we know that

αn ∩ [0,
1

4
] =

{ 2j − 1

4(2k − 1)
: 1 ≤ j ≤ k

}

,

αn ∩ [
1

4
,
1

2
] =

{1

4
+

j − 1

4(ℓ− 1)
: 1 ≤ j ≤ ℓ

}

, and (3)

αn ∩ [
1

2
, 1] =

{1

2
+

j − 1

2m− 1
: 1 ≤ j ≤ m

}

.
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Notice that αn = (αn ∩ [0, 1
4
]) ∪ (αn ∩ [1

4
, 1
2
]) ∪ (αn ∩ [1

2
, 1]) with the nth conditional quantization error

Vn := Vk,ℓ,m(P ) =
1

3

( 1

64(2k − 1)2
+

1

256(ℓ− 1)2
+

1

8(2m− 1)2

)

. (4)

Proposition 3.1. The optimal set of two-points is the set β = {1
4
, 1
2
} with V2 = 0.0481771.

Proof. By definition, the conditional optimal set of two-points is the conditional set β itself, and the
corresponding conditional quantization error is given by

V2 = V1,2,1 =
37

768
= 0.0481771.

Thus, the proposition is yielded. �

Proposition 3.2. The conditional optimal set of three-points is the set α3 = {1
4
, 1
2
, 5
6
} with V3 =

0.00651042.

Proof. By Equation (4), we see that

V2,2,1 = 0.0435475, V1,3,1 = 0.0472005, and V1,2,2 = 0.01114.

Since V1,2,2 is minimum among all the above possible errors, we can deduce that k = 1, ℓ = 2, and
m = 2. Hence, by (3), we obtain the conditional optimal set of three-points as α3 = {1

4
, 1
2
, 5
6
} with

V3 = 0.01114. �

Proposition 3.3. The conditional optimal set of four-points is the set α4 = { 1
12
, 1
4
, 1
2
, 5
6
} with V4 =

0.00651042.

Proof. Considering all possible errors Vi,j,k we see that it is minimum when i = 2, j = 2 and k = 2.
Hence, using (3) and (4), we deduce that α4 = { 1

12
, 1
4
, 1
2
, 5
6
} with V4 = 0.00651042. �

Proceeding in the similar way as the previous propositions, we can deduce the following two propo-
sitions:

Proposition 3.4. The conditional optimal set of five-points is the set α5 = { 1
12
, 1
4
, 1
2
, 7
10
, 9
10
} with V5 =

0.00354745.

Proposition 3.5. The conditional optimal set of six-points is the set α6 = { 1
12
, 1
4
, 3
8
, 1
2
, 7
10
, 9
10
} with

V6 = 0.00257089.

Lemma 3.6. Let n ∈ N be such that n = 4x+ 2 for some x ∈ N. Let card(αn ∩ [0, 1
4
]) = k, card(αn ∩

[1
4
, 1
2
]) = ℓ, and card(αn ∩ [1

2
, 1]) = m. Then, (k − 1) : (ℓ− 2) : (m− 1) = 1 : 1 : 2.

Proof. Let n = 4x+ 2 for some x ∈ N, and k, ℓ,m be the positive integers as defined in the hypothesis.
Since m = n + 2− k − ℓ = 4x+ 4− k − ℓ, by (4), we have

Vk,ℓ,m =
1

768

(

32

(−2k − 2L+ 8x+ 7)2
+

4

(1− 2k)2
+

1

(ℓ− 1)2

)

,

which is minimum if k = x+ 1 and ℓ = x+ 2. Then, m = 2x+ 1. Thus, we see that (k − 1) : (ℓ− 2) :
(m− 1) = 1 : 1 : 2, which is the lemma. �

As a consequence of Lemma 3.6, we deduce the following corollary.

Corollary 3.7. Let αn be a conditional optimal set of n-points with card(αn ∩ [0, 1
4
]) = k, card(αn ∩

[1
4
, 1
2
]) = ℓ, and card(αn ∩ [1

2
, 1]) = m. Then, for n ≥ 6, we have k,m ≥ 1 and ℓ ≥ 2.

Let us now give the following theorem, which is the main theorem in this section.

Theorem 3.8. For n ∈ N with n ≥ 6, let αn be a conditional optimal set of n-points for P . Let

card(αn ∩ [0, 1
4
]) = k, card(αn ∩ [1

4
, 1
2
]) = ℓ, and card(αn ∩ [1

2
, 1]) = m. For some x ∈ N if n = 4x + 2,

then (k, ℓ,m) = (x+1, x+2, 2x+1); if n = 4x+3, then (k, ℓ,m) = (x+1, x+2, 2x+2); if n = 4x+4,
then (k, ℓ,m) = (x+ 2, x+ 2, 2x+ 2); if n = 4x+ 5, then (k, ℓ,m) = (x+ 2, x+ 2, 2x+ 3).
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Proof. By Lemma 3.6, it is known that if n = 4x + 2, then (k, ℓ,m) = (x + 1, x + 2, 2x + 1). Using
the similar technique that is used in Lemma 3.6, we can show that if n = 4x + 3, then (k, ℓ,m) =
(x + 1, x + 2, 2x + 2); if n = 4x + 4, then (k, ℓ,m) = (x + 2, x + 2, 2x + 2); if n = 4x + 5, then
(k, ℓ,m) = (x+ 2, x+ 2, 2x+ 3). Thus, the proof of the theorem is complete. �

Note 3.9. By Theorem 3.8, for any given n ≥ 6, we can easily calculate the values of (k, ℓ,m). Since
the values of (k, ℓ,m) depend on n, writing (k, ℓ,m) := (k(n), ℓ(n), m(n)), we have

{

(k(n), ℓ(n), m(n)
}

∞

n=6

=
{

(2, 3, 3), (2, 3, 4), (3, 3, 4), (3, 3, 5), (3, 4, 5), (3, 4, 6), (4, 4, 6), (4, 4, 7), (4, 5, 7), (4, 5, 8), · · ·
}

.

Notice that if n = 4x+ 2 for x ∈ N, then we have
{

(k(4x+ 2)− 1, ℓ(4x+ 2)− 2, m(4x+ 2)− 1
}∞

x=1
=

{

(1, 1, 2), (2, 2, 4), (3, 3, 6), (4, 4, 8), · · ·
}

implying
{

(k(4x+ 2)− 1, ℓ(4x+ 2)− 2, m(4x+ 2)− 1
}∞

x=1
=

{

x(1, 1, 2) : x ∈ N

}

.

3.10. Conditional optimal sets of n-points and the nth conditional quantization errors.

Let n ≥ 6 be a positive integer. To determine the optimal sets of n-points and the nth conditional
quantization errors, first using Theorem 3.8, we determine the corresponding values of k, ℓ, and m.
Once k, ℓ,m are known, by using (3), we calculate the sets αn ∩ [0, 1

4
], αn ∩ [1

4
, 1
2
], and αn ∩ [1

2
, 1]. Then,

αn is given by

αn = (αn ∩ [0,
1

4
])
⋃

(αn ∩ [
1

4
,
1

2
])
⋃

(αn ∩ [
1

2
, 1]),

and the nth conditional quantization error is obtained by using the formula (4). �

Example 3.11. Let n = 59, then as n = 4 × 14 + 3 = 4x + 3, where x = 14, by Theorem 3.8, we
have (k, ℓ,m) = (x+1, x+2, 2x+2) = (15, 16, 30). Hence, by (3) and (4), we have the nth conditional
optimal set of n-points, for n = 56 as

α59 =
{ 1

116
(2j − 1) : 1 ≤ j ≤ 15

}

⋃

{j − 1

60
+

1

4
: 1 ≤ j ≤ 16

}

⋃

{j − 1

59
+

1

2
: 1 ≤ j ≤ 30

}

with nth conditional quantization error V59 = V15,16,30 =
12115621

505875628800
.

Theorem 3.12. The conditional quantization dimension D(P ) of the probability measure P exists, and

D(P ) = 1.

Proof. For any n ∈ N with n ≥ 6, there exists a positive integer x depending on n such that 4x+ 2 ≤
n ≤ 4(x+ 1) + 2. Then, Vx+2,x+3,2x+3 ≤ Vn ≤ Vx+1,x+2,2x+1. By (4), we see that Vx+2,x+3,2x+3 → 0 and
Vx+1,x+2,2x+1 → 0 as n → ∞, and so by squeeze theorem, Vn → 0 as n → ∞, i.e., V∞ = 0. We can take
n large enough so that Vx+1,x+2,2x+1 − V∞ < 1. Then,

0 < − log(Vx+1,x+2,2x+1 − V∞) ≤ − log(Vn − V∞) ≤ − log(Vx+2,x+3,2x+3 − V∞)

yielding
2 log(4x+ 2)

− log(Vx+2,x+3,2x+3 − V∞)
≤

2 logn

− log(Vn − V∞)
≤

2 log(4x+ 6)

− log(Vx+1,x+2,2x+1 − V∞)
.

Notice that

lim
n→∞

2 log(4x+ 2)

− log(Vx+2,x+3,2x+3 − V∞)
= 1, and lim

n→∞

2 log(4x+ 6)

− log(Vx+1,x+2,2x+1 − V∞)
= 1.

Hence, lim
n→∞

2 logn
− log(Vn−V∞)

= 1, i.e., the conditional quantization dimension D(P ) of the probability mea-

sure P exists and D(P ) = 1. Thus, the proof of the theorem is complete. �
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Theorem 3.13. The D(P )-dimensional quantization coefficient for P exists as a finite positive number

and equals 1
12
.

Proof. For any n ∈ N with n ≥ 6, there exists a positive integer x depending on n such that 4x+ 2 ≤
n ≤ 4(x+ 1) + 2. Then, Vx+2,x+3,2x+3 ≤ Vn ≤ Vx+1,x+2,2x+1 and V∞ = 0. Since

lim
n→∞

n2(Vn − V∞) ≥ lim
n→∞

(4x+ 2)2(Vx+2,x+3,2x+3 − V∞) =
1

12
, and

lim
n→∞

n2(Vn − V∞) ≤ lim
n→∞

(4x+ 6)2(Vx+1,x+2,2x+1 − V∞) =
1

12
,

by squeeze theorem, we have lim
n→∞

n2(Vn − V∞) = 1
12
, which is the theorem. �

4. Conditional optimal sets of n-points and the nth conditional quantization errors

with (k − 1) interior elements and one boundary element in the conditional set

for all n ≥ k on a unit line segment

In this section, for the uniform distribution P on the line segment [0, 1] with respect to the conditional
set β := { 1

k
, 2
k
, · · · , k−1

k
, k
k
}, we calculate the conditional optimal sets of n-points and the nth conditional

quantization errors for all n ∈ N with n ≥ k. Let αn be a conditional optimal set of n-points with the
nth conditional quantization error Vn, where n ∈ N with n ≥ k. Write

Jk,j := [
j − 1

k
,
j

k
] and card(αn ∩ Jk,j) = nj for 1 ≤ j ≤ k. (5)

Notice that nj satisfies: n1 ≥ 1, nj ≥ 2 for 2 ≤ j ≤ k. By Proposition 2.2, we know that

αn ∩ Jk,1 =
{ 2j − 1

k(2n1 − 1)
: 1 ≤ j ≤ n1

}

with V (P ; {αn ∩ Jk,1, Jk,1}) =
1

3k3(2n1 − 1)2
, (6)

and

αn ∩ Jk,j =
{j − 1

k
+

q − 1

k(nj − 1)
: 1 ≤ q ≤ nj

}

with V (P ; {αn ∩ Jk,j, Jk,j}) =
1

12k3(nj − 1)2
(7)

for 2 ≤ j ≤ k. Notice that

αn =
k
⋃

j=1

αn ∩ Jk,j with Vn := Vn1,n2,··· ,nk
(P ) =

k
∑

j=1

V (P ; {αn ∩ Jk,j, Jk,j}). (8)

Proposition 4.1. The optimal set of k-points is the set β = { j

k
: 1 ≤ j ≤ k} with Vk =

k+3
12k3

.

Proof. By definition, the conditional optimal set of k-points is the conditional set β itself, and the
corresponding conditional quantization error is given by

Vk =

k
∑

j=1

V (P ; {αn ∩ Jk,j, Jk,j}) = V (P ; {{
1

k
}, Jk,1}) + (k − 1)V (P ; {{

1

k
,
2

k
}, Jk,2}) =

k + 3

12k3
.

Thus, the proposition is yielded. �

Lemma 4.2. Let n ∈ N be such n ≥ k. Let nj be the positive integers as defined by (5). Then, for

2 ≤ i < j ≤ k, |ni − nj| = 0 or 1.

Proof. Recall that for 2 ≤ i < j ≤ k, ni + nj ≥ 4. Let us first assume that ni + nj is an even number,
i.e., ni + nj = 2m for some m ≥ 2. Then,

V (P ; {αn ∩ Jk,i, Jk,i}) + V (P ; {αn ∩ Jk,j, Jk,j}) =
1

12k3

( 1

(ni − 1)2
+

1

(nj − 1)2

)

.

By routine, we see that the above expression is minimum if n1 = n2 = m. Similarly, if ni +nj = 2m+1
for some m ≥ 2, then we see that the above expression is minimum if (ni, nj) = (m,m + 1), or
(ni, nj) = (m + 1, m). This yields the fact that for 2 ≤ i < j ≤ k, |ni − nj| = 0 or 1, which is the
lemma. �
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Lemma 4.3. Let n ∈ N be such n ≥ k. Let nj be the positive integers as defined by (5). Then, for

2 ≤ j ≤ k, |n1 − nj | = 0 or 1 with n1 ≤ nj.

Proof. Recall that n1 ≥ 1 and for 2 ≤ j ≤ k, we have nj ≥ 2. Let us first assume that n1 + nj is an
even number, i.e., n1 + nj = 2m, i.e., nj = 2m− n1 for some m ∈ N with m ≥ 2. Then,

V (P ; {αn ∩ Jk,1, Jk,1}) + V (P ; {αn ∩ Jk,j, Jk,j}) =
1

3k3

( 1

(2n1 − 1)2
+

1

4(2m− n1 − 1)2

)

.

By routine, we see that the above expression is minimum if n1 = n2 = m. Similarly, if n1+nj = 2m+1
for some m ∈ N, then we see that the above expression is minimum if (n1, nj) = (m,m+ 1). Thus, for
2 ≤ j ≤ k, we have |n1 − nj| = 0 or 1 with n1 ≤ nj , which is the lemma. �

Let us now give the following theorem, which is the main theorem is this section. This theorem helps
us to determine the conditional optimal sets of n-points and the nth conditional quantization errors for
all n ∈ N with n ≥ k.

Theorem 4.4. For n ≥ k, let αn be a conditional optimal set of n-points such that n = mk + ℓ some

ℓ,m ∈ N and 0 ≤ ℓ < k. Then,

(i) if ℓ = 0, then card(αn ∩ Jk,1) = m and card(αn ∩ Jk,j) = m+ 1 for 2 ≤ j ≤ k;

(ii) if 1 ≤ ℓ < k, then card(αn ∩ Jk,1) = m+ 1 and card(αn ∩ Jk,j) = m+ 2 for j ∈ {j1, j2, · · · , jℓ−1},
and card(αn ∩ Jk,j) = m + 1 for j ∈ {2, 3, · · · , k} \ {j1, j2, · · · , jℓ−1}, where {j1, j2, · · · , jℓ−1} is any

subset of ℓ− 1 elements of the set {2, 3, · · · , k}.

Proof. The proof follows as a consequence of Lemma 4.2 and Lemma 4.3. �

Remark 4.5. Notice that in (i) of Theorem 4.4, we have
∑k

j=1 card(αn ∩ Jk,j) = mk + (k − 1), on the

other hand, in (ii) of Theorem 4.4, we have
∑k

j=1 card(αn ∩ Jk,j) = mk + ℓ + (k − 1), i.e., in the sum

an extra term (k − 1) occurs. This happens because in the conditional optimal set of n-points, (k − 1)
elements from the conditional set are counted two times.

4.6. conditional optimal sets of n-points and the nth conditional quantization errors. Let n ≥
k be a positive integer. To determine the optimal sets of n-points and the nth conditional quantization
errors, first using Theorem 4.4, we determine the values of nj , where nj = card(αn ∩ Jk,j). Once nj are
known by using the formulae given in (6) and (7), we calculate the sets αn ∩ Jk,j and the corresponding
distortion errors V (P ; {αn ∩ Jk,j, Jk,j}) for all 1 ≤ j ≤ k. Then, using the expressions in (8), we obtain
the conditional optimal set αn and the corresponding nth conditional quantization error Vn. As an
illustration, see Example 4.7 given below. �

Example 4.7. Let P be the uniform distribution on the closed interval [0, 1]. Choose k = 5, i.e., the
conditional set is β := {1

5
, 2
5
, 3
5
, 4
5
, 1}. Then, the optimal set of n-points for any n ≥ 5 exists. Notice that

by Proposition 4.1, the conditional optimal set of five-points is the conditional set β with the conditional
quantization error

V5 =
k + 3

12k3
=

2

375
.

To determine a conditional optimal set of n-points, for some n, n = 19 say, we proceed as follows:
We have n = 19 = 3 × 5 + 4, i.e., we have m = 3 and ℓ = 4. Recall Theorem 4.4 (ii). Let

card(αn ∩ Jk,j) = nj for 1 ≤ j ≤ 5. Choose any {j1, j2, j3} ⊆ {2, 3, 4, 5}. Let {j1, j2, j3} = {2, 4, 5}.
Then, {2, 3, 4, 5} \ {j1, j2, j3} = {3} yielding n1 = 4, n2 = n4 = n5 = 5, and n3 = 4. Then, using (6)
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Am

A1 A2

A3

Ai

Ai+1

θ

θ

Figure 1. The regular m-sided polygon inscribed in a unit circle.

and (7), we have

αn ∩ Jk,1 =
{2j − 1

35
: 1 ≤ j ≤ 4

}

=
{ 1

35
,
3

35
,
1

7
,
1

5

}

with V (P ; {αn ∩ Jk,1, Jk,1}) =
1

18375
,

αn ∩ Jk,2 =
{1

5
+

q − 1

20
: 1 ≤ q ≤ 5

}

=
{1

5
,
1

4
,
3

10
,
7

20
,
2

5

}

with V (P ; {αn ∩ Jk,2, Jk,2}) =
1

24000
,

αn ∩ Jk,3 =
{2

5
+

q − 1

15
: 1 ≤ q ≤ 4

}

=
{2

5
,
7

15
,
8

15
,
3

5

}

with V (P ; {αn ∩ Jk,3, Jk,3}) =
1

13500
,

αn ∩ Jk,4 =
{3

5
+

q − 1

20
: 1 ≤ q ≤ 5

}

=
{3

5
,
13

20
,
7

10
,
3

4
,
4

5

}

with V (P ; {αn ∩ Jk,4, Jk,4}) =
1

24000
,

αn ∩ Jk,5 =
{4

5
+

q − 1

20
: 1 ≤ q ≤ 5

}

=
{4

5
,
17

20
,
9

10
,
19

20
, 1
}

with V (P ; {αn ∩ Jk,5, Jk,5}) =
1

24000
.

Hence, using the expressions in (8), we obtain

αn =
{ 1

35
,
3

35
,
1

7
,
1

5
,
1

4
,
3

10
,
7

20
,
2

5
,
7

15
,
8

15
,
3

5
,
13

20
,
7

10
,
3

4
,
4

5
,
17

20
,
9

10
,
19

20
, 1
}

with

Vn =
5

∑

j=1

V (P ; {αn ∩ Jk,j, Jk,j}) =
2683

10584000
.

5. conditional quantization for uniform distributions on the boundaries of regular

polygons inscribed in a unit circle

Let the equation of the unit circle be x2
1 + x2

2 = 1. Let A1A2 · · ·Am be a regular m-sided polygon for
some m ≥ 3 inscribed in the circle as shown in Figure 1. Let ℓ be the length of each side. Then the
length of the boundary of the polygon is given by ℓm. Let P be the uniform distribution defined on the
boundary of the polygon. Then, the probability density function (pdf) f for the uniform distribution P

is given by f(x1, x2) =
1
mℓ

for all (x1, x2) ∈ A1A2 · · ·Am, and zero otherwise. Let θ be the central angle
subtended by each side of the polygon. Then, we know θ = 2π

m
. Let the polar angles of the vertices

Aj of the polygon be given by θj , where 1 ≤ j ≤ m. Without any loss of generality, due to rotational
symmetry, we can always assume that the side A1A2 of the polygon is parallel to the x1-axis, as shown
in Figure 1. Then, we have

θ1 =
3π

2
−

θ

2
=

3π

2
−

π

m
and θj = θ1 + (j − 1)

2π

m
for 2 ≤ j ≤ m.
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Let β be the set of all vertices of the polygon, i.e.,

β := {(cos θj , sin θj) : 1 ≤ j ≤ m}.

Notice that the Cartesian coordinates of the vertices A1 andA2 are given by, respectively, (− sin π
m
,− cos π

m
)

and (sin π
m
,− cos π

m
). Hence,

A1A2 = {(t,− cos
π

m
) : − sin

π

m
≤ t ≤ sin

π

m
}.

Moreover, the length ℓ of each side is given by ℓ = 2 sin π
m
. Let αn be a conditional optimal set of

n-points for P with respect to the conditional set β, i.e., αn exists for all n ≥ m. Let

card(αn ∩AiAi+1) = ni where 1 ≤ i ≤ m and Am+1 is identified as A1. (9)

Then, notice that
ni ≥ 2 for all 1 ≤ i ≤ m and n1 + n2 + · · ·+ nm = n+m,

as each of the vertices are counted two times.

Proposition 5.1. Let P be the uniform distribution defined on the boundary of the regular m-sided

polygon inscribed in the unit circle. Let card(αn ∩A1A2) = n1. Then,

αn ∩A1A2 =
{(

− sin
π

m
+

2(j − 1) sin π
m

n1 − 1
,− cos

π

m

)

: 1 ≤ j ≤ n1

}

(10)

with the corresponding distortion error

V (P ; {αn ∩A1A2, A1A2}) =
sin2 π

m

3m(n1 − 1)2
. (11)

Proof. Notice that the line segment A1A2 is parallel to the x1-axis and lies on the line x2 = − cos π
m
.

Hence, replacing c by (− sin π
m
,− cos π

m
) and d by (sin π

m
,− cos π

m
), by Proposition 2.2, we obtain

αn ∩ A1A2 =
{(

cj,− cos
π

m

)

: 1 ≤ j ≤ n1

}

, where cj = − sin
π

m
+

2(j − 1) sin π
m

m
.

Recall ℓ = 2 sin π
m
. Hence,

V (P ; {αn ∩A1A2, A1A2}) =
1

mℓ

(

2

∫ 1

2
(c1+c2)

c1

ρ((t,− cos
π

m
), (c1,− cos

π

m
)) dt

+ (n1 − 2)

∫ 1

2
(c2+c3)

1

2
(c1+c2)

ρ((t,− cos
π

m
), (c2,− cos

π

m
)) dt

)

=
sin2 π

m

3m(n1 − 1)2
,

which yields the proposition. �

The following lemma, which is similar to Lemma 4.2, is also true here.

Lemma 5.2. Let n ∈ N be such n ≥ m. Let ni be the positive integers as defined by (9). Then, for

1 ≤ i 6= j ≤ m, |ni − nj | = 0 or 1.

Let T : R2 → R
2 be an affine transformations such that for all (x, y) ∈ R

2, we have

T (x, y) = (ax+ by, cx+ dy),

where

a =
1

2

(

sin
3π

m
csc

π

m
− 1

)

, b =
1

2

(

− sin
3π

m
sec

π

m
− tan

π

m

)

,

c =
1

2

(

cot
π

m
− cos

3π

m
csc

π

m

)

, and d =
1

2

(

cos
3π

m
sec

π

m
+ 1

)

.
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Also, for any j ∈ N, by T j it is meant the composition mapping T j = T ◦ T ◦ T ◦ · · · j-times. If j = 0,
i.e., by T 0 it is meant the identity mapping on R

2. Then, notice that

T i−1(A1A2) = AiAi+1 for 1 ≤ i ≤ m, where Am+1 is identified as A1.

Let us now give the following theorem, which is the main theorem is this section. This theorem helps
us to determine the conditional optimal sets of n-points and the nth conditional quantization errors for
all n ∈ N with n ≥ m.

Theorem 5.3. For n ≥ m, let αn be a conditional optimal set of n-points such that n = mk + ℓ some

k, ℓ ∈ N and 0 ≤ ℓ < m. Then, identifying Am+1 by A1, we have

(i) if ℓ = 0, then card(αn ∩ AiAi+1) = k + 1 for 1 ≤ i ≤ m;

(ii) if 1 ≤ ℓ < m, then card(αn ∩ AiAi+1) = k + 2 for i ∈ {i1, i2, · · · , iℓ} and card(αn ∩ AiAi+1) =
k + 1 for i ∈ {1, 2, · · · , m} \ {i1, i2, · · · , iℓ}, where {i1, i2, · · · , iℓ} is any subset of ℓ elements of the set

{1, 2, · · · , m}.

Proof. The proof follows as a consequence of Lemma 5.2. �

5.4. Conditional optimal sets of n-points and the nth conditional quantization errors. Let
n ≥ m be a positive integer. To determine the conditional optimal sets of n-points and the nth
conditional quantization errors, first using Theorem 5.3, we determine the values of ni, where ni =
card(αn∩AiAi+1) and Am+1 is identified as A1. Recall Proposition 5.1. For each ni assume that card(αn∩
A1A2) = ni, and calculate αn ∩ A1A2 and V (P ; {αn ∩ A1A2, A1A2}), denote them by αn ∩ A1A2(ni)
and V (P ; {αn ∩ A1A2, A1A2})(ni), respectively. Now, recall the affine transformation. Since the affine
transformation, considered in this section, preserves the length, the distortion errors do not change under
the affine transformation. Hence, for each ni, we obtain αn ∩ AiAi+1 and V (P ; {αn ∩ AiAi+1, AiAi+1})
as follows:

αn ∩AiAi+1 = T i−1
(

αn ∩ A1A2(ni)
)

, and

V (P ; {αn ∩AiAi+1, AiAi+1}) = V (P ; {αn ∩ A1A2, A1A2})(ni).

Once αn ∩AiAi+1 and V (P ; {αn ∩ AiAi+1, AiAi+1}) are obtained, we calculate the conditional optimal
sets αn and the nth conditional quantization errors using the following formulae:

αn =

m
⋃

i=1

T i−1
(

αn ∩ A1A2(ni)
)

=

m
⋃

i=1

T i−1
{(

− sin
π

m
+

2(j − 1) sin π
m

ni − 1
,− cos

π

m

)

: 1 ≤ j ≤ ni

}

and

Vn =
m
∑

i=1

V (P ; {αn ∩A1A2, A1A2})(ni) =
m
∑

i=1

sin2 π
m

3m(ni − 1)2
.

�

Remark 5.5. Since the conditional quantization dimension is same as the quantization dimension (see
[PR4]), and it is well-known that the quantization dimension of an absolutely continuous probability
measure equals the Euclidean dimension of the underlying space, we can assume that the conditional
quantization dimension of P is one, i.e., D(P ) = 1.

Let us now give the following proposition.

Proposition 5.6. Let αn be an optimal set of n-points for P such that n = mk, where k ∈ N. Then,

Vn =
1

3k2
sin2 π

m
.

Proof. Let n = mk for some k ∈ N. Let ni be the positive integers as defined by (9). Then, by
Lemma 5.2, we can say that

n1 = n2 = · · · = nm = k + 1.
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Notice that each ni equals k + 1. It happens because αn contains m distinct elements from each side,
but in each ni both the end points are counted. Hence, by (11), we have Vn = 1

3k2
sin2 π

m
. Thus, the

proof of the proposition is complete. �

Theorem 5.7. Let P be the uniform distribution on the boundary of a regular m-sided polygon inscribed

in a unit circle. Then, the conditional quantization coefficient for P exists as a finite positive number

and equals 1
3
m2 sin2( π

m
), i.e., lim

n→∞

n2(Vn − V∞) = 1
3
m2 sin2( π

m
).

Proof. Let n ∈ N be such that n ≥ m. Then, there exists a unique positive integer ℓ(n) ≥ 2 such that
mℓ(n) ≤ n < m(ℓ(n) + 1). Then,

(mℓ(n))2Vm(ℓ(n)+1) < n2Vn < (m(ℓ(n) + 1))2Vmℓ(n). (12)

Moreover, by squeeze theorem, we have V∞ = limn→∞ Vn = 0. Recall Proposition 5.6. We have

lim
n→∞

(mℓ(n))2(Vm(ℓ(n)+1) − V∞) = lim
n→∞

(mℓ(n))2
1

3(ℓ(n) + 1)2
sin2 π

m
=

1

3
m2 sin2 π

m
,

and

lim
n→∞

(m(ℓ(n) + 1))2(Vmℓ(n) − V∞) = lim
n→∞

(m(ℓ(n) + 1))2
1

3(ℓ(n))2
sin2 π

m
=

1

3
m2 sin2 π

m
,

and hence, by (12), using squeeze theorem, we have lim
n→∞

n2(Vn−V∞) = 1
3
m2 sin2 π

m
, i.e., the conditional

quantization coefficient exists as a finite positive number which equals 1
3
m2 sin2 π

m
. Thus, the proof of

the theorem is complete. �

Remark 5.8. It is known that for an absolutely continuous probability measure, the quantization di-
mension equals the Euclidean dimension of the underlying space, and the quantization coefficient exists
as a finite positive number (see [BW]). Since the conditional quantization dimension is same as the quan-
tization dimension, and the conditional quantization coefficient is same as the quantization coefficient
(see [PR4]), by Theorem 5.7, we can conclude that the quantization coefficient for the uniform distribu-
tion defined on the boundary of a regular m-sided polygon inscribed in a unit circle is 1

3
m2 sin2 π

m
, which

depends on m and is an increasing function of m. Thus, we can conclude that for absolutely continuous
probability measures given in an Euclidean space, the quantization dimensions remain constant and it
is equal to the dimension of the underlying space, but the quantization coefficients can be different.

References

[AW] E.F. Abaya and G.L. Wise, Some remarks on the existence of optimal quantizers, Statistics & Probability Letters,
Volume 2, Issue 6, December 1984, Pages 349-351.

[BW] J.A. Bucklew and G.L. Wise, Multidimensional asymptotic quantization theory with rth power distortion measures,
IEEE Transactions on Information Theory, 1982, Vol. 28 Issue 2, 239-247.

[BCDRV] P. Biteng, M. Caguiat, D. Deb, M.K. Roychowdhury, and B. Villanueva, Constrained quantization for a uniform

distribution, arXiv:2401.01958 [math.DS].
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