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ABSTRACT

Khan, Osama A., Parametric Classification In Domains O f Characters, Numerals, 

Punctuation, Typefaces And Image Qualities. Master o f  Science (CS), December, 2004, 

165pp., 10 tables, 33 illustrations, references, 83 titles.

This thesis contributes to the Optical Font Recognition problem (OFR), by developing a 

classifier system to differentiate ten typefaces using a single English character ‘e’. First, 

features which need to be used in the classifier system are carefully selected after a 

thorough typographical study o f  global font features and previous related experiments. 

These features have been modeled by multivariate normal laws in order to use parameter 

estimation in learning. Then, the classifier system is built up on six independent schemes, 

each performing typeface classification using a different method. The results have shown 

a remarkable performance in the field o f  font recognition. Finally, the classifiers have 

been implemented on Lowercase characters, Uppercase characters, Digits, Punctuation 

and also on Degraded Images.
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CHAPTER 1

INTRODUCTION

It is said that writing was developed to satisfy a very strong desire, i.e. to communicate 

and to broadcast information in an accessible and storable form. The development o f  

various printing technologies has increased the volume o f documents enormously, and 

hence the need for a better organization o f  company documentation.

1.1 The document domain

The perception o f  document has advanced over recent years to incorporate all 

characteristics o f  written communication present in paper and electronic forms. The 

revolution in the information broadcasting domain has defined new necessities not only 

for reading remote documents, but also for reprocessing information they contain. These 

requirements presume strong mechanisms for information storage and retrieval allowing 

a fast and precise access to this information.

Nowadays, the majority o f  documents are saved, circulated, and presented on paper form, 

which constitutes the primary medium for books, manuals, newspapers, magazines, and 

business correspondence. The diminishing cost and escalating performance o f  hardware

1
All the figures in this chapter were taken from [Zra95] with the permission of the author
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will, however, make the storage and delivery o f  documents by electronic means the 

predominate medium [WCW82].

Document recognition systems are required to incorporate current paper documents and 

such systems could help users in encoding printed documents for computer processing. 

Although the recovery o f  stored documents in electronic forms could be easily executed, 

reading printed documents still poses serious problems.

1.1.1 Document structures

A document may appear in various forms [Jol89, Qui89] but one is especially interested 

in its robust representations, which can be stored on devices or broadcasted through 

communication networks. Two representations o f  particular interest which are commonly 

addressed are the ‘logical structure’ and the ‘physical structure’ [Fur89, Hu94]:

•  Logical structure: this identifies the document structure and content. It symbolizes 

the author’s point o f  view o f the document. For example, a book can be viewed as 

a hierarchy o f  logical entities (e.g. chapter, section, subsection, paragraph, etc.).

•  Physical structure: this depicts the formatted form o f  the document that is to be 

transmitted to an output device. It characterizes the typographer’s or typesetter’s 

point o f  view o f the document.

While the logical structure takes the document’s revisable form, the physical structure 

deals with its rendable form.
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1.1.2 Document manipulations

During its life, a document goes through a cycle o f several steps (see Figure 1.1). From 

its logical view to its paper form, the document navigates through the classical stages o f  

document production:

• The document is envisaged by its creator (author) and comes into life through 

publishing services. At this stage, the document is viewed by its logical structure;

•  After formatting, the document is represented by its physical structure;

•  The physical document is finally delivered, i.e. printed on paper or exhibited on 

screen;

•  A  reader can now capture the document.

The reverse path that allows converting the document from its paper form to the 

equivalent logical structure, is executed by ‘Document Recognition’ systems:

•  The document is first scanned to generate images;

•  The images are processed to produce the physical document using a document 

analysis process;

•  The physical document is then transformed into its logical correspondent through 

a document understanding process.
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-9>V.

Printed
Document J

(paper)

Figure 1.1. Possible manipulations applicable on documents.

1.2 Document structure analysis

‘Document Structure Analysis’ systems (DSAs) aim to transform into a computer- 

reusable form data presented on paper and intended for human understanding. The 

analysis includes the examination o f  the physical document which is stored in binary 

images to acquire the logical structure that portrays its content. During the last two 

decades, many prototype systems and business tools have undertaken the goal o f  DSA  

[WCW82, WS88, Den90, TA90, TSYC91, SLG+92, Che93, Hu94, TCB94, TCB95].

A  DSA system needs to interact with diverse document layouts. Two techniques are 

fundamental to accomplish that goal: ‘document analysis’ and ‘document understanding’ 

[TA90, TSYC91, Doe93], which should be both implemented by a DSA system:

•  ‘Document analysis’ is employed to extract the document physical structure. It 

breaks down the document image into several blocks, indicating coherent
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components, such as text lines, headlines, graphics, etc. The extraction may be 

done by taking into account the document generic layout (e.g. a scientific journal 

layout) [Azo95].

•  ‘Document understanding’ is used to extract logical relationships between the 

extracted blocks. Normally, it maps the physical structure into a logical structure 

taking into consideration the logical relationships between the objects in a 

particular document.

The two techniques require the detection o f  the characters that appear in the document 

and their typographical features (font, margins, line spacing, etc.). Optical Character 

Recognition (OCR) and Optical Font Recognition (OFR) are the two significant tasks in 

DSA systems.

While OCR has been dealt with both commercially and academically for long, the OFR 

problem seems having been comparatively ignored. This thesis addresses OFR and 

presents diverse classification methods implemented to satisfy its requirements.

1.3 Overview o f  results

To deal with the area o f  font recognition, we built up six classifiers, each based on a 

different scheme, and then implemented them successfully. The results showed a 

remarkable difference in performance o f  the six classifiers. Starting from Classifier 1, 

where we used the basic method to address the font recognition problem, we improved
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the scheme every time with the change o f  classifier, until we finished building up the 

Classifier 6. From the results discussed in detail in chapter 6, it can be observed that 

while getting an average error rate o f  approximately 70% on the first two classifiers, we 

were able to reduce it down to approximately 7%, i.e. 10 times reduction in the error rate. 

The results have proved that the more the features are taken into consideration, the 

greater the classification performance is. Also, dealing with binary features, nearly 

optimal performance can be achieved. The future work includes tweaking the Classifier 6 

architecture in order to boost up the performance level and achieve the best performance 

ever observed.

1.4 Organization o f  the thesis

The thesis is organized in six chapters and two appendices. It can be viewed as composed 

o f four parts each addressing a particular issue. The first part (Chapters 2 and 3) 

summarize the OCR field, which has dominated scientific and commercial efforts for a 

long time, concentrates on the OFR problem, and sets the structure o f  the classifier 

system.

The second part (Chapter 4) outlines the field o f  Typeface Discrimination, especially 

from the font recognition point o f  view. It begins with an explanation o f vital 

typographical concepts and then presents some elements allowing discriminating between 

typefaces and fonts. A  survey o f  the typeface classification problem is also provided.
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The third part (Chapter 5) presents the ‘Bayesian Decision Theory’. We begin by 

considering the ideal case in which the probability structure underlying the categories is 

known perfectly. While this sort o f  situation rarely occurs in practice, it permits us to 

determine the optimal (Bayes) classifier against which we can compare all other 

classifiers. Moreover, in some problems it enables us to predict the error we will get 

when we generalize to novel patterns.

In the last part (Chapter 6), a first assessment o f  the system performances on a set o f  10 

fonts is then presented. The evaluation has been applied on the font models in order to 

learn the relevance o f  features in font discrimination and to estimate the theoretical 

performance o f  the classifiers. Several classification trials have also been designed in 

order to assess the approach practically.

Two appendices are presented at the end o f  the thesis. Appendix A  presents some 

complements on typeface products and some related statistics. Appendix B shows 

samples o f  texts written with the measured fonts.
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CHAPTER 2

OPTICAL CHARACTER RECOGNITION

Optical Character Recognition (OCR) concentrates on the retrieval o f  characters from 

document images. It has been into existence for more than forty years. The first products 

came for commercial use in the form o f  highly specialized machines. With the production 

o f  personal computers, OCR became more accepted, leading to a considerable 

enhancement in performance and a severe decrease in costs. The expensive hardware 

solutions have been substituted by more economical software tools.

Several methods have been anticipated to distinguish printed characters. Some o f them 

model characters by their topological structure, others deal with character templates 

directly. The current OCR technology performs not only fundamental character 

recognition, but also segmentation and grammatical substantiation.

OCR systems can be categorized into three classes according to the font handling 

capabilities. While some o f  them disregard the text font, others involve its ‘a priori’ 

knowledge. The assessment o f  OCR solutions can be based on diverse criteria.

8
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After a definition o f  OCR in Section 2.1, the main techniques used to recognize 

characters are presented in Section 2.2. Section 2.4 tries to make a classification o f OCR 

systems. Section 2.4 describes a conventional architecture o f  OCR systems. Section 2.5 

fixes the framework o f the OCR evaluation and emphasizes the limits o f  existing 

solutions.

2.1 Definition

Pattern recognition involves the assignment o f  a ‘pattern’ to one o f  ‘n classes’. The 

patterns and classes are generally symbolized by vectors o f  measured features. The 

classes are stored in a collection o f  pre-classified vectors. In the OCR context, a class 

could signify one letter o f  the alphabet.

Let C = {ci, C 2 , . . . ,  Cn}be the character set. The aim o f any OCR system is to allocate a 

character Cj to a candidate pattern. The system extracts a feature vector from the pattern 

and then passes through the set C in order to find a character c; that offers the best 

‘matching’ with the pattern vector. The set C is often produced from a training set o f  

samples o f  each character.

Complete surveys o f  OCR related problems can be found in [Nag82, Pav93, Bai93, 

RKN93, RKN94], Scanning, segmentation, normalization, classification as well as other 

OCR related issues are extensively presented in these papers.
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2.2 OCR methods

The methods used to carry out OCR comprise o f  adaptations o f  pattern recognition and 

classical signal processing technologies. The next subsections outline the most common 

means o f  character recognition.

2.2.1 Template matching methods

Template matching was one o f  the foremost methods used by the OCR devices. A  

collection o f  character templates is preserved and used to identify patterns. The 

identification consists o f  finding the ‘closest’ matching template. Closest matching is 

accomplished by the computation o f  the minimum distance between the pattern and each 

class template. The distance is defined as the symmetrical difference between two 

templates. Other distances have also been described such as the ‘Stochastic distances’ 

[Ing89].

Many alternatives o f  the template matching method have been used. They are simple to 

design but remain heavily susceptible to the image quality (skew, noise, etc.). They also 

require templates for each font and presume the ‘a priori’ knowledge o f  the font used in 

the document.

A  specific template matching method has been effectively used by Ingold [Ing89], He 

came out with a special definition o f  templates, which considers the patter distortions. In
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such a process, each character is modeled by a skeleton (obligatory pixels) and an 

envelope (optional pixels).

2.2.2 Structural methods

Structural methods are based on the topological structure o f the character. They represent 

characters by structural features and their relationships. Features state the topological 

properties o f  the character such as loops, arcs, etc. A relationship could be, for example, 

the relative position o f  a feature related to another one.

Structural methods can be grouped in three categories:

•  ‘String matching methods’ where characters are represented by feature strings. 

The comparison between the pattern and a class consists o f  computing the 

correlation between the corresponding strings by a distance metric. Many 

methods based on string matching techniques have been presented in [BB92].

•  ‘Syntactic methods’ where each character is characterized by a sequence o f  

features (phrase). The features compile the vocabulary o f  a given language. The 

recognition o f  a given pattern consists o f  deciding whether the phrase (describing 

the pattern) could be generated by the language grammar. Syntactic methods have 

been used by Ramesh [Ram89] and Baptista [BK88] to attend to the OCR 

problem.

• ‘Graph-based methods’ consist o f  a graph construction where nodes include 

features. The relationship between the features is represented by arcs. The
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recognition consists o f  toning the constructed graph with other graphs 

representing the reference characters.

Several graph-based methods have been proposed. That o f Pavlidis [Pav86], called ‘Line 

Adjacency Graph’, thins the character and concurrently labels the generated graph. Those 

o f  Baird, Kahan and Lebourgeois, which attained good results, are based on similar 

principles [Bai86, KPB87, Leb91].

2.2.3 Statistical methods

In statistical pattern recognition, which is based on the statistical decision theory, each 

pattern is measured as a single entity and is characterized by a finite dimensional vector 

o f pattern features. Bayesian, stochastic, nearest-neighbor classifications and neural 

networks are four fundamental statistical methods:

•  Bayesian classification: the Bayesian decision theory is based on the hypothesis 

that the decision is stated in probabilistic terms and that all o f  the relevant 

probability values are known beforehand [DH73]. Let C = {ci, c2,.. .,  cn} be the 

set o f  characters. The classification process consists o f  connecting a character c, to 

a pattern defined by a feature vector ‘x ’, so that the conditional probability o f  c; 

given ‘x ’, P ( C j  | x) is maximal. P ( c j  | x) is computed from the Bayes rule,

P ( c , | x ) _ _ p m )

where,

p (x) = E p ( x |Ci)P(Ci)
/=1
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P(cO expresses the ‘a priori probability’ o f  the character Cj and p(x | Cj) represents 

the ‘conditional density function’ o f  ‘x ’, i.e. the probability o f  obtaining ‘x ’ when 

its class is Cj. The discriminant function can have several forms, for e.g.:

Di(x) = p(x | Ci)

In the OCR context, the described method has been used by Baird and Campigli 

to achieve multi-font character recognition [BF91, CCP91].

• Nearest neighbor classification: as compared to Bayesian methods, nearest 

neighbor classification methods, denoted k-NN, are non-parametric since they 

utilize all o f  the class training samples as prototypes for the class. These methods 

have been the focus o f  decades o f  research [Das88]. The 1-NN classification o f an 

unknown vector ‘x ’ is basically the class o f  the nearest prototype. The 

discriminant function has the form [BCG+93],

D,(x) = - min d 2( x , x l(,))
1< 7<A/, J

where xy(,) designates the feature vector from j th sample o f  class ‘i ’, and ‘M f the 

number o f training samples o f  class ‘i ’.

When k > 1, voting between the ‘k’ nearest neighbors is employed and the 

majority class wins. It is valuable, when the single nearest neighbor may belong 

to the wrong class but the majority are not.

•  Stochastic classification: a handwritten character can be modeled by a stochastic 

process by replicating the progression o f a pen writing the character. This process 

is time dependent. For printed characters, the temporal part is lost, but the pen 

movement can be easily imitated by contour tracing.
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Thus, in the stochastic approach, a character is measured as a continuous signal 

discernible in time at different points representing some observation states. In this 

modeling approach, the states are depicted by transition probabilities (from one 

state to another) and by each one (o f the states) observation probability. The 

classification consists o f  locating in the state graph the most likely path analogous 

to the series o f  observed elements within the input string.

Stochastic models have been used by Anigbogu to identify multi-font texts 

[Ani92]. A method based on pseudo two-dimensional hidden Markov models was 

also proposed by Agazzi [AK93]. It merges and optimizes character recognition 

and image normalization.

• Artificial neural network classification: over the last two decades, there have been 

considerable efforts to expand models o f  neural networks. They were devoted to 

unravel knowledge and recognition problems in a sensible time.

Two striking features o f  artificial neural networks are learning and generalization 

from training sets. The power o f  the model exists in the network architectures and 

their capacity to perform autonomous learning.

Several neural network approaches have been projected and applied in the OCR 

context. A neural network for an OCR system that performs well on noisy, 

handwritten characters, was proposed by Le Cun et al. [Cun89]. Avi-Itzhak 

[AIDG95] developed a multi-layered neural network approach to achieve high
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accuracy recognition on multi-size and multi-font characters. He exploited a 

centroid-dithering training process with a low noise sensitivity normalization 

system. Gosselin [Gos91] applied a Boolean neural network to distinguish 

characters and achieved a 99.8% accuracy. D ’Aciemo [DSV91] applied a 

completely connected feed-forward neural network to perform the recognition o f  

multi-font printed characters.

Blue et al. made an exciting comparative study o f classification accuracy o f  four 

statistical and three neural networks classifiers for two image based pattern classification 

problems, namely fingerprint and isolated handprint digits recognition [BCG+93]. The 

classifiers were tested on the NIST (National Institute o f  Standards and Technology) 

databases for learning and classification. For the evaluated datasets, the best accuracy for 

both applications was provided by a probabilistic neural network.

2.3 Taxonomy o f  OCR systems

OCR systems can be classified in three categories according to their capability in font 

handling.

2.3.1 Mono-font OCR systems

Mono-font OCR systems identify characters o f  an ‘a priori’ known font. They have been 

neglected because they need a precise learning for each font, and are susceptible to the
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image quality (noise, skew, etc.). An experimental mono-font OCR package, devised by 

Ingold [Ing89], achieved good recognition rates by means o f  a template matching 

method. Each character class has been modeled by its skeleton and envelope.

2.3.2 Multi-font OCR systems

They permit the recognition o f  characters from several already learned fonts. The 

recognition is usually preceded by a size and weight normalization stage. The 

normalization, which prevails over small deformations, helps OCR systems boost their 

qualitative performance.

‘ExperVision’, which uses template matching techniques, is one o f  the odd commercial 

multi-font systems. It uses templates trained from 30 samples o f  each character extracted 

from different documents [Way93].

2.3.3 Omni-font OCR systems

‘Omni-font’ OCR systems make generalization o f  the font information since they intend 

to distinguish characters o f  any font and size. They use structural methods, which do not 

require learning or at worst a limited learning o f  special characters. Furthermore, they 

need a contextual knowledge to differentiate between indistinct cases. For example, in 

order to distinguish a ‘P ’ from a ‘p’, the character position in the word is required. The
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distinction between ‘O’ and ‘0 ’ or between ‘1’ and ‘1’ also relies on contextual analysis. 

The question arises whether the word’s characters are numerals or alphabetic letters.

Most o f  the available OCR systems claim to be ‘omni-font’. The term ‘omni-font’ used 

commercially as a marketing case is not suitable for current OCR solutions since none o f  

them can recognize the 3000 fonts accessible in the market. The more practical term 

poly-font was used by Baird [BF91] to denote OCR systems recognizing a large number 

o f fonts.

2.4 OCR system architecture

Experimental and commercial OCR systems often use fusions o f  classification and 

analysis methods. They may merge structural methods with statistical ones, e.g. structural 

shape analysis with Bayesian statistical classification.

In practice, they do more than intrinsic isolated character recognition. Figure 2.1 shows 

the structural design o f  a typical OCR system. The document traverses five processes 

before being delivered to the user.

1. ‘Scanning’ constitutes a opening process that transforms the document from its 

paper form to an image form. It is generally included in the OCR software where 

scanning parameters (resolution, thresholds) are put to default values, or explicitly 

provided by users according to the document quality.
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2. ‘Pre-processing’ is applied to the image to clean the character patterns. The 

objective o f  the pre-processing is to organize the image for the segmentation and 

recognition processes. It usually consists o f  applying a succession o f  image 

processing techniques (e.g. noise removal, skew detection and correction, 

character contour smoothing or thinning, etc.).

These techniques can be applied on the whole image or on a single pattern. They 

may therefore be executed before and/or after segmentation and are often 

implicitly applied.

3. ‘Segmentation’ allows the extraction and locality o f  each character in the image. 

Several segmentation schemes that are based on top-down, bottom-up or mixed 

approaches are presented in [Azo95].

It characterizes a crucial problem for OCR since recognition algorithms often 

presume isolated patterns. The segmentation overpowers the OCR performance 

since a segmentation fault leads automatically to several OCR errors. The 

segmentation o f touching characters continues to pose grave problems [LSA89, 

Lu93],

4. ‘Character recognition’ signifies the main process in the system since it allocates 

a character class to the pattern. It uses a library which is often created by learning 

from training sets including models o f  all characters. The character modeling and 

classification approaches rely totally on the OCR method used.
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5. ‘Post-processing’ is used to improve the character recognition, especially to 

correct spelling. It is often based on linguistic dictionaries, n-grams techniques, 

typographical context analysis, etc. [Ani92, Sen94].

Within commercial OCR systems, processes 2 to 5 are often transparent to users and the 

segmentation and classification methods used are often kept secret.
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Figure 2.1. A  general architecture o f  OCR systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

2.5 Performance Evaluation

Many OCR solutions are available on the market and the customer choice may rely on 

several principles. Some useful criteria to evaluate OCR technologies is presented ahead 

and the results o f  evaluation experiments performed by various authors are discussed.

2.5.1 Performance evaluation criteria

Some o f  the criteria have already been presented in [KNRN93], They are grouped in 

three categories according to character recognition accuracy, document analysis facilities 

and economical aspects.

2.5.1.1 Character recognition

While accuracy remains the principal criterion, the rest have to be considered in OCR 

evaluations:

•  Class: is the OCR system mono-font, multi-font or omni-font?

• Accuracy: the established practice in OCR evaluation is recognition accuracy 

determination, i.e. the percentage o f  characters or words correctly recognized. 

Few studies were devoted to debate on the difference among several types o f  

errors. Two factors are o f  significant importance: the ‘rejection rate’ and the 

‘substitution rate’. While the rejection rate might be as high as a few percentage 

point, a zero substitution rate is often necessary. Indeed, for unique applications
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(bar code industry, postal environment) a substitution may have dramatic 

consequences (wrong amount, wrong destination, etc.). Unfortunately, such a 

distinction is rare and is missing in few published evaluations o f  commercial 

systems [Egl94, RKN93, CP93],

•  Learning capabilities: OCR packages are often adjusted to identify a fixed set o f  

characters (e.g. the Latin alphabet or only numerals). Since, for individual needs 

(scientific domains, such as chemistry, physics or particular alphabets), 

documents may include some unusual symbols (e.g. mathematical and chemical 

signs as well as special characters), the OCR system has to offer users with the 

capability to attach new signs to the class library. The addition o f  new classes also 

has to be performed through a user-friendly learning procedure.

•  Image quality: the quality o f  the image used as input for the OCR device depends 

on many factors:

■ Printing device: the printing technology used to produce documents may also 

influence their quality. Documents produced by laser printers have an 

improved quality as compared to those produced by dot-matrix devices;

■ Poor quality documents: photocopying or faxing change the quality o f  

documents and so the corresponding images;

■ Scanning: a scanning device breaks down an input page into pixels and 

generates a bit-mapped image that is a graphical representation o f  the page. 

The image produced is highly dependent on the page quality as well as on the 

scanning conditions (skew, thresholds, resolution, etc.).
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Dirty images add up to a major problem for current OCR technology because 

even small marks can obscure vital parts o f a character or switch a letter into 

another one (e.g. ‘c ’ into an ‘o ’). If a document has been photocopied repetitively, 

some characters may be thinned to the point o f  breaking, or fattened until they 

bleed together. In a skewed image, characters are distorted producing 

classification errors.

•  Multi-lingual documents: managing multi-lingual documents is a regular office task. 

Hence, OCR packages have to be capable o f  recognizing various languages, which 

may be ‘a priori’ known or not.

2.5.1.2 Document analysis

Some applications may need the recovery from the document image o f  more than the 

ASCII characters. The paragraph detection, the detection o f the reading order in multi- 

column documents, the typeface retrieval are also needed to carry out an intelligent 

document recognition. Following are some criteria linked to document analysis:

• Automatic zoning: corresponds to the first step in an OCR process. It allows an 

automatic location o f  the text regions and their reading order. The system locates 

the text columns and identifies a distinct zone for each one, so that the generated 

text will be de-columnized. In addition, the system discovers non-textual regions 

(graphics, images, etc.) in order to exclude them from the character recognition 

process. Furthermore, the delimitation o f some complex textual regions (e.g. 

tables and formulas) poses serious problems [Azo95].
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•  Typographical properties retrieval: much typographical information can be 

recovered from the document image:

■ Page formatting, which includes margins, line spacing, justification mode, 

etc.;

■ Typeface attributes, such as the font family, size and weight;

■ Character coordinates in the image (position, width, height, etc.).

The use o f  typographical information may be very helpful in an interactive 

environment for OCR correction and reviewing, or at least for document 

reprinting [CI94].

• Open software architecture: concerns the capability o f  the OCR package to be 

incorporated into another application. The zoning may be performed by another 

toolkit and the OCR may be called separately on each zone under the control o f  a 

host application. Open software OCR packages are often presented as a library 

with an API (Application Programming Interface) to be associated with the 

application.

2.5.1.3 Economical criteria

Taking economical aspect into consideration, price, speed and time required to control 

efficiently the system are relevant criteria:

•  Throughput: is measured by counting the number o f characters or words correctly 

recognized and dividing it by the time it took to recognize the document [Egl94],
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An accurate package that runs slowly can have a better throughput measurement 

than a fast one that makes lots o f errors. Hence, accuracy is more important than 

speed.

• Price: plays a significant role in the OCR package choice. The price is usually 

relative to the software capabilities (accuracy, speed, multi-lingual options, 

platform, etc.).

•  User interface: OCR packages are often used by non-specialists (office 

applications). The system control has to be as simple as possible: the user should 

only have to set some input, like the document language or the document quality 

(original, photocopied, etc.) before starting the recognition. Technical aspects 

such as the choice o f  scanning parameters (resolution, thresholds), the choice o f  

the pre-processing technique must be placed under the system responsibility.

•  Output format: the recognition results should be recovered in a familiar format to 

the user (ASCII text, Adobe Portable Document Format (PDF), Microsoft Rich 

Text Format (RTF), etc.).

Actually, there is no OCR system which assures all the presented criteria. According to 

their individual requirement, users may concentrate in their evaluations on some criteria 

more than others.
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2.5.2 Experimental evaluation

Evaluations o f  commercial omni-font OCR systems have been completed [Egl94, CP93, 

RKN94], The more thorough evaluations have been carried out by the Information 

Science Research Institute (ISRI) o f  the Las Vegas University. Based on accuracy and 

automatic zoning criteria, they carry out a yearly evaluation o f the performances o f  some 

commercial OCR systems. In the 1994 report, eight OCR systems were tested on a data 

set o f 500 pages. The selected documents were quite diverse with a considerable variety 

o f  typefaces and type sizes. The page quality ranges from perfect originals to several 

generation photocopies [RKN94]. The following criteria were considered in the 

evaluation:

•  Accuracy: the average recognition rates range from 95.52% to 98.48% at the 

character level (character recognition), but drop at the word level (word 

recognition) to be between 89.64% and 97.31%;

• Font features: each document page was allocated to one o f  two groups depending 

on whether it contains mostly proportional or fixed pitch text. Each OCR system 

achieved a higher character accuracy when dealing out fixed pitch texts. 

Similarly, the page base was subdivided depending on whether a page contains 

mostly serif or sans-serif text. Higher accuracies were attained on the seriffed 

texts;

• Image quality: the performance depends greatly upon the quality o f  the document. 

For good quality images, the character recognition rates are all higher than 

99.60%, while they vary from 84.58% to 94.83% for degraded document images
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(skewed and photocopied documents). Systems were also tested on images o f  

different resolutions (200, 300, 400 dpi) where the best recognition rates were 

accomplished on the 300 dpi images. This shows that recognition algorithms were 

tuned to that resolution;

• Automatic zoning: most o f the OCR systems can not present accurate zoning on 

multi-column texts. The same result is also valid for complex textual structures 

(tables, etc.). They offer tools to label the document zones manually.

The report has also shown an accuracy progress in one year for almost all OCR systems 

(1993’sv s . 1994’s accuracy).

Most o f  the available OCR systems satisfy only some o f the criteria o f  Section 2.5.1. 

Some o f  them try to maintain the text format (Omnipage, WordScan Plus), others are 

good in handling multi-lingual documents (Recognita Plus) but fail on dirty 

(photocopied) documents [Egl94],

2.6 Conclusion

This analysis has shown the limitations o f  the existing OCR technologies. Indeed, R. 

Casey stated in [CW90] that a 99% character accuracy can only be obtained by 

commercial OCR products i f  “a printed document is a fixed-pitch, typed original or clean 

copy, in a simple paragraph format and in a common typing font”. Although a 99% 

accuracy seems almost perfect, the error level is annoying since there are approximately
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3000 characters on a text page. Even a 99.5% success rate still produces up to twenty 

errors per page, involving a considerable human intervention.

Even on ‘ideal’ images, i.e. noise and skew free images synthesized by a computer 

program (e.g. generated from PostScript files), OCR systems can not achieve 100% 

accuracy. Indeed, some experiments on eight OCR systems have shown that the best once 

performs only 99.9% accuracy on ‘ideal’ images with very common typefaces (Times, 

Helvetica, Courier) and sizes (lOpt, 12pt, 14pt) [RKN93].

Since they make generalization o f  the font and size, omni-font OCR systems are unable 

to recognize the fonts used in the evaluated documents. Some o f  them claim to detect 

typographical attributes such as the text style (regular, bold, italic, etc.). With the current 

classification system, a solution to the font recognition problem is provided, which can 

assist OCR systems to improve character recognition.
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CHAPTER 3

OPTICAL FONT RECOGNITION

The main objective o f Optical Font Recognition (OFR) is to recover from images fonts 

with which texts have been printed. In spite o f its worthiness for both document and 

character recognition, OFR has often been ignored. The recognition o f  fonts can be 

completed either before or after OCR. In each approach an influential combination o f  

both mechanisms can offer a perfect recognition o f characters as well as their 

typographical attributes.

The approach adopted within the classifier system allows the recognition o f  fonts without 

taking into account characters appearing in that text (omni-char OFR). An intelligent 

character and font recognition can be accomplished by a joint approach based on the 

association o f  an omni-char OFR with a mono-font OCR.

The issue o f  font recognition in the document analysis context, will be introduced in 

Section 3.2. font and Character recognition techniques will be addressed in Sections 3.3 

and 3.4. Section 3.5 shows that features allowing discriminating fonts can be extracted 

locally from individual characters or globally from large text entities.

29
All the figures in this chapter were taken from [Zra95] with the permission of the author
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3.1 Introduction

Very limited data on font recognition exists since, in the optical reading perspective, the 

key efforts have been dedicated to character recognition, especially to omni-font OCR 

which does not require font identification. During the last decade, font recognition has 

emerged as an essential task for document analysis. The SSPR’90 working group on 

character recognition stated that [BHN92, pp.566]:

“The detection o f  the font style, point size etc. o f  a text is an obvious way 

to improve the capabilities o f  text recognition algorithms. This would 

allow for hundreds o f  fonts to be used for training but retain the 

recognition accuracy and potential speed o f  a system that uses a small 

number o f  fonts. This appears to be a promising but hitherto almost 

neglected topic.”

Font recognition is still presumed to be a complex task [BN94]. It is practical and vital in 

diverse domains [Mor92, ZAI92, ZI94, ZI95]:

•  A simple reprint o f  a scanned document involves not only character recognition, 

but also the detection o f  fonts used to produce it. Indeed, a realistic reproduction 

o f a printed page needs the identification o f various typographical information 

such as fonts, justification mode, margins, line spacing, etc.;
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• The detection o f  logical document structures, where the information about the 

font used in a word, a line, or a text block may be significant to establish its 

logical label;

• The knowledge o f  the font may also boost up character recognition. Since fonts 

are expressed by characters, recognition o f  the font provides information on the 

structural design o f  characters. The conveyed information could be used by OCR 

systems to identify the characters as recommended by the SSPR’90 working 

group;

• Interactive environments for OCR error correction and assessment may benefit 

from font recognition. Superposing the distinguished characters and their images 

appears to be a clear way to deal with OCR correction [CI94]. An accurate 

superposition needs the classification o f  the typographical attributes o f  the 

examined characters (position in the image, font, etc.).

Font recognition is generally performed to identify the font changes in documents. 

However, the shape, size and spacing o f  letters in words influence the appearance o f  the 

document more than any other single visual element [Par88]. The choice o f  the font and 

the way it is positioned on the page can improve the reader’s ability to comprehend the 

message o f  the document.

In a document, diverse fonts are used in order to highlight some parts o f  the text so that 

they can be easily observed by the reader. Normally, font changes in a document may 

occur at particular positions (titles, indexes, references, etc.). They might be prepared by
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preferring another typeface, or altering the style or the size o f the same typeface, i.e., 

regular typeface for the running text, bold for titles, italic for references and mono-spaced 

typeface for program listings. In reality, one makes a small number o f  systematic font 

changes in a particular structured document.

3.2 Font recognition for document analysis

In a document, two level structures can be labeled. In the perspective o f  document 

recognition, font identification may be useful for the detection o f  the logical macro- and 

micro- structures.

3.2.1 Macro-structure recognition

The ‘macro-structure’ expresses the high level structure o f  a document down to 

fragments. For example, consider Figure 3.1, which shows a graphical demonstration o f  a 

scientific paper. Several high level entities can be measured. In the illustration, the 

entities: ‘title’, ‘authors’, ‘affiliation’, ‘email’, ‘abstract’, ‘keywords’ and ‘section’ can be 

easily distinguished.

Figure 3.1 demonstrates that the ‘title’ o f  the paper was printed using a bold and large 

sized typeface, however, the ‘author’ fragment was printed using capital letters, the 

‘affiliation’ fragment using an italic font, and the ‘running text’ with a regular font. The
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classification o f  each font can help the identification o f  each fragment. At this level, the 

examination can be based on text lines.

The design of a Unicode font
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s e c t i o n

Figure 3.1. Macro logical structure.

3.2.2 Micro-structure recognition

The ‘micro structure’ expresses the lower structure level o f  each fragment down to 

characters. The study o f bibliographical references copes with low level entities. It needs 

the recognition o f  small text regions including few words wherein the same text line,
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several logical entities may be found. The logical entities are discriminated by the font 

used to print them or by particular marks (brackets, punctuation, etc.), as shown in Figure 

3.2. The examination may be based on the recognition o f  typographical attributes as well 

as on the text content. It may take advantage o f  an accurate font recognition pertained to 

single words.

Several studies have been dedicated to the analysis o f  both macro- and micro-structures 

[Che93, Hu94]. In his bibliographical references recognition system, Chenevoy [Che93] 

based the study on a syntactical description o f  the references as well as on the search o f  

significant features directing the system. The analysis centered on the detection o f  special 

characters such as [ ] ( ) —» , .  : and also on the finding o f  typographical attributes o f  text 

lines within the considered documents. Related words are differentiated from running text 

words by their diverse styles: bold, italic, underlined, capitals, small caps, etc. The 

experiments have revealed the complexity o f  extracting relevant features from multi-font 

and noisy documents. However, the system achieved excellent outcomes when the 

references had stable structures.

3.2.3 Character recognition

The limitations o f  omni-font OCR technology were mentioned in the previous chapter. 

While an omni-font OCR overlooks serifs, a mono-font OCR takes a great advantage 

from such information. The serif presence or absence and its shape give accurate
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indication o f  the character shape. For example, serifs can discriminate a ‘1’ from an T ,  

‘P’ from a ‘p ’, etc.

piKffihen Duart and Robert A. Morrisi [‘The importance of phase in the spectra of digital type!
filecimmcPublishing: Origination, Dismn'matim„ arid Desigr$t{i% 47-5Si|(l989)l

[Gordon E  Legge, Gary S, Rubin, and Andrew Luebker 
tir i OS'S

f Psychophysics of reading’. k m m

Figure 3.2. Typographical structure o f  bibliographical references.

3.3 Font recognition approaches

Font recognition may be merged with character recognition according to two approaches, 

which varied in the manner OCR-OFR interactions are performed.

3.3.1 ‘A  priori’ font recognition

An ‘a priori’ font recognition approach comprises identifying the text font without any 

knowledge o f  the characters that appear in that text. The OFR can be based on attributes 

extracted from global properties o f  the text image, such as the text density, letters size, 

orientation and spacing. Features may then be extracted from text entities with different 

lengths such as words, lines or even paragraphs.

In an ‘a priori’ font recognition approach, font and character recognition is achieved in 

two steps as illustrated in Figure 3.3:
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1. Font recognition methods, called ‘omni-char OFR’, are applied on the text image 

in order to detect its font;

2. A mono-font OCR is then employed on that text using the identified font. Under 

the hypothesis that mono-font OCR offers superior results if  the font is correct but 

leads to a high unrecognized rate otherwise, this recognition rate might later be 

used to verify or reject the results generated by font recognition.

3.3.2 ‘A  posteriori’ font recognition

An ‘a posteriori’ font recognition approach consists o f  identifying the font o f  a text using 

the knowledge o f characters appearing in it. Hence the OFR can utilize features based on 

local properties o f  individual letters. However, the letter shape relies totally on the font 

family (Times, Helvetica, etc.) and style (roman, italic, bold), such as letters ‘g ’ and lg \  

‘a’ and V ,  etc.

In such an approach, font and character recognition may be executed in two steps, as 

illustrated by Figure 3.3:

1. An omni-font OCR is applied to identify the text characters;

2. A character specific OFR algorithm, called ‘mono-char OFR’, is applied on each 

character in order to recognize its font.
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Figure 3.3. OCR-OFR combination strategies.

3.3.3 Cooperative recognition

A  ‘cooperative’ approach that merges the two preceding ones, can also be described. It is 

largely based on the association between the OCR and OFR components. In such an 

approach, the text is recognized (font and characters) after some OFR-OCR interaction 

cycles. Such association will be discussed in the next section.

The perspective in which the OFR package is used proposes the implementation o f one 

font recognition approach. The choice o f  a particular strategy is greatly influenced by the 

OCR capabilities: a perfect omni-font OCR package can be well merged with either an
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omni-char OFR or a mono-char OFR, while a mono-font OCR requires an omni-char 

OFR package.

3.4 Font and Character Recognition

In order to boost up the performances o f  OCR algorithms, the current OCR technology 

has implemented several approaches, which are as follows:

• Conventional methods that contain post-processing using lexicons and n-grams to 

correct OCR spelling-errors [Dam64, TIAY90];

• Approaches that incorporate character recognition with contextual analysis, such 

as word shape, syntactic and statistical models o f  recognition devices, characters 

and words, local typeface homogeneity [HHS91, JSB91, BN94];

•  Techniques that employ typographical constraints derived from character shapes 

[Sen94];

• Procedures that combine numerous OCR packages applied on the same image. 

The combination often uses voting algorithms [Ani92, LZ94].

In the following, a focus on the ‘a priori’ font recognition approach, implemented by the 

classifier system and used in the OSCAR-II project [Hu94, ZI92], is done. A  special 

effort is made to describe the relation between the OFR and OCR packages in their 

association to distinguish characters. An intelligent character recognition system, which 

identifies characters and their typographical attributes, may merge a ‘mono-font OCR’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

with an ‘omni-char OFR’. The combination is made under the hypothesis that the 

knowledge o f  the text font boost up the character recognition.

3.4.1 Omni-char font recognition

Using a base o f  font models from training samples, the OFR system allocates a font, from 

an ‘a priori’ known font list {fi, f2 , .. .,  fn}, to a text entity (word, line) symbolized by its 

image (see Figure 3.4). The font identification is executed without any information on the 

characters showing up in the text.

The system returns a list o f  couples < f, p(fj) >, where,

• fj signifies a font identifier;

•  p (f) indicates the degree o f  confidence for f ,  i.e. the conditional probability p(fj | 

text) that the text was printed with f .

The list is sorted according to decreasing values o f  p (f), i.e., the first element in the list is 

the most likely result.
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Figure 3.4. Omni-char font recognition.

3.4.2 Mono-font character recognition

Character recognition is carried out by a ‘mono-font OCR’ using a base o f  font 

dictionaries. Each dictionary includes character models o f  a given font. The system 

presumes the ‘a priori’ knowledge o f  the font fj in order to use the appropriate dictionary, 

as shown in Figure 3.5.

For each character, the system returns a sorted list o f  triplets < Cj, p(ci), coord(cj) >, 

where:

• Cj represents a character class;

•  p (C j )  indicates the probability that the pattern corresponds to c, (from the font fj);

• coord(Cj) represents the character coordinates in the image. They are useful in the 

correction and demonstration o f  the OCR results. The coordinates may vary from
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one solution to another for the same bitmap. For e.g., the sign ‘e ’ may be 

identified as the character ‘e’, or as the character ‘e ’ with noise above. The two 

solutions produce different character coordinates.

The recognition can also be achieved at the word level. In this case, the characters o f  the 

same word are clustered and a confidence degree for the whole word is figured out.

3.4.3 Cooperative recognition strategy 

It is assumed that:

• The OFR package can affix probabilities among an input set o f  fonts, as explained 

above, and,

Writing was developed to 
communicate and broadcast

mono-font
OCR

lor each teapiatg

!{ccj, p(cj, coord(ct)> )

Figure 3.5. Mono-font character recognition.
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• The OCR package provides superior results when the font is correct and leads to a 

high unrecognized rate otherwise.

In this case, a line containing strings o f  different fonts can be identified after a consistent 

sequence o f  some OCR-OFR steps, as illustrated in Figure 3.6.

3.4.3.1 A collaborative scenario

Considering the situation in Figure 3.6, in order to distinguish a text line o f  two words:

1. ‘Recognition’ printed with font lb-bold-12pt;

2. ‘strategies’ printed with font lb-regular-12pt.

It is assumed that it is known that the document contains entirely lb fonts.

In the first step, the omni-char OFR is applied on the text and only the three best 

candidates are selected:

{

< lb-b-12pt, 0.65 >,

< lb-r-13pt, 0.25 >,

< lb-b-13pt, 0.08 >

}
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The mono-font OCR package is then applied on the image using the selected fonts. The 

OCR results prove that

• The first word is definitely printed with lb-b-12pt;

• The second word may be printed with lb-r-13pt, but certainly not with lb-b-13pt.

In the second step, the OFR is requested to propose other candidates for the second word 

only. The lb-b-12pt and lb-b-13pt are obviously excluded from the font list. Two fonts 

are selected with a leading one, i.e. lb-r-12pt. The preferred font is finally established by 

the OCR to be the superior one.

In the demonstrated approach, the OCR is used to satisfy two requirements:

1. To carry out character recognition using the knowledge on the font;

2. To validate or reject the OFR solutions. A  high character recognition rate 

substantiates that the text is printed with the selected font, and a low rate proves 

that the text is printed with another font.
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Figure 3.6. Cooperation between the OFR and OCR components to recognize words.
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3.4.3.2 Output format

A  font and character recognition system can produce the recognition results using a range 

o f formats that contain both character and font information. The results can be presented 

as character collections or word collections. The following format, based on the font 

changes and focusing on word collections, may be implemented. The recognition results 

are given as a sequence o f  (font, text) :

[{f, p(f); {w, p(w), coord(w)}*;}*]

The results o f  the preceding scenario according to the presented format are shown below:

[ Tb-b-r-12, 0.65, ‘Recognit?on’, 0.98, (10,34,50,35);

Tb-r-r-12, 0.85, ‘stra?egies’, 0.98, (70,34,45,34) ]

Such a technique, merging an omni-char OFR with a mono-font OCR, has been 

investigated within the CIDRE project ‘Cooperative Interactive Document Reverse 

Engineering’ [BBI95, BBZI96],

3.5 Feature extraction for font recognition

Similar to any pattern recognition problem, font recognition is based on the extraction o f  

a set o f  attributes from document images. These attributes can be worked out locally from
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individual characters or globally from large text entities such as words, lines or even 

paragraphs. In this section, the issue o f  how features can be locally or globally extracted 

is presented.

3.5.1 Local feature extraction

In such an approach, feature extraction concentrates on the localization o f  the character 

particularities, such as the serifs shape and on the depiction o f  special characters like ‘g ’ 

and ‘g ’, ‘a’ and ‘a ’, etc. For a given alphabet, only a few characters hold the most 

typeface character. As shown in Figure 3.7, the shapes o f  characters ‘a’, ‘g ’ and ‘w ’ rely 

greatly on the typeface, while those o f  characters ‘z ’ and ‘o ’ have roughly the same 

structure for all typefaces.

Tones

a
Cheltenham

a
Souvenir

a
UibaiinSraph

a
Avant Garoea

g g g g g
W w w w w7

W  J

pm m m

MmmJk

J—

£ m 4 z z
o o o o o

Figure 3.7. Typeface variants o f  characters a, g, w, z and o.
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Hence, relevant features can only be sensed on a limited character set. Collier [Col91] 

founded a list o f  characters distinguishing typefaces. Following is the character list, for 

various categories, in a decreasing significance order (see Figure 3.8):

•  Uppercase letters: Q J G W A K C R M E P S T F B N O U X Y D H Z L V I

•  Lowercase letters: g a j y k t f r q w e b s c d p m u x o v h n i l z

•  Numerals: 3 7 5 2 1 4 9 6 8

•  Specials: & % $

Recovering these attributes from real documents requires very careful processing. Since 

they focus on small and particular character parts (e.g. serifs), the extraction o f  local 

features involves smooth character contours. Such contours are greatly influenced by the 

image condition (noise, skew, low resolution, binarization thresholds, etc.). They can, yet 

be provided by gray level images produced at a relatively high resolution. Additionally, 

the extraction o f  local features involves:

•  The presence o f  the relevant characters in the text block (a, g, Q, etc.);

•  The ‘a priori’ knowledge o f  the character classes. For example, it is obligatory to 

recognize that the examined contour is o f  letter ‘g ’ in order to identify whether the 

loop is closed (g) or open (g).

If these conditions are fulfilled, then such features can be used to differentiate typefaces. 

The slope detection can be achieved using local features (seeking a negative angle). The 

weight and size recognition is, though, more difficult and even impracticable, because
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characters maintain the same shape, where only a horizontal or a vertical scaling is 

performed.

C ourier a s j y s % & $ Q J w 3 6 9 -

Tiroes a g j y s % & s Q J G w 3 6 9 7

Pa latino a s i y s % & $ Q J G w 3 6 9 7

Lucida B right a g j y s % & S Q J G w 3 6 9 7

Bookman a g j y s % & $ Q J G w 3 6 9 7

N ew  C entury a g j y s % & $ Q J G w 3 6 9 7

Garamond a g j y s % & $ Q J G w 3 6 9 7

Souvenir a s ) y s % & $ Q J G w 3 6 9 7

Lubcdin Graph a sr ) y s % & $ Q. J G w 3 6 9 7

Helvetica a g j y s % & $ Q J G w 3 6 9 7

A v a n tG a r d e a 9 j y s % & $ Q J Q w 3 6 9 7

Franklin Gothic a g j y s % & $ Q J G w 3 6 9 7

Figure 3.8. Character variants characterizing typefaces.

A  local feature extraction policy fits well on ‘a posteriori’ font recognition approach 

where characters are identified using an omni-font OCR before the detection o f  their 

typographical attributes.

The extraction o f  local features has often been used to execute OCR. Anigbogu [Ani92] 

in his multi-font OCR system, classified models for characters and placed them in a tree 

according to certain typographical attributes (ascenders, descenders, holes, etc.). A  little 

pre-processing is done on the text in order to choose one sample for each kind o f  shape 

(characters), which are then positioned in the tree according to their attributes. In another 

operation, a tree is created for each font (instantiation o f a generic tree with the diverse
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characters o f  the given font). The shape tree is lastly matched with each font tree to 

compute a distance, where the smallest distance defines the associated font. Font 

detection is primarily done to improve OCR performance by limiting the search space 

(font trees). This approach appears to offer superior results when the generated shape tree 

is complete enough, i.e., it has a sample for each character.

3.5.2 Global feature extraction

Global features can be extracted from large text entities such as words, lines, or 

paragraphs, without considering their content. Font changes are easily noticed, even by 

non-experts in typography. In an illustration in Figure 3.9; it is very easy to observe that 

characters o f  the third line are bolder than those o f  the first and second lines. 

Additionally, serifs, spacing mode and text height changes are also visible to the text 

reader. The recognition o f  the font changes presumes long enough text entities, each one 

homogeneously typeset.

However, it can be realized that global features are not capable o f  discriminating too 

similar typefaces such as Times and Palatino (lines 1 and 8), because they can not capture 

their subtle distinctions (they have visually the same weight, serifs, etc.). Merging very 

similar fonts is, though, very rare in real documents.
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Since they signify rough properties o f  texts, global features may rely on the length o f text 

(number o f  characters) more than on its content. They can also be tolerant o f  the image 

conditions, i.e., they can be extracted from binary images scanned at low resolutions.

Global features can be well utilized within an ‘a priori’ font recognition approach, since 

they do not concentrate on the character contents. Hence they can be performed without

OCR.

1 font changes may occur
2 font changes may occur
3 font changes may occur
4 font changes may occur

e font changes may occur
? font changes may occur
8 font changes may occur
9 font changes may occur
ID font changes may occur5 font c h a n g e s  may occur

Figure 3.9. Global features discriminating fonts.

The application o f  global features to execute font recognition was addressed by Morris 

[Mor92]. He based the study o f  the problem o f digital font recognition on the 

examination o f  Fourier amplitude spectra extracted from word images. The study was 

largely done to observe the applicability o f  human vision models to typeface 

discrimination, and to explore whether spectral features might be practical in typeface 

creation. He applied a Fourier transform to the word image and then extracted a feature 

vector by applying many filters to the resulting spectra. Numerous font classification 

experiments were devised, where a quadratic Bayesian classifier was applied on 55 fonts. 

The classifier achieved fantastic results with an average error rate o f  6%, and a very low  

error rate when the classification was carried out within fonts o f  the same typeface.
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On the other hand, important simplifications were completed: (a) the images evaluated 

were noise-free since they were produced by software instead o f  being scanned from 

paper documents; and (b) only one font size for the dissimilar samples was considered.

Kopec completed an attractive OFR related work, which consisted o f  estimating font 

metrics (baseline, side bearings, kerning, etc.) from text images. The estimation was 

exercised within a text images editor [Kop93].

3.6 Font recognition and related fields

The font recognition problem lies at the intersection o f varied areas, as shown in Figure 

3.10:

•  Document analysis and recognition: OFR is, as discussed earlier (see Section 3.2), 

a significant topic in document analysis and recognition. It is also connected with 

other tasks such as segmentation or OCR.

•  Typography: typefaces are drawn by type designers with respect to artistic and 

scientific concepts. Much knowledge from typography, especially Digital 

Typography is investigated and exploited to model fonts and to determine 

discrimination features.

•  Image processing: since images characterize the raw material from which fonts 

and characters are extracted, some aspects o f  image processing are considered;
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• Pattern recognition: fonts are modeled by feature descriptors (extracted from 

images) permitting their discrimination. The font modeling and the classification 

process are based on a statistical pattern recognition approach.

Typography
* D igital Typography
* typeface design  principles
* typeface c lassification  
> font m odeling

Image Proces
►im age acquisition, n o ise /  

■ * b inaryim ages
* connected com ponents
♦ projection profiles

"--^Pattern Recognition

■ OFR?
statistical pattern recognition  
parameter estim ation  
learning 
classification

focixment Anah
►OCR 
►OFR
• segm entation  
» docum ent structures 
► lo g ica l strcuture recognition

Figure 3.10. Font recognition and its interaction with other fields.

3.7 Conclusion

It has been proved in this chapter that OFR is valuable, not only for document analysis, 

but also for character recognition. Despite o f  its significance, OFR has been ignored by 

the optical reading community. Through the classifier system, the OFR problem in the 

context o f  document analysis and recognition will be addressed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

TYPEFACE DISCRIMINATION

This chapter discusses the issue o f  font specification and classification from two points o f  

view: typeface design and font recognition. Typefaces are largely recognized by their 

writing style, serif shape, the relative proportion o f  the x-height in the font size and the 

spacing between characters. Fonts belonging to the same typeface are differentiated by 

their slope, weight and size.

Section 4.1 details some features differentiating typefaces and fonts. Section 4.2 

summarizes typeface classification and presents statistics measured by P. Karow for 

several typeface measurements computed from a typeface base.

4.1 Typeface and font discrimination

Due to their abstract design, typefaces require instantiations into fonts in order to be 

depicted. A  font conveys:

• The typeface style that discriminates it from other typefaces;

•  Its intrinsic character that distinguishes it from other instantiations o f  the same 

typeface.

53
All the figures in this chapter were taken from [Zra95] with the permission of the author
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Hence, fonts can be denoted at two levels: the typeface level (inter-typeface) and the font 

level (intra-typeface).

4.1.1 Typeface identification

Some general type design elements which offer the stylistic character o f  a type face 

permit distinguishing one typeface from another. In this section, four elements: writing 

style, serifs, x-height and character spacing will be focused on.

4.1.1.1 Writing style

Type designers can take on diverse styles in their character drawings. Generally two 

rough styles can be easily differentiated: the cursive style simulating handwriting and the 

typesetter style related to typesetting machines. Cursive writing is often illustrated by 

words formed o f  connected characters (as is done with handwriting), while typesetter 

styles always write characters separately.

4.1.1.2 Serifs

Serifs are small strokes at the end o f the character main strokes. According to their 

presence or absence, serifs make a distinction between two typeface families: the seriffed 

family and the sans-serif family. Shortly, serifs are the most evident feature classifying 

typefaces. As well as decorative purposes finishing the main strokes o f  characters, serifs
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have the effect o f  providing horizontal flow between characters highlighting the line o f  

reading [Lun92],

The majority o f  seriffed typefaces have strokes with clearly dissimilar thicknesses, while 

sans-serif ones have only a distinct apparent weight o f  stroke as shown by Figure 4.1. 

The figure also illustrates that serifs have a variety o f  shapes and dimensions. A  serif may 

be coved, square, square coved, thin line, exaggerated or triangular. The stem ends o f  

sans-serif typefaces also have several shapes: they may be square normal, square 

perpendicular, flattered or rounded. A detailed categorization o f serifs is given in 

[Bau91],

A A A A A A AJl j L Jl j L Jl jL  jL JL Jl o. /  \
cave exaggerated squat* cove square thin line square normal end

Figure 4.1. Serif shapes and stroke variations.

4.1.1.3 x-height

Although all typefaces have a regular baseline, the proportion o f  x-height, ascender and 

descender height fluctuates extremely from face to face. The most noticeable distinction 

between typefaces at the same point size is the relative proportion o f  the x-height. A  

typeface with a small x-height in a given body emerges with the same size as a font with 

relatively big x-height but with a smaller body. Hence, the size and width o f  texts differ, 

for the same point size, from one typeface to another as demonstrated by Figure 4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Lucida Bright: abcdefgWjklnmopqrstuvwxyz
Avant Garde: 
Helvetica:
Times Roman: 
Zap/Chancery:

abcdefghyklmnopqrstuvwxyz 
abcdefghijklmnopqrstuvwxyz
abcdefghijklninopqrstuvwxyz
a6cdefgky($mnopqrstuvunqjz

Figure 4.2. Typefaces in the same size (12 pt), but with different heights o f characters.

4.1.1.4 Inter-character spacing

The expansion o f industrial and mechanical hot-metal typesetting created a new problem 

for the designers as to how to systematize type production in order to get a unified 

character spacing.

The most significant model is the one-unit system o f  the conventional typewriter. Each 

individual character, whether a narrow ‘i ’ or a wide ‘w ’, has a unified character width. 

However, for the early composing machines, special unit systems were launched that 

resulted in a relatively high quality systematic character spacing (see Figure 4.3(a)).

The inter-character spacing depends both on the technology implemented and on the type 

quality desired. Normally, there exist three spacing classes:

1. Fixed spacing: each individual character takes up the same horizontal space 

regardless o f  its shape. This spacing class has been enforced by the technology 

state o f  typewriters permitting the handling o f  only one space. The renowned 

Courier typeface is a fixed spaced one. In order to have a visually balanced
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typeface, the Courier designer reduced or stretched out character components. For 

e.g., the serifs o f  the character ‘I’ have been expanded to fill the available space;

2. Proportional spacing: each character takes up different amounts o f space 

depending on the character shape. It is shown in Figure 4.3(a) that the ‘i ’ o f  the 

mono-spaced font takes the same space as the ‘n ’, while it is clearly narrower in 

the proportional font. Characters are devised and created such that the character 

position, shape and width assure a correct spacing between all character 

combinations.

A  spacing vector is linked to each font, signifying the space value between each 

character and the following ones;

3. Proportional spacing with kerning: a spacing value is set for each character pair 

by means o f  a kerning table. The spacing values, stored in the kerning table, are 

optimized to acquire normal visual spacing. Figure 4.3(b) shows the difference 

between proportional spacing with and without kerning.

proportional spacing

aP
p

acm proportional spacing

A Al a .
a c 1ncr

fixed spacing p ro p o rtio n a l sp ac in g  w ith  kern ing

Figure 4.3. (a) Width system for characters, (b) normal vs. kerning.
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Typographers claim that fixed-width fonts are harder to read than proportional-width 

ones. However, studies have revealed that there is a little distinction in reading rates 

between these fonts at normal reading size [MBHL91, MBH93, LEB94]. Morris et al. 

have made a quantitative study o f  type quality and text readability, from the human 

vision modeling point o f  view [MBHL91, MBH93]. They made a variety o f  deformations 

to character spacing and shapes, calculated classical reading rates, and concluded that 

loose letter spacing alone does not make fonts easier to read; instead, shape or other font 

quality factors do.

To conclude, it can be stated that four factors discriminating typefaces have been 

presented: the writing style, the x-height proportion in the font body, serifs and the 

spacing mode. Identifying these elements is o f  immense help in a font recognition 

system.

4.1.2 Font specification

Within the same typeface, fonts can be differentiated largely by four features: the slope, 

weight, width and size. These features are discussed in detail ahead.

4.1.2.1 Slope

The font slope represents the character’s incline, which is actually the transposition o f  the 

handwriting incline in the printed character domain, becoming cursive due to writing 

speed. Fonts can be presented with a variety o f  slopes:
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• ‘Upright’, which corresponds to the set o f  upright characters (uppercase, 

lowercase) without any style distinction. Upright characters may be:

■ ‘Roman’, which characterizes the normal upright form o f a typeface, 

generally used for running text;

■ ‘Script’, which symbolizes upright form with cursive characters 

simulating handwriting;

•  ‘Slanted’, which is said for each character slanted to the right. The following are 

differentiated:

■ ‘Oblique’, which is regularly used for sans-serif typefaces, where oblique 

characters may look like the roman shapes simple slanted;

■ ‘Italic’, which is often linked to seriffed typefaces. Italic is a cursive form 

portrayed by variant glyphs such as ‘a ’, ‘g \  ‘f  and angle o f  slope, and 

generally by appearing lighter and narrower than the roman style.

4.1.2.2 Weight

The weight o f  a character is conveyed by the thickness o f  its strokes. For a particular 

sketch, the weight is determined by decreasing or increasing stroke widths. The majority 

o f the bold sans-serif fonts are generated by building an overall thickening, where glyphs 

are preserved from one weight to another. Creating a successful seriffed bold font is not 

that simple, since only the strokes which are thick in the normal weight can be made 

substantially heavier. Hence, sans-serif typefaces can be devised with an abundance o f  

variant weights, but many seriffed typefaces exist in a limited range o f  weights.
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Normally, there are just four weights o f a typeface, which are regular, medium, bold and 

extra-bold. Nevertheless, for some renowned sans-serif typefaces (Helvetica, Gill, 

Univers, etc.), more weights may be labeled such as ultra-light, light, demi-bold, heavy 

and ultra-bold. In fact, the practice o f  many weights is often limited to professional 

publishing.

4.1.2.3 Width

The font width expresses the amount o f  expansion or contraction with respect to the 

normal width in the font family. Normally, reduced fonts are used in marginal notes. A  

number o f  typesetting systems can even squeeze fonts automatically to fit a given 

measure. A  few typefaces have distinct designs with a variety o f  widths such as Helvetica 

and Helvetica-Narrow.

4.1.2.4 Size

On rendering (printing or displaying), a typeface must be represented by a given size. 

Font copies at precise sizes have to be produced and stored in order to be employed, 

depending on the technology used. Present technology allows the production o f  fonts 

regardless o f  the size, since typefaces are stored as contour descriptions.

Besides considering the general characteristics o f  a new typeface, the designer needs to 

choose the range o f  sizes the typeface is most likely to be placed in. The choice often
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comes down to a division between small composition sizes (for newspaper classified 

advertisements), text composition sizes (8 pt to 14 pt covers newspaper, book, etc.) and 

display (conventionally, sizes above 14 pt, used to set individual words and headlines 

rather than continuous text) [Lun92]. Figure 4.4 illustrates some font weights and slopes 

and a variety o f  sizes available on the Macintosh system.

reg u la r bo ld Italic bo ld-ita lic

24 pt: face face face face
18 pt: face face face fa ce
12 pt: face face face fa c e

Figure 4.4. Various font weights, slopes and sizes o f the Palatino typeface.

4.1.2.5 Other shapes

Several other shape variants may be present, for e.g., ‘small caps’ shape is in regular use, 

in which lowercase letters are characterized as capitals with reduced height. With 

‘outline’ shapes the inner parts o f  the strokes are empty. For display purposes, ‘shaded’ 

shapes are presented where characters emerge as three-dimensional.

4.2 Typeface classification

Document style is conveyed through the page layout and characters inside. From 

centuries, page formatting has relied on current formats, justification modes, interline 

spacing and on characters used, where each element affects the others. Characters, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

relation to the epoch fashion and with the technological evolution (paper nature, printing 

process, etc.), have obtained proportions (wide or tight, thin or thick, etc.), modified the 

contrast o f  their strokes, sloped or straightened up their rounded letter axis and changed 

their serifs.

These features may be used as a starting point to character classification into families, 

which leads to their stylistic recognition. This categorization can be done from two points 

o f  view: the design point o f  view and the recognition point o f  view.

4.2.1 Classification from the design point o f  view

Font classification was roughly abandoned and did not follow the swift development o f  

digital typography with a rapid production o f  new fonts. The taxonomy, done by experts 

in typography, remains manual and fundamentally based on historical features.

4.2.1.1 Thibaudeau’s classification

The first effort in type classification was made by Francis Thibaudeau in the 1920’s 

[DR85]. He detailed four classes according to the serif shapes: (1) the ‘Elzevirs’ with 

their triangular serifs, (2) the ‘Didot’ with upright serifs, (3) the Egyptiennes with 

rectangular serifs and (4) the Antique without serifs.
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4.2.1.2 DIN’s classification

The A.TYP.I (Association TYPographique Internationale) implemented the DIN’s 

classification differentiating typeface classes according to a multitude o f  design criteria 

such as historical use, geographic or linguistic origin, direction o f  writing, the way a 

spoken language is written and various others. The classification standard basically 

addressed Latin typefaces and grouped them into nine groups [Kar94a].

This classification has its foundation in historical criteria and on delicate differences in 

shapes o f  special characters such as ‘e ’ or small parts such as bowl axis, which are not 

simply visible to common users. This classification is now becoming outdated because it 

does not follow intended criteria to categorize new typefaces. In reality, with the great 

help from computers, a fast increase o f  Latin typefaces and the emergence o f  typefaces 

for other scripts such as Arabic, Cyrillic and Chinese, can be observed.

4.2.1.3 AFII’s Classification

In the 1990’s, the AFII (Association o f  Font Interchange International) projected a truly 

advanced classification system which was comprised o f a typeface design grouping 

scheme, with three-level hierarchical structure. Typefaces which are alike in appearance 

or have features that would allow them to be replaced for each other, were clustered 

together.
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This classification too considers various scripts such as Latin, Arabic, Chinese and 

Cyrillic. It has an open design permitting new fonts to be linked to one o f  the predefined 

classes. A few font designs could be linked to more than one group, but the responsibility 

lies in the hand o f  the font designer to choose the group which offers the best appearance 

for substitution. A  detailed presentation o f  the AFII’s classification model is provided in 

[Kar94a],

4.2.1.4 The PANOSE typeface classification system

The PANOSE classification system [Bau91] allocates an eight digit number to a typeface, 

which explains its principal visual characteristics. Each digit symbolizes a visual feature 

such as serif shape, contrast levels, x-height proportions and stroke variations.

Unlike other typeface classification systems, PANOSE focuses on physical 

measurements o f  the type, rather than on any subjective historical or artistic analysis. 

However, examination o f  this classification scheme has discovered that:

•  Classification features allow distinguishing typefaces but not fonts with size and 

style specifications (regular, bold, roman, italic, etc.);

•  Some features exist on only a limited set o f  characters such as ‘g ’, ‘Q’ or ‘O’.

All these classification systems reflect on typefaces from the design point o f  view where 

all features are ‘a priori’ known by the type classifier.
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4.2.1.5 Typeface statistics

Peter Karow [Kar93] did a statistical study o f about 1795 out o f  3000 hand-digitized 

typefaces stored in the ‘Ikarus’ format [Kar94b]. The statistics were computed from 

measurements corresponding to some font metrics. From this set, 1049 fonts were 

seriffed and 485 sans-serif. The measurements have shown that (see Appendix A):

• Sans-serif fonts have bigger x-heights than seriffed ones but smaller ascenders 

and descenders;

•  Italic characters have slightly bigger ascenders and descenders than upright ones;

•  Sans-serif typefaces have a low contrast (ratio o f  horizontal to vertical stroke 

widths) o f  about 82%, while seriffed ones have high contrast with a ratio value o f  

50%.

• Seriffed glyphs are relatively wider than sans serif ones: 75% vs. 63% o f  the body 

size. This is mainly due to serifs which take up an important place in the character 

width;

•  Sans-serif typefaces are simpler than seriffed ones concerning contour elements 

(comer points, straight lines, inflection points, curves, etc.). However, a sans-serif 

‘m ’ is always more complex than a seriffed ‘1’.

In conclusion, it can be stated that these measurements can largely distinguish seriffed 

from sans-serif fonts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

4.2.2 Classification from the OFR point o f  view

From the OFR point o f  view, fonts may be classified according to criteria resulting from 

the following considerations:

• Fonts have to be identified from document images o f  diverse qualities. In fact, 

according to image conditions (resolution, noise, skew, etc.), some features o f  

font design (e.g., the serif forms and the smoothness o f  character contours) may 

be lost;

•  In reality, only a few well-known fonts are used in documents.

The typographical study has discovered seven criteria that can be used to distinguish 

fonts (some o f  them are detailed in [Rub88, pg.l 8]). They are either discrete or 

continuous:

1. Serifs: does the font have serifs or not? If serifs exist, what are their shapes? In 

reality, a rough differentiation between seriffed and sans-serif fonts may be 

sufficient for document analysis purposes;

2. Spacing: do letters have a fixed spacing or a proportional one?

3. Writing style: does the fonts have a typesetter or cursive style?

4. Slope: are characters upright or sloped?

5. Weight: what is the font boldness comparative to other fonts from the same 

family; is it light, regular, bold or black?

6. Size: what is the nominal font size?

7. x-height: what is the proportion o f  the x-height in the body size?
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While some o f  these criteria permit the distinguishing o f  typefaces (serifs, writing, style, 

x-height), others are applicable to fonts (slope, weight, size).

4.3 Conclusion

None o f  the conventional typeface classification standards has resolved the problem from 

the recognition point o f  view. A  few objective criteria that may be used to model 

typefaces and fonts (weight, x-height, serifs, etc.) have been discussed in this chapter. 

The majority o f  these criteria resulted from personal observations, from a typographical 

study and from the statistical analysis o f  typeface measurements made by Karow. In the 

presented model a font is recognized by its typeface, weight, width and size. Nearly all o f  

the font distinguishing criteria can be extracted easily from document images. As a matter 

o f  fact, the current classifier system is based on the design o f  features simulating these 

criteria.
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CHAPTER 5

BAYESIAN DECISION THEORY

5.1 Introduction

Bayesian decision theory is a fundamental statistical approach to the problem o f pattern 

classification. This approach is based on quantifying the tradeoffs between various 

classification decisions using probability and the costs that accompany such decisions. It 

makes the assumption that the decision problem is posed in probabilistic terms, and that 

all o f the relevant probability values are known. In this chapter, the fundamentals o f  this 

theory are detailed and it is shown how it can be viewed as being simply a formalization 

o f  common-sense procedures.

Although a quite general, abstract development o f  Bayesian decision theory is given in 

Section 2.2, but the discussion begins with a specific example. Consider the hypothetical 

problem o f  designing a classifier to separate two kinds o f  fish: sea bass and salmon. 

Suppose that an observer watching fish arrive along the conveyer belt finds it hard to 

predict what type will emerge next and that the sequence o f  types o f  fish appears to be 

random. In decision-theoretic terminology it can be said that as each fish emerges, nature 

is in one or the other o f  the two possible states: either the fish is a sea bass or the fish is a 

salmon. Let ‘w ’ denote the ‘state o f  nature’, with ‘w  = w i’ for sea bass and ‘w  = W2 ’ for

68
All materials in this chapter were taken from [DHS2001] with the permission of the authors and

the publisher
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salmon. Because the state o f  nature is so unpredictable, ‘w ’ can be considered to be a 

variable that must be described probabilistically.

If the catch produced as much sea bass as salmon, it can be said that the next fish is 

equally likely to be sea bass or salmon. More generally, it is assumed that there is some 

‘a priori probability’ (or simply prior) P(wi) that the next fish is sea bass, and some prior 

probability P(w 2 ) that it is salmon. If it can be assumed that there are no other types o f  

fish relevant here, then P(wi) and P(w 2 ) sum to one. These prior probabilities reflect the 

prior knowledge o f  how likely is it to get a sea bass or salmon before the fish actually 

appears. It might, for instance, depend upon the time o f year or the choice o f  fishing area.

Suppose for a moment that it is forced to make a decision about the type o f  fish that will 

appear next without being allowed to see it. For the moment, it should be assumed that 

any incorrect classification entails the same cost or consequence, and that the only 

information allowed to use is the value o f  the prior probabilities. If a decision must be 

made with so little information, it seems logical to use the following decision rule: 

Decide ‘w i’ i f  P(wi) > P(w 2 ); otherwise decide ‘W2 ’.

This rule makes sense i f  just one fish needs to be judged, but if  many fish need to be 

judged, using this rule repeatedly may seem a bit strange. After all, always the same 

decision would be made, even though it is known that both types o f  fish will appear. How 

well it works depends upon the values o f  the prior probabilities. If P(wi) is very much 

greater than P(w 2 ), there is only a fifty-fifty chance o f being right. In general, the
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probability o f  error is the smaller o f  P(wi) and P(w 2 ), and it will be seen later that under 

these conditions no other decision rule can yield a larger probability o f being right.

In most circumstances it is not forced to make decisions with so little information. In this 

example, a lightness measurement ‘x ’ might be used to improve the classifier. Different 

fish will yield different lightness readings, and this variability can be expressed in 

probabilistic terms. Consider ‘x ’ to be a continuous random variable whose distribution 

depends on the state o f  nature and is expressed as p(x | w). This is the ‘class-conditional 

probability density’ function, the probability density function for ‘x ’ given that the state 

o f  nature is ‘w \  It is also sometimes called state-conditional probability density. Then the 

difference between p(x | w i) and p(x | W2 ) describes the difference in lightness between 

populations o f  sea bass and salmon (Figure 5.1).

ism « #j N

Figure 5.1. Hypothetical class-conditional probability density functions show the 

probability density o f  measuring a particular feature value ‘x ’ given the pattern is
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in category w*. If ‘x ’ represents the lightness o f a fish, the two curves might 

describe the difference in lightness o f  populations o f  two types o f  fish. Density 

functions are normalized, and thus the area under each curve is 1.0.

Suppose that both the prior probabilities P(Wj) and the conditional densities p(x | Wj) for j 

= 1,2, are known. Suppose further that the lightness o f  a fish is measured and that its 

value is found to be ‘x \  How does this measurement influence the attitude concerning the 

true state o f  nature, i.e., the category o f  the fish? It is noted first that the (joint) 

probability density o f  finding a pattern, that is in category ‘Wj’ and has feature value ‘x ’, 

can be written in two ways: p(wj, x) = P(wj | x) p(x) = p(x | Wj) P(wj). Rearranging these 

leads to the answer to the question, which is called Bayes formula:

p C x I w ^ W j )
p(wj | x) = --------------------------------------------------------------- (1)

P(x)

where in this case o f  two categories,

2

p (x)=  Z p ( x |w j)P(wj)
M

Bayes formula can be expressed informally in English by saying that,

likelihood * prior
postenor = -----------------------

evidence

Bayes formula shows that by observing the value o f  ‘x ’, the prior probability P(wj) can be 

converted to the ‘a posteriori’ probability (or posterior) P(wj | x); the probability o f  the 

state o f  nature being Wj given that feature value ‘x ’ has been measured. p(x | Wj) is called 

the ‘likelihood’ o f  ‘wj’ with respect to ‘x ’, a term chosen to indicate that, other things 

being equal, the category ‘wj’ for which p(x | Wj) is large is more ‘likely’ to be the true
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category. Notice that it is the product o f  the likelihood and the prior probability that is 

most important in determining the posterior probability; the ‘evidence’ factor, p(x), can 

be viewed as merely a scale factor that guarantees that the posterior probabilities sum to 

one, as all good probabilities must. The variation o f  P(Wj | x) with ‘x ’ is illustrated in 

Figure 5.2 for the case P(wj) = 2/3 and P(W2) = 1/3.

!><„ x<

15i t n

Figure 5.2. Posterior probabilities for the particular priors P(wi) =  2/3 and P(w2) =

1/3 for the class-conditional probability densities shown in Figure 5.1. Thus, in 

this case, given that a pattern is measured to have feature value x = 14, the 

probability it is in category w2 is roughly 0.08, and that it is in wi is 0.92. At 

every ‘x ’, the posteriors sum to 1.0.

Consider an observation ‘x ’ for which P(wi | x) is greater than P(w2 1 x), it will naturally 

be decided that the true state o f  nature is ‘w i’. Conversely, i f  P(w2 | x) is greater than
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P(wi | x), decision will go in favor o f  W2 . To justify this decision procedure, calculate the 

probability o f  error whenever a decision is made. Whenever a particular ‘x ’ is observed, 

the probability o f  error is given by,

[P(w. | x) if  w  2 is decided 
Pferror I x) = •{ (2)

|P (w 2 1 x) if  Wj is decided

Clearly, for a given ‘x ’, the probability o f  error can be minimized by deciding ‘w i’ if  

P(wi | x) > P(w 2 1 x) and ‘W2 ’ otherwise. O f course, exactly the same value o f  ‘x ’ may 

never be observed twice. Will this rule minimize the average probability o f  error? Yes, 

because the average probability o f  error is given by,

P(error) = | P(error,x)chc =  f  P(error \x )p(x)dx
J - 0 0  J - 0 0

and if  for every ‘x ’ it is ensured that P(error | x) is as small as possible, then the integral 

must be as small as possible. Thus, the following ‘Bayes decision rule’ for minimizing 

the probability o f  error has been justified:

Decide wi i f  P(wi | x) > P(w 2 1 x); otherwise decide W2  

Under this rule Eq. 2 becomes,

P(error | x) = min [P(wi | x), P(w 2 | x)]

This form o f the decision rule emphasizes the role o f  the posterior probabilities. By using 

Eq. 1, the rule can instead be expressed in terms o f  the conditional and prior probabilities. 

First note that the ‘evidence’, p(x), in Eq. 1 is unimportant as far as making a decision is 

concerned. It is basically just a scale factor that states how frequently a pattern with 

feature value ‘x ’ will actually be measured; as mentioned earlier, its presence in Eq. 1 

assures that P(wi | x) + P(w2 | x) = 1. By eliminating this scale factor, the following 

completely equivalent decision rule is obtained:
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Decide Wi if  p(x | w i) P(wi) > p(x | W2 ) P(w 2 ); otherwise decide W2 .

Some additional insight can be obtained by considering a few special cases. If for some 

‘x ’, p(x | Wi) = p(x | w2), then that particular observation gives no information about the 

state o f  nature; in this case, the decision hinges entirely on the prior probabilities. On the 

other hand, i f  P(wi) = P(w2), then the states o f  nature are equally probable; in this case 

the decision is based entirely on the likelihoods p(x | Wj). In general, both o f  these factors 

are important in making a decision, and the ‘Bayes decision rule’ combines them to 

achieve the minimum probability o f  error.

5.2 Bayesian decision theory - continuous features

The ideas considered earlier will be formalized in this section, and will be generalized in 

four different ways:

•  By allowing the use o f  more than one feature.

•  By allowing more than two states o f  nature.

•  By allowing actions other than merely deciding the state o f  nature.

•  By introducing a loss function more general than the probability o f  error.

These generalizations and their attendant notational complexities should not obscure the 

central points illustrated in the simple example. Allowing the use o f  more than one 

feature merely requires replacing the scalar ‘x ’ by the ‘feature vector: x ’, where ‘x ’ is in a 

d-dimensional Euclidean space Rd, called the ‘feature space’. Allowing more than two 

states o f  nature provides with a useful generalization for a small notational expense.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

Allowing actions other than classification primarily allows the possibility o f rejection, 

i.e., o f refusing to make a decision in close cases; this is a useful option if  being 

indecisive is not too costly. Formally, the ‘loss function’ states exactly how costly each 

action is, and is used to convert a probability determination into a decision. Cost 

functions relate to situations in which some kinds o f  classification mistakes are costlier 

than others, although the simplest case, where all errors are equally costly, is often 

discussed. With this as an introduction, the more formal treatment is discussed ahead.

Let {w i, ,wc} be the finite set o f  ‘c ’ states o f  nature (categories) and let {a i, ,aa}be

the finite set o f  ‘a’ possible actions. The loss function X(at | Wj) describes the loss incurred 

for taking action a; when the state o f  nature is Wj. Let the feature vector x be a d- 

component vector-valued random variable and let p(x | Wj) be the state-conditional 

probability density function for ‘x ’, with the probability density function for ‘x ’ 

conditioned on Wj being the true state o f  nature. As before, P(wj) describes the prior 

probability that nature is in state Wj. Then the posterior probability P(wj | x) can be 

computed from p(x | Wj) by Bayes formula:

P(wJ|x ) = £ i x |w j)P (w j)
P ( X )

where the evidence is now,

c

p (x)=  £ p (x |w j)P (w j)
j=1

Suppose that a particular ‘x ’ is observed and that taking action a; is contemplated. If the 

true state o f  nature is Wj, by definition the loss ^(a, | Wj) will be incurred. Because P(wj |
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x) is the probability that the true state o f  nature is Wj, the expected loss associated with 

taking action oij is merely,

c
R(<Xj | x) = 5 ]  Ua,  | wj) P(wj | x)

M

In decision-theoretic terminology, an expected loss is called a ‘risk’, and R(ctj | x) is 

called the ‘conditional risk’. Whenever a particular observation ‘x ’ is encountered, the 

expected loss can be minimized, by selecting the action that minimizes the conditional 

risk. It can now be shown that this ‘Bayes decision procedure’ actually provides the 

optimal performance.

Stated formally, the problem is to find a decision rule against P(wj) that minimizes the 

overall risk. A  general ‘decision rule’ is a function a(x) that decides which action to take 

for every possible observation. To be more specific, for every ‘x ’ the ‘decision function’

a(x) assumes one o f  the ‘a’ values: a i ,  ,aa. The overall risk ‘R ’ is the expected loss

associated with a given decision rule. Because R ( a j  | x )  is the action, the overall risk is 

given by,

R = J R (a (x ) | x)p(x)dx

where dx is the notation for a d-space volume element and where the integral extends 

over the entire feature space. Clearly, i f  a(x) is chosen so that R(ctj | x) is as small as 

possible for every ‘x ’, then the overall risk w ill be minimized. This justifies the following 

statement o f  the ‘Bayes decision rule’: To minimize the overall risk, compute the 

conditional risk,
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R(cti | x) = 2  A(a, | wj) P(wj | x) (3)
7=1

for i = 1,.. ,.,a and then select the action a; for which R(cij | x) is minimum. The resulting 

minimum overall risk is called the ‘Bayes risk’, denoted R*, and is the best performance 

that can be achieved.

5.2.1 Two-category classification

Consider these results when applied to the special case o f  two-category classification 

problems. Here action a; corresponds to deciding that the true state o f  nature is w i, and 

action a 2  corresponds to deciding that it is W2 . For notational simplicity, let A,j = X(a, | Wj) 

be the loss incurred for deciding w; when the true state o f  nature is Wj. If the conditional 

risk is stated, given by Eq.3, then the following equations are obtained:

R(ai | x )  = Xu P(wi | x) + P(w2 1 x)

R(a2 1 x) = A-2 i P(wi | x) + X22 P(w2 1 x)

There are a variety o f  ways o f  expressing the minimum-risk decision rule, each having its 

own minor advantages. The fundamental rule is to decide Wi i f  R(ai | x) < R(a2  | x). In 

terms o f  the posterior probabilities, wi is decided if,

(X. 2 1  - A-ii) P(wi I x) > (A. 1 2  - 122) P(w2 1 x)

Ordinarily, the loss incurred for making an error is greater than the loss incurred for being 

correct, and both o f  the factors (A. 2 1  - An) and (A, 1 2  - A2 2 ) are positive. Thus in practice, the

decision is generally determined by the more likely state o f nature, although the posterior

probabilities must be scaled by the loss differences. By employing Bayes formula, the
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posterior probabilities can be replaced by the prior probabilities and the conditional 

densities. This results in the equivalent rule, to decide wi if,

(X. 2 1  - A-n) p(x | w i) P(wi) > (X12 - X22) p(x | w2) P(w2) 

and otherwise decide w2.

Another alternative, which follows at once under the reasonable assumption that X2\ > ^n, 

is to decide wi if,

P ( x | wt ^ /i12-A22 P(w2) 
p (x |w 2) P(w ,)

This form o f  the decision rule focuses on the x-dependence o f  the probability densities.

p(x | wj) can be considered a function o f Wj (i.e., the likelihood function) and then the

‘likelihood ratio’ p(x |Wj)  / p ( x | w 2) can be formed. Thus the Bayes decision rule can

be interpreted as calling for deciding wi if  the likelihood ratio exceeds a threshold value

that is independent o f  the observation ‘x \

5.3 Classifiers, discriminant functions, and decision surfaces

5.3.1 The multicategory case

There are many different ways to represent pattern classifiers. One o f  the most useful is 

in terms o f  a set o f  ‘discriminant functions’ gi(x), i = l,.. .. ,c . The classifier is said to 

assign a feature vector ‘x ’ to class w* if,

g, (x ) > g_, (x ) for all j i- i
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Thus, the classifier is viewed as a network or machine that computes ‘c ’ discriminant 

functions and selects the category corresponding to the largest discriminant. A network 

representation o f  a classifier is illustrated in Figure 5.3.

A  Bayes classifier is easily and naturally represented in this way. For this general case 

with risks, let g, (x) = | x ) , because the maximum discriminant function will then

correspond to the minimum conditional risk. For the minimum-error-rate case, things can 

be simplified further by taking g t (x) = P(wi | x ) , so that the maximum discriminant 

function corresponds to the maximum posterior probability.

action 
(e kVi cUmificntUm}

costs

discriminant
functions

Figure 5.3. The functional structure o f  a general statistical pattern classifier which 

includes ‘d’ inputs and ‘c ’ discriminant functions gi(x). A  subsequent step 

determines which o f  the discriminant values is the maximum, and categorizes the 

input pattern accordingly. The arrows show the direction o f  the flow o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

information, though frequently the arrows are omitted when the direction o f flow  

is self-evident.

Clearly, the choice o f  discriminant functions is not unique. All the discriminant functions

can always be multiplied by the same positive constant or can be shifted by the same

additive constant without influencing the decision. More generally, i f  every g*(x) is 

replaced by f(gi(x)), where f(.) is a monotonically increasing function, the resulting 

classification is unchanged. This observation can lead to significant analytical and 

computational simplifications. In particular, for minimum-error-rate classification, any o f  

the following choices gives identical classification results, but, some can be much simpler 

to understand or to compute than others:

g, (x) = p[w,  I x)  = P  (4)

7=1

g i { x )  = p { x \ w i)p(wi ) (5)

gt (x) = ln p (x  I w ,) + In P(wt) (6)

where ln denotes natural logarithm.

Even though the discriminant functions can be written in a variety o f  forms, the decision 

rules are equivalent. The effect o f  any decision rule is to divide the feature space into ‘c ’ 

decision regions, Ri, . . . . ,Rc.  If g , (* )> g j (*) for all j ^ i, then ‘x ’ is in Rj, and the 

decision rule calls to assign ‘x ’ to w,. The regions are separated by ‘decision boundaries’,
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surfaces in feature space where ties occur among the largest discriminant functions 

(Figure 5.4).

5.3.2 The two-category case

While the two-category case is just a special instance o f  the multicategory case, it has 

traditionally received separate treatment. Indeed, a classifier that places a pattern in one 

o f only two categories has a special name; a ‘dichotomizer’. Instead o f  using two 

discriminant functions gi and g2  and assigning ‘x ’ to wi if  gi > g2, it is more common to 

define a single discriminant function,

g(x) = gi(x)-g2W

and to use the following decision rule: Decide wi i f  g(x) > 0; otherwise decide w2. Thus, 

a dichotomizer can be viewed as a machine that computes a single discriminant function 

g(x), and classifies ‘x ’ according to the algebraic sign o f  the result. O f the various forms 

in which the minimum-error-rate discriminant function can be written, the following two 

(derived from Eqs. 4 and 6) are particularly convenient:

g(x) = P(w, \ x ) - P { w 2 |x )

m  p M  ( )
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Figure 5.4. In this two-dimensional two-category classifier, the probability 

densities are Gaussian, the decision boundary consists o f two hyperbolas, and thus 

the decision region R 2  is not simply connected. The ellipses mark where the 

density is 1/e times that at the peak o f  the distribution.

5.4 The normal density

The structure o f  a Bayes classifier is determined by the conditional densities p(x | Wi) as 

well as by the prior probabilities P(Wi). O f the various density functions that have been 

investigated, none has received more attention than the multivariate normal or Gaussian 

density. To a large extent this attention is due to its analytical tractability. However, the 

multivariate normal density is also an appropriate model for an important situation, 

namely, the case where the feature vectors ‘x ’ for a given class w; are continuous-valued,
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randomly corrupted versions o f  a single typical or prototype vector fij. In this section a 

brief exposition o f  the multivariate normal density is provided, focusing on the properties 

o f  greatest interest for classification problems.

First, recall the definition o f  the ‘expected value’ o f  a scalar function f(x), defined for 

some density p(x):

e  [ /(* ) ]  = f  f (x )p (x )d x
J-oo

If the values o f  the feature ‘x ’ are restricted to points in a discrete set D, summation must 

be done over all samples as,

e [/(*)] =
xeD

where P(x) is the probability mass at ‘x \  Calculations o f  expected values by these and 

analogous equations defined in higher dimensions, may occasionally be needed.

5.4.1 Univariate density

The continuous univariate normal or Gaussian density is defined as,

(8)P(x) = ~^=7~exPV2/lcr

f x - p ^

t y  a

for which the ‘expected value’ o f  ‘x ’ (an average, here taken over the feature space) is,

p  s £  [x] = r  xp(x)dx
J-oo

and where the expected squared deviation or ‘variance’ is,

a 2 = s  [(x -  p f  ] = (x -  p ) 2 p(x)dx
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The univariate normal density is completely specified by two parameters: its mean ‘p.’ 

and variance a2. For simplicity, Eq.8 is often abbreviated by writing p(x) ~  N(p, a2), to 

say that ‘x ’ is distributed normally with mean ‘p’ and variance ‘a2’. Samples from normal 

distributions tend to cluster about the mean, with a spread related to the standard 

deviation ‘a ’ (Figure 5.5).

There is a deep relationship between the normal distribution and ‘entropy’. The entropy 

o f a distribution is given by,

H(p(x)) -  -  J p(x)  In p(x)dx

and measured in ‘nats’; If a log 2  is used instead, the unit is the ‘bit’. The entropy 

measures the fundamental uncertainty in the values o f  points selected randomly from a 

distribution. It can be shown that the normal distribution has the maximum entropy o f  all 

distributions having a given mean and variance. Moreover, as stated by the ‘Central Limit 

Theorem’, the aggregate effect o f  the sum o f a large number o f small, independent 

random disturbances w ill lead to a Gaussian distribution. Because many patterns; from 

fish to handwritten characters to some speech sounds, can be viewed as some ideal or 

prototype pattern corrupted by a large number o f  random processes, the Gaussian is often 

a good model for the actual probability distribution.
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#1 * 2 i :f  p , -  0 I* 4  rt* fi + 2&

Figure 5.5. A  univariate normal distribution has roughly 95% o f its area in the 

range |x - p| < 2a, as shown. The peak o f  the distribution has value p(p) =

l/V 2lcr.

5.4.2 Multivariate density

The general multivariate normal density in ‘d’ dimensions is written as,

p(x)  =
1

-exp Z ^ i x - z u ) (9)(2X)d/1\Y\y2

where ‘x ’ is a d-component column vector, ‘p ’ is the d-component mean vector, ‘£ ’ is 

the d-by-d covariance matrix, and |£ | and X'1 are its determinant and inverse, 

respectively. Also, (x - p /  denotes the transpose o f  (x - p).
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Formally,

/ /  = e  [x]= J xp(x)dx

and,

X = e  [(x -  ju \x  -  p j  ] = J (* -  ~ p f  p i x )dx

where the expected value o f  a vector or a matrix is found by taking the expected values o f  

its components. In other words, i f  Xj is the i component o f ‘ x ’ , g ;  the i component o f  

‘p ’, and ay the ijth component o f  ‘£ ’, then,

Mi = e k ]

and,

<7g =e[(xi-Mitxj -Mj).J 

The covariance matrix ‘£ ’ is always symmetric and positive semidefinite. Attention will 

be restricted to the case in which ‘£ ’ is positive definite, so that the determinant o f  ‘X ’ is 

strictly positive. The diagonal elements a,-, are the variances o f  the respective Xj (i.e., ai2), 

and the off-diagonal elements ay are the covariances o f  Xj and Xj. A  positive covariance 

for the length and weight features o f  a population o f fish would be expected, for instance. 

If x; and Xj are statistically independent, then ay = 0. If all the off-diagonal elements are 

zero, p(x) reduces to the product o f  the univariate normal densities for the components o f  

x’.

The multivariate normal density is completely specified by d + d(d+l)/2 parameters, 

namely the elements o f  the mean vector ‘p ’ and the independent elements o f  the 

covariance matrix ‘£ \  Samples drawn from a normal population tend to fall in a single
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cloud or cluster (Figure 5.6); the center o f  the cluster is determined by the mean vector, 

and the shape o f  the cluster is determined by the covariance matrix. It follows from Eq.9 

that the loci o f  points o f constant density are hyperellipsoids for which the quadratic form

(x -  ju)‘ Z ”1 (x -  /j ) is constant. The principal axes o f  these hyperellipsoids are given by 

the eigenvectors o f  ‘Z ’ (described by <I>); the eigenvalues determine the lengths o f  these 

axes. The quantity,

r2 = ( x - / / ) ' Z  -1 ( * - / “) 

is sometimes called the squared ‘Mahalanobis distance’ from ‘x ’ to ‘p ’. Thus, the 

contours o f  constant density are hyperellipsoids o f  constant Mahalanobis distance to ‘p ’ 

and the volume o f these hyperellipsoids measures the scatter o f  the samples about the 

mean. It can be shown that the volume o f the hyperellipsoid corresponding to a 

Mahalanobis distance ‘r’ is given by,

v=vd\T |VV
where Va is the volume o f a d-dimensional unit hypersphere:

Vd =
7udl2/ ( d / l )  deven

2 dX [ 2 )  d\ dodd

1 / 9
Thus, for a given dimensionality, the scatter o f  the samples varies directly with |ZI •
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Figure 5.6. Samples drawn from a two-dimensional Gaussian lie in a cloud 

centered on the mean p. The ellipses show lines o f  equal probability density o f  the 

Gaussian.

5.5 Discriminant functions for the normal density

The minimum-error-rate classification can be achieved by use o f  the discriminant 

functions,

g , (*) = Inp(x  | w,)+  InP(w, )

This expression can be readily evaluated i f  the densities p(x | Wi) are multivariate normal; 

i.e., i f  p(x | Wj) ~  N(pi, £0- In this case, then from Eq.9,

£ /(* ) = " ( * -  Mt J  £ i i x ~ Mi)~ ^ 2 X ~ \ lnP 'I+ ln P (w‘) (10)

This discriminant function and resulting classification for a number o f  special cases are 

examined ahead.
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5.5.1 C a s e l:£ i  = a2I

The simplest case occurs when the features are statistically independent and when each 

feature has the same variance, a2. In this case the covariance matrix is diagonal, being 

merely cr2 times the identity matrix I. Geometrically, this corresponds to the situation in 

which the samples fall in equal-size hyperspherical clusters, the cluster for the ith class 

being centered about the mean vector jq. The computation o f  the determinant and the

inverse o f  Ei is particularly easy: |E ,| = cr2d and E ,”1 = (l/cr2) / .  Because both |Ei| and 

the (d/2)ln27t term in Eq.10 are independent o f  ‘i ’, they are unimportant additive 

constants that can be ignored. Thus the simple discriminant functions are obtained as,

8 i ( x )  =  ~ r ^  + l n P ( w i )  ( 1 1 )
lG

where | | . || denotes the ‘Euclidean norm’, i.e.,

\\x-u( =

Figure 5.7. If the covariance matrices for two distributions are equal and 

proportional to the identity matrix, then the distributions are spherical in ‘d’ 

dimensions, and the boundary is a generalized hyperplane o f  d - 1 dimensions,
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perpendicular to the line separating the mean. In these one-, two-, and three- 

dimensional examples, p(x | W j )  and the boundaries for the case P(wi) = P(w2) are 

indicated. In the three-dimensional case, the grid plane separates R\ from R2.

If the prior probabilities are not equal, then Eq.l 1 shows that the squared distance | | x  -  p | | 2

• j

must be normalized by the variance a and offset by adding lnP(wi); thus, i f  ‘ x ’ is equally 

near two different mean vectors, the optimal decision w ill favor the ‘a priori’ more likely 

category.

Regardless o f  whether the prior probabilities are equal or not, it is not actually necessary 

to compute distances. Expansion o f the quadratic form (x -  fij)' (x -  / / ,)  yields,

St (x ) = -  ~ T  [x ‘x ~ 2Jui>x + m!  Mi ] + In P{w , )
LG

which appears to be a quadratic function o f  ‘ x ’ . However, the quadratic term x ‘x  is the 

same for all ‘i ’, making it an ignorable additive constant. Thus, the equivalent ‘linear 

discriminant functions’ are obtained as,

S , ( x ) = w l,x + wi0

where,

1

and,

•̂o = ^ ^ V , + l n JP(w;)
LG

Wjo is called the ‘threshold’ or ‘bias’ for the ith category.
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A classifier that uses linear discriminant functions is called a ‘linear machine’. This kind 

o f classifier has many interesting theoretical properties. The decision surfaces for a linear 

machine are pieces o f  hyperplanes defined by the linear equations g, (x) = g  . (x) for the

two categories with the highest posterior probabilities. For this particular case, the 

equation can be written as,

w' (x -  x0) = 0

where,

and,

x0 = H j i t + / / ; ) - - - 2 -A y )  (!2)

These equations define a hyperplane through the point x0 and orthogonal to the vector 

‘w \  Because w = ps - pj, the hyperplane separating Rj and Rj is orthogonal to the line 

linking the means. If P(wj) = P(wj), the second term on the right o f  Eq.12 vanishes, and 

thus the point xo is halfway between the means, and the hyperplane is the perpendicular 

bisector o f  the line between the means (Figure 5.8). If P(wj) /  P(wj), the point xo shifts 

away from the more likely mean. Note, however, that if  the variance a2 is small relative 

to the squared distance ||pj - pj||2, then the position o f  the decision boundary is relatively 

insensitive to the exact values o f  the prior probabilities.

If the prior probabilities P(wj) are the same for all ‘c ’ classes, then the lnP(wj) term 

becomes another unimportant additive constant that can be ignored. When this happens, 

the optimum decision rule can be stated very simply: To classify a feature vector ‘x ’,
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measure the Euclidean distance ||x - mil from each ‘x ’ to each o f the ‘c ’ mean vectors, and 

assign ‘x ’ to the category o f the nearest mean. Such a classifier is called a ‘minimum- 

distance classifier’. If each mean vector is thought o f  as being an ideal prototype or 

template for patterns in its class, then this is essentially a template-matching procedure 

(Figure 5.7).

4-i J

IHft.v*.!'
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Figure 5.8. As the priors are changed, the decision boundary shifts; for 

sufficiently disparate priors the boundary will not lie between the means o f  these 

one-, two-, and three-dimensional spherical Gaussian distributions.

5.5.2 Case 2: £ i = Z

Another simple case arises when the covariance matrices for all o f  the classes are 

identical but otherwise arbitrary. Geometrically, this corresponds to the situation in which 

the samples fall in hyperellipsoidal clusters o f  equal size and shape, the cluster for the i 

class being centered about the mean vector pi. Because both |£j| and the (d/2)ln27t term in 

Eq.10 are independent o f  ‘i ’, they can be ignored as superfluous additive constants. This 

simplification leads to the discriminant functions,

g i ( * ) = - ( * - Mi J I ,  (x ~Mi) + InH wi ) (13)

If the prior probabilities P (W j )  are the same for all ‘c ’ classes, then the ln P ( W j )  term can 

be ignored. In this case, the optimal decision rule can once again be stated very simply: 

To classify a feature vector ‘ x ’ , measure the squared Mahalanobis distance 

from ‘x ’ to each o f  the ‘c ’ mean vectors, and assign ‘ x ’ to the category o f  the nearest 

mean. As before, unequal prior probabilities bias the decision in favor o f  the ‘a priori’ 

more likely category.
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Expansion o f  the quadratic form (x -  J Z, 1 (x -  //,)  results in a sum involving a

quadratic term x 1 X ”' x which here is independent o f  ‘i \  After this term is dropped from 

Eq.13, the resulting discriminant functions are again linear:

g i ( x ) = w i'x + wi0

where,

w, = S ' '  A,

and,

w i0 =  ~ m !  M i  + lnP(w,.)

Because the discriminants are linear, the resulting decision boundaries are again 

hyperplanes (Figure 5.7). If R, and Rj are contiguous, the boundary between them has the 

equation,

w ‘ (x -  x0) = 0

where,

and,

w

1 ( , ) ln[/,(w,)/P(wJJ (  \

Because w = ~Mj )  is generally not in the direction o f ju( - / U j , the hyperplane

separating Rj and Rj is generally not orthogonal to the line between the means. However, 

it does intersect that line at the point x0; if  the prior probabilities are equal, then x<> is 

halfway between the means. If the prior probabilities are not equal, the optimal boundary
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hyperplane is shifted away from the more likely mean (Figure 5.9). As before, with 

sufficient bias the decision plane need not lie between the two mean vectors.

Figure 5.9. Probability densities (indicated by the surfaces in two dimensions and 

ellipsoidal surfaces in three dimensions) and decision regions for equal but 

asymmetric Gaussian distributions. The decision hyperplanes need not be 

perpendicular to the line connecting the means.
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Figure 5.10. Non-simply connected decision regions can arise in one dimensions 

for Gaussians having unequal variance, as shown in this case with P(wi) = P(w 2 ).

5.5.3 Case 3: = arbitrary

In the general multivariate normal case, the covariance matrices are different for each 

category. The only term that can be dropped from Eq.10 is the (d/2)ln27i term, and the 

resulting discriminant functions are inherently quadratic:

g i(x) = x ‘Wix + wi'x + wi0

where,

and,

w,o = ~ m!  i r 1 Mi - ^ ln |Z , |  + InP(w i)
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In the two-category case, the decision surfaces are hyperquadrics, and they can assume 

any o f  the general forms: hyperplanes, pairs o f  hyperplanes, hyperspheres, 

hyperellipsoids, hyperparaboloids, and hyperhyperboloids o f  various types. Even in one 

dimension, for arbitrary variance the decision regions need not be simply connected 

(Figure 5.10). The two- and three-dimensional examples in Figures 5.11 and 5.12 indicate 

how these different forms can arise.

The extension o f  these results to more than two categories is straightforward though here 

it needs to be clear which two o f  the total ‘c ’ categories are responsible for any boundary 

segment. Figure 5.13 shows the decision surfaces for a four-category case made up o f  

Gaussian distributions. O f course, i f  the distributions are more complicated, the decision 

regions can be even more complex, though the same underlying theory holds there too.
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Figure 5.11. Arbitrary Gaussian distributions lead to Bayes decision boundaries 

that are general hyperquadrics. Conversely, given any hyperquadric, one can find
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two Gaussian distributions whose Bayes decision boundary is that hyperquadric. 

These variances are indicated by the contours o f  constant probability density.

m
m :

a

"Yt.....

V
""■■-J/

Figure 5.12. Arbitrary three-dimensional Gaussian distributions yield Bayes 

decision boundaries that are two-dimensional hyperquadrics. These are even 

degenerate cases in which the decision boundary is a line.
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Figure 5.13. The decision regions for four normal distributions. Even with such a 

low number o f categories, the shapes o f the boundary regions can be rather 

complex.

5.6 Bayes decision theory - discrete features

Until now it has been assumed that the feature vector ‘x ’ could be any point in a d- 

dimensional Euclidean space, Rd. However, in many practical applications the 

components o f  ‘x ’ are binary-, ternary-, or higher-integer-valued, so that ‘x’ can assume 

only one o f  ‘m ’ discrete values v i,.. .. ,v m. In such cases, the probability density function 

p(x | Wj) becomes singular; integrals o f  the form,

where it is understood that the summation is over all values o f  ‘x ’ in the discrete 

distribution. Bayes formula then involves probabilities, rather than probability densities:

must then be replaced by corresponding sums, such as,

x
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where,

K*)=l>(-cK>k-)
j =i

The definition o f  the conditional risk R(a | x )  is unchanged, and the fundamental Bayes 

decision rule remains the same: To minimize the overall risk, select the action cti for 

which R ( a j  | x )  is minimum, or stated formally,

a* = argminf?(a | x)
i

The basic rule to minimize the error rate by maximizing the posterior probability is also 

unchanged as are the discriminant functions o f  Eqs.4-6, given the obvious replacement o f  

densities p(.) by probabilities P(.).

5.6.1 Independent binary features

As an example o f  a classification involving discrete features, consider the two-category 

problem in which the components o f  the feature vector are binary-valued and 

conditionally independent. To be more specific, let x  =  (x i,. . . . ,X d ) ‘,  where the components 

X, are either 0 or 1, with probabilities,

P i  = P r [ * /  = ! K ]

and,

q{ = Pr[xf = l |w 2]

This is a model o f  a classification problem in which each feature gives a yes/no answer 

about the pattern. If pi > q , the ith feature is expected to give a ‘yes’ answer more 

frequently when the state o f  nature is Wj than when it is W2 . By assuming conditional
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independence P(x | Wj) can be written as the product o f  the probabilities for the 

components o f  ‘x ’. Given this assumption, a particularly convenient way o f  writing the 

class-conditional probabilities is as follows:

P(x I
i=l

and,

P (x |w 2) = nqix'(1-̂ )1
i=l

y-jt,

Then the likelihood ratio is given by,

P (x |w ,)  X  

P(x|w2) i f
fal Xi ( ' a \ \ - x

y < h , Iw j
and consequently Eq.7 yields the discriminant function,

i=1
x f In—  + (l -  x t )ln -——  

Qi 1-9, + ln P f a l
P(w2)

It can be noted that this discriminant function is linear in the Xj and thus,

d
gi(X) = Y i WiXi + W oi=l

where,

w, =  In Pt(l~ g < )

and,

1 - P i + ln
P (Wl)

M l ~ q i P(w 2)

These results can be examined to see what insight they can give. Recall first that wi is 

decided i f  g(x) > 0 and W2  i f  g(x) < 0. It has been observed that g(x) is a weighted
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combination o f  the components o f  ‘x ’. The magnitude o f the weight w, indicates the 

relevance o f  a ‘yes’ answer for Xj in determining the classification. If pj = q,, Xj gives no 

information about the state o f  nature, and Wi = 0, just as might be expected. If pi > qi, then 

1 - pi < 1 - qi and Wj is positive. Thus in this case a ‘yes’ answer for Xj contributes w, 

votes for wi. Furthermore, for any fixed qi < 1, w; gets larger as p, gets larger. On the 

other hand, i f  pi < qi, w; is negative and a ‘yes’ answer contributes |wj| votes for W2 .

The condition o f  feature independence leads to a very simple (linear) classifier; o f  course 

i f  the features were not independent, a more complicated classifier would be needed. To 

conclude, the more independent the features are, the simpler the classifier can be.

The prior probabilities P(wj) appear in the discriminant only through the threshold weight 

Wo. Increasing P(w;) increases w0 and biases the decision in favor o f  wi, whereas 

decreasing P(wi) has the opposite effect. Geometrically, the possible values for ‘x’ 

appear as the vertices o f  a d-dimensional hypercube; the decision surface defined by g(x) 

= 0 is a hyperplane that separates wi vertices from w 2 vertices.

5.7 Conclusion

The basic ideas underlying Bayes decision theory are very simple. To minimize the 

overall risk, the action that minimizes the conditional risk R(a | x) should always be 

chosen. In particular, to minimize the probability o f  error in a classification problem, the 

state o f nature that maximizes the posterior probability P(wj | x) should always be chosen.
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Bayes formula allows to calculate such probabilities from the prior probabilities P (w j) 

and the conditional densities p(x | Wj). If there are different penalties for misclassifying 

patterns from w; as if  from Wj, the posteriors must be first weighted according to such 

penalties before taking action.

If the underlying distributions are multivariate Gaussian, the decision boundaries will be 

hyperquadrics, whose form and position depends upon the prior probabilities, means and 

covariances o f  the distributions in question. For many pattern classification applications, 

the chief problem in applying these results is that the conditional densities p(x | wj) are 

not known. In some cases the form these densities assume may be known, but 

characterizing parameter values may not be known. The classic case occurs when the 

densities are known to be, or can assumed to be, multivariate normal, but the values o f  

the mean vectors and the covariance matrices are not known. More commonly, even less 

is known about the conditional densities, and procedures that are less sensitive to specific 

assumptions about the densities must be used.
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CHAPTER 6

MODEL APPROACH

6.1 Classifier System

The following steps were taken in order to build the classifier system:

1. Repositioning o f  image by centering it within a 16 x 16 pixel array

2. Extraction o f  eight ‘Central Moment’ features and ‘Covariance’ o f  image (see 

Section 5.4.2)

3. Development o f  Six Classifiers

a. Minimum Distance Moment Classifier (Bayes Moment Classifier with 

Identity Covariance Matrices) (see Section 5.5.1)

b. Bayes Moment Classifier with Identical Covariances (see Section 5.5.2)

c. Bayes Moment Classifier with Individual Class Covariances (see Section 

5.5.3)

d. Bayes Moment Classifier with Individual Class Covariances (Using first four 

moments only) (see Section 5.5.3)

e. Minimum Distance Classifier in Binary Pixel Space (see Section 5.5.1)

f. Bayes Classifier in Binary Pixel Space (see Section 5.6.1)
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4. Training o f  the six classifiers on ‘A ’ set o f 100 samples belonging to six databases 

namely, Lowercase characters, Uppercase characters, Digits, Punctuation, 

Typefaces and Image Qualities.

5. Testing o f  the six classifiers on sets ‘B ’, ‘C’ and ‘D ’ o f  100 samples each 

belonging to six databases namely, Lowercase characters, Uppercase characters, 

Digits, Punctuation, Typefaces and Image Qualities.

6.2 Performance Evaluation

The following is a summary o f the results derived from training the six classifiers on set 

‘A ’ and testing on sets ‘B ’, ‘C’ and ‘D ’, o f  the six databases namely, Lowercase 

characters, Uppercase characters, Digits, Punctuation, Typefaces and Image Qualities.

Lowercase
Test
Set

Classifier A B C D AvgError %AvgError
1 712 721 694 712 709.75 70.98
2 711 732 696 711 712.50 71.25
3 377 396 377 377 381.75 38.18
4 507 534 527 507 518.75 51.88
5 35 35 37 35 35.50 3.55
6 38 37 32 38 36.25 3.63

Table 6.1. Lowercase Character Classes.
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Uppercase
Test
Set

Classifier A B C D AvgError %AvgError
1 708 707 731 693 709.75 70.98
2 707 711 734 700 713.00 71.30
3 358 371 391 345 366.25 36.63
4 471 448 454 436 452.25 45.23
5 37 29 42 31 34.75 3.48
6 40 32 42 39 38.25 3.83

Table 6.2. Uppercase Character Classes.

Digit
Test
Set

Classifier A B C D AvgError %AvgError
1 772 763 775 737 761.75 76.18
2 771 761 776 741 762.25 76.23
3 517 398 497 451 465.75 46.58
4 589 494 557 558 549.50 54.95
5 20 20 15 19 18.50 1.85
6 22 25 25 24 24.00 2.40

Table 6.3. Digit Classes.

Punctuation
Test
Set

Classifier A B C D AvgError %AvgError
1 696 674 720 679 692.25 69.23
2 694 674 714 661 685.75 68.58
3 519 503 547 418 496.75 49.68
4 561 513 626 457 539.25 53.93
5 149 150 155 168 155.50 15.55
6 156 164 168 170 164.50 16.45

Table 6.4. Punctuation Classes.
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Typeface
Test
Set

Classifier A B C D AvgError %AvgError
1 630 713 671 717 682.75 68.28
2 645 717 681 722 691.25 69.13
3 352 447 373 384 389.00 38.90
4 448 553 479 503 495.75 49.58
5 100 130 103 107 110.00 11.00
6 91 109 88 94 95.50 9.55

Table 6.5. Typeface Classes.

Image Quality
Test
Set

Classifier A B C D AvgError %AvgError
1 692 667 687 696 685.50 68.55
2 700 675 691 712 694.50 69.45
3 407 406 375 419 401.75 40.18
4 511 462 462 450 471.25 47.13
5 118 125 101 92 109.00 10.90
6 91 79 71 76 79.25 7.93

Table 6.6. Image Quality Classes.

Summary
Database

Classifier Lower
Case

Upper
Case

Digit
Punct
uation

Type
face

Image
Quality

%Avg
Error

1 70.98 70.98 76.18 69.23 68.28 68.55 70.70
2 71.25 71.30 76.23 68.58 69.13 69.45 70.99
3 38.18 36.63 46.58 49.68 38.90 40.18 41.69
4 51.88 45.23 54.95 53.93 49.58 47.13 50.45
5 3.55 3.48 1.85 15.55 11.00 10.90 7.72
6 3.63 3.83 2.40 16.45 9.55 7.93 7.30

Table 6.7. Summary o f performance evaluation o f  the classifier system.
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6.3 Conclusion

Classifiers 1, 2, 3 and 4 dealt with the ‘Central Moment’ features (8 features) o f  an image 

while Classifiers 5 and 6 dealt with the ‘Pixel Frequency’ and ‘Posterior Probability’ 

features (256 features) respectively o f  an image.

Classifiers 1 and 2 failed on all six databases since the decision boundaries formed were 

linear and hence the error rate got too high. Classifiers 3 and 4 performed comparatively 

well since the decision boundaries formed were quadratic and hence the error rate stayed 

stable. Classifier 4 failed on ‘Lowercase characters’, ‘Digits’ and ‘Punctuation’, and in all 

six databases performed lower than Classifier 3, since only four moments (reduction in 

features) were used as compared to eight in Classifier 3. Classifiers 5 and 6 performed the 

best among all classifiers regardless o f  the database they were tested on, since they used 

256 features (increment in features), although the decision boundaries formed were 

linear.
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In this appendix, font formats and standards are summarized and some statistics, founded 

by P. Karow for some measurements computed from a typeface base, are discussed. 

These measurements allow the differentiation between typefaces from the typeface 

production point o f  view.

A. 1 Digital typeface production

The present section addresses the issue o f  typeface production and rendering and 

discusses a few typeface formats which are commonly used in the industry.

A. 1.1 Digital type rendering

Electronic publishing employs three kinds o f  actors: text editors and formatters, output 

devices (printer, screen, etc.) and font sets. It also requires three types o f  people: the 

author, the reader and the character designer [And93]. Output devices utilize the type 

designer’s drawings to render the text. Through the past century, rendering procedures 

have evolved from the steel movable character in 1435 with Gutenberg to the digital one 

nowadays.

A. 1.1.1 A brief history

The production process o f  conventional steel characters requires many artists and 

artisans: the type designer draws characters on paper. The punch cutter or typeface
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implementer cuts steel punches in a shape articulated by the type designer. These punches 

are utilized to impress a negative image o f  the character typically in brass matrices. The 

founder pours molten metal into these matrices to comprise type. At last, the movable 

type is assembled into lines, inked and then pressed with paper.

The practice o f keyboards by the ‘Lynotype’ and ‘Monotype’ completely changed the 

typographer’s working mode. These machines, controlled by a keyboard, generated line- 

blocks, where characters o f  each line were molded together.

The first fast phototypesetters emerged in the 1950’s. They carried characters on negative 

masters through which photographic paper was rendered one character at a time. The 

photographic paper was then reproduced using a photosensitive plate.

The practice o f  computers has made a revolution in the typesetting world, where 

computers are exploited to edit the text and to pass it on to the phototypesetters or 

printers. With the first generation, texts were loaded on the phototypesetters using 

punched cards. Nowadays, computers and phototypesetters communicate through 

networks.

A  comprehensive presentation o f  printing history is provided in [And93], beginning with 

the Gutenberg invention o f  the mobile steer character and ending with the different 

aspects o f  digital type production.
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A. 1.1.2 Printing model

Roughly all printing engines utilize the following font processing algorithm [And93]:

•  Character selection: each character description is chosen by its name and code;

•  Rendering: an outline and filling algorithm is called that decides which pixels o f  a 

bitmap have to be blackened;

•  Caching: the final character bitmap is saved into cache memory before being 

copied upon request into the page image;

•  Spacing: the starting position o f  the next character is updated using character 

metrics such as width, kerning and side bearings. Nowadays, with raster printers 

and phototypesetters, these values are sparsed into the glyph definitions. They 

need to be made explicit in metric files because DeskTop Publishing programs 

require exact knowledge o f  metrics in order to carry out justification and 

hyphenation tasks. For e.g., each PostScript font is supplied with an AFM (Adobe 

Font Metrics) file, which consists o f  a set o f  information related either to an entire 

font, or to each character individually. A  detailed discussion on AFM files 

organization is given in [And93].

A. 1.1.3 Printing techniques

Plates are made from films by raising, lowering or chemically treating the print area to 

distinguish it from the non-printing area. There are four major printing techniques 

[Col91]:
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1. In ‘letterpress’ technique, the raised surface o f the area to be printed is inked, and 

the image is shifted from the printing plate onto the paper by pressure. The key 

drawback o f this method (oldest technique) is the length o f  time it takes to craft 

the photoengraved plates.

2. The ‘gravure’ technique also employs photoengraved plates, but the image is 

etched into the plate rather than raised out o f  it. The plate is inked and wiped 

clean so that ink stays behind only in the etched area.

3. In ‘offset lithography’, metal plates are prepared photographically by a simpler 

process than the previous two methods. It is currently the most frequently used 

process being comparatively cheaper.

4. With ‘silkscreen’ techniques, printing plates are less costly than litho, but each 

print is more expensive, hence this process is most appropriate for small runs. 

Silk-screening offers very even solids, making it fit for jobs such as posters and 

printing onto fabrics like t-shirts.

A. 1.2 Digital type production

Constructing a database o f  typefaces, independent o f  machine formats, engages the 

creation o f  typeface data for a common database first, which can be utilized later for 

conversion into machine specific formats.
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A. 1.2.1 Production path

Figure A .l illustrates the course o f  a typeface design: (1) the designer draft, (2) outline 

construction using computers, (3) specific machine format conversion, (4) rendering. The 

reader captures the font characters via display or print. Typefaces can be fed into 

computers in a variety o f  ways [Kar94b, AH92, And93]:

• Hand digitizing: font designers frequently do their drawings by hand and then 

digitize the outlines manually point by point by means o f  a suitable software such 

as ‘Ikarus’;

•  Scanning: the font drawings are scanned to get a bitmap, which can then be 

processed by automatic outlining software such as ‘Linus’ or ‘Typo’;

• Interactive design: the designer uses an interactive outline editor (e.g. Fontstudio, 

Type) to draw characters;

•  Programming: character drawings are directly programmed by means o f  specific 

languages, such as PostScript or METAFONT, defined by D. Knuth [Knu93].

The digitized characters formed by designers must be shaped in order to guarantee 

optimal performance on a range o f  display and printing devices. The shaping process may 

imply to ensure that all stems have the same width and that serifs do not differ from one 

character to another. In order to make sure that optimal character rendition occurs at both 

low and medium resolution, hints must be added to the character outline descriptions 

[AH92],
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A. 1.2.2 Font representation

Digital characters o f a typeface may be stored, symbolized and reproduced inside 

computers by numerous methods. These methods vary in their economy, efficiency and 

typographical utility:

1. ‘Bitmap’ representation, where each character is depicted by a grid with on and 

off squares (bits), as illustrated in Figure A.2(a). This form o f  depiction has the 

benefit that it is instantaneously practical for producing an image o f  bits used by 

the printer or screen. However, it needs a substantial amount o f  computer memory 

since predefined samples o f  the typeface characters in each size and style have to 

be stored.
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Figure A .I. The path o f  a typeface from designer to reader (from [Kar94b]).
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The adjustment to a non-available size is done by an extrapolation o f existing 

sizes, which leads usually to a stylistic deformation o f  the characters. In order to 

save memory, other encodings are also available such as ‘run lengths’.

This representation remains especially for display on screens. Additionally, a 

number o f  printing systems still employ bitmap formats such as ‘HP Laser Jet’ 

printers [Col91];

2. ‘Contour’ representation, where each character is depicted by a point series 

representing its contours (see Figure A.2(b)). Since only points on the character 

boundaries are stored, fewer data is needed to encode the glyphs precisely. The 

outline curves may be characterized in several ways such as ‘vectors’, ‘Bezier 

functions’ or ‘quadratic splines’.

In order to print characters in this representation, an adaptation into a discrete grid 

format is needed. The alteration o f the contour to the grid is still not a solved 

problem [Her93a, And93]. The outline description is usually accompanied by a 

set o f ‘hints’, allowing software:

•  To solve the issue o f  the contour alteration to the grid;

•  To produce, without any deformation, characters o f  different sizes and 

styles.

3. ‘Algorithmic’ representation, which may be parametric, allows a variety o f  

designs to be produced merely by parameter changing. METAFONT is a 

renowned language permitting the description o f characters as programs [Knu93].
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Figure A.2. Characters described (a) by their bitmaps and (b) by their contours.

The description and utilization o f  these techniques followed a technological evolution 

[And93]:

•  Characters are depicted and used directly as bitmaps;

• Characters are expressed by their contours;

•  A  better alteration o f contours to the grid, respecting typographical properties o f  

individual characters, is established;

• A  reflection on typographical properties between characters (optical adjustment, 

kerning, etc.) is done;

•  Gray level characters are devised and utilized to render texts [Her93b].

A. 1.3 Standard formats

Nowadays, computers store fonts as outlines and furnish them with hints for sharp 

rendering. This method utilizes the same format to produce text on display screens, laser

printers or typesetting machines. ‘Hints’ play a vital role in the quality o f  the text

rendered on low resolution devices, especially for small size texts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

Many formats describing characters by their contours are accessible in today’s market:

1. ‘TrueType’ format, supported by ‘Apple’ for their ‘Macintosh systems’ [Com90], 

is presented as a programming language based on stack manipulations. It does not 

hold rules for the alteration to the grid, but possess some tools allowing to define 

rules and to apply them on the contour. In this type o f  format, the character 

contour is deformed in order to be tailored to the discrete points grid.

The curves o f  an outline are represented by a series o f  parabola sections, defined 

by on-curve and off-curve control points. Besides character data, the ‘TrueType’ 

format consists o f  keyboard layout information, spacing, naming, font statistics 

and other typographical data.

2. ‘Adobe T ypel’ format implemented by the ‘PostScript’ language, pursues the 

approach contrary to the TrueType’s one. It deforms the discrete points grid to 

adjust it to the character contour. The grid lines and columns are spread vertically 

and horizontally in an optimal way to achieve an exact conversion o f  characters.

In this format, character outlines are expressed by straights, Bezier curves and 

other special operators.

3. ‘F3 Language’, from SUN Microsystems, is a common programming language 

employed especially to describe geometric forms (characters) and their 

conversion to ensure optimum bitmap-format output at different resolutions.
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Contours o f  F3 type characters are expressed as closed curves using straights, 

Bezier curves or conics.

4. ‘Intellifont System’ from Agfa Compugraphics is a native format o f  the ‘Hewlet 

Packard Laserjet III’ series. It is a rasterizer software producing character bitmaps 

or outlines in different resolutions and sizes using fonts in the FAIS format (Font 

Access and Interchange Standard).

In reality, each system comes with its particular font format, which leads to several, 

slightly dissimilar, versions o f  the original typeface design.

A.2 Typeface statistics

Peter Karow [Kar93] did a statistical study o f  about 1795 out o f  3000 hand-digitized 

typefaces stored in the ‘Ikarus’ format [Kar94b]. The statistics were computed from 

measurements corresponding to some font metrics. From this set, 1049 fonts were 

seriffed and 485 sans-serif. The key measurements were:

1. Guidelines: four guidelines were described as illustrated in Figure A.3(a): X- 

height (Xh), x-height (xh), ascender (ah) and descender (dh), computed from

special characters (I, h, p, e, c, o).

Figure A.3. (a) Guidelines definition. (b) Vertical and horizontal stroke definition.
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The measurements proved that all fonts have roughly the same ‘Xh’, but different 

‘xh’, ‘ah’ and ‘dh’ proportions. Table A .l demonstrates the average proportion o f  

the ‘xh’, ‘ah’ and ‘dh’ measurements in the ‘Xh’ values. It can be noticed that:

•  Sans-serif fonts have bigger ‘xh’ than seriffed ones but smaller ‘ah’ and 

‘dh’;

•  Italic characters have slightly bigger ‘ah’ and ‘dh’ than upright ones.

x-height / Xh ascender /  Xh descender / Xh contrast

Upright Italic Upright Italic Upright Italic Upright Italic

seriffed 69.0% 69.0% 35.7% 36.0% 31.4% 32.3% 0.50% 0.47%

sans-serif 72.0% 71.5% 29.6% 30.9% 27.2% 28.1% 0.82% 0.82%

Table A .I. Proportion o f  the ‘xh’, ‘ah’ and ‘dh’ in the ‘Xh’ value, and contrast values.

2. Stroke widths: characters are largely composed o f  vertical and horizontal strokes 

(Vs and Hs) (see Figure A. 3(b)). The statistics measured the width (thickness) o f  

these strokes and computed them from special characters, i.e. I, 1 and H. The 

‘contrast’ measures the ratio o f  horizontal to vertical stroke widths.

Table A .l shows an obvious distinction between seriffed and sans-serif fonts. 

Sans-serif typefaces have a very low contrast (82%), while seriffed ones have 

high contrast with a ratio value o f  50%. This measurement authenticates the 

mono-line feature o f sans-serif fonts versus the stressed feature o f  seriffed fonts.
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3. Character width and side bearings: these were measured on characters H, O, V as 

well as on n, o, and v. As shown in Table A.2, the left and right side bearings 

amount to 10% o f the total width for sans-serif typefaces against 5% for the 

seriffed ones.

In reality, seriffed glyphs are relatively wider than sans-serif ones: 75% vs. 63% 

o f  the body size. This is largely due to serifs which take up an important place in 

the character width.

character width left side bearing right side bearing

Upright Italic Upright Italic Upright Italic

seriffed 75.0% 75.0% 3.0% 0.0% 3.0% -5.0%

sans-serif 63.0% 63.0% 6.0% 3.0% 6.0% -2.0%

Table A.2. Proportion o f  the total width, left and right side bearings in the body size

(character H).

4. Complexity: this represents the average number o f  contour elements o f  a 

character set. Comer points, straight lines, inflection points and curves, extracted 

from the character outline, are assumed as contour elements.

The measurements separated sans-serif typefaces (simple typefaces), with an 

average o f  20 contour elements, from the seriffed ones (more complex) with 30
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elements. Still, a sans-serif ‘m ’ is more complex than a seriffed ‘1’. Therefore, this 

measurement is applicable only if  computed from a large number o f  characters.

5. Serifs: measurements were taken for the serif length, foot and leg heights, as 

illustrated in Figure A.4. They were logically computed from seriffed typefaces 

and mostly extracted from characters I, i and 1. Table A.3 traces the intervals 

representing the measurement variations.

Measurements, especially serifs length, have revealed a wide range o f  values: 

from 1% to 24% o f the typeface body, but they have also proved that serif lengths 

o f main typefaces are distributed around the mean value (11%).

serif leagiti 

* serif foot
serif teg

Figure A.4. Serif components.
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capitals (I) lowercase (i) numerals (1)

min max means min max means min max means

length 1% 24% 11% 0.5% 10% 6% 0.5% 20% 9%

foot height 0.1% 14% 4% 0.1% 14% 4% 0.1% 14% 4%

leg height 0.5% 25% 10% 0.2% 20% 8% 0.2% 30% 10%

Table A.3. Serif measurements values expressed as percentage o f  the body size.

In conclusion, guidelines, contrast, character width and complexity measurements have 

principally differentiated seriffed from sans-serif fonts, while serif measurements have 

revealed their wide shapes and hence do not allow distinguishing seriffed typefaces.
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The classifier system represents 10 fonts corresponding to 4 typefaces with 3 font per 

typeface except the Avante-Garde, which only has a single font.

• 1 seriffed Postscript typeface: Times;

• 2 sans-serif Postscript typefaces: Helvetica and Avant-Garde;

•  1 typewriter Postscript typeface: Courier

For each typeface 2 weights (regular, bold), 1 slope (italic) and 1 size (12pt) were 

considered. Following are samples o f  the considered typefaces o f  the character ‘e ’.

C hlO w8 b9
. . . .  X X X .

. . X  . . X X X

. X X  . . X X X

. X X X . X X X

. X X  . .

X X X  . .

. X X  . .

. X X X  . . . .

. X X X X X X X

. . xxxxx .

‘Regular’ 
(Times New Roman)

C h9 w8 b8
. . . .  X . XX

. . X X X . X X  

. . X X . . X X

. X X X . X X .

. xxxx .
X X X . . .

. X X . . .

. X X X . .

. X X X . .

C hlO w9 b9 
. . xxxxx. .
. . xxxxxxx 
. X X X . xxxx 
xxxxxxxxx 
. xxxxxxx. 
xxxxx. .
. X X X . . .

. xxxx . .

. xxxxxxx 

. . .xxxx.

‘Italic’
(Times New Roman)

‘Bold’
(Times New Roman)

C hl2  w l l  b l l C h l2  w l l  b l l C h l2  w l l  b l l
. . . .  X X X  . . . .

. . . . xxxx . . .
. . X X X X X X X . .

. . . X X X X X X X X . . X X X X X X X X .

. X X X X X X X X . .
. . xxxxxxxxx . X X X X X X X X X .

. X X X . . . X X X .
. X X X X . . . X X X . X X X X X X X X X X

. X X X . . . X X X .
. X X X  . . . .  X X X . x x x x x x x x x x

. x x x x x x x x x x
. x x x x x x x x x x . x x x x x x x x x x

x x x x x x x x x x .
. x x x x x x x x x x x x x x x x x x x x x

x x x x x x ...............
X X X X X X . . X . . x x x x x x x x x x .

. X X X . . . . X . .
X X X ................X . . . x x x x . . x x x x

. X X X X . . X X X .
. X X X . . x x x x . . x x x x x x x x x x

. . X X X X X X X X .
. X X X X X X X X . . . . X X X X X X X X .

. . . x x x x x x . .
. . X X X X X X . . .

. . . x x x x x x . .

. . . X X X X X X . .  

. . . X X X X X X . .

‘Regular’ ‘Italic’ ‘Bold’
(Helvetica) (Helvetica) (Helvetica)
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C hlO wlO b9 C hlO w l l  b9 C hlO w l l  b9
. . . xxxx . . . . . . .  X X X  . . . . . . . X X X X X . . .

. . xxxxxxx. . . . X X X X X X X . . . X X X X X X X X .

. X X X  . . . .  X X . . X X X  . . .  X X . . xxxxxxxxx .

. X X ................X X . X X ................X X X X X X X X X X X X X X

. X X X X X X X X X . xxxxxxxxxx xxxxxxxxxxx
xxxxxxxxxx xxxxxxxxxx . X X X X X X X X X X X

. X X ....................... X X X ........................... xxxxxxxxxxx

. X X ....................... . X X ........................... . xxxxxxxxxx

. X X X  . . . .  XX . X X X . . . X X . . . X X X X X X X X X X

. . .  X X ................ . . X X X ................... . . . X X X X X . X .

‘Regular’ ‘Italic’ ‘Bold’
(Courier) (Courier) (Courier)

C hl2  wl2 b l l  
. . . xxxxxx. . .
. . xxxxxxxxx.
. X X X X . . . X X X .

. X X X ................. X X X

. X X X ................. X X X

xxxxxxxxxxxx
X X X X X X X X X X X X

. X X X ...........................

. X X .........................X X

. X X X  . . . .  X X X .

. . X X X X X X X X X .

. . . X X X X X X . . .

‘Regular’
(Avante-Garde)

The classifier system was also tested on five other databases, namely Lowercase, 

Uppercase, Digit, Punctuation and Image Quality.
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Following are samples o f  the considered lowercase characters.

C hlO w8 b9
. . . X X  . .

. X . . X X .

X X . . X X X  

. . . .  X X X  

. . . . X X X

X X X . X X X  

X X . . X X X  

X X X . . X X X  

xxxxxxx
X X X . . XX

‘a’

C hlO w9 b9
X X  . .

. . x . . . X X X

. X X  . . . X X  .

. X X  . .

. X X  . .

X X X  . .

. X X  . .

. X X X  .

. xxxxxxx.

. . . xxxx . .

C

C hlO w8 b9
. . . .  X X X .

. . X . X X X

. X X  . X X X

. X X X X X X

. X X  .

X X X  .

. X X  .

. X X X . • •

. xxxxxxx 

. . xxxxx.

(Times New Roman) (Times N ew  Roman) (Times New Roman)

C hlO wl4 b9
. X X  . . X X  . . xxxx.
. X X X X X X X X . X X X .

xxxx . . X X X . . X X X

. X X  . . . X X X . . X X X

. X X .  . . X X X . . X X X

. X X  . . . X X X . . X X X

. X X  . . . . X X . . . XX

. X X  . . . X X  . . . X X X

. X X  . . . X X . . . . XX

. X X  . .

m

C hlO w9 b9 
. x x x x x x . .
. xxxxxxx.

X X X X X X X .

. X X  . . X X  .

X X X  . . X X  .

X X X . . X X .

. X X  . . X X X

. X X  . . X X  .

. X X  . . X X  .

. . X  .

‘n ’

C hlO wlO b9
.......... X X  . . .

. . X X  . . X X X  .

. X X X  . . xxxx

. X X  . . . . X X X

. X X .  . . . X X X

X X X .  . . . X X X

. X X  . . . . X X X

. X X X  . . . X X  .

. . X X  . . . X X  .

.  . . X .

(Times New Roman) (Times N ew Roman) (Times New Roman)

C hlO w6 b9
. X X . X X

. xxxxx 
xxxxx .
. X X  .

X X X  .

X X X  .

. X X  .

. X X  .

. X X  .

. . X  .

C hlO w9 b9
. X X  . . . X . .

. X X  . . . X X X

. X X .  . . X X .

. X X  . . . X X  .

. X X .  . . X X X

. X X .  . . X X .

X X X  . . . X X X

. X X  . . . X X X

. X X X  . X X X  .

. . X X X

‘u’

C h9 w8 b9
. X X  .

X X X  .

. X X X  

X X X  

. XX  

. xxxx.

. xxxx.

. . X X X .

. . X X X .

X

(Times New Roman) (Times New Roman) (Times New Roman)
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C h9 w7 b9
X X X  . . . .

xxxxxx. 
xxxxx. .
. xxxx . .
. . X X X  . .

. . X X X . .

. xxxxx.

. X . . X X .

. . . .  X X X

(Times New Roman)

Following are samples o f  the considered uppercase characters.

C hl2  w9 b l l  
x x x x x x . . .
X X X . xxxx .
X X . . . X X X .

X X . . . X X X .

X X X . . xxx . 
X X X X X X X X . 

X X X X X X X X .

X X X . . . X X .

xxx . . . X X X

xxx . . . xxx
xxx . . xxx .
. X .  .

‘B ’
(Times New Roman)

C hl2  wll  b l l  
. . . xxxxxxx.
. . X X X . . . X X X

. x xx . . .

. XX. . . .
xxx . . . .
xxx
xxx . . . .
x x x x . . .
. XX. . . .
. x xx . . .
. . x xx . .
. . . XX..

‘C’
(Times New Roman)

C hl2  w l l  b l l
. X X X X X X X . . .

. x xx . . x xx . .

. X X  . . . . x xx .
xxx . . . . . xxx
. X X  . .

. X X  . .

. X X  . . . . . xxx

. X X .  .

. X X  . .

. X X  . . . . x x x .

. X X X . . x xx . .

. X X  . .

‘D ’
(Times New Roman)

C hl2  w9 b l l C h l2  w3 b l l C h l2  w5 b l l
. X X X . . X X . X X X . . xxx
. X X X . . .  X X xxx . . xxx
. X X ................... xxx . .xxx
xxx ............ xxx . . xxx
. X X ................... xxx . . xxx
. xxx . x x x . xxx . . xxx
. X X X . X X X . xxx . . xxx
. X X ................... xxx . . X X X
. X X ................... xxx . . xxx
. X X ................... xxx . . xxx
. X X X . . . .  X xxx xxxx .
. . X ................... . X . x xx . .

‘E’ T T
(Times New Roman) (Times New Roman) (Times New Roman)
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C h l l wl2 b l l
. . . xxxxxx. . .
. . xxx . . X X . .
. xxx . . . x x x .
. X X .  .

X X X  . . . . . xxx
X X X  . .
X X X .  .
xxxx . . . . xxx
. X X  . .
. x xx . . . x x x .
. . xxx . . X X  . .

‘O’
(Times New Roman)

C h i 2 w9 b l l
. X X X X X X . .

. x x x . x x x .

. x x . . . x x x  

x x x . . . x x x  

. X X . . . x x x  

. x x x x x x x .

. x x x x x x . .

. x x x x x x . .

. x x . . x x x .

. X X . . x x x x  

. X X X . . X X X  

. X X ...................

C hl2 wlO b l l
. x x x . . . XX

. X X  . . . . XX

. X X .  .

x x x . .

. X X .  . . . .  X

. X X  . . . . .  X

. X X  . .

. X X  . .

. X X  . .

. x x x . . . X .

. X X X X . . X .

. . . X .

‘R ’
(Times New Roman)

‘U ’
(Times New Roman)

C hl2 w9
X X .  . .

xxx . . . X X

xxx. . . X X

xxx. . . X .

. xxx . . X .

. X X X . X X  .

. . xxx X  . .

X X X X  .

. X X X  .

. x x x .

. . X X  . 

. . X  . .

‘V ’
(Times New Roman)
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Following are samples o f the considered digits.

C h!2 w9 b l l
. . X X X X . . .

. . XX  . x x x .

. X X  . . . X X  .

. X X .  . . X X  .

X X X .  . . xxx
X X X .  . . X X X

xxx. . . X X X

xxx. . . X X  .

. X X .  . . X X  .

. X X .  . . X X .

. . XX  . . X  . .

. X .  .

‘ 0 ’

(Times N ew  Roman)

C h l l  w3 b l l
X X  .

X X  .

X X  .

X X  .

X X  .

X X  .

X X  .

X X .

X X  .

X X  .

X X X

6r
(Times New Roman)

C hl2  w6 b l l
X X X X X .

X X X X X .

X X  .

X X  .

xxx
X X  .

X .  .

X  .

xxxxx . 
xxxxx .

‘ 2 ’

(Times New Roman)

C hlO w6 b l l C h l l  w7 b l l C h l2  w7 b l l
xxxx . . . . . .  X X . . xxxxx .
X X X X X . . . . .  X X . . xxxxx .
. . . X X . . . . x x x . . X X . . . .

. . .  X X . . . . x x x . x x x x . . .

. . X X . . . . . x x x . xxxxx . .

. xxxx. . . . .  X X . . . xxxx .

. . X X X . . . . .  X X . . . . . xxx

. . . xxx xxxxxxx ................XX

. . . .  X  . xxxxxxx ................X .

. . . .  X . . . . X X X . ................X  .

. . . .  X X . X X ................

. X ................

‘3 ’ ‘4 ’ ‘5 ’
(Times N ew  Roman) (Times New Roman) (Times New Roman)

C hl2  w8 b l l

X X X

X X

X X X

X X X  . X

X X X X X X X X

xxx xxx
xxx X X

xxx X X

XX XX

X X X . . X X

5

C h l l  w7 b l l  
. xxxxxx 
xxxxxxx

X X

X X

X X

X X
X X

X X

5

C h l l  w7 b l l
. . X . X X .
. X X . . X X  

. X X . . X X  

X X X . . X X

. xxxxx .

. . xxxx .

. . xxxxx 

. X X . xxx

. X X . . XX  

. X X . . . x 

. X X . . X X

(Times N ew  Roman) (Times New Roman)
‘ 8 ’

(Times New Roman)
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. xxxx . .
X X  .

. X X  . . XX

x xx . . XX

x xx . . XX

X X  . . XX

X X X X X X X

. xxxxxx
X X  .

x x x .
X X .  .

(Times New Roman)

Following are samples o f  the considered punctuation.

C h i  wl b l C h2 w2 b l
xx
xx

(Times New Roman) (Times New Roman)

C h7 wl h i

C .  9

C h8 w2 b7

xx
xx

9

C h2 w4 b4 
xxxx 
x x x .

( 9

(Times New Roman)

C h l l  w3 b l l

. xx

X X  .

(Times New Roman) (Times New Roman) (Times New Roman)
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C h l l  w6 b l l
xxx .

C h l l  w4 b l l

X X

XX

X X

X X

X X

X X  .

X X  .

X X  .

< n

C hlO w4 b9 
. . x x

. X X  .

. X X  .

x x x .

. X X  .

X X .  .

x x x .

. X X  .

. X X  .

. . X .

(Times New Roman) (Times New Roman)
r

(Times New Roman)

C hlO w3 b9

X X  .

X X .

X X X

X X .

X X

X X

X X

(Times New Roman)
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Following are samples o f  the considered image qualities o f  the character ‘e’.

C h9 cnCO

. . x . xxx .

. x . . . X X  .

X X  . . . . XX

X .  . . . X . X

X . . .

X X  . .

X X .  . . . . .
x xx . . . X .

. xxxxx. .

‘ideal’
(Times New Roman)

C h l l  w9 blO
.................X . . .

. . xxxxxx.

. . xxxxxx. 

.xxx.xxxx

. X X X X X X X X  

X X X X X X X X .

x xx ............
xxxx . . . . x
. X X X X X X X X  

. X X X X X X X X  

. . X X X X X . .

‘fat’
(Times New Roman)

C hl2  w8 b l l
. . X X X X . .

. xxxxxx.
X X . . . xxx 
X X . . xxxx 
xxxxxxx.
X X ...................

X X ...................

X X ...................

x xx .........
X X X X . . X .

. xxxxxx.

. xxxx . . .

‘tall’
(Times New Roman)

C hlO w9 b9 
. . . xxxx . .
. . X X . x xx .
. X X . . xxxx
. X X X X X X X X  

X X X X . X . X .

X X X ...................

. X X ...................

. x xx .........

. xxxxxxx.

. . . x xx . . .

‘blurl’ 
(Times New Roman)

C hlO w8 b9

X X X

X X

xxx xxx
X X

X X

X X

X X

xxx

‘thin’
(Times New Roman)

C hlO w l l  b9 
. . . x x x x x x . .

. x x x x . x x x x x  

x x x . . . . x x x x  

x x x x x x x x x x x

x x x x x ...................

x x x ...........................

x x x ...........................

X X X X X . . . .  X X  

. X X X X X X X X X .

. . X X X X X X . . .

‘wide’ 
(Times New Roman)

C h9 w8 b8
. . . . X X X X

. . . xxxxx 

. xxx . xxx 
xxxxx. . .
xxx .........
xxxx . . . .
. xxx . . . .
. xxxx. . .
. xxxx . . .

‘blur 2 ’ 
(Times New Roman)

C h l l  w9 blO
.................X  . . .

. . . . xxxx .

. . X . . x x x .

. X X . . . X X .

. X X X X X X X X  

X X X X X X . X .

x xx ............
. X X ...................

. xxxx . . . .

. xxxxxxx.

. . xxxx . . .

‘noisy’ 
(Times New Roman)

C hlO w9 b9
 x . . .
. . xxxxxx.
. X X . . . X X .
. X X X X X X X X

xxx . . . xxx
X X .......................

X X .......................

xxx ............
xxxx.........
. . xxx . . . .

‘ro tl’ 
(Times New Roman)
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C hlO w9 b9 
. . . x x x . . .

. . x x x x x . .

. x . . x x x . .

. X X . x x x . .  

x x x x x . . . .

x x x ...................

x x x ...................

. X X X . . .  X X

. x x x x x x x .

. . x x x x x . .

‘rot2’
(Times New Roman)
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