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A B S T R A C T

This study presents a comprehensive evaluation of five prominent unsupervised machine
learning anomaly detection algorithms: One-Class Support Vector Machine (One-Class SVM),
One-Class SVM with Stochastic Gradient Descent (SGD), Isolation Forest (iForest), Local Outlier
Factor (LOF), and Robust Covariance (Elliptic Envelope). Through systematic analysis on a syn-
thetically simulated dataset, the study assessed each algorithm’s predictive performance using
accuracy, precision, recall, and F1 score specifically for outlier detection. The evaluation reveals
that One-Class SVM, Isolation Forest, and Robust Covariance are more effective in identifying
outliers in the synthetic simulated dataset, with Isolation Forest slightly outperforming the other
algorithms in terms of balancing precision and recall. One-Class SVM with SGD shows promise
in precision but needs adjustment to improve recall. Local Outlier Factor may require parameter
tuning or may not be as suitable for this particular dataset’s characteristics. The findings
reveal significant variations in performance, highlighting the strengths and limitations of each
method in identifying anomalies. This research contributes to the field of machine learning by
demonstrating that the selection of an anomaly detection algorithm should be a considered
decision, taking into account the specific characteristics of the data and the operational context
of its application. Future work should explore parameter optimization, the impact of dataset
characteristics on model performance, and the application of these models to real-world datasets
to validate their efficacy in practical anomaly detection scenarios.

Introduction

Anomaly detection, a critical component of data analysis, plays a pivotal role in identifying irregularities that deviate from normal
patterns in datasets [1]. In the era of digital transformation, the ability to automatically identify unusual patterns or anomalies
in data has become increasingly crucial across various sectors, including finance, healthcare, cybersecurity, and manufacturing.
Anomalies can indicate significant, often critical, information ranging from fraudulent transactions to malfunctioning equipment.
The challenge, however, lies in detecting these irregularities, especially when the definition of ‘normal’ is constantly evolving and the
nature of anomalies can be highly unpredictable. Traditional anomaly detection methods, which often rely on predefined thresholds
or specific assumptions about data distribution, are increasingly inadequate due to their lack of flexibility and scalability. These
anomalies can indicate significant, often critical, actionable insights across various domains. In cybersecurity, anomaly detection
systems identify unusual patterns that may signify security breaches, such as unauthorized access or malware activities [2]. In the
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realm of fraud detection, these algorithms help in spotting unusual transactions that could indicate credit card fraud [3], insurance
fraud, election fraud [4–6] or other types of financial malfeasance [7]. Moreover, in industrial fault detection, anomaly detection
facilitates the early identification of equipment failures, ensuring timely maintenance and reducing downtime [8]. The ability
to accurately and efficiently identify anomalies can lead to significant cost savings, improved safety, and enhanced operational
efficiency.

The evolution of anomaly detection techniques has been marked by a transition from traditional statistical methods to advanced
achine learning approaches. Early methods relied on statistical models to define normalcy, using distribution-based or distance-

ased metrics to identify outliers. For instance, techniques such as Z-score and IQR (Interquartile Range) were widely used for
etecting anomalies in univariate data [9,10]. However, the advent of complex, high-dimensional data in modern applications
ighlighted the limitations of these traditional methods, leading to the development of more sophisticated machine learning
lgorithms. Recent advancements in machine learning and artificial intelligence have introduced a plethora of anomaly detection
echniques capable of handling the complexity and volume of contemporary datasets. These include supervised methods, where
odels are trained on labeled datasets comprising both normal and anomalous instances [11,12], and unsupervised methods,
hich do not require labeled data and are particularly useful in scenarios where anomalies are rare or not well-defined [13].
everal studies have compared different anomaly detection algorithms, providing valuable insights into their relative performance
cross various settings. These comparative analyses are crucial for understanding the strengths and limitations of each method,
uiding practitioners in selecting the most appropriate algorithm for their specific needs. For example, research has shown that
solation-based methods, such as the Isolation Forest algorithm, perform well in high-dimensional settings, offering an efficient
nd effective means of identifying anomalies [14]. In contrast, density-based methods like the Local Outlier Factor (LOF) excel in
atasets where anomalies form clusters, allowing for a refined detection of local outliers [15]. Moreover, studies have also explored
ybrid models that combine the benefits of multiple approaches, such as integrating machine learning algorithms with traditional
tatistical methods to improve detection accuracy.

The continuous evolution of anomaly detection techniques, fueled by ongoing research and the increasing complexity of datasets,
ighlights the importance of comparative studies in advancing the field. The mathematical underpinnings of anomaly detection
lgorithms form the foundation of their operational principles. One-Class Support Vector Machine (SVM), for instance, constructs
decision function that separates the majority of the data points from the outliers, effectively creating a boundary around the

ormal data [16]. This method, and its variant incorporating Stochastic Gradient Descent (SGD), offers a robust way to handle
arge-scale datasets through efficient optimization techniques [17]. Similarly, the Isolation Forest algorithm isolates anomalies by
andomly selecting features and splitting values, requiring fewer splits for anomalies than for normal points, thus capitalizing on the
nomalies’ inherent ‘susceptibility’ to isolation [18]. The Local Outlier Factor (LOF) algorithm assesses the local density deviation
f a given data point with respect to its neighbors, identifying regions of similar density and highlighting points that stand out [19].
astly, the Robust Covariance method, or Elliptic Envelope, assumes a Gaussian distribution of the dataset, identifying outliers as
eviations from this model [20]. The theoretical diversity of these algorithms illustrates the rich landscape of anomaly detection
echniques, each with its unique strengths and applicability to different types of data and anomalies.

The advent of machine learning (ML) has introduced advanced capabilities in identifying complex patterns in data. Among
hese, unsupervised ML algorithms, which do not require labeled data, are particularly promising for anomaly detection. They
ave the potential to autonomously adapt to evolving data patterns and detect anomalies without explicit prior knowledge of what
onstitutes an anomaly [21]. However, the application of unsupervised ML algorithms in anomaly detection faces several challenges.
hese include the selection of appropriate algorithms, the handling of high-dimensional data, the differentiation between noise and
rue anomalies, and the interpretation of the results in a meaningful way. Despite the potential of unsupervised ML for anomaly
etection, there is a noticeable gap in the comprehensive evaluation of these algorithms under varied simulation conditions. A
ystematic exploration of their performance across different data types, anomaly characteristics, and industry domains is lacking.
his gap hinders the ability of practitioners to select and implement the most effective unsupervised ML strategies for anomaly
etection in real-world scenarios. This research seeks to bridge this gap by conducting a thorough simulation study of unsupervised
L algorithms for anomaly detection.

This study aims to evaluate the performance of various unsupervised ML algorithms, identify best practices in their application,
nd develop guidelines for their implementation in practical settings. By focusing on a simulation approach, this study will
llow for the controlled manipulation of data characteristics and anomaly parameters, thereby providing a deep understanding
f the algorithms’ strengths and limitations under different conditions. The importance of this research lies in its potential to
dvance the field of anomaly detection. By providing a comprehensive evaluation of unsupervised ML algorithms, the study
ill contribute valuable insights into their applicability, and efficiency. This, in turn, will enable organizations to better protect
gainst fraud, improve operational reliability, enhance customer satisfaction, and prevent significant financial losses. Moreover,
he findings of this study could pave the way for future research directions, including the development of new algorithms, the
efinement of existing methodologies, and the exploration of hybrid approaches. The remainder of the paper is organized as follows:
ection ‘‘Data and methods’’ discusses the data and methods used for the study. Section ‘‘Mathematical framework’’ provides the
athematical framework of the study. Section ‘‘Results and discussion’’ discusses the results of the study whilst Section ‘‘Conclusion

recommendation of the study’’ concludes the study and provide recommendations for further work.
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Data and methods

The dataset was synthetically generated to simulate a two-dimensional feature space, comprising 100 normal data points centered
round two distinct means (+2 and −2) with a standard deviation of 0.3, and 20 outliers uniformly distributed (+4 and −4) across
he feature space. The np.r_[X + 2, X − 2] function was used to concatenate the two sets of shifted points along the first axis
vertically), resulting in a 200 × 2 dataset. This setup was chosen to mimic real-world scenarios where anomalies are sparse and not
entered around the majority class. It is worth knowing that as the size of the dataset increases, anomaly detection techniques such as
ne-Class SVM, One-Class SVM with SGD, Isolation Forest, Local Outlier Factor, and Robust Covariance encounter both advantages
nd challenges. Larger datasets typically enhance detection accuracy by better representing the ‘‘normal’’ data distribution, which
elps in more accurately identifying anomalies.

However, this increase in data volume also leads to longer training times and greater memory usage, posing scalability issues
articularly for methods like One-Class SVM that are computationally intensive. Some techniques, like Isolation Forest and Local
utlier Factor, scale more efficiently with large datasets, while adaptations such as One-Class SVM with SGD are designed to
ddress scalability by using stochastic gradient descent, which reduces memory demands. Additionally, larger datasets can bolster
he robustness of models, making them less susceptible to noise and minor data variations, though careful parameter tuning becomes
rucial to maintain performance.

The synthetic simulated data was then applied to the five (5) unsupervised machine learning algorithms namely One-Class
upport Vector Machine (SVM), One-Class SVM with Stochastic Gradient Descent (SGD), Isolation Forest, Local Outlier Factor (LOF),
nd Robust Covariance (Elliptic Envelope). The One-Class SVM model was implemented using the sklearn.svm.OneClassSVM library in
ython, with a Radial Basis Function (RBF) kernel. Extensive hyperparameter tuning was conducted and this resulted in the following
ptimal parameters. For the One-Class SVM, the optimal hyperparameters were as follows: 𝑛𝑢 = 0.1, indicating the expected fraction
f outliers in the dataset, and 𝑔𝑎𝑚𝑚𝑎 = 0.1, determining the inverse of the radius of influence of samples selected by the model
s support vectors. The One-Class SVM with SGD model leverages the sklearn.linear_model.SGDOneClassSVM library in Python for
mplementation. This variant optimizes the One-Class SVM objective using Stochastic Gradient Descent, making it suitable for large
atasets.

Key hyperparameters after fine tuning include 𝑛𝑢 = 0.1, which estimates the proportion of outliers in the dataset, and max_iter
1000, determining the number of passes over the training data (epochs). To ensure convergence, the model was allowed to run

hrough the data 1000 times. The learning_rate = optimal was employed to allow the algorithm to automatically adjust the learning
ate over time for optimial convergence. For the Isolation Forest, key hyperparameters after fine tuning include n_estimators = 100
hich deployed 100 base estimators in the ensemble to ensure a comprehensive learning from the data. max_samples = ‘auto’ allowed

he model to use a default value to draw samples for training each base estimator. Also, for the LOF, n_neighbors = 20 was chosen to
onsider 20 closest neighbors to estimate the local density, providing a balance between sensitivity and specificity. For the Robust
ovariance, contamination hyperparameter was set to 0.1, indicating that the model expects approximately 10% of the data points
o be outliers. This value helps the model determine the threshold for identifying whether a data point should be considered an
utlier based on the statistical properties of the data.

All the five (5) unsupervised anomaly detection algorithms were trained exclusively on the normal data points to learn the region
f the feature space occupied by the majority class. Subsequently, it was used to predict anomalies, classifying each data point as
ither a normal observation or an outlier based on the learned decision function.

Fig. 1 summarizes the working architecture of the five (5) unsupervised machine learning algorithms.
Below is a summary of the conceptual workflow adopted for the study;

1. Data Generation and Preparation: The study starts with the synthetic generation of data to simulate real-world scenarios
where anomalies are sparse and distinct from the majority class. This includes creating a dataset with normal data points
centered around two distinct means and outliers uniformly distributed across the feature space.

2. Algorithm Implementation and Hyperparameter Tuning: Each algorithm—One-Class SVM, One-Class SVM with SGD,
Isolation Forest, Local Outlier Factor, and Robust Covariance—is implemented using Python. Extensive tuning of hyperpa-
rameters is conducted to optimize each model’s performance based on the expected fraction of outliers and other relevant
parameters.

3. Model Fitting: The models are trained exclusively on the normal data points. This step is crucial as it allows the algorithms
to learn the region of the feature space occupied by the majority class without being influenced by the outliers.

4. Anomaly Prediction: Using the trained models, the study then predicts anomalies by classifying each data point in the
extended dataset (including outliers) as either normal or an outlier. This step tests each model’s ability to generalize from
the training data to unseen data.

5. Visualization and Evaluation: The results are visualized and the performance of each algorithms is evaluated based on
accuracy, precision, recall, and F1 score, providing a comprehensive view of their performance.

6. Comparative Analysis: The study includes a comparative analysis of the models, discussing their strengths and weaknesses in
detecting anomalies. This analysis is supported by visual representations and statistical metrics that highlight each algorithm’s
suitability for different types of data anomalies.
3 
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Fig. 1. Working architecture of the anomaly detection algorithms.

Mathematical framework

One-Class Support Vector Machine (SVM)

One-Class Support Vector Machine (SVM) is fundamentally a boundary-based method that aims to find the optimal hyperplane
or boundary separating the normal data points from the outliers [22]. Unlike traditional SVM that focuses on maximizing the margin
between two classes, One-Class SVM seeks to condense the majority of data points in a way that distances them from the origin in
a high-dimensional feature space, effectively isolating outliers. This method relies on the concept of kernel trick to transform data
into a higher-dimensional space where it is easier to segregate outliers from normal observations, making it particularly effective
for datasets where anomalies are sparse and not well-defined [23].

Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be the synthetic simulated dataset in a d-dimensional space where 𝑥𝑖 ∈ R𝑑 . The objective of One-Class
SVM is to find a function that returns +1 for a region capturing most of the data points and −1 elsewhere. A mapping 𝜙 ∶ R𝑑 → F is
applied to transform the input space into a higher-dimensional feature space F, where linear separation is more feasible. The Kernel
trick is employed to facilitate this transformation, allowing the computation of the dot product in the feature space without explicitly
performing the transformation, defined as 𝐾(𝑥𝑖, 𝑥𝑗 ) = 𝜙(𝑥𝑖) ⋅ 𝜙(𝑥𝑗 ). The One-Class SVM solves the following primal optimization
problem in (1):

min
𝑤,𝜉𝑖 ,𝜌

1
2
‖𝑤‖

2 − 𝜌 + 1
𝜈𝑛

𝑛
∑

𝑖=1
𝜉𝑖 (1)

subject to the constraints:
(𝑤 ⋅ 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑛
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where 𝑤 is the normal vector to the hyperplane, 𝜌 is the decision threshold, 𝜉𝑖 are the slack variables allowing for the soft margin,
nd 𝜈 is a parameter that controls the trade-off between maximizing the distance of the hyperplane from the origin and minimizing
he fraction of outliers. The dual formulation of the problem, which is solved in practice, is given in (2) by:

max
𝛼

𝑛
∑

𝑖=1
𝛼𝑖𝐾(𝑥𝑖, 𝑥𝑖) −

𝑛
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗 ) (2)

subject to:

0 ≤ 𝛼𝑖 ≤
1
𝜈𝑛

,
𝑛
∑

𝑖=1
𝛼𝑖 = 1

here 𝛼𝑖 are the Lagrange multipliers. The decision function for a new data point 𝑥 is given in (3) by:

𝑓 (𝑥) = sign
( 𝑛
∑

𝑖=1
𝛼𝑖𝐾(𝑥𝑖, 𝑥) − 𝜌

)

(3)

A data point 𝑥 is classified as an anomaly if 𝑓 (𝑥) = −1 and as normal if 𝑓 (𝑥) = +1. The choice of kernel 𝐾(𝑥𝑖, 𝑥𝑗 ) significantly
affects the performance of the One-Class SVM. Common choices include linear, polynomial, and Radial Basis Function (RBF) kernels.
This study utilizes the Gaussian kernel. Parameters such as 𝜈 and kernel-specific parameters were carefully selected to balance
sensitivity to outliers and generalization to unseen data.

One-Class SVM with Stochastic Gradient Descent (SGD)

One-Class SVM with Stochastic Gradient Descent (SGD) enhances the traditional One-Class SVM by incorporating SGD for
optimization, making it more scalable and efficient for large datasets [24]. SGD optimizes the One-Class SVM objective function by
iteratively updating the model parameters using a subset of the data, significantly reducing computation time without sacrificing
accuracy [25]. This variant is especially suitable for streaming data or situations where the computational efficiency is paramount,
offering a pragmatic solution for real-time anomaly detection tasks. Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} represent the synthetic simulated dataset
in 𝑑-dimensional space, with each 𝑥𝑖 ∈ R𝑑 . The goal of the One-Class SVM is to find a decision function that isolates the majority
of data points from the origin, identifying any significant deviations as anomalies.

With reference to the optimization problem in (1), but with SGD, 𝑤 represents the weight vector perpendicular to the hyperplane,
𝜌 is the offset of the hyperplane from the origin, and 𝜉𝑖 are slack variables allowing for a margin of tolerance. The parameter 𝜈
controls the trade-off between the margin size and the proportion of outliers. SGD iteratively updates the model parameters (𝑤, 𝜉,
and 𝜌) based on a subset of the training data, significantly reducing computational complexity for large datasets. The update rules
for 𝑤 and 𝜌 at each iteration 𝑡 are given by:

• Update 𝑤: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡∇𝑤𝐿(𝑤𝑡, 𝑥𝑖𝑡 , 𝜉𝑖𝑡 , 𝜌𝑡)
• Update 𝜌: Adjust 𝜌𝑡 based on specific conditions derived from the dual formulation constraints.

where 𝜂𝑡 is the learning rate at iteration 𝑡, 𝐿 is the loss function derived from the primal objective, and 𝑖𝑡 denotes the index of the
selected sample at iteration 𝑡. The loss function for One-Class SVM with SGD was chosen based on the Hinge loss variant, suitable
for the one-class setting given in (4):

𝐿(𝑤, 𝑥𝑖, 𝜉𝑖, 𝜌) = max(0, 𝜌 − (𝑤 ⋅ 𝜙(𝑥𝑖)) + 𝜉𝑖) (4)

The gradients of 𝐿 with respect to 𝑤 and 𝜌 are used to perform the updates. While traditional One-Class SVM formulations
benefit from the kernel trick, directly applying it with SGD requires careful consideration. Approximate kernel method (RBF) was
used to maintain computational efficiency. The selection of 𝜈, learning rate 𝜂, and batch size for SGD were critical to achieving a
balance between detection performance and computational efficiency in the study.

Robust Covariance (Elliptic Envelope)

The Robust Covariance method was adopted to model the synthetic simulated data as an ellipse, assuming that the regular (non-
outlying) data points follow a Gaussian distribution. Anomalies are identified as those points that lie outside the ellipse, effectively
capturing the multivariate outlier detection problem [26].

Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be the synthetic simulated dataset consisting of 𝑛 observations of 𝑑-dimensional real vectors, 𝑥𝑖 ∈ R𝑑 . The
goal is to estimate the parameters of the underlying multivariate Gaussian distribution in a robust way, that is, without being unduly
influenced by outliers. The core of the Robust Covariance method is the robust estimation of the distribution’s location (mean) and
covariance matrix. This can be achieved using the Minimum Covariance Determinant (MCD) estimator [27]. The MCD estimator
seeks to find the subset of observations 𝐻 ⊂ 𝑋 with size ℎ > 𝑛∕2 that minimizes the determinant of the covariance matrix of the
observations in 𝐻 .

Let 𝜇robust and 𝛴robust denote the robust estimates of the location and covariance matrix, respectively. 𝜇robust and 𝛴robust are
computed from the subset 𝐻 by (5) and (6) as:
5 



E.F. Agyemang

p
p

L

t
p

1

Scientiϧc African 26 (2024) e02386 
• Robust Location (Mean):

𝜇robust =
1
ℎ

∑

𝑥𝑖∈𝐻
𝑥𝑖, ∀𝑖 = 1,… , 𝑛 (5)

•
Robust Covariance: 𝛴robust =

1
ℎ − 1

∑

𝑥𝑖∈𝐻
(𝑥𝑖 − 𝜇robust)(𝑥𝑖 − 𝜇robust)𝑇 , ∀𝑖 = 1,… , 𝑛 (6)

An observation 𝑥𝑖 is considered an outlier if its Mahalanobis distance to 𝜇robust with respect to 𝛴robust is too large, i.e., it exceeds a
redefined threshold 𝜒2

𝑑,𝛼 , where 𝛼 is the significance level and 𝑑 is the dimensionality of the data. The Mahalanobis distance for a
oint 𝑥𝑖 is given in (7) by:

MD(𝑥𝑖) =
√

(𝑥𝑖 − 𝜇robust)𝑇𝛴−1
robust(𝑥𝑖 − 𝜇robust) (7)

The threshold 𝜒2
𝑑,𝛼 is derived from the 𝜒2 distribution with 𝑑 degrees of freedom at the 𝛼 significance level, effectively determining

the ‘‘elliptic envelope’’. The selection of ℎ, the number of observations used for the MCD estimate, is crucial. A common choice is
ℎ ≈ [0.5𝑛, 0.75𝑛], balancing robustness and efficiency.

ocal Outlier Factor (LOF)

Local Outlier Factor (LOF) introduces a density-based approach, focusing on the local density deviation of a point with respect
o its neighbors [28]. It calculates the local density of each data point and compares it to the densities of its neighbors, identifying
oints that have a significantly lower density as outliers [29]. Let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be the synthetic simulated dataset consisting

of 𝑛 observations of 𝑑-dimensional real vectors, 𝑥𝑖 ∈ R𝑑 .. The LOF algorithm involves several key steps and definitions:

. 𝑘-distance
For each point 𝑥𝑖, the 𝑘-distance, denoted as 𝛿𝑘(𝑥𝑖), is defined as the distance of 𝑥𝑖 from its 𝑘th nearest neighbor. This metric

helps in identifying the immediate neighborhood of 𝑥𝑖.

2. Reachability Distance
The reachability distance of 𝑥𝑖 with respect to 𝑥𝑗 , denoted as rd𝑘(𝑥𝑖, 𝑥𝑗 ), is defined in (8) as:

rd𝑘(𝑥𝑖, 𝑥𝑗 ) = max{𝛿𝑘(𝑥𝑗 ),dist(𝑥𝑖, 𝑥𝑗 )} (8)

where dist(𝑥𝑖, 𝑥𝑗 ) is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗 .

3. Local Reachability Density (LRD)
The LRD of a point 𝑥𝑖, denoted as lrd𝑘(𝑥𝑖), quantifies the density of an area by considering the reachability distances of 𝑥𝑖 to its

neighbors. It is inversely proportional to the average reachability distance of 𝑥𝑖 to its neighbors given in (9):

lrd𝑘(𝑥𝑖) =
1

∑

𝑥𝑗∈𝑁𝑘 (𝑥𝑖 )
rd𝑘(𝑥𝑖 ,𝑥𝑗 )

|𝑁𝑘(𝑥𝑖)|

(9)

Where 𝑁𝑘(𝑥𝑖) denotes the set of 𝑘 nearest neighbors of 𝑥𝑖.
The LOF of 𝑥𝑖, denoted as LOF𝑘(𝑥𝑖), is then calculated by comparing the LRD of 𝑥𝑖 with the LRDs of its neighbors is given in

(10) by:

LOF𝑘(𝑥𝑖) =

∑

𝑥𝑗∈𝑁𝑘(𝑥𝑖)
lrd𝑘(𝑥𝑗 )
lrd𝑘(𝑥𝑖)

|𝑁𝑘(𝑥𝑖)|
(10)

A LOF𝑘(𝑥𝑖) significantly greater than 1 indicates that 𝑥𝑖 is an anomaly, as its density is considerably lower than that of its neighbors.
The selection of 𝑘 (the number of neighbors considered) is crucial and can significantly influence the detection of outliers. A small 𝑘
makes the algorithm sensitive to local outliers, whereas a larger 𝑘 may capture the global context better but can miss local anomalies.
For this study 𝑘 = 20 was used.

Isolation Forest (iForest)

Isolation Forest diverges from the density or boundary-based methodologies by employing an isolation mechanism. iForest
exploits the fact that anomalies are few and different, which makes them easier to isolate [30]. Using a forest of random trees,
iForest recursively partitions the feature space, with the number of splits required to isolate a sample serving as an indicator of
its anomaly score [14]. This approach is inherently efficient for high-dimensional data, as it does not require distance or density
calculations, making it a highly effective and scalable option for anomaly detection.

For the purpose of this study, let 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} be the synthetic simulated dataset with 𝑛 samples, where each 𝑥𝑖 ∈ R𝑑 . The
iForest algorithm was adopted to constructs a forest of binary trees. For each tree, a random subset of 𝑋 was selected and recursively

partitioned by randomly selecting a feature and then randomly selecting a split value between the minimum and maximum values
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of the selected feature. The path length ℎ(𝑥) of a data point 𝑥 in a tree is the number of edges 𝑥 traverses from the root node to
the terminal node. The anomaly score of a data point is based on the average path length ℎ(𝑥) over all trees in the forest is given
in (11) by:

𝑠(𝑥, 𝑛) = 2−
𝐸[ℎ(𝑥)]
𝑐(𝑛) (11)

here 𝐸[ℎ(𝑥)] is the average path length of 𝑥 over all trees in the forest, 𝑛 is the number of external nodes, and 𝑐(𝑛) is the average
ath length of unsuccessful search in a Binary Search Tree (BST) given in (12) by:

𝑐(𝑛) = 2𝐻(𝑛 − 1) −
2(𝑛 − 1)

𝑛
(12)

with 𝐻(𝑖) being the harmonic number approximated by ln(𝑖) + 0.5772156649 (Euler’s constant). The anomaly score 𝑠(𝑥, 𝑛) was
sed to determine if a data point is an anomaly or not. A score close to 1 indicates an anomaly, whereas a score much smaller
han 0.5 indicates a normal observation. In this study, a threshold of 0.5 was set to distinguish between anomalies and normal
bservations. The number of trees in the forest, typically denoted as 𝑇 , is a critical parameter that affects both the performance

and the computational cost of the algorithm. The size of the data subset used for building each tree affects the algorithm’s ability
to isolate anomalies. A smaller size leads to more isolation but can also increase variance.

Model evaluation metrics

In this study, various metrics were utilized to evaluate the performance of the five (5) unsupervised machine learning algorithms.
These metrics include Accuracy, Precision (specifically for outliers), Recall (specifically for outliers), and the F1 Score computed
by (13), (14), (15) and (16). Below, we define each metric mathematically and explain their meanings in the context of anomaly
detection.

1.

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(13)

Accuracy measures the proportion of true results (both true positives 𝑇𝑃 and true negatives 𝑇𝑁) among the total number of
cases examined [31]. It is a measure of the overall performance of the model across both classes (normal and anomalies).
𝑇𝑃 (True Positives): The number of outliers correctly identified as outliers.
𝑇𝑁 (True Negatives): The number of normal observations correctly identified as normal.
𝐹𝑃 (False Positives): The number of normal observations incorrectly identified as outliers.
𝐹𝑁 (False Negatives): The number of outliers incorrectly identified as normal observations.

2.

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(14)

Precision for outliers is the ratio of correctly predicted positive observations (true positives) to the total predicted positives
(the sum of true positives and false positives). This metric specifically focuses on the model’s ability to not label a normal
observation as an outlier.

3.

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(15)

Recall for outliers is the ratio of correctly predicted positive observations (true positives) to all observations in the actual
class (the sum of true positives and false negatives). This metric evaluates the model’s ability to identify all actual outliers.

4.

F1 Score = 2 × Precision × Recall
Precision + Recall (16)

The F1 Score is the weighted average of Precision and Recall. This score is particularly useful because it takes both false
positives and false negatives into account. It is a measure of the model’s accuracy and is higher when both precision and
recall are high. The F1 Score is especially useful for situations where an even balance between precision and recall is desired.

Results and discussion

Synthetic simulated data

Fig. 2 shows the synthetic dataset we simulated, consisting of normal data points (in blue) and outliers (in red). This synthetic
dataset is designed to test the predictive power (accuracy, precision, recall and F1-score) of the five unsupervised machine learning

algorithms for anomaly detection.
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Fig. 2. Synthetic data with outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Anomaly detection with One-Class SVM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Analysis of One-Class SVM anomaly algorithm

In Fig. 3, the One-Class SVM model is applied to the synthetic simulated data. The model was trained on the normal data (blue
points), and then it predicted which data points are outliers. The dark red contour circle delineates the boundary between normal
data points and anomalies as determined by the model. Points outside this boundary are considered anomalies by the model. As seen,
the One-Class SVM successfully identified the majority of the outliers (red points) - almost all of them while correctly classifying
most of the normal data points. This demonstrates the model’s ability to distinguish between normal data and anomalies in a dataset,
making it a useful tool for anomaly detection tasks.
8 
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Fig. 4. One-Class SVM using SGD decision function and predicted outliers.

In the subsequent sections, ‘‘Predicted normal (Normal)’’ represents an actual normal observation that is predicted to be a normal
observation by the model. Likewise ‘‘Detected outliers (Normal)’’ is an actual normal observation that is detected as an outlier by
the model. Similar interpretations are used for all the labels that follows this format.

Analysis of One-Class SVM with SGD anomaly algorithm

Fig. 4 illustrates the results of anomaly detection using a One-Class SVM with SGD on the same synthetically simulated dataset.
Similar to the previous analysis with the traditional One-Class SVM, this approach aims to identify outliers from the normal data
points in the feature space. The decision function’s boundary, delineated by the dark red contour line, represents the threshold
beyond which data points are considered anomalies by the model. The contour plot background provides a gradient of how decision
values change across the feature space, giving visual feedback on the margin of the classification. As observed, the One-Class SVM
with SGD effectively separates most of the outliers from the normal data points, demonstrating its capability in anomaly detection.
This approach, leveraging SGD, offers computational advantages, especially for large datasets, by iteratively updating the model’s
parameters without the need for the entire dataset to be in memory. The results affirm the efficacy of the One-Class SVM with SGD
in distinguishing between normal observations and anomalies, highlighting its utility in scenarios where efficient computation is
paramount. The application of this method showcases its potential in real-world anomaly detection tasks, providing a viable option
for handling large-scale data with the need for efficient processing.

Analysis of Isolation Forest anomaly algorithm

Fig. 5 displays the results of anomaly detection using an iForest on our synthetically simulated dataset. This method operates
on a different principle compared to the One-Class SVM; it isolates anomalies instead of creating a boundary to separate them
from normal observations. The iForest model effectively identified many of the synthetic outliers as anomalies, demonstrating its
capability to isolate abnormal observations from normal data. This method’s strength lies in its ability to handle multi-dimensional
data and its efficiency in detecting anomalies without the need to specify a contamination rate explicitly, although a rough estimate
can help in tuning the model.

Analysis of Local Outlier Factor (LOF) anomaly algorithm

Fig. 6 illustrates the application of the LOF method for anomaly detection on the synthetically simulated dataset. This method
assesses the local density deviation of a given data point with respect to its neighbors, aiming to identify regions of similar density
and highlight points that stand out as anomalies. The LOF method effectively identifies outliers by focusing on the local neighborhood
of each data point. This technique is particularly useful in datasets where the density around normal observations and anomalies
9 
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Fig. 5. Isolation Forest Predicted normal points and outliers.

Fig. 6. Local Outlier Factor (LOF) Predicted normal points and outliers.

differs significantly. As shown, the LOF model has successfully flagged minimal synthetic outliers as outliers. LOF is advantageous in
scenarios where the anomaly pattern is not globally uniform but varies across different regions of the dataset. This makes it a versatile
tool for anomaly detection in complex datasets where anomalies may not be detectable through global density or distribution-based
methods. The results showcase the importance of LOF in identifying outliers, highlighting its potential for better anomaly detection
tasks
10 
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Fig. 7. Anomaly detection with Robust Covariance (Elliptic Envelope). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Analysis of Robust covariance anomaly algorithm

Fig. 7 demonstrates the results of anomaly detection using Robust Covariance, also known as the Elliptic Envelope method,
on our synthetically simulated dataset. This approach assumes that the normal data points follow a Gaussian distribution and
attempts to enclose the majority of these points within an ellipse, identifying points lying outside as anomalies. The Elliptic Envelope
method effectively identifies a significant number of the synthetic outliers, showcasing its capability to detect anomalies based on
the deviation from the assumed Gaussian distribution of the dataset.

This method is particularly useful in applications where the data is expected to exhibit a ‘‘normal’’ distribution, allowing for the
detection of outliers as deviations from this model. Robust Covariance is advantageous for its sensitivity to the shape of the data
distribution, making it suitable for datasets where the normal observations are densely clustered. The results highlight the role of
the Robust Covariance method in identifying outliers, underlining its utility in scenarios where a robust estimation of the data’s
distribution is critical for anomaly detection. In Fig. 7, it is however to be noted that ‘‘Predicted normal (Normal)’’ represents all
actual normal observation that are predicted to be normal observations by the model and are enclosed by the elliptic envelope. This
excludes green data points that lies outside the elliptic envelope.

Model performance evaluation

The One-Class SVM and Robust Covariance models have perfectly identified all true outliers (100% recall) but have also
misclassified 20 normal points as outliers (lower precision). The One-Class SVM with SGD has the highest number of false negatives,
meaning it failed to identify most of the true outliers (lower recall), although it did not misclassify any normal points as outliers
(high precision). The Isolation Forest model has a good balance, with only one false negative and 19 true positives, indicating it
is quite effective at identifying outliers while maintaining a reasonable false positive rate. The Local Outlier Factor model has the
highest number of false negatives (lowest recall), indicating it is the least effective at identifying outliers among these models as
represented by Fig. 8.

Table 1 and Fig. 9 summarize the performance metrics of the five unsupervised anomaly detection algorithms. The One-Class
SVM and Robust Covariance models exhibit identical accuracy and precision, and both successfully recall all outliers, resulting in an
F1 score of approximately 66.67%. Remarkably, the One-Class SVM with SGD achieves the highest accuracy at 91.36% and perfect
precision, indicating it does not falsely label normal observations as outliers. However, it has the lowest recall of 5.00%, suggesting
it fails to identify the majority of true outliers, which is also reflected in its low F1 score of 9.52%. The Isolation Forest model shows
a balanced profile with decent accuracy (90.45%) and the second-highest recall (95.00%), leading to an F1 score of 64.41%. The
Local Outlier Factor model struggles in this comparison, with the lowest accuracy (82.73%) and F1 score (9.52%), alongside a recall
penultimate to One-Class SVM with SGD.

One-Class SVM and Robust Covariance show a balanced performance with equal recall and F1 scores (100.00% and 66.67%
respectively), indicating robust performance in detecting true outliers. However, their precision is moderate, suggesting some normal
11 
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Fig. 8. Confusion matrices of the 5 anomaly detection algorithms.
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Table 1
Model performance of the unsupervised anomaly detection algorithms.

Model Accuracy Precision (Outliers) Recall (Outliers) F1 score (Outliers)

One-Class SVM 90.91% 50.00% 100.00% 66.67%
One-Class SVM with SGD 91.36% 100.00% 5.00% 9.52%
Isolation Forest 90.45% 48.72% 95.00% 64.41%
Local Outlier Factor 82.73% 9.09% 10.00% 9.52%
Robust Covariance 90.91% 50.00% 100.00% 66.67%

Table 2
Computational efficiency of the unsupervised anomaly detection algorithms.

Model Model fit Outlier prediction Results plot
time (s) time (s) time (s

One-Class SVM 0.0020 0.0001 1.1252
One-Class SVM with SGD 0.0020 0.0001 0.4558
Isolation Forest 0.2036 0.0040 0.4048
Local Outlier Factor 0.0075 0.3012 0.0503
Robust Covariance 0.0602 0.0009 0.0140

points were incorrectly labeled as anomalies. One-Class SVM with SGD exhibits high precision (100.00%) but significantly low recall
and F1 score (5.00% and 9.52% respectively), highlighting its conservative approach in labeling outliers; it misses many true outliers
but is very accurate when it does label a point as an outlier. Isolation Forest provides a good balance between recall and precision,
achieving an F1 score of 64.41%. This indicates a strong capability in identifying outliers while maintaining a reasonable rate of
false positives. Local Outlier Factor demonstrates the lowest performance across all metrics, indicating difficulties in accurately
distinguishing between normal points and outliers in this synthetic simulated dataset.

The evaluation reveals that One-Class SVM, Isolation Forest, and Robust Covariance are more effective in identifying outliers in
he simulated dataset, with Isolation Forest slightly outperforming the others in terms of balancing precision and recall. One-Class
VM with SGD shows promise in precision but needs adjustment to improve recall. Local Outlier Factor may require parameter
uning or may not be as suitable for this particular dataset’s characteristics.

Table 2 presents a comparative analysis of the computational efficiency of the five (5) different unsupervised anomaly detection
lgorithms. The One-Class SVM and One-Class SVM with SGD demonstrate the fastest model fitting and outlier prediction times, both
locking in at only 0.0020 s for model fitting and 0.0001 s for outlier prediction, suggesting high efficiency in simpler computational
nvironments. Notably, both algorithms have drastically different times for plotting results, with One-Class SVM taking significantly
onger (1.1252 s) compared to its SGD counterpart (0.4558 s). The Isolation Forest, while slower in model fitting (0.2036 s) and
utlier prediction (0.0040 s), also requires less time for result visualization (0.4408 s). The Local Outlier Factor shows a modest
odel fitting time (0.0075 s) but has a relatively high outlier prediction time (0.3012 s), indicating a possible trade-off between

itting speed and prediction complexity. Robust Covariance, although it has the slowest model fitting time (0.0602 s), showcases
fficient outlier prediction (0.0009 s) and the quickest results plotting (0.0140 s). This computational efficiency analysis highlights
he varying performance of trade-offs between the five (5) different anomaly detection models in terms of computational cost and
fficiency, providing valuable insights for selecting appropriate models based on specific application requirements.

The application of One-Class SVM in this study, noted for its high recall but moderate precision, aligns with findings from [16],
here the algorithm demonstrated robustness in anomaly detection within tightly defined feature spaces. Similarly, our study’s
pplication of SGD in One-Class SVM aligns with [24], which highlighted the scalability and efficiency of SGD for large datasets.
solation Forest’s performance in our study is consistent with [14], emphasizing its strength in high-dimensional settings and its
fficiency in isolating anomalies without extensive parameter tuning. This echoes the utility of Isolation Forest in handling complex
ata structures. However, the current study extends these findings by quantitatively assessing the balance between recall and
recision, which has been less frequently addressed in the literature. Local Outlier Factor’s lower performance in our study contrasts
ith its efficacy reported in [29], where LOF excelled in datasets with pronounced local density variations. This discrepancy could

tem from differences in the dataset characteristics used in the two studies, underlining the sensitivity of LOF to the underlying data
istribution. Robust Covariance’s effectiveness in our study, especially in handling data assumed to follow a Gaussian distribution,
upports the findings of [26]. However, the results of this study also highlight the limitations of this assumption, as real-world
atasets often exhibit more complex distributions, potentially affecting the algorithm’s performance outside controlled experimental
onditions.

It is to be noted that the synthetic dataset, while not entirely representative of real-world data due to its simplified structure
nd assumptions as clearly specified in Section ‘‘Limitations of the study’’, still holds relevance in specific practical scenarios such
s algorithm testing and benchmarking like this one presented in this study. This setting allows for controlled experimentation and
arameter tuning in a known environment, facilitating scalability assessments and optimization of anomaly detection algorithms.
owever, its simplicity in feature interactions and absence of real-world data challenges like noise and heterogeneous features means

hat while useful for preliminary testing of algorithms, it is crucial to validate and refine these algorithms with real-world data to

nsure their practical predictive power and robustness.
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Fig. 9. Model performance metrics.

Conclusion & recommendation of the study

This study evaluates the performance of five unsupervised machine learning anomaly detection algorithms: One-Class SVM, One-
Class SVM with Stochastic Gradient Descent (SGD), Isolation Forest, Local Outlier Factor (LOF), and Robust Covariance (Elliptic
Envelope) on a synthetic simulated data. The evaluation is based on accuracy, precision, recall, and F1 score, focusing on the
algorithms’ ability to correctly identify anomalies (outliers) in a synthetically simulated dataset. The comparative analysis of
the five unsupervised machine learning anomaly detection algorithms provide insights into their performance and applicability
across various anomaly detection tasks. The evaluation based on accuracy, precision, recall, and F1 score highlights the diverse
capabilities of these algorithms in identifying outliers, each influenced by the underlying data distribution, algorithm complexity,
and parameter selection. One-Class SVM and Robust Covariance demonstrated similar performance metrics, excelling in recall by
correctly identifying a high percentage of true outliers. This high recall indicates their efficacy in detecting anomalies within the
dataset. However, their moderate precision suggests a propensity to falsely label normal points as anomalies. These algorithms are
well-suited for applications where missing an outlier is costlier than false alarms, such as fraud detection or preventive maintenance.
Their performance can be significantly influenced by the choice of kernel (in One-Class SVM) and the assumption of a Gaussian
distribution (in Robust Covariance), highlighting the importance of understanding data distribution before algorithm application.

One-Class SVM with SGD presented an interesting trade-off with high precision but low recall, indicating it is highly accurate
in its anomaly predictions but misses a substantial number of outliers. This characteristic makes it suitable for scenarios where
false positives are a greater concern than missed detections, such as in certain security applications where false alarms must
be minimized [32]. The algorithm’s efficiency, driven by SGD, offers scalability and speed, which are critical in large-scale or
real-time processing environments. Isolation Forest showed a balanced performance with relatively high precision and recall,
suggesting it effectively identifies outliers without excessively mislabeling normal points. Its unique approach of isolating anomalies
makes it less sensitive to the specific data distribution, enabling it to perform well across a variety of datasets. This algorithm
is particularly advantageous in high-dimensional data or for applications requiring quick anomaly detection without extensive
parameter tuning [33]. Local Outlier Factor (LOF), despite its lower overall accuracy, provides valuable insights into local anomalies,
which might not be detected by other algorithms focusing on global outliers. Its lower performance in this analysis could be
attributed to its sensitivity to parameter settings and the neighborhood size, which significantly impacts its efficacy. LOF’s advantage
14 
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lies in its ability to detect anomalies in datasets with varying densities, making it ideal for applications like intrusion detection or
identifying rare events in spatial data [34].

The analysis highlights several critical factors influencing the efficacy of anomaly detection. Firstly, the assumption about data
istribution (e.g., Gaussian in Robust Covariance) can significantly impact algorithm performance. Algorithms like Isolation Forest,
hich do not rely on such assumptions, offer more flexibility across different datasets. Secondly, the complexity of an algorithm
nd its sensitivity to parameter settings can affect both its performance and practical applicability. While complex models may
ffer higher accuracy, they often require extensive tuning and computational resources. Last but not least, the choice of anomaly
etection algorithm should be guided by the specific requirements of the application domain, including the cost of false positives
ersus false negatives, data dimensionality, and the need for real-time processing. The study has shown that the selection of an
nomaly detection algorithm should be a considered decision, taking into account the specific characteristics of the data and the
perational context of the application. By understanding the advantages and disadvantages of each method, practitioners can better
ailor their approach to the unique challenges of anomaly detection, optimizing performance and minimizing the risk of critical
versights. Future work should explore parameter optimization, the impact of dataset characteristics on model performance, and
he application of these models to real-world datasets to validate their efficacy in practical anomaly detection scenarios. The study
hus recommended the application of mathematical numerical simulation techniques such as those used by [35–38].

imitations of the study

The synthetic simulated dataset employed for the anomaly detection assumes homogeneity of features (in this case, continuous
umerical data), specific data distributions (normal for ‘normal’ data and uniform for outliers), and a clear distinction between
ormal data points and outliers. These assumptions simplify the complex and varied nature of real-world data, which often involves
eterogeneous feature types, diverse distributions, and subtler distinctions between normal and anomalous data. The primary
imitations of the synthetic dataset include the absence of feature interactions, noise, and correlations, as well as the lack of scale
nd density variations. It consists of only two features, which fails to capture the complexities of multi-dimensional real-world
atasets, potentially affecting the evaluation of algorithms designed to handle more intricate data structures. These assumptions
nd limitations can significantly affect the results, potentially leading to an overestimation of an algorithm’s performance when
eneralized to real-world data. The dataset’s simplicity and controlled environment might favor certain models that perform well
nder these specific conditions but might not necessarily offer the same performance against more complex, noisy, and subtly
nomalous real-world data, impacting both the sensitivity and specificity of the algorithms.
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