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ASYMPTOTIC ANALYSIS OF A MAGNETIZED
TARGET FUSION REACTOR∗

MICHAEL LINDSTROM†

Abstract. Nonlinear conservation laws with moving boundaries often arise in applications such
as gas dynamics and more recently in the context of nuclear fusion reactors. Gaining insight into
the nature of solutions to such models and their dependence upon design parameters is often done
numerically. We use formal asymptotics to study a model of a magnetized target fusion reactor
for producing energy. We will asymptotically solve the compressible Euler equations with two free
moving boundaries, with an algebraic coupling of fluid pressure at one of the free boundaries. The
model consists of an intense pressure being imparted on the boundary of a large sphere holding
molten lead-lithium over a very short time scale, in the middle of which is a smaller concentric
sphere containing plasma. A localized disturbance quickly propagates toward the plasma, whereby
part of the energy is reflected and part compresses the plasma. The plasma pressure is modeled
by a magnetic pressure, dependent upon its radius. Both the outer boundary of the lead-lithium
sphere and the plasma boundary are free. Using matched asymptotics and various techniques for
solving linear hyperbolic systems including Riemann invariants and using the velocity potential
formulation of the linear acoustic equations, we estimate the maximum compression of the plasma.
This estimation gives insights into the factors relevant in designing an energy-producing reactor.

Key words. compressible Euler equations, hyperbolic conservation laws, free boundaries, formal
asymptotics, magnetized target fusion

AMS subject classifications. 76L05, 41A60, 35L40, 35L45, 35L50, 35L65, 35L67, 35Q31,
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DOI. 10.1137/140984142

1. Introduction. Developing technology suitable for harvesting fusion energy
and using it for power is an exciting and active area of research. Thanks to advances
in technology, various projects worldwide have gotten closer to achieving this aim [4].
Building suitable technology is a long and expensive process and mathematical mod-
eling has become an essential element to the designs. Recently, a paper was written
illustrating a numerical framework that could be used in simulations of magnetized
target fusion; in the paper, a simplified model of one particular reactor design was
investigated [16]. In this paper, we investigate the model further from an analytic
perspective.

This paper is organized into the following sections: this introduction, where we
overview the physical motivation and context for the problem; section 2, where we
outline the equations and nondimensionalize them; section 3, where we use formal
asymptotic analysis to study the system; section 4, where we validate the asymptotics
by comparing with numerical results; and finally section 5, where we conclude and
consider future work. More details on the analysis and further exposition are provided
in [15].

1.1. A design for a magnetized target fusion reactor. Nuclear fusion is
a complicated process whereby lighter elements fuse together to produce heavier ele-
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ments. Fusion technology researchers often consider the use of deuterium or tritium
fuels, producing helium and free neutrons upon fusion [1]. The released energy can be
collected and used. Many factors impact fusion, but three very big factors in deter-
mining if a deuterium or tritium fuel can fuse to yield more energy output than input
are pressure (or particle density), temperature, and confinement time [14]. In general,
the greater the density and temperature that can be achieved and for the longer time,
the more effective the device. The design we consider is based on a Canadian fusion
research company, General Fusion [10], [11]. The apparatus being engineered consists
of a large sphere of molten lead with a vertical axis that is empty through which a
toroidal plasma will be fired. Pistons will impart a large pressure to the outer sphere
over a fast time scale. This will generate a disturbance in the fluid which will prop-
agate and focus radially inward, reaching the center. The plasma will be fired into
the central axis at a precise time so as to be at the center when the pressure wave
reaches it.

Our objective in this paper is to predict the minimal radius of the plasma, as this
is a key parameter in how efficient such a design could potentially be. The parameter
regime for the device winds up being at the boundary of asymptotic validity; we
will furnish a minimum radius that is qualitatively consistent with the numerics in
its parameter sensitivity, but where the quantitative accuracy is a loose estimate.
Our work also validates that the asymptotics are quantitatively accurate given a
well-ordered parameter regime. Other factors besides the minimum radius, such as
confinement time, are not analyzed here.

1.2. Physical assumptions. We take the plasma to be spherical and we assume
spherical symmetry for all components. Plasma pressures have both a gas pressure
and a magnetic pressure component. In many plasmas, the magnetic pressure is
much larger initially. We model the plasma pressure by a magnetic pressure (scaling
inversely with the fourth power of its radius) [21], neglecting the gas pressure compo-
nent. Our motivation for this is not to say the gas pressure will always be negligible,
but rather to gain more detailed qualitative information about the most basic of the
system parameters.

The pressure imparted by the pistons is described by a baseline pressure plus
a very large pressure modulated by a Gaussian with a very short time scale. The
pressure of lead-lithium is taken to be linear in density. Our model will neglect
mixing effects and radiation losses. These simplifications allow us to write more
tractable equations and gain qualitative insight into how the most basic engineering
parameters influence the compression of the plasma.

2. Equations and nondimensionalization. Here we present the equations
relevant to this study and nondimensionalize the system so that formal asymptotics
can be applied. The values and explanations of the constants used are provided in
Tables 1 and 2. A dimensionless diagram of our model is given in Figure 1.

2.1. Euler equations. Within the lead-lithium, we work with the Euler equa-
tions for mass and momentum conservation. With radial symmetry, in a space-time
coordinate system (R, T ) we have

(2.1) �T + (�V )R +
2

R
(�V ) = 0 and (�V )T + PR + (�V 2)R +

2

R
(�V 2) = 0,

where � is the mass density, V is the radial velocity, and P is the pressure.
From experimental data, the sound speed Cs and density �0 of lead at atmospheric

pressure Patm are known [19]. The square of the sound speed is the derivative of P
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2052 MICHAEL LINDSTROM

Table 1

Characteristic constants for this application.

Variable Description Value
Cs Sound speed of lead at 1 atm 2090 m/s
�0 Density of lead at 1 atm 11,340 kg/m3

Patm Atmospheric pressure 101,325 Pa
Pplasma,0 Initial plasma pressure 5 MPa
Pmax Maximum piston pressure 2 GPa
Γ Coefficient for magnetic pressure growth 8000 N m2

T0 Guassian decay time scale 45 μs
Rinner,0 Initial plasma radius 0.2 m
Router,0 Initial lead sphere radius 1.5 m

Table 2

Characteristic dimensions for the system. The first three entries are chosen by the theoretical
operating conditions. The last two entires can be derived from the first three.

Variable Notation/Equation Characteristic scale

Density � �̄ = �0 11, 340 kg m−3

Pressure P P̄ = Pmax 2 GPa
Distance R R̄ = Router,0 1.5 m

Time T T̄ = R̄
√

�̄/P̄ 3.57 ms

Velocity V V̄ =
√

P̄ /�̄ 420. m s−1

Fig. 1. The geometry we consider is spherically symmetric with rL and rR free boundaries.

with respect to density � [20] allowing us to express P (ρ) as an approximate linear
function:

(2.2) P (�) = C2
s (�− �0) + Patm.

We approximate the equation of state of lead-lithium by the linearized equation of
state for lead and permit negative absolute pressures. Negative absolute pressures are
observed over short time scales in some materials [7].

2.2. Initial conditions. The maximum piston pressure occurs at T = 0, but
we allow for negative times relative to this. The system begins at T = −∞, where

V (R,−∞) = 0, P (R,−∞) =
Γ

RL(−∞)4
, �(R,−∞) =

P (R,−∞)− Pplasma,0

C2
s

+�0

(2.3)

with

(2.4) RL(−∞) = Rinner,0 and RR(−∞) = Router,0.
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2.3. Boundary conditions. Due to the impact of the pistons and the interac-
tion of the wave with the plasma boundary, this is a moving boundary problem. We
denote RL to be the radius of the inner wall of the lead-lithium sphere (the plasma
radius) and RR to be the radius of the outer wall of the lead-lithium sphere. The
local fluid velocity at the inner and outer boundaries matches the velocities of these
walls, respectively:

(2.5) VL(T ) ≡ dRL

dT
= V (RL(T ), T ) and VR(T ) ≡ dRR

dT
= V (RR(T ), T ).

At any given time, the lead-lithium exists between RL and RR.
At the inner wall, the pressure is given by the plasma magnetic pressure. This

gives

(2.6) PL(T ) = P (RL(T ), T ) =
Γ

RL(T )4
=

Pplasma,0

(RL(T )/RL(−∞))4
,

where Γ is a constant chosen so that with PL = ΓR−4
L , PL(RL(−∞)) = Pplasma,0.

This is an algebraic coupling of the fluid pressure and plasma pressure at this wall.
At the outer wall, the pressure is given by the piston pressure which is modeled by a
Gaussian pressure in addition to a baseline minimum applied pressure

(2.7) PR(T ) = (Pmax − Pplasma,0)e
−T 2/T 2

0 + Pplasma,0.

2.4. Nondimensionalization. To nondimensionalize, we will look at (2.1) with
the change of variables � = �̄ρ, V = V̄ v, P = P̄ p, R = R̄r, T = T̄ t, where the bars
denote characteristic dimensional quantities and ρ, v, p, r, and t are dimensionless. We
wind up with

(2.8)
�̄

T̄
ρt+

�̄V̄

R̄
(ρv)r+

�̄V̄

R̄

2

r
(ρv) = 0 and

�̄V̄

T̄
(ρv)t+

P̄

R̄
pr+

�̄V̄ 2

R̄
(ρv2)r+

�̄V̄ 2

R̄

2

r
(ρv2) = 0.

By matching dimensional terms in (2.8)1 and (2.8)2, we have

V̄ = R̄/T̄ ,(2.9)

�̄ = (P̄ T̄ )/(R̄V̄ ).(2.10)

Equations (2.9) and (2.10) give good guidance as to reasonable scalings for the
system, and we also have some freedom. We will choose R̄ = 1.5 m, the initial
outer radius; �̄ = 11340 kg/m3, the density of lead at atmospheric pressure; and
P̄ = 2 GPa, the maximum pressure imparted on the outer wall. Table 2 summarizes
these results.

2.5. Selecting an asymptotic parameter. Through the nondimensionaliza-
tion, various dimensionless parameters appear. Upon considering the physics of the
problem, an intense pressure imparted over a very short time scale (45μs � 3.57 ms),
we will define ε = T0/T̄ = 0.0126 such that the Gaussian component of the pressure

becomes e−(tT̄ /T0)
2

= e−t2/ε2 . With respect to this value of ε, the different dimen-
sionless parameters have characteristic orders. For example, in dimensionless form,
p = c2(ρ − 1) + d, where c2 = C2

s �̄/P̄ ≈ 24.7 and d = Patm/P̄ ≈ 5.07 × 10−5. The
density of lead-lithium corresponding to the maximum pressure is 1.04, which is well
described by ρ = 1+O(ε). If ρ = 1+O(ε) corresponds to p = O(1), then c2 = O(ε−1).
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Table 3

Dimensionless parameters of the system.

Variable Meaning Formula Value

ε pulse time scale T0

R̄
√

�̄/P̄
0.0126

b scaled sound speed Cs
√

ε√
P̄ /�̄

0.557

γ scaled magnetic pressure coefficient
Pplasma,0R

4
inner,0

P̄ R̄4ε7/2
3.52

χ scaled initial inner radius
Rinner,0

R̄
√

ε
1.19

Thus, it is reasonable to write p(ρ) = b2

ε (ρ−1)+aε5/2, where b = 0.557 and a = 2.84.
In fact, since we are aiming for a leading order behavior of the system, we will neglect
aε5/2 entirely. Also due to its negligible size, O(ε3/2), we neglect the dimensionless
Pplasma,0 term in the pressure condition at the right wall. Discarding these terms can
be justified a posteriori by noting that in all the analysis to come, only pressures that
are O(ε) balance in the relevant equations.

Proceeding in a similar way with the remaining equations and boundary condi-
tions, and making use of the fact that knowing either p or ρ is equivalent, the final set
of equations and conditions we consider are presented below, valid for rL < r < rR,
−∞ < t < ∞. In due course, all these equations will be used.

(2.11) ρt + (ρv)r +
2

r
(ρv) = 0, (ρv)t +

b2

ε
ρr + (ρv2)r +

2

r
(ρv2) = 0,

(2.12) p =
b2

ε
(ρ− 1),

(2.13) vL(t) =
drL
dt

= v(rL(t), t), vR(t) =
drR
dt

= v(rR(t), t),

(2.14) pL(t) = p(rL(t), t) =
γε7/2

rL(t)4
, pR(t) = p(rR(t), t) = e−t2/ε2 ,

(2.15) v(r,−∞) = 0, p(r,−∞) =
γε7/2

rL(−∞)4
, ρ(r,−∞) = 1,

(2.16) rL(−∞) = χε1/2, rR(−∞) = 1.

We summarize the constants in Table 3. Our main objective is to estimate the
smallest value of rL which we denote r∗.

3. Formal asymptotic analysis. The analysis has five distinct phases: I, for-
mation; II, focusing; III, reflecting; IV, slow collapse; and V, maximum compression.
See Figure 2. Effectively I is an inner region that is matched to II; III is an inner
region that can match to II and which matches to IV over a long time; and V is an
inner region to IV.
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Fig. 2. Relevant space-time scales and boundary motion. In phase I, pulses are formed, moving
toward the plasma. In phase II, the pulses move radially inward, growing in amplitude due to
focusing. In phase III, the pulses interact with the plasma with much of the energy reflecting but a
small portion of useful energy remaining. In phase IV, the plasma slowly begins to collapse, and in
phase V, the maximum compression is reached.

3.1. Phase I.

3.1.1. Pulse formation setup. To analyze the formation of the pulse, we scale
with the following independent and dependent variables: t = ετ, y = r−1

ε , ρ ∼
1 + ερ1 + ε3/2ρ2, and v ∼ ε1/2v0 + εv1.

This gives

ρ1,τ + v0,y = 0, v0,τ + b2ρ1,y = 0,(3.1)

ρ2,τ + v1,y = −2v0, v1,τ + b2ρ2,y = 0.(3.2)

To deal with boundary conditions, we find rR ∼ 1 + ε3/2rR0(τ). It is worth
mentioning that when we write rR0(τ) we really mean rR0(t = ετ) and not rR0(t = τ)!
Throughout this paper we use the shorthand that a dependent variable evaluated at
a rescaled variable should be interpreted by the proper scalings in the original (r, t)
variables.

The outer wall changes by a distance O(ε3/2). If we denote yR as the position
of the outer boundary in the y-coordinates, then yR = rR−1

ε1/2
= εrR0(τ) + · · · . The

boundary condition that must be upheld is pR(τ) =
b2

ε (ρ− 1) = e−τ2

so that

ρ1(rR(τ), τ) + ε1/2ρ2(rR(τ), τ) =
1

b2
e−τ2

.

We can now perform a Taylor expansion (since the problem is linear and the forc-
ing terms are continuous and differentiable). Keeping just a few terms, we obtain

b2(ρ1(0, τ) + ρ1y(0, τ)(εrR0) + ε1/2ρ2(0, τ)) = e−τ2

, which implies

(3.3) ρ1(0, τ) =
1

b2
e−τ2

and ρ2(0, τ) = 0.

As far as initial conditions go,

(3.4) ρ1(y,−∞) = ρ2(y,−∞) = v0(y,−∞) = v1(y,−∞) = 0.

3.1.2. Riemann invariants. Both the leading order and first correction terms
can be written in the form

(3.5)

(
ρτ
vτ

)
+

(
0 1
b2 0

)(
ρy
vy

)
=

(
f(y, τ)
g(y, τ)

)D
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and such problems can be solved effectively with a technique known as Riemann
invariants [3].

Observe the 2× 2 matrix has eigenvalues ±b with corresponding left eigenvectors
�± = (±b, 1). Upon left multiplying (3.5) by �±, we obtain (±bρ+v)τ ± b(±bρ+v)y =
±bf + g. Thus, the system has characteristics. Denoting c± = ±bρ+ v, we have that
along dy/dτ = ±b, dc±/dτ = ±f + g ≡ h±. Given that ρ = v = 0 at τ = −∞,
(so c± = 0 at τ = −∞) we can compute c+(y, τ) = 0 +

∫ τ

−∞ h(ỹ(τ̃ ), τ̃)dτ̃ , where
ỹ(τ̃ ) = y+ b(τ̃ − τ) describes the straight pathway along the rightgoing characteristic
starting at τ = −∞ and reaching (y, τ). Thus,

c+(y, τ) =

∫ τ

−∞
h+(y + b(τ̃ − τ), τ̃ )dτ̃ .

To find c−(y, τ), we need to know its value at the point along the τ -axis whose
leftgoing characteristics eventually reach (y, τ). As c+ is known along the τ -axis, and
ρ is also specified there, we can find c−. The leftgoing characteristic path leading to
(y, τ) can be described by (ỹ(τ̃ ), τ̃ ) = (b(τ − τ̃) + y, τ̃) for τ + y/b ≤ τ̃ ≤ τ. From
c+(0, τ+y/b) = bρ(0, τ+y/b)+v(0, τ+y/b) we get c−(0, τ +y/b) = −bρ(0, τ+y/b)+
v(0, τ + y/b) = c+(0, τ + y/b)− 2bρ(0, τ + y/b). We thus have

c−(y, τ) = c+(0, τ + y/b)− 2bρ(0, τ + y/b) +

∫ τ

τ+y/b

h−(b(τ − τ̃), τ̃ )dτ̃ .

Given c±, we can recover

ρ =
1

2b
(c+ − c−) and v =

1

2
(c+ + c−).

3.1.3. Phase I results. Using the Riemann invariants to solve (3.2), (3.3), and
(3.4), in the distinguished limit, we have

(3.6) ρ ∼ 1 + ε
1

b2
e−(τ+y/b)2 − ε3/2

y

b2
e−(τ+y/b)2

and

(3.7) v ∼ ε1/2
−1

b
e−(τ+y/b)2 + ε

(√
π

2
erfc(−τ − y/b) +

y

b
e−(τ+y/b)2

)
.

A plot of these solutions at τ = 1 is given in Figure 3. In the r-coordinates, the
characteristic widths of these pulses are O(

√
ε). The plot includes numerical validation

of the results, which are discussed in more detail in section 4.
To leading order, the density and velocity are described by leftgoing plane waves.

Due to the scalings, we have been looking on such a small scale that the system hasn’t
quite “noticed” the spherical nature of the problem and everything appears flat (for
y = O(1)). The divergent terms with y prefactors, however, actually result from the
spherical geometry, as we shall see in the following section.

3.2. Phases II and III.

3.2.1. Spherical focusing setup. Having obtained the basic shape of the
pulses being formed, we can now analyze how these pulses behave as they move
toward the center of the sphere. From phase I, we have ρ ∼ 1 + ερ1 + ε3/2ρ2 and
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Fig. 3. Plots depicting the profiles of the velocity and density at a very small value of t
to validate the asymptotics of phase I. In the case of the second row, the two term asymptotic
expansions agree so well with the numerics the plots cannot be distinguished. Parameters: b =
0.557, χ = 1.19, γ = 3.52, ε = 0.0126, t = ε/2 (top row); b = χ = γ = 1, ε = 0.001, t = ε/2 (bottom
row).

v ∼ ε1/2v0 + εv1 and we shall make a similar ansatz here. We will consider r = O(1)
and choose a time scale t = ε1/2T to obtain the equations

ρ1,T + v0,r +
2

r
v0 = 0 and v0,T + b2ρ1,r = 0,

where the identical equations are upheld for ρ2 and v1.
The initial and boundary conditions are more subtle here. They cannot be writ-

ten down clearly because of the different time scales (typically, to match at T = 0, we
would require τ → ∞, but in this case, the solutions found in phase I tend to 0). How-
ever, by solving the hyperbolic systems at different orders, we can find the functional
form of the solution, which allows us to find the solutions by matched asymptotics.

3.2.2. Spherical linear acoustic limit. For the two leading orders, the sys-
tems of PDEs that need to be solved are of the form

(3.8) ρT + vr +
2

r
v = f and vT + b2ρr = g.

Such equations also appear in linear acoustic problems, often with f = g = 0 (and in
our case we will not need to explicitly solve such an equation with f, g 
= 0).

To solve this, we will make use of a velocity potential φ(r, T ) =
∫ r

∞ v(s, T )ds.
With this substitution, we have

(3.9) ρT + φrr +
2

r
φr = f and φrT + b2ρr = g.
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Integrating (3.9)2 from r = ∞, assuming ρ = 0 at r = ∞, we have φT (r, T ) +
b2ρ(r, T ) =

∫ r

∞ g(s, T )ds ≡ G(r, T ) so that φTT = −b2ρT +GT . Using (3.9)1 here now

gives φTT = −b2(−φrr − 2
rφr + f) +GT so

(3.10) φTT = b2
(
φrr +

2

r
φr

)
+GT − b2f.

Note that by taking a time derivative of (3.8)1 and a space derivative of (3.8)2
we have

(3.11) ρTT = −vrT − 2

r
vT + fT and vrT = gr − b2ρrr.

Equations (3.11)2 and (3.11)1 can then be used in (3.8)1 to obtain ρTT = −(gr −
b2ρrr)− 2

r (g − b2ρr) + fT so that

(3.12) ρTT = b2
(
ρrr +

2

r
ρr

)
+ fT − 2

r
g − gr.

A symmetry argument now helps to solve (3.10) and (3.12). If φ = Φ/r and
ρ = K/r, then φrr +

2
rφr = Φrr

r , and similarly for K. Thus we can transform these
equations into one-dimensional wave equations [20]:

(3.13) ΦTT = b2Φrr + S1(r, T ), KTT = b2Krr + S2(r, T )

with S1(r, T ) = r(GT − b2f), and S2(r, T ) = r(fT − 2
r g − gr).

3.2.3. Leading order and correction in outer region. The system of equa-
tions for ρ1 and v0 and ρ2 and v1 are the same, and in both cases the source terms
are fortunately zero. With no source terms, and with only leftgoing waves (since
there are no sources going right), the solutions of (3.13) are K = P (r + bT ) and
Φ = Q(r + bT ), respectively. Then, being mindful of the fact that the pulses gener-
ated have a width of size O(

√
ε) and are leftgoing originating near r = 1, we can write

the solutions to the systems of equations as ρ1 = 1
rP1(

r−1+bT√
ε

), ρ2 = 1
rP2(

r−1+bT√
ε

),

v0 = 1
rQ

′
0(

r−1+bT√
ε

)−
√
ε

r2 Q0(
r−1+bT√

ε
), and v1 = 1

rQ
′
1(

r−1+bT√
ε

)−
√
ε

r2 Q1(
r−1+bT√

ε
).

By taking these solutions, expressing them in the inner (y, τ)-coordinates, and
applying the Van Dyke matching of inner and outer solutions [8], our distinguished
limit is that

(3.14) ρ ∼ 1 + ε

(
1

b2r
e
−( r−1+bT

b
√

ε
)2
)
+ o(ε3/2)

and

(3.15) v ∼ ε1/2
(−1

br
e
−( r−1+bT

b
√

ε
)2
)
+ ε

(√
π

2r2
erfc

(
−r − 1 + bT

b
√
ε

))
+ o(ε).

3.2.4. Leading order and correction in inner region. As the pulses move
inward, due to the 1/r and 1/r2 terms, the amplitudes grow and the asymptotic
expansions we arrived at above lose their validity. To describe the region where the
pulses have grown and arrive at the inner wall, we rescale space and time. We let
r = ε1/2σ and t − ts = εt̂, where ts is a shifting parameter such that the peak of
the leftgoing pressure wave will have reached the plasma wall at r = χε1/2 at t̂ = 0.
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We anticipate different scalings for the asymptotic expansions. From r = O(1) to
r = O(

√
ε), the first perturbation term in the density perturbation given in (3.14)

should have grown from O(ε) to O(
√
ε). Similarly, from (3.15), the velocity amplitude

should have grown from O(
√
ε) to O(1) and the velocity term that was O(ε) should

also become O(1) since it grows like 1/r2. Therefore, in this next inner region, we
write ρ ∼ 1 + ε1/2ρ1 + ερ2 and v ∼ v0 + ε1/2v1. Using ∂r = ε−1/2∂σ and ∂t = ε−1∂t̂,
(2.11) becomes

(3.16) ρ1,t̂ + v0,σ +
2

σ
v0 = 0, v0,t̂ + b2ρ1,σ = 0

and

(3.17) ρ2,t̂+v1,σ+
2

σ
v1 = −(ρ1v0)σ− 2

σ
ρ1v0, v1,t̂+b2ρ2,σ = −(ρ1v0)t̂−(v20)σ−

2

σ
v20 .

By virtue of the fact that these PDEs can be solved and matched to the outer solution
(as done in the following paragraphs), we can be confident in the scalings chosen. We
will now consider boundary conditions. For a time scale that is O(ε), given a velocity
v = O(1), the inner wall can only move a distance O(ε) and thus the inner wall
position remains O(

√
ε) (recall that rL(−∞) = χ

√
ε). We can find the leading order

nonzero contribution to the inner wall motion in the (σ, t̂)-coordinates. We define

σL = rL/
√
ε. Then σL(t̂) = χ +

∫ t̂

−∞
√
εv(σL(ŝ), ŝ)dŝ. The factor of

√
ε comes from

the fact that drL
dt = v(rL(t), t) =

dε1/2σL

dεt̂
= ε−1/2 dσL

dt̂
. Thus,

σL(t̂) = χ+

∫ t̂

−∞

√
εv(χ+O(

√
ε), ŝ)dŝ = χ+ ε1/2

∫ t̂

−∞
v(χ, ŝ)dŝ+O(ε).

As the pressure at the inner wall is given by p = γε7/2/r4L, for rL = O(
√
ε),

p = O(ε3/2) = b2

ε (ε
1/2ρ1(σL, t̂) + ερ2(σL, t̂) + · · · ) so that by a Taylor expansion,

ε1/2ρ1(χ, t̂) + ε(ρ1σ(χ, t̂)
∫ t̂

−∞ v0(χ, ŝ)dŝ+ ρ2(χ, t̂)) + o(ε) = 0. This gives us boundary
conditions

(3.18) ρ1(χ, t̂) = 0 and ρ2(χ, t̂) = −ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ.

If we again consider (3.16) in potential form with φ0(σ, t̂) =
∫ σ

∞ v0(σ̂, t̂)dσ̂, then

by integrating the equation from σ = ∞ to σ = χ, φ0t̂(χ, t̂) + b2ρ1(χ, t̂) = 0, where
we used ρ1 = φ0 = 0 at σ = ∞. Since ρ1(χ, t̂) = 0, we must have

(3.19) φ0t̂(χ, t̂) = 0.

Similarly by integrating (3.17) we have φ1t̂(χ, t̂)+b2ρ2(χ, t̂) =
∫ χ

−∞(−(ρ1v0)t̂−(v20)σ−
2
σv

2
0)dσ, which with (3.18)2 gives

(3.20) φ1t̂(χ, t̂) = b2ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ+

∫ χ

−∞

(
−(ρ1v0)t̂ − (v20)σ − 2

σ
v20

)
dσ.

We can find the form of the solution to (3.16) using the solutions of (3.13) with
S1 = S2 = 0. We note that there are both incoming signals (from σ = ∞) and
outgoing signals (from the interaction of the pulses with the plasma) so we have
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waves propagating in both directions. Also, we are on a spatial scale of O(
√
ε) so

that it is not necessary to rescale the argument of the solutions like we did in the
previous section. As t̂ → −∞, we will neglect the rightgoing wave and consider only

the incoming wave. We write ρ1 =
P+

1 (σ+bt̂)
σ , v0 =

Q+
0

′
(σ+bt̂)
σ − Q+

0 (σ+bt̂)
σ2 .

Expressing the outer solutions in (r, T )-coordinates in the inner coordinates and
going to leading order, we have

(3.21) ρ1 =
1

b2σ
e−(σ−χ

b +t̂)2 (t̂ → −∞)

and

v0 =
−1

bσ
e−(σ−χ

b +t̂)2 +

√
π

2σ2
erfc

(
−
(
σ − χ

b
+ t̂

))
(t̂ → −∞).

These solutions are valid only for t̂ → −∞. To get solutions for other times,

we first find the potential as φ0 =
∫ σ

∞ v0(σ, t̂)dσ so that φ0 = −
√
π

2σ erfc(−σ−χ
b − t̂)

(t̂ → −∞). From (3.18)1, in order for ρ1 to be 0 along σ = χ and to have the incoming
solution given in (3.21), the solution is

(3.22) ρ1 =
1

b2σ
(e−(σ−χ

b +t̂)2 − e−(χ−σ
b +t̂)2).

For the potential, we note that φ0(χ,−∞) = −
√
π

2χ erfc(∞) = 0 so that by (3.19),

φ0(χ, t̂) = 0 is the boundary condition for all t̂. Using this, and the wave solution to
φ0, we must have that

φ0 =

√
π

σ

(
erfc

(
−χ− σ

b
− t̂

)
− erfc

(
−σ − χ

b
− t̂

))
so
(3.23)

v0 =

√
π

2σ2

(
erf

(
σ − χ

b
− t̂

)
− erf

(
−χ− σ

b
− t̂

))
− 1

bσ
(e−(σ−χ

b +t̂)2 + e−(χ−σ
b +t̂)2).

In writing the above equation, we used the fact that erfc(−x − y) − erfc(x − y) =
(1− erf(−x− y))− (1− erf(x− y)) = erf(x− y)− erf(−x− y).

We note that the leading order density perturbation and velocity profiles grow
in amplitude like 1/r, or close to such scaling, at their peak values as the profiles
move radially inward. This is consistent with known results for fluid dynamics with
spherical symmetry [12]. Given the equation of state (2.12), this also means the peak
pressure grows like 1/r. To be more precise, the asymptotic profile for ρ1 and p do
grow like 1/r, but because v0 in the inner region also includes an error function term
that reduces the magnitude of the Gaussian peak, the scaling may be slightly smaller.
A typical profile of the velocity and pressure, computed numerically [16], is depicted
in Figure 4. We also observe that v0 and ρ1 tend to 0 as t̂ → ∞ and the total distance
the plasma wall moves due to these leading order terms is O(1)×O(ε) = O(ε). More
precisely the leading order displacement solely due to the v0 term is

(3.24) δ0 = ε

∫ ∞

−∞
v0(χ, t̂)dt̂ = ε

∫ ∞

−∞

−2

bχ
e−t̂2dt̂ = −2

√
πε

bχ
.

Any nonnegligible compression will be a result of the correction terms. Equations
(3.17), (3.18)2, and (3.20) give insights into what the effects of these correction terms
are, which we discuss in the following portion of this paper.
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Fig. 4. The pulses are moving to the left. The pressure peak grows like 1/r as the pulses move
inwards. The velocity has a peak with negative value and one with positive value. The negative value
grows roughly like 1/r. Parameters: b = χ = γ = 1, ε = 0.0025, t = 0.0262.

3.2.5. Phase III: Resultant velocity field. Given that most of the localized
disturbances are reflected, the driving force for compression, if a substantial compres-
sion is to occur, must come from a residual negative radial velocity of the inner wall
after the waves come in. We begin by considering the systems given by (3.17) in a
time-independent regime (a long time after the v0 and ρ1 pulses have interacted with
the inner wall). We then find that v1σ + 2

σv1 = 0 and ρ2σ = 0 so that v1 = A/σ2

and ρ2 = B. Physically, ρ2(σ = ∞) = 0 so that B = 0, but the constant A cannot be
determined. We can, however determine φ1 =

∫ σ

∞
A
σ̂2 dσ̂ = −A/σ(t̂ → ∞). This sug-

gests that the correction term leaves a velocity field behind that may do further work
to compress the plasma. Stricly speaking, we show that the value of φ1 approaches
a constant at σ = χ as t̂ → ∞ but section 4.3 validates this residual velocity field
numerically.

Observe that −χφ1(χ,∞) = A and φ1(χ,∞) = φ1(χ,−∞) +
∫∞
−∞ φ1t̂(χ, t̂)dt̂.

At t̂ = −∞, v1 = 0, and φ1(χ,−∞) = 0. Then by using (3.20), we have

φ(χ,∞) =

∫ ∞

−∞

[
b2ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ+

∫ χ

−∞

(
−(ρ1v0)t̂ − (v20)σ − 2

σ
v20

)
dσ

]
dt̂

=

∫ ∞

−∞

∫ ∞

χ

2

σ
v20dσdt̂ > 0

after evaluating the integrals and canceling terms. Thus, A < 0 and there is a
remaining velocity field in the negative radial direction that can compress the plasma.
Obtaining a simple expression for the exact value of this integral is not possible, but
by taking note of the characteristic shape of the integrand, we can approximate it
with high precision. We remark that

(3.25)

v20 =

[√
π

2σ2

(
erf

(
σ − χ

b
− t̂

)
− erf

(
−χ− σ

b
− t̂

))
− 1

bσ
(e−(σ−χ

b +t̂)2 + e−(χ−σ
b +t̂)2)

]2
≈ 1

b2σ2
(e−(σ−χ

b +t̂)2 + e−(χ−σ
b +t̂)2)2

≈ 1

b2σ2
(e−2(σ−χ

b +t̂)2 + e−2(χ−σ
b +t̂)2)

≈ 1

b2σ2

√
π√
2

(
δ

(
t̂− σ − χ

b

)
+ δ

(
t̂− χ− σ

b

))
,
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Table 4

Verifying the numerical validity of the approximation given in (3.25) by doubling/halving the
governing parameters and computing I∗ with the approximation of v20 given in (3.25) and the nu-
merically integrated value.

(b, χ) I∗approx I∗numerical

(0.557, 1.19) 5.75 5.71
(1.11, 1.19) 1.45 1.43
(0.288, 1.19) 22.5 22.8
(0.557, 2.38) 1.40 1.43
(0.557, 0.595) 23.5 23.8

where δ denotes the Dirac delta function [5]. We justify the first approximation by
noting the terms with erf are modulated by a 1/σ2 which decays to 0 faster as σ → ∞
than terms with 1/σ and that for σ ≈ χ, the two error functions are being subtracted
and have similar arguments. The second approximation comes from the fact that a
Gaussian is dominated by its behavior near its maximum and there is little overlap
between the two Gaussians. The final approximation comes from approximating each
Gaussian by its area modulating a delta function centered at its maximum.

From the approximation in (3.25),

φ1(χ,∞) = I∗≈
∫ ∞

−∞

∫ ∞

χ

2

σ

1

b2σ2

√
π√
2

(
δ
(
t̂− σ − χ

b

)
+ δ

(
t̂− χ− σ

b

))
dσdt̂ =

√
2π

b2χ2 .

Therefore A ≈
√
2π

b2χ . For the remainder of this paper, we will take this approxima-

tions as the value of I∗. Table 4 computes the integral
∫∞
−∞

∫∞
χ

2
σv

2
0dσdt̂ using (3.25)

and numerically, and the results show good agreement. With this A, the long-time
velocity profile is

(3.26) v ∼ √
εv1 =

√
ε
−√

2π

b2χσ2
.

3.2.6. Phase III results. After the pulses have interacted with the inner wall,
there remains a residual velocity field which remains as a time-independent solution

of the asymptotic equations. We find that ρ ∼ 1 + o(ε) and v ∼ −√
2π

b2χσ2 ε
1/2 + o(ε1/2).

3.3. Phases IV and V.

3.3.1. An energy argument. At this point we now compute the remaining
kinetic energy (all the particles with a negative radial velocity), assuming there are
no reflections at the right boundary and that all the useful energy is in the vicinity
of the inner wall. Based on a kinetic energy density of E = 1

2ρv
2, the total kinetic

energy is

(3.27) E =
4π2ε5/2

b4χ3
.

By equating this with the work done in compressing the plasma from rL = χ
√
ε to

rL = r∗,

(3.28) W = 4πγε7/2
(

1

r∗
− ε−1/2

χ

)
,
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in the distinguished limit, the minimum radius is

(3.29) r∗ ∼ b4χ3γ

π
ε.

This sort of energy argument was originally used by Lord Rayleigh in considering
the compression of a bubble in an incompressible fluid [17]. We present a formal
asymptotic argument for this result in the next two subsections.

3.3.2. Outer region for motion of plasma boundary. To proceed with
formal asymptotics, we need to consider higher orders of the equations of mass and mo-
mentum conservation. By taking the equations of (2.11) to two higher orders than pre-
sented in (3.17) with ρ ∼ 1+ε1/2ρ1+ερ2+ε3/2ρ3+ε2ρ4 and v ∼ v0+ε1/2v1+εv2+ε3/2v3
we obtain the following balances:

(3.30) ρ3,t̂ + v2,σ +
2

σ
v2 = −(ρ2v0 + ρ1v1)σ − 2

σ
(ρ2v0 + ρ1v1),

(3.31) v2,t̂ + b2ρ3,σ = −(ρ1v
2
0 + 2v0v1)σ − 2

σ
(ρ1v

2
0 + 2v0v1)− (ρ2v0 + ρ1v1)t̂,

(3.32) ρ4,t̂ + v3,σ +
2

σ
v3 = −(ρ3v0 + ρ2v1 + ρ1v2)σ − 2

σ
(ρ3v0 + ρ2v1 + ρ1v2),

v3,t̂ + b2ρ4,σ = −(ρ2v
2
0 + 2ρ1v0v1 + 2v0v2 + v21)σ − 2

σ
(ρ2v

2
0 + 2ρ1v0v1 + 2v0v2 + v21)

− (ρ3v0 + ρ2v1 + ρ1v2)t̂.(3.33)

From our previous considerations of the behavior of the solutions as t̂ → ∞,
we observe that (3.30) and (3.31) can also reach a steady solution with ρ3 = 0 and
v2 = constant/σ2 since ρ1, ρ2, v0 all tend to 0, which eliminates all forcing terms in the
equations. Looking at (3.32) and (3.33) similarly, we actually have residual forcing
terms that do not vanish as t̂ → ∞, namely, the terms with v21 . After a long time, we
infer that ρ ∼ 1 + ε2ρ4 and v ∼ ε1/2v1 + · · · . By scaling so that t = �, an O(1) time
scale, we obtain a new PDE system to evolve, which serves as an outer region for a
problem describing the motion of the plasma radius. Our balance is

(3.34) v1,σ +
2

σ
v1 = 0, v1,� + b2ρ4,σ + v21σ +

2

σ
v21 = 0.

Equation (3.34)1 gives an effective incompressibility to the lead-lithium and we can
proceed to solve (3.34) as done to derive the Rayleigh–Plesset equation for bubble
dynamics [2]. From (3.34)1 we have v1 = f(�)/σ2 so that upon substituting this

into (3.34) we have f ′
σ2 + b2ρ4σ − 2f2

σ5 = 0, which can be integrated from σ = ∞
to σ = σL(�) the position of the plasma inner radius in the σ-coordinates to get
−f ′

σL
+ b2ρ4(σL) +

f2

2σ4
L
= 0, where we used ρ4(∞, �) = 0. We have ρ4(σL, �) = 0 as

well because if r = O(
√
ε), p = O(ε3/2) so that the density at the left boundary is

1 +O(ε5/2). We then get

(3.35)
df

d�
=

f2

2σ3
L

.
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Additionally, the velocity at the inner wall dσL

d� = v1(σL, �) (due to the scaling in this
regime there is no extra factor of

√
ε to deal with) so

(3.36)
dσL

d�
=

f

σ2
L

.

Dividing (3.35) and (3.36) we find that df
dσL

= f
2σL

, which has solution f = C
√
σL

for a constant C. Thus we can treat v1 as a function of the inner wall position where

v1(σL) = C/σ
3/2
L after using the solution in conjunction with (3.36). Given

(3.37) v1(χ) = −
√
2π

b2χ3

from (3.26), we have C = −√
2π

b2χ3/2 and with respect to these outer coordinates

(3.38) v1(σL) =
−√

2π

b2χ3/2σ
3/2
L

.

At this point, the system has not felt the effects of the plasma pressure and the wall
is slowly accelerating inward.

3.3.3. Inner region for motion of plasma boundary. Numerous balances
are possible for the system of (2.11) and it is possible to arrive at the scaling we
choose here considering all possible balances and solutions and choose the one that
can match to the outer region, but we will consider a physical argument here to obtain
the balance. We seek a balance of terms where the pressure of the plasma resists the
compression (i.e., the pressure gradient balances the momentum flux). We consider
r = O(εc). If r = O(εc), then p = O(ε7/2−4c) and ρ = 1 + O(ε9/2−4c). Based on

the growth predicted by (3.38) this would give a scaling of v = O( ε1/2

(εc/ε1/2)3/2
) =

O(ε5/4−3c/2). The form of the scaling as written comes from the velocity growing like

1/r
3/2
L but being O(

√
ε) when r = O(

√
ε). To balance the pressure/density ρ term in

the momentum equation with the v2 terms, we require 7/2 − 4c = 5/2 − 3c so that
c = 1. Now we let r = ε1z. Then v ∼ ε−1/4v−1, ρ ∼ 1 + ε1/2ρ1, and to balance the
scales of velocity times time equals distance, we pick t = ε5/4�̂, where �̂ measures a
time with respect to an arbitrary reference point. The resulting balance is given by

(3.39) v−1,z +
2

z
v−1 = 0 and v−1,�̂ + b2ρ1,z + (v2−1)z +

2

z
v−1 = 0.

Using the functional form of v−1 implied by (3.39)1, v−1 = g(�̂)/z2L, in (3.39)2
and integrating as before, this time up to zL, the position of the wall in the inner

coordinates gives us −g′

zL
+ γ

z4
L
+ g2

2z4
L
= 0, where we used b2ρ1(zL, �̂) = γ/z4L. It follows

then that dg
d�̂ = γ+g2/2

z3
L

and dzL
d�̂ = g

z2
L
yielding

(3.40) v−1 =
−√

2DzL − 2γ

z2L
.

Observe that when zL = z∗L = γ/D the velocity is 0 to leading order and this will be
our leading order estimate to the compression. To find D, we need to peform matched
asymptotics between the inner and outer regions with respect to the functional de-
pendence of the wall velocity upon the wall position.

D
ow

nl
oa

de
d 

05
/1

5/
24

 to
 1

29
.1

13
.5

3.
71

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOTIC ESTIMATE OF FUSION REACTOR 2065

3.3.4. Matching to determine minimum radius. We now put the outer
variables of (3.38) in inner variables to match the behaviors as zL → ∞ and σL ↓ 0,

ε−1/4(v−1)inner = ε1/2(v1)outer,

ε−1/4−
√
2D

z
3/2
L

= ε1/2
−√

2π

b2χ3/2(ε1/2zL)3/2
,

yielding −√
2D

z
3/2
L

= −√
2π

b2χ3/2z
3/2
L

so that D = π
b4χ3 . In the z variable, we have a minimum

radius of z∗L = γ/D = b4χ3γ
π and we thus find r∗ = b4χ3γ

π ε consistent with (3.29)
found with the energy argument. While the energy argument was assumed true
for incompressible fluids, it seems in the asymptotic limit compressibility does not
influence the compression to leading order. Note that by having quarter powers of
ε, it may become difficult to distinguish different asymptotic terms without taking ε
to be extremely small. When v = O(ε−1/4), which is very close to the sound speed
magnitude, the wave-like behavior of the equations may be close to breaking down.
Indeed, when ε is too large, the local velocity magnitude can even exceed the sound
speed during the compression phase.

3.3.5. Dimensional expression for plasma compression. We can finally go
back to the dimensional parameters in our problem. Using Tables 2 and 3, we find
the minimum radius is

(3.41) R∗
L ≈ C4

sPplasma,0R
7
inner,0�

3
0

πP 4
maxR

4
outer,0T

2
0

,

where

T0

Router,0

P
1/2
max

�
1/2
0

� 1,
CsT

1/4
0 P

1/4
max

R
1/2
outer,0�

1/4
0

= O(1),
Pplasma,0R

4
inner,0�

7/4
0

P
11/4
max R

1/2
outer,0T

7/4
0

= O(1),

Rinner,0�
1/4
0

R
1/2
outer,0T

1/2
0

= O(1).(3.42)

Equation (3.41) gives the approximate expression for the minimum radius, which
requires that ε is small (3.42)1 and that b, γ, and χ all be O(1) as given in (3.42)2−4.

4. Comparison with numerics. In previous work [16], a finite volume numeri-
cal framework was developed to solve the nonlinear conservation laws with the moving
boundaries. Using this numerical framework, we run simulations on the asymptotic
problem formulated in this paper. Our validation is done in multiple stages: we exam-
ine the profiles of the pulses during their formation both numerically and asymptoti-
cally by comparing the profiles of the resultant variables; then, we study the growths
of the amplitudes of the pulses as they move radially inward as predicted by the
asymptotics and numerics; we next proceed to study the existence of the residual ve-
locity field with the numerics and the growth of the inner wall velocity with inner wall
position; we observe that the velocity at the inner wall is qualitatively consistent with
the numerical results; and finally, we compute the minimal radius in the asymptotic
and numerical workings for various values of b, γ, χ, and ε.

We remark that the asymptotic problem we have considered is primarily concerned
with a single direction of information propagation: the pulse travels toward the plasma
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Fig. 5. Numerical and asymptotic descriptions of the growth in peak values for the minimum
value of velocity and peak value of pressure. Based on a best fit, the numerically observed scalings
are 1/r0.99 and 1/r0.90 for the left and right plots, respectively. Parameters: b = χ = γ = 1,
ε = 0.001.

wall, it is reflected, and then everything else governing the plasma wall takes place
locally near the wall and there is no influence from leftgoing waves. We need to
exercise caution with this numerically by removing reflections that occur at the outer
wall. This allows for better agreement between the asymptotics and numerics but we
make two remarks. We first note that if these reflections are not removed, then a
reflection occurs at the outer wall and disturbances return to hit the plasma again,
which drastically reduces the compression. Such effects are noticeable for ε � 0.0025.
The second point to make is that even in attempting to remove the reflections at the
outer wall, there is likely still a small numerical error that remains.

4.1. Pulse formation. We consider two parameter regimes here. One is for the
parameter set of interest, and the other is for a much smaller ε with other dimensionless
parameters set to unity. We fix an end time t = ε/2 and plot the profiles of v and ρ
as computed numerically, and with two different levels of asymptotic accuracy. From
the plots, we are able to verify that the successive terms of the asymptotic expansion
yield higher accuracies and that the asymptotics and numerics are in good agreement.
See Figure 3.

4.2. Focusing. Here, we consider the asymptotically predicted growth rates for
the peak amplitudes of the velocity and pressure. From the asymptotic predictions,
both of these amplitudes should grow inversely with the position of these peaks.
This validation is rather delicate: these growths should be upheld in the limit ε ↓ 0;
however, there are difficulties in getting the numerics to give highly accurate results on
regions where r � 1. What we choose to do is pick a very small value of ε, 0.001, and
consider the growth of the amplitudes on the region r > 0.1 ≈ O(

√
ε). We plot the

predictions as given by a perfect growth of 1/r based on the initial peak pressure and
minimum velocity, and the numerical results for the peak amplitude versus position
for this ε value. The plots are given in Figure 5 and we observe strong consistency.

4.3. Residual velocity field. Our prediction of a steady velocity field resulting
from the disturbances interacting with the plasma was based primarily on intuition,
as we did not formally find the solution for v1 and ρ2 for general t̂; we simply showed
that the potential approaches a constant value along the boundary. Numerically,
however, we can validate the scaling. After a long time with respect to the t̂ time
scale so that v0 has had its full effect, we plot the profile of the velocity versus the
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Fig. 6. A plot of the numerical and asymptotic velocity profile after much of the pulses have
reflected off the inner wall. The two are nearly indistinguishable. Parameters: b = χ = γ = 1,
ε = 0.0025, t = 0.0784.
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Fig. 7. A plot of the numerical and asymptotic velocity profile for how the inner wall velocity
implicitly depends on the inner wall position. Parameters: b = χ = γ = 1, ε = 0.0025, t ranging
from 0.0784 to 0.11.

radial position. As the inner wall moves inward, in its wake there is a velocity profile
that scales like 1/r2L. See Figure 6.

4.4. Outer region describing inner wall velocity. This validation is rather
delicate as there are a number of sources of error. First, the inner wall position at

which the boundary condition of (3.37) is better approximated by σ = χ − √
ε2

√
π

bχ

as per (3.24) but to leading order we have taken as σ = χ. In the case considered
in Figure 7, this already amounts to an error of 17% in estimating the boundary
condition which will lead to an error in the constants obtained. We additionally know
that v ∼ √

εv1 + εv2 so that there is an O(ε) error term in the radial position that
is accrued over a time scale of O(1). Throwing these effects together makes it very
hard to get a clean fit between numerical and asymptotic results. In finding the
slope of the log vL versus log rL plot, a least squares fit shows the numerical scaling
is vL ∝ 1/r1.49L , which is completely consistent with the asymptotic scaling.

4.5. Qualitative agreement of inner wall velocity. The asymptotics predict
a series of phenomena at the inner wall: first, the wall is stationary until the pressure
pulse reaches it, whereupon it takes on a Gaussian shape then decreases in speed;
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Fig. 8. A numerical validation that the asymptotics have qualitatively captured the behavior of
the inner wall. Parameters: b = χ = γ = 1, ε = 0.0025.

Table 5

Asymptotic and numerical predictions of minimum radius of plasma for different values of ε
with b = 1.05, χ = 0.937, and γ = π. Based on a least squares linear regression in a log-log plot
of the difference versus ε, the convergence rate appears to be O(ε2.3) = o(ε). The convergence rate
is excellent likely due to either small coefficients in the o(ε) asymptotic series terms or fortuitous
cancellations of higher order asymptotic error terms.

ε r∗asy r∗num Error

0.02 0.02000 0.01155 0.00845
0.01 0.01000 0.00600 0.00400
0.005 0.00500 0.00444 0.00056
0.0025 0.00250 0.00242 0.00008

second, a smaller asymptotic term describing the wall velocity remains for some time
(as the velocity acquires the residual profile); third, the wall rapidly speeds up; and
finally, the wall is stopped abruptly on a small spatial scale when the plasma pressure
finally takes over. We observe all these phenomena in Figure 8.

4.6. Predictions for plasma compression. In this section, we verify that
the fundamental asymptotic predictions are consistent with the numerics. Table 5
presents the results. We remark that verifying the asymptotic limit is not trivial. As
ε ↓ 0, the numerics, for modest discretizations, lose accuracy due to the very small
radial positions under consideration. As a result, we cannot not take ε too small. We
also have to ensure that quantities such as b4χ3γ/π, etc., remained roughly O(1) for
these values of ε. Picking ε too large also leads to problems: for one, the higher order
terms may dominate over the desired r∗ = O(ε) behavior. Another issue is that if ε
is not small enough, the apparently negligible displacement of the inner wall given by
(3.24) could be larger than the initial inner radius of χ

√
ε. In Table 5, we compute

the minimum radius asymptotically and numerically. We verify that the difference
in the minimum radius between the asymptotic and exact (numerical) predictions is
o(ε) when b, χ, and γ are fixed. We choose b = 1.05, χ = 0.937, γ = π so that the
minimum radius should be 0.99994ε.

4.6.1. Comments on the model parameter regime. We anticipate as b4χ3γ/

π moves farther from unity, along with other order one coefficients such as
√
2π

b2χ in

(3.26), the agreement between the asymptotic estimate and the numerical predictions
of the minimum radius will weaken. With b = 0.8, χ = 1.19, γ = 3.52, and ε = 0.01,
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then b4χ3γ/π = 0.77 ≈ 1 and the asymptotic and numerical predictions are 0.0077
and 0.0088, respectively: just a 13% relative error. With respect to the parameters of
Table 3, b4χ3γ/π = 0.18 
≈ 1, where b = 0.8 has been replaced by b = 0.557, we have
the respective asymptotic and numerical predictions as 0.00229 and 0.00649. The two
predictions are of the same scale but are not quantitatively consistent. Despite the
discrepancy, there is qualitative consistency between the numerical and asymptotic
modeling. In previous work [16] where the model was very similar, the data show
that perturbations to the inner radius had the greatest impact upon the compression.
This was followed by a tie between maximum external pressure and maximum outer
radius, and then pulse time scale, sound speed, and initial plasma pressure. This is
reasonably consistent with (3.41), where based on the respective powers of the pa-
rameters, the relative sensitivity of the minimal radius with respect to the parameters
(i.e., the percentage by which the minimal radius would change for a percent change
in the parameter), from most to least sensitive follows the ordering of initial plasma
radius; sound speed, initial outer radius, and maximum impulse pressure (three-way
tie); pulse time scale; and initial plasma pressure. The proper positive/negative corre-
lations are also consistent, i.e., when the asymptotics show an increase in a parameter
decreases the radius, so do the numerics.

With the results of the asymptotics, we can make a few application-relevant state-
ments. Based on (2.14)2, (3.7), and (3.27), we note that only a small fraction of the
energy input actually goes toward compressing the plasma. Indeed if we compute the
energy input by∫ ∞

−∞
−4πrR(t)

2pR(t)︸ ︷︷ ︸
force

vR(t)dt︸ ︷︷ ︸
displacement

∼ 4πε3/2

b

∫ ∞

−∞
e−2τ2

dτ =

√
8π3

b
ε3/2,

the leading order energy is O(ε3/2) but only O(ε5/2) ultimately goes toward com-
pression. A lot of energy is lost in reflection. In our modeling, we neglected the
gas pressure of the plasma, which would also work to oppose the compression of
the plasma; the degree the plasma is compressed is likely less than what we predict
asymptotically, i.e., in a model with the gas pressure, r∗ would be larger than our
value given in (3.29) at leading order [15]. Also, based on the previous work men-
tioned in the previous paragraph, we can see that a smaller minimum radius does not
necessary yield more promising fusion conditions (based on the Lawson triple product
criterion [13]); the time over which the plasma is compressed is another vital element.
While our work here predicts the minimum radius, this is only one of many complex
components required for the success of magnetized target fusion.

5. Conclusions and future work. In this paper, an analytic result for the
minimal radius of a plasma has been obtained in the limit of a very fast impulse
time scale. Although the model is highly simplified, we can describe qualitatively the
effects of key design parameters in the magnetized target fusion model in question.
Equation (3.41) is qualitatively accurate, given the stipulations outlined in (3.42)1−4,
and it provides a good ballpark quantitative estimate for the minimum radius. The
key parameters that are within control are likely Pmax, Router,0, and T0. In this case,
within the limitations of the physical model, the plasma is compressed to a smaller
and smaller radius as the piston pressure, initial outer radius, and pulse time scale all
increase. If the medium through which the pressure pulses travel could be modified,
then decreasing either its sound speed or density (or both) would be ideal while
sustaining the piston pressure. Also, if the initial plasma pressure or size could be
decreased, a greater compression can take place.
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Although this problem contained nontrivial obstacles, including nonlinear con-
servation laws and moving boundaries, through appropriate scaling arguments and
suitable solution techniques and estimates, an analytic result that agrees well with
numerical simulations has been obtained in the limit where ε ↓ 0. Building upon this
asymptotic framework, many new and important studies could potentially be done
to enhance the physical accuracy and predictive power of the modeling, including
adding detailed plasma physics, adding in the gas pressure and allowing for energy
losses; considering the plasma and lead-lithium interaction more carefully; incorporat-
ing a more sophisticated equation of state for the lead-lithium; or even studying the
effects of localized angular perturbations in the system given that perfect spherical
symmetry is not physically realistic.
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