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ABSTRACT

Soltero, Celestina R., Empirical Bayes Estimators and Borel-Tanner Distribution. Master of Sci-

ence (MS), August, 2019, 32 pp., 3 tables, 4 figures, 31 references, 16 titles.

The motivation for this paper stems from the role Borel-Tanner (BT) distribution has as

the distribution of the total outbreak number in epidemics modeled by branching processes. We

briefly review Borel-Tanner distribution and its applications. In Chapter II we outline the Bayes

decision problem, a construction for an Empirical Bayes (EB) estimator proposed by Liang [9] and

discuss risk analysis. In Chapter III, the importance of randomization addressed and a classical

construction of a monotonized EB estimator proposed by Houwalingen [14] is outlined. Lastly

in Chapter IV we use R software to perform a Monte Carlo simulation and conduct a numerical

study in which we construct data and estimators for the reproduction parameter of Borel-Tanner

distribution. We implement a procedure oulined by Houwalingen [14] to obtain a monotonized

version of the EB estimator poposed by Liang [9]. The estimators are assessed through risk analysis

under squared error loss function and numerical study results are reviewed. The study suggests that

the monotonized EB estimator outperforms the original EB estimator.
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CHAPTER I

INTRODUCTION

1.1 Borel–Tanner Distribution

The Borel–Tanner distribution was originally derived as the distribution of the number of

customers served in a busy period of a single server queuing process. It has probability mass

function (pmf)

pr(x | q) = cr(x)q x�re�qx , (1.1)

where 0 < q < 1, r is a positive integer, and cr(x) = rxx�r�1

(x�r)! with mean r
1�q and variance rq

(1�q)3 . It

was introduced by French mathematician Emile Borel in 1942 for the case r = 1; thus, came to be

known as the Borel distribution. In 1953, Tanner generalized the distribution [5] to any positive

integer r. As a result, the former was then known as the Borel–Tanner (BT) distribution.

Figure 1.1: Borel–Tanner pmf with r = 3.
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The BT distribution has surfaced in a variety of real-world phenomena. In queuing theory,

(1.1) represents the probability that exactly x customers in a queue will be served before the first

queue vanishes, beginning with r initial customers and traffic intensity q , assuming Poisson arrivals

and constant service time [5]. It has arisen in coalescence models [3], self propagating codes called

worms which adversely impact the internet [12], herd size in finance modeling [11], cascading

electrical outages [6] and highway traffic flows [8] in addressing the mean queue length behavior

along a two-lane rural road where the presence of a queue in one lane prevents vehicles in the other

lane from overtaking slower vehicles [4]. Our interest in BT distribution, however, stems from its

role in modeling epidemics.

1.2 Branching Processes

This section is adapted from [7] and [2], unless otherwise stated. A system in which particles

live for a random time and produce a random number of progenies is called a branching process. For

an interesting historic overview on branching processes see [2]. Individuals from high social status

were concerned about their noble family names ultimately becoming extinct, i.e., the number of a

progeny (male individuals) may be zero. The oldest, simplest and best-known branching process

is the Galton–Watson (GW) process also known as Bienaymé–Galton–Watson, since the oldest

document found where the problem of extinction is considered from statistician Bienaymé dates

back to 1845.

Branching processes are useful in many applications, e.g., describing higher organisms

such as vertebrates or plants, biological cells, biomolecules and genes. In our study we apply it

to epidemiology and consider the progeny to be the total number of infected individuals, i.e. the

epidemic outbreak size. The GW branching process can be defined by the following recurrence

formula

Zn+1 =
Zn

Â
i=1

Xi,n, (1.2)

where Xi,n , i,n = 1,2, . . . are independent and identically distributed (iid) random variables (rv) that

2



assume nonnegative integer values and Z0 = 1. There are two basic assumptions (e.g. Yanev [15])

(i.) The number of offspring Xi,n produced by a single parent particle is independent of the history

of the process, and of other particles existing at the present.

(ii.) The offspring distribution is the same for all particles in all generations of the process.

The relationship between BT distribution and branching processes is in the event that the offspring

distribution is Poi(q), i.e., a GW process, then BT distribution gives the total number of individuals

ever lived, that is, the total outbreak size.

3



CHAPTER II

BAYESIAN ESTIMATORS

The Bayesian estimation procedure can be summarized as follows. The prior distribution

G(q) is based on the belief of an observer and is formulated prior to seeing any actual data. It

is a probability distribution which describes the variation of parameter q . We have data x, taken

from the population, indexed by q . The sample has sampling distribution p(x | q) which illustrates

the observer’s belief of where the data will be if q is true. The prior is updated and is called the

posterior distribution G(q | x). This is done using and Bayes rule

G(q | x) =
p(x | q)G(q)

m(x)
q 2 W, (2.1)

where m(x) is the marginal distribution of X that is, m(x) =
Z

W
p(x,q)dq and p(x,q) is the joint

probability mass function. The posterior distribution is now used to make inferences about q .

2.1 Classical Bayes

A more detailed Bayes mathematical framework consists of the following elements (e.g.

Stijnen [13]). An observation is taken from a random variable or vector X , the distribution of which

depends on an unknown parameter q . The problem is what decision to take concerning the true

value of q .

(i) A set S of observations, called sample space, equipped with a s�algebra S .

(ii) A collection P of probability measures on the space (S,S). Usually, P is parametrized by

some set suitable parameters P = {Pq ,q 2 W}.

(iii) A set A of possible actions which can be taken by the statistician upon observing some x 2 S.
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The set A, called the action space, is equipped with a s�algebra A.

(iv) A collection D of decision rules. A decision rule is defined to be a S�A measurable map

from S into A. A decision rule is defined to be a S�A measurable map from S into A When

using the decision rule d 2 D, the statistician will take action d(x) 2 A upon observing x 2 S.

(v) A loss function L : W⇥A �!R. For each q 2 W, the function L(q , ·) must be A measurable

and bounded from below on A. When taking d(x) 2 A, if q is the true parameter value, the

statistician will incur a loss function L(q ,d(x)).

(vi) A probability measure G (called the prior distribution) on W, which is equipped with the

s� algebra W .

Adopting the Bayesian framework, we define the Bayes estimator qG. Suppose q 2 W

is a realization of a rv Q. Under the squared error loss function, with prior distribution G and

Borel-Tanner pmf (1.1), it is well known that the Bayesian estimator qG for q is the posterior mean

qG(x) := E [Q | X = x] =

Z

W
q x+1�re�xq dG(q)

Z

W
q x�re�xq dG(q)

. (2.2)

Consider a population parameter Q that has significant physical interpretation, e.g., the

reproduction number of a current outbreak modeled by a GW process. When sampling from a

population whose distribution is given by p(x | q), knowledge of q provides knowledge over

the entire population. In order to make reliable inferences about the population, it is of utmost

importance to construct a quality estimator q̂ for q so that we can take measures in controlling the

outbreak if necessary. If q̂ is small enough, intervention might not even be necessary since, in that

case, the epidemic will die out without affecting a significant population. On the other hand, if q̂ is

large enough, prevention methods might be needed to control the spread.

5



2.2 Measures for Estimators’ Quality

Our aim is to obtain a good approximation for q . A loss function L is used as a measure

of discrepancies between a constructed estimator q̂ and the true value of the parameter q . If q is

real-valued parameter, a commonly used loss function is the squared error loss

L
�
q , q̂

�
:=

�
q̂(x)�q

�2
. (2.3)

The quality of an estimator q̂ is assessed by its risk function. At a point q , the risk function is the

expected loss that will be incurred if the estimator q̂ is used. If the prior distribution is known, it is

often possible to determine a decision rule with minimum Bayes risk.

Definition 1 (Bayes Risk). Under loss function (2.3), the Bayes risk r(G, q̂) of estimator q̂ with

respect to the prior distribution G is

r(G, q̂) = E(X ,Q)L
�
q , q̂(x)

�

= E(X ,Q)

�
q̂(x)�q

�2
. (2.4)

By definition, the Bayesian estimator qG minimizes the Bayes risk (2.4) i.e.,

r(G,qG) = min r(G, q̂).

Definition 2 (Regret Risk). The difference R(q̂) between the Bayes risk and the minimum Bayes

risk of any estimator q̂ is called Regret Risk of q̂ ,

R(q̂) = r(G, q̂)� r(G,qG). (2.5)

Remark. Since the Bayes risk is minimum when using estimator qG, the regret risk R(q̂) of any

estimator q̂ , is always greater then or equal to zero.
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It is not difficult to see that R(q̂) = EX
⇥
q̂(x)�qG(x)

⇤2. Indeed,

R(q̂) = r(G, q̂)� r(G,qG)

= E(x,Q)

⇥
q̂ 2(x)�2q̂(x)Q+Q2⇤�E(x,Q)

⇥
q 2

G(x)�2qG(x)Q+Q2⇤

= EX

h
E(Q,X)

⇥
q̂ 2(x)�2q̂(x)Q+2qG(x)Q�q 2

G(x)
⇤i

= EX
⇥
q̂ 2(x)�2q̂(x)qG(x)+2q 2

G(x)�q 2
G(x)

⇤

= EX
⇥
q̂ 2(x)�2q̂(x)qG(x)+q 2

G(x)
⇤

= EX
⇥
q̂(x)�qG(x)

⇤2
.

In Bayesian theory, the Bayes estimator qG is considered the golden standard. Thus, we

define the notion of "best" estimator q̂ by that which is "closest" to qG, i.e., with minimum regret

risk. When comparing estimators q̂1 and q̂2, if R(q̂2)< R(q̂1), we consider q̂2 to be "better" than q̂1.

2.3 Empirical Bayes

It is often reasonable to assume that a prior distribution G exists, however is unknown.

An Empirical Bayes (EB) approach is taken when we have "past" data parametrized by Q which

is usually unobservable to us and has a prior distribution G. This approach does not assume any

specific prior, it simply restricts itself to this past data. In what follows, we adopt the Empirical

Bayes approach, which relies on the assumption for existence of a prior G which, however, is

unknown. In this setting, our investigation is that of one event in a sequence of similar independent

events with same prior distribution G. The data of these preceding events can be used to estimate

the prior G or the Bayes rule qG directly.

The parameter Q can reasonably be considered a random variable with some prior distri-

bution G. With the following scenario, Maritz [10] illustrates a situation in which the Empirical

Bayes assumptions are fulfilled. Suppose prospective college students arrive sequentially and are

subject to a college entrance exam. Based on their test score, a decision will be made about their

admittance. It is reasonable to assume that each student has a predetermined potential, q , which

7



cannot be measured directly. However, the student’s exam score X is a normal r.v. with mean q and

some known variance which is fixed for all students. A collection scores on a well designed exam

can provide insight into the prior, G.

More precisely, in the empirical Bayes setup,consists of the following

(i) A sequence of independent and identically distributed (iid) copies

(X1,Q1),(X2,Q2), . . . ,(Xn,Qn), . . .

of the random pair (X ,Q) where Q has a distribution G, and conditional on Q, X has the

Borel-Tanner distribution (1.1).

(ii) Assume Xi, i = 1,2, . . . ,n+1 are observable and parametrized by Qi, i = 1,2, . . . ,n+1.

(iii) Each Qi is unobservable and has unknown prior distribution G.

(iv) Let Xn+1 stand for the present observation and X(n) := (X1, . . . ,Xn) denote the n past observa-

tions.

The past data X can be used to gather information about the prior G. An EB estimator qn of the

present parameter qn+1 is a function of the currently observed value Xn+1 = x and the past data X .

In case of Borel-Tanner, under squared error loss, Liang [9] successfully constructed an EB

estimator qn for the Bayes estimator qG and studied its properties. The next definition is adapted

from Liang [9].

Definition 3. For each positive integer x = r,r+1, . . ., let

qn(x) :=
1
n

n

Â
j=1

I{Xj = x}
cr(x)

and yn(x) :=
1
n

n

Â
j=1

c1(Xj � x)I{Xj � x+1}
cr(Xj)

. (2.6)

With qn(x) 6= 0, for each x = r,r+1, . . ., the EB estimator qn is defined by

qn(x) := min
⇢

yn(x)
qn(x)

,1
�
. (2.7)

8



The Bayes risk of the EB estimator qn(X) is

r(G,qn) := EnE(Xn+1,Qn+1)[Qn+1 �qn(Xn+1)]
2.

where EX is the expectation with respect to (X1,X2, . . . ,Xn). Using (2.5) for the regret risk of qn, we

have

R(qn) := r(G,qn)� r(G,qG).

In particular, qn is called asymptotically optimal for any prior G if limn!• R(qn) = 0. In [9] Liang

proves that qn given by (2.7) is asymptotically optimal and studies the R(qn) rate of convergence

to zero.

9



CHAPTER III

MONOTONIZING THE EMPIRICAL BAYES ESTIMATOR

3.1 Randomization

Randomization reduces bias as much as possible; it is designed to "control" bias by all

means. For a very basic and intuitive introduction to randomization see [1]. When a study is

randomized it reduces or eliminates bias; thereby providing more reliable results and legitimacy to

both the research and researchers as well.

Example 1 (Randomized Test). Let X1,X2,X3 be a sample from Bin(1,q) where 0  q  1 and

q is unknown. Let x be the number of successes in 3 independent trials. Consider H0 : q = 1
4 vs.

H1 : q = 3
4 and let a = 0.05. Then the probabilities are in Table 3.1. Clearly P(X = 3) fully falls in

Table 3.1: Probability values for Randomization Example.

x P(X = x)

0
3!

3!0!

✓
1
4

◆0✓3
4

◆3
=

27
64

⇡ 0.42

1
3!

2!1!

✓
1
4

◆1✓3
4

◆2
=

27
64

⇡ 0.42

2
3!

1!2!

✓
1
4

◆2✓3
4

◆1
=

9
64

⇡ 0.14

3
3!

0!3!

✓
1
4

◆3✓3
4

◆0
=

1
64

⇡ 0.02

the rejection region and P(X = 2) does not. The problem here is that we are not using a = 0.05 as

our exact critical value; thus creating bias for the decision process. A way to fix this is to randomize

the test. In this case we will add a weight c to X = 2, that is, we partially include the point X = 2 so

10



that we obtain the exact critical value a = 0.05,

P(X = 3)+ cP(X = 2) = 0.05
1

64
+ c

9
64

= 0.05

c =
0.05(64)�1

9

c =
2.2
9
.

Thus, the optimal test of size a = 0.05 is given by

Fq (x) :=

8
>>>>>><

>>>>>>:

0 if x < 2

2.2
9

if x = 2

1 if x = 3.

Randomization assigns values by chance not by choice. In the above example we used a

weight c to obtain the exact a value and eliminate bias. Randomization is a useful tool to reduce or

completely eliminate bias from any experiment. There are several ways to randomize an experiment,

in the section that follows we use a function, namely D(a | x), to randomize the EB estimator qn.

3.2 A Monotonization Procedure

The EB estimator is not monotone with respect to x. We provide an illustration of qn in the

Chapter IV numerical study. This is unwanted behavior for an estimator following BT distribution.

Proposition 1. The BT distribution, (1.1) has monotone likelihood ratio (MLR), i.e.,

q(x) =
pr(x | q2)

pr(x | q1)

is increasing with respect to x whenever 0 < q1 < q2 < 1.

Proof. Let g be the natural logarithm of the likelihood ratio q, 0 < q1 < q2 < 1 and r a positive

11



integer, i.e.,

g(x) = lnq(x)

= ln
pr(x | q2)

pr(x | q1)

= ln
q x�r

2 e�q2x

q x�r
1 e�q1x

= ln
✓

q2

q1

◆x�r
+ lne�x(q2�q1)

= (x� r) ln
✓

q2

q1

◆
� x(q2 �q1).

Its derivative g0with respect to x is

g0(x) = ln
✓

q2

q1

◆
� (q2 �q1)

= ln(q2)�q2 � (ln(q1)�q1)

= ln(q2e�q2)� (lnq1e�q1).

Consider the function h(q) = ln(qe�q ). Its derivative h0 with respect to q

h0(q) =
✓

1
qe�q

◆
(qe�q )0

=

✓
1

qe�q

◆
(e�q �qe�q )

=
1�q

q

is always greater than zero for any 0 < q < 1. Since

g0(x) = h(q2)�h(q1)> 0

whenever 0 < q1 < q2 < 1, the function g(x) = lnq(x) is monotone increasing. Thus, q(x) itself is

monotone increasing.
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Due to this property of BT distribution, monotonicity is a desirable property for qn. However

as Houwalingen [14] points out, this is not the case for the EB estimator; for this reason, he

outlined a classical approach for monotonizing the EB estimator. In addition to monotonizing

the q ⇤
n , Houwalingen also shows that the monotonized EB estimator, q ⇤

n has a smaller Regret risk

than the EB estimator qn, i.e., q ⇤
n is a "better" estimator than qn. A procedure for constructing

a monotone estimator that dominates an EB estimator for distributions with MLR is given. In

his paper, Houwalingen also provides examples of this estimator for the Geometric and Poisson

distributions. In Chapter IV, we contribute yet another example to this classical construction by

monotonizing the EB estimator for BT distribution.

Estimators for discrete distributions with MLR can be made monotone applying a procedure

developed in [14] (see also [16]). Consider a simple randomized version of the estimator qn(x)

represented by the following function D(a | x) for a 2 (0,1):

D(a | x) :=

8
><

>:

0 if qn(x)> a,

1 if qn(x) a.

The number D(a | x) is the probability that an estimate qn(x) less than or equal to a is selected given

X = x. Hence D(a | x) is a cdf on the action space (0,1) for every X = x. Define for a 2 (0,1)

a(a) := E(D(a | X)) = Â
{x: qn(x)a}

pr(x | a). (3.1)

Denote F(x | q) :=
x

Â
k=r

pr(k | q) for x � r and F(r�1 | q) = 0. Now, we can construct a randomized

estimator with D⇤(a | x) as follows

D⇤(a | x) :=

8
>>>><

>>>>:

0 if a(a)< F(x�1 | a)
a(a)�F(x�1 | a)

F(x | a)�F(x�1 | a) if F(x�1 | a) a(a) F(x | a)

1 if F(x | a)< a(a),

(3.2)

13



D⇤(1 | x) = 1, and D⇤(0 | x) = lima#0 D⇤(a | x). Let a 2 (q0,q1) be fixed. It follows from the

construction of D⇤, that EaD⇤(a | X) = EaD(a | X).

The next proposition shows that, using the monotone estimator D⇤, one can construct another

(non-random) monotone estimator q ⇤
n , say, with risk less than or equal to the risk of the qn.

Proposition 2. Let D⇤(a | x) be the monotone estimator constructed in (3.2).Define

q ⇤
n (x) :=

Z 1

0
adD⇤(a | x). (3.3)

Then the monotone non-random estimator q ⇤
n (x) dominates D⇤(a | x), which itself dominates the

initial estimator D(a | x), i.e.,

R(q ,q ⇤
n ) R(q ,D⇤) R(q ,D). (3.4)

Proof. The proposition follows from the theorem in [14]. It suffices to verify that BT distribution

satisfies all assumptions of the theorem. In particular, it has a MLR as it was shown in Proposition 1.

Therefore, the second inequality in (3.4) follows as in [14]. That is, D⇤ represents a monotone

estimator which dominates the initial estimator represented by D for all q 2 (0,1). It is not difficult

to see that, under the squared error loss function, D⇤ itself is dominated by the non-random monotone

estimator q ⇤
n . Indeed, using Jensen’s inequality, we have

R(q ,q ⇤
n (X)) = E(q �q ⇤

n (X))2

= E
✓

q �
Z 1

0
adD⇤(a | X)

◆2

 E
✓Z 1

0
(q �a)2 dD⇤(a | X)

◆

= R(q ,D⇤(a | X)).
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CHAPTER IV

MONTE CARLO SIMULATION

It is our interest to construct quality estimators for Q because this will allow us to take

measures addressing an epidemic when necessary. In this chapter we present the results obtained

from a Monte Carlo experiment using R software and interpret them as an epidemic size observation.

Algorithms for the simulations are provided in this chapter and the code constructed in R software

is given in its entirety in Appendix A. For simulation purposes, we use the following setting.

4.1 Numerical Study

Let X be a discrete random variable following BT distribution with a Uni(0.5,0.8) prior G

for q and let r = 3. Then, using (2.2), the Bayes estimator qG is given by

qG(x) =

Z 0.8

0.5
(q x+1�3e�xq )dq

Z 0.8

0.5
(q x�3e�xq )dq

. (4.1)

Also, calculating the maximum likelihood (ML) estimator qML for the BT parameter q we have

ln p(x | q) = ln
�
cr(x)q x�re�qx�

= lncr(x)+(x� r) lnq �qx.

Taking the derivative with respect to q ,

∂
∂q

ln p(x|q) = x� r
q

� x.
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Setting it equal to zero we have,

x� r
q

� x = 0 =) x� r
q

= x

=) x� r
x

= q̂

Thus the ML estimator for q is given by

qML(x) =
x� r

x
. (4.2)

ALGORITHM 1: Bayes Estimator qn, ML Estimator qML, and corresponding Risks
/* We replace • with 100 to obtain a numerical approximation. */

1 Generate X=r, r+1, ..., 100 /* Vector X of current outbreak size */
2 for x in r:100 do
3 Compute cr(x) = rxx�r�1

(x�r)! /* BT cr(x)�coefficient */

4 Compute qG(x) =
R b

a q x+1�re�xq dq
R b

a q x�re�xq dq
/* Bayes estimator qG */

5 Compute qMLE(x) = x�r
x /* Maximum Likelihood estimator qML */

6 end
7 Calculate minimum Bayes risk r(G,qG) /* Using (2.4) */
8 Calculate Bayes risk r(G,qML) /* Using (2.4) */
9 Calculate Regret risk R(qML) /* Using (2.5) */

Using R and the framework from Algorithm 1 to compute the Bayes risk of (4.1) and (4.2)

correspondingly we obtain,

r(G,qG) =
1

0.3

•

Â
x=3

cr(x)
Z 0.8

0.5
(qG(x)�q)2q x�3e�xq dq ⇡ 0.0069

and

r(G,qML) =
1

0.3

•

Â
x=3

cr(x)
Z 0.8

0.5
(qML(x)�q)2q x�3e�xq dq ⇡ 0.1003.

Thus, by (2.5), for the ML estimator qML, the regret risk R(qML)⇡ 0.0935.

Now consider a sequence of past epidemics for which we have documented the epidemic size

but the reproduction number of each instance remains unknown i.e., the EB setting. We simulate the
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data by following the framework in Algorithm 2. Considering that the current outbreak size is BT, we

will take xmax = 20 as the maximum current outbreak size. Otherwise the epidemic is underway of

becoming a pandemic in which case the model is no longer fit. As will be demonstrated in Table 4.1,

the models better fit the data as more past epidemics feed into it, i.e., the estimators’ risk decreases

i.e., as n increases. However the models still provide valuable insight on the reproduction parameter

especially when few past epidemics have been observed. We considered n = 20,40,60,80,100

number past observations per data set and m = 10 data sets at a time. Also, in order to simulate the

data, we use Uni(a = 0.5,b = 0.8) as prior G so that each randomly generated parameter value qi

generates a corresponding past epidemic outbreak size Xi. The parameter values qi that the r.v. Qi

assumes remain irrelevant since in actuality these remain unobserved. For the EB estimator qn and

the monotonized EB estimator q ⇤
n we only work with the the epidemic size Xi generated in the data

simulation.

ALGORITHM 2: Data Simulation
1 for j in 1:m do
2 for i in 1:n do
3 Draw random q from prior G�prior
4 Generate Qn⇥m /* Matrix of parameter values q ( j)

i */

5 Generate Xn⇥m /* Matrix of past data X = (X ( j)
i ) parametrized by Qn⇥m using BT pmf */

6 Compute cr(X
( j)
i ) =

rX
( j)X( j)

i �r�1
i

(X( j)
i �r)!

/* BT cr(x)�coefficient for X */

7 end
8 end

Algorithm 3 shows a construction for qn following [9]. The EB estimator (2.7) is a ratio

of the functions (2.6) and is bounded from above by 1. In terms of epidemics, qn(x) is a weighted

average of the instances a past epidemic size was identical to the current total outbreak size x, while

the function yn(x) is a weighted average of the instances in which a past epidemic size was greater

than x. The EB estimator, however, exhibited jumpiness behavior in all trial runs (see Fig. 4.1).

As previously stated, due to the MLR property of BT distribution, monotonicity of the parameter

estimator is desired.

17



ALGORITHM 3: Empirical Bayes Estimator qn
1 x=r
2 while x<=xmax do
3 for j in 1:m do
4 for i in 1:n do
5 Call indicator function I( j)

i (x) = 1(X ( j)
i = x) /* Matrix indicating instances when */

/* past outbreak size matched current outbreak size */

6 if (X ( j)
i � x)> 0 then

7 Calculate c1(X
( j)
i � x)

8 else
9 Set c1(X

( j)
i � x) = 0 /* Compute BT coefficient c1(X

( j)
i � x); r = 1 */

10 end
11 end
12 end

13 Compute ratio c1(X
( j)
i �x)

cr(X
( j)
i )

/* Used later to define yn; it is component- */

/* -wise subtraction creating an n⇥m matrix */
14 j=1
15 while j<=m do

16 Compute q( j)
n (x) = 1

n Ân
i=1

I( j)
i (x)
cr(x)

/* Vector of qn(x) values for jth data set */

17 Compute y( j)
n (x) = 1

n Ân
i=1

c1(X
( j)
i �x)

cr(X
( j)
i )

/* Vector of yn(x) values for jth data set; */

18 Compute q ( j)
n (x) = min

⇢
y( j)

n (x)
q( j)

n (x)
,1
�

/* EB estimator qn(x) for jth data set; */

19 j=j+1 /* Update of data set j */

20 end
21 x=x+1 /* Update of current outbreak size x */

22 end

Figure 4.1: Empirical Bayes estimator for one simulation with n = 60.
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We monotonized the EB estimator according to [14] (see Algorithm 4). The interval (0,1) was

partitioned into a grid of na = 100 equally spaced sub-intervals. The value ai represents a point

within ith�partition of the interval and is used to construct a randomized estimator D(a | x) for

q ⇤
n . We then use D for the construction of a , see (3.1). Next, we create a cdf F(x | q) for the BT

distribution and use this to construct a cdf D⇤(a | x), see (3.2). Lastly we construct a non-randomized

monotone estimator q ⇤
n , see (3.3) for q .

The estimators qn, q ⇤
n and qML are assessed through their regret risks (see Appendix A). For

each of the estimators, qn and q ⇤
n , 100 simulations were generated. We average the regret risk for

the 100 data sets of the EB estimator qn;

R(qn) =
1

100

100

Â
k=1

R(q ( j)
n ),

where j = 1,2, . . . ,100. Similarly, we average the regret risk for the monotonized EB estimator q ⇤
n

R(q ⇤
n ). The numerical results are reported in Table 4.1.

4.2 Concluding Remarks

In this paper we studied the estimation problem for the reproduction parameter q of the BT

distribution. A good quality of this model is its simplicity; the only information needed is the total

outbreak size of past similar epidemics; with this data, under GW assumptions, we can produce

estimators for the disease reproduction number q and address the the current epidemic outbreak if

necessary.

Fig. 4.2 shows one example trial comparison between qn and q ⇤
n . The behavior is accordingly

to that of an estimator whose distribution has MLR property. In Fig. 4.3, we display one trial run of

all three Bayesian estimators. For further study, perhaps we could focus more attention to the seeing
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Figure 4.2: EB and Monotonized EB comparison for one simulation with n = 40.

Figure 4.3: Bayesian estimates based on one simulation for n = 100.

if we can find an interval containing ideal X�values for which the model is best. For example, in

Fig. 4.3 we see that for x = 4 to about x = 14, our estimator q ⇤
n is closest to the Bayes estimator qG;

thus risk is minimal throughout these points.

We constructed the ML estimator qML, an EB estimator qn and a monotonized version q ⇤
n

for qn. The results demonstrate that not only does the monotonized EB estimator q ⇤
n behave as

desired, regardless of the number of past observed epidemics, but it also is a better estimator than

the original EB estimator qn since the risk associated is smaller than that of qn and qML.
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ALGORITHM 4: Monotonized EB Estimator q ⇤
n

1 for j in 1:m do
2 for i in 1:na do
3 for x in 1:xmax do
4 if q ( j)

n (x)< ai then
5 a( j)(ai) = a( j)(ai)+Âna

i=1 pr(x | ai) /* Construct D and calculate a from (3.1) */
6 end
7 end
8 end
9 end

10 Initiate Fxmax⇥na(x | ai) as zero matrix /* Construct BT cdf */
11 for i in 1:na do
12 F(r | ai) = pr(r | ai)
13 for x in r+1:xmax do
14 F(x | ai) = F(x�1 | ai)+ pr(x | ai))
15 end
16 end
17 j=1 /* Construct D⇤ from (3.2) */
18 while j<=m do
19 for i in 1:na do
20 if a( j)(ai)> F(r | ai)) then

/* case: x = r */

21 D⇤( j)(ai | r) = 1
22 else
23 D⇤( j)(ai | r) = a( j)(ai)

F(r | ai)

24 end
/* case: x > r */

25 for x in r+1:xmax do
26 if F(x�1 | ai)> a( j)(ai) then
27 D⇤( j)(ai | x) = 0
28 else
29 if F(x | ai)< a( j)(ai) then
30 D⇤( j)(ai | x) = 1
31 else
32 D⇤( j)(ai | x) = a( j)(ai)�F(x�1 | ai)

F(x | ai)�F(x�1 | ai)

33 end
34 end
35 end
36 end
37 x=r /* Construct q ⇤

n from (3.3) */
38 while x<=xmax do
39 for i in 1:na do
40 taili(x) = 1�D⇤( j)(ai | x)
41 q ⇤( j)

n (x) = 1
na Âna

i=1 tail(x)
42 end
43 x=x+1 /* Update of current outbreak size x */

44 end
45 j=j+1 /* Update of data set j */

46 end
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Table 4.1: Estimates for the regret risks of qn,q ⇤
n and qML

n R(qML) R(qn) R(q ⇤
n )

20 0.0935 0.0969 0.0557
40 0.0935 0.0746 0.0402
60 0.0935 0.0632 0.0330
80 0.0935 0.0581 0.0311
100 0.0935 0.0500 0.0270

All standard errors are less than 10�4 and r = 3.
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APPENDIX A

library(VGAM)

## Loading required package: stats4

## Loading required package: splines

#---A FEW PREDEFINED ITEMS----------------------------------------------------------------
options(max.print = 10000)

a=.5 #Lower bound on G-prior
b=.8 #Upper bound on G-prior
r=3 #Initial outbreak size (OB)
m=10 #no. DataSets
n=100 #no. Past Observations/set
xmax=21 #max no. of current OB size
kmax=xmax-r #no. distinct CurrObservations
ra=mat.or.vec(n,m) #rand. theta values from G-prior
dg=mat.or.vec(kmax,1) #Bayes estimator for X
dmle=mat.or.vec(kmax,1) #ML estimator for X
Xpast=mat.or.vec(n,m) #past observed total OB size (tOBs)
cXpast=mat.or.vec(n,m) #Borel-Tanner (BT) crx-coefficient for past tOBs
cX=mat.or.vec(kmax,1) #BT crx-coefficient for X
EqI=mat.or.vec(n,m) #Numerical Indicator function for past tOBs = curr tOBs
q=mat.or.vec(kmax,m) #q-values using Liang�s procedure
c1Xdiff=mat.or.vec(n,m) #BT crx-coefficient for Xdiff>0
psi=mat.or.vec(kmax,m) #psi-values using Liang�s procedure
dn=mat.or.vec(kmax,m) #Empirical Bayes estimator (EBE) using Liang�s procedure
naG=100 #no. partitions in aGrid
aG=seq(from = 0,to=naG, length=(naG+2))/naG #partitioned grid a=[0,1]
aG=aG[-1] #update partitioned grid to (0,1]
aG=aG[-101] #update partitioned grid to (0,1)
FBT=mat.or.vec(kmax,naG) #BT cummulative distribution function
alpha=mat.or.vec(naG,m) #alpha funtion used in monotonization procedure
Dstar=mat.or.vec(kmax,naG) #D*(ai,x) estimator used in monotonization procedure
taiil=mat.or.vec(kmax,naG) #ai x D*(ai,x) equivalent used in monotonization procedure
dns=mat.or.vec(kmax,m) #monotonized EBE construction using Houwalingen�s procedure
Ldg=mat.or.vec(kmax,1) #integral values for Bayes estimator under loss function (L)
Ldmle=mat.or.vec(kmax,1) #integral values for Max Likelihood estimator (MLE) under L
Ldn=mat.or.vec(kmax,m) #integral values for EBE under L
Ldns=mat.or.vec(kmax,m) #integral values for monotonized EB estimator under L
rdn=mat.or.vec(1,m) #Bayes risk for EB estimator
rdns=mat.or.vec(1,m) #Bayes risk for monotonized EB estimator
umax=10 #no. of runs
uavgRdn=mat.or.vec(1,umax) #avg regret risks for EBE
uavgRdns=mat.or.vec(1,umax) #avg regret risks for monotonized EBE
#seeds<-c(2,12,16,17,23,27,59,65,72,75) #seeds used for n=20
#seeds<-c(50,51,52,53,55,63,64,65,66,68) #seeds used for n=40
#seeds<-c(50,51,52,53,55,58,61,63,64,65) #seeds used for n=60,80
#seeds<-c(50,51,52,53,55,58,59,61,63,64,77) #seeds used for n=100
#-----------------------------------------------------------------------------------------
# u=1 #initiatate 1st run
# while (u <=10) { #limit for the no. of repetitions
# set.seed(seeds[u]) #these seeds were used in my study
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN RUN
#################################### DATA SIMULATION #####################################

X=matrix(r:(xmax-1), kmax, 1, FALSE) #define X values, current tOBs

1
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#seeds<-c(2,12,16,17,23,27,59,65,72,75) #seeds used for n=20
#seeds<-c(50,51,52,53,55,63,64,65,66,68) #seeds used for n=40
#seeds<-c(50,51,52,53,55,58,61,63,64,65) #seeds used for n=60,80
#seeds<-c(50,51,52,53,55,58,59,61,63,64,77) #seeds used for n=100
#-----------------------------------------------------------------------------------------
# u=1 #initiatate 1st run
# while (u <=10) { #limit for the no. of repetitions
# set.seed(seeds[u]) #these seeds were used in my study
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN RUN
#################################### DATA SIMULATION #####################################

X=matrix(r:(xmax-1), kmax, 1, FALSE) #define X values, current tOBs
for(k in 1:kmax){

cX[k]= r*X[k]^(X[k]-r-1)/factorial(X[k]-r) #BT crx-coefficient for past tOBs
dg[k]=integrate(function(theta){theta^(X[k]+1-r)* #compute Bayes Estimator, theta_G

exp(-X[k]*theta)},lower = a, upper = b)$val/integrate(function(theta)

{theta^(X[k]-r)*exp(-X[k]*theta)},lower = a, upper = b)$val

dmle[k] = (X[k]-r)/X[k] #compute MLE Estimator, theta_{MLE}
}

for(j in 1:m){

for(i in 1:n){

raTemp=runif(1,min=a, max=b) #draws random theta from G: Uni(a,b)
ra[i,j]=raTemp #matrix of theta values
Xpast[i,j]=rbort(1, Qsize = r, a = raTemp) #Xpast: observed past total OB sizes
cXpast[i,j]= r*Xpast[i,j]^

(Xpast[i,j]-r-1)/factorial(Xpast[i,j]-r) #BT crx-coefficient for Xpast
}

}

############################### EMPIRICAL BAYES ESTIMATOR ################################

k=1

while(k<=kmax){

for(j in 1:m){

for(i in 1:n){

EqI[i,j]=as.numeric(I(Xpast[i,j]==X[k])) #Indicator fn: used for q numerator
if((Xpast[i,j]-X[k])>0) { #verifies psi condition is met

c1Xdiff[i,j]= ((Xpast[i,j]-X[k])^ #psi numeratro: BT crx-coeff for diffX
((Xpast[i,j]-X[k])-1-1))/factorial((Xpast[i,j]-X[k])-1)} #, r=1

else {c1Xdiff[i,j]=0} #psi cond. not met->assigns zero...
} #...to psi numerator

}

cXratio= c1Xdiff/cXpast #further used to define psi
j=1

while(j<=m){

q[k,j]=sum(EqI[,j])/(n*cX[k]) #compute q values
psi[k,j]=sum(cXratio[,j])/n #compute psi values
dn[k,j]=min(psi[k,j]/q[k,j],1) #define EBE theta_n
j=j+1

}

k=k+1

}

################################### MONOTONIZED EBE ######################################

for (j in 1:m) {

for (i in 1:naG) {

for (k in 1:kmax) {

2
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if (dn[k,j]<=aG[i]) { #verifies EBE<=aGrid val
alpha[i,j]=alpha[i,j]+sum(dbort(X[k],r,aG[i])) #computes alpha as in Houwalingen

}else{alpha[i,j]=alpha[i,j]}

}

}

}

for (i in 1:naG) {

FBT[1,i]=dbort(X[1],r,aG[i]) #BT cdf for case x=r
for (k in 2:kmax) {

FBT[k,i]=(FBT[k-1,i]+dbort(X[k],r,aG[i])) #BT cdf for case x>r
}

}

j=1

while (j<=m) { #define D^*(a;x)
for (i in 1:naG) {

if (alpha[i,j]> FBT[1,i]) #case x=r
{Dstar[1,i]=1}

else {Dstar[1,i]=alpha[i,j]/FBT[1,i]}

for (k in 2:kmax) { #case x>r
if (FBT[k-1,i]>alpha[i,j])

{Dstar[k,i]=0}

else if (FBT[k,i]<alpha[i,j])

{Dstar[k,i]=1}

else {Dstar[k,i]=(alpha[i,j]-FBT[k-1,i])/
(FBT[k,i]-FBT[k-1,i])}

}

}

k=1

while (k<=kmax) {

for (i in 1:naG){

taiil[k,i]=1-Dstar[k,i]

dns[k,j]=sum(taiil[k,])/naG #define monotonized EBE, theta_n^*
}

k=k+1

}

j=j+1

}

#################### RISKS UNDER SQUARED ERROR LOSS FUNCTION: L ##########################

for (k in 1:kmax) {

Ldg[k]=integrate(function(theta) {(dg[k]-theta)^2* #L values: Bayes estimator
theta^(X[k]-r)*exp(-X[k]*theta)}, lower = a, upper = b)$val*cX[k]/(b-a)

Ldmle[k]=integrate(function(theta) {(dmle[k]-theta)^2* #L values: MLE
theta^(X[k]-r)*exp(-X[k]*theta)},lower = a, upper = b)$val*cX[k]/(b-a)

for (j in 1:m) {

Ldn[k,j]= integrate(function(theta){(dn[k,j]-theta)^2* #L values: EBE
theta^(X[k]-r)*exp(-X[k]*theta)},lower=a, upper=b)$val*cX[k]/(b-a)

Ldns[k,j]= integrate(function(theta){(dns[k,j]-theta)^2* #L values: monotonized EBE
theta^(X[k]-r)*exp(-X[k]*theta)},lower=a, upper=b)$val*cX[k]/(b-a)

rdn[j]=sum(Ldn[,j]) #Bayes risk for EBE
rdns[j]=sum(Ldns[,j]) #Bayes risk for monotone EBE

}

}

rdg=sum(Ldg) #min Bayes risk
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rdmle=sum(Ldmle) #Bayes risk for MLE
Rdmle=rdmle-rdg #regret risk for MLE
Rdn=rdn-rdg #regret risk for EBE
Rdns=rdns-rdg #regret risk for monotonized EBE
avgRdn=1/m*sum(Rdn) #avg EBE regret risk for m sets
avgRdns=1/m*sum(Rdns) #avg mEBE regret risk for m sets
Vdn=sum((rdn-avgRdn)^2)/(m-1) #variance for EBE
Vdns=sum((rdns-avgRdns)^2)/(m-1) #variance for monotonized EBE
SDdn=sqrt(Vdn) #standard deviation for EBE
SDdns=sqrt(Vdns) #standard deviation for monotonized EBE
SEdn=Vdn/sqrt(n) #standard error for EBE
SEdns=Vdns/sqrt(n) #standard error for monotonized EBE
# Rresults=rbind(Rdn,Rdns) #combines Rdn, rdns results; 2 by 10 mat.
# row.names(Rresults)<-c("Rdn","Rdns") #adds corresponding names to the rows
# print(Rresults) #prints regret risk matrix for run u
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END RUN
# uavgRdn[1,u]=avgRdn #avg EBE regret risk for run u
# uavgRdns[1,u]=avgRdns #avg mEBE regret risk for run u
# u=u+1 #update run u and repeat
# }
# print(paste("Rdmle = ",Rdmle)) #outputs label and value of MLE regret risk
# print(uavgRdn) #outputs corresponding regret risk avg for...
# print(uavgRdns) #...each run as a 1 by u vector
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APPENDIX B

Table 2.1: References on notation
Notation Description

Q unknown rv parametrizing X ; the reproduction parameter
q a realization of the reproduction parameter Q
q̂ refers to any estimator
qML ML estimator for BT distribution
qn Empirical Bayes estimator for BT based on Liang’s [9] procedure
q ⇤

n Monotonized EB estimator for BT based on Houwalingen’s [14] procedure
X the set of n past observations X1,X2, . . . ,Xn
BT Borel–Tanner
cdf cummulative distribution function
EB Empirical Bayes
GW Galton–Watson also known as Bienaymé–Galton–Watson
iid independent identically distributed
ML maximum likelihood
MLR monotone likelihood ratio
pmf probability mass function
Poi(q) Poisson distribution with parameter (q)
rv random variable
r(G, q̂) Bayes risk for estimator q̂ under G�prior
R(q̂) Regret risk for estimator q̂
R(q̂) Average regret risk for estimator q̂
Uni(a,b) Uniform distribution with parameter values (a,b)
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