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A simple graphical method for calculating the standing wave
frequencies on a rectangular membrane
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Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
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In introductory physics courses, simple arguments based on traveling waves on a string are used to

relate the frequency of standing waves to boundary conditions, e.g., the fixed ends of the string.

Here, we extend that approach to two-dimensional waves such as the oscillations of a rectangular

membrane with edges fixed at the boundary. This results in a graphical method that uses only simple

geometry and is suitable for explaining two-dimensional standing-wave oscillations to non-science

majors, e.g., in a physics of sound and music class. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0001299

I. INTRODUCTION

Standing-wave oscillations on a string are a fundamental
component of any course on the physics of sound and music.
Work can be found in the pedagogical literature on appar-
tuses,1–4 demonstrations,5–7 student laboratories and proj-
ects,8,9 and principles.10,11 Standing waves are the “building
blocks” from which any periodic vibration (e.g., that of a
plucked guitar string12–14) can be constructed (thanks to
Fourier’s theorem). The frequencies of the standing-wave
oscillations for a string of length L fixed at both ends are
given by

fn ¼ n
v

2L
; n ¼ 1; 2;…; (1)

where v is the velocity of the waves on the string. The fact
that only a discrete set of frequencies (labeled by the har-
monic number n) are allowed for the standing waves can be
easily demonstrated in the classroom, e.g., using a mechani-
cal vibrator with an adjustable driving frequency attached to
one end of a string under tension. Another demonstration of
the nature of the oscillations is the motion of the string if it is
plucked or bowed. When the frequency content of this
motion is studied with a spectrum analyzer one sees contri-
butions from these special harmonic frequencies. Sounds
that have large contributions from many harmonics are often
perceived as having a “richer” tone than sounds that have
contributions from only a few harmonics.

Typically, the standing wave frequencies (1) are derived
from the fundamental relation

v ¼ fk (2)

for a periodic wave with frequency f and wavelength k,
noting that only an integer number of half-wavelengths can
fit on a string of length L fixed at both ends—i.e., n k=2 ¼ L
or

k ¼ 2L=n; n ¼ 1; 2;…: (3)

This restriction on k in turn restricts the allowed frequencies
f ¼ v=k to the values given in (1).

This idea of starting with fixed boundary conditions and
“fitting in” the waves can be generalized to higher dimen-
sions. For example, for a two-dimensional rectangular

membrane with edge lengths Lx, Ly, fixed at the boundaries,
one typically proceeds using separation of variables,15,16

assuming a product-form solution to the two-dimensional
wave equation, and requiring that the solution vanish on the
boundaries (see Appendix A for details). This restricts the
form of the product solutions, ultimately leading to standing-
wave oscillations with frequencies

fnm ¼
v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Lx

� �2

þ m

Ly

� �2
s

; n;m ¼ 1; 2;…; (4)

where n, m label the oscillation mode. However, unfortunately,
the mathematical steps in the standard approach leading to the
above expression are not appropriate for an introductory phys-
ics course, especially for non-science majors.

So, here we present an alternative (mostly) graphical
approach for obtaining the standing-wave frequencies on a
rectangular membrane, which requires only algebra and
some basic high-school geometry. We start in Sec. II by
rederiving the standing-wave frequencies on a 1D string by
superimposing oppositely directed traveling waves but in a
slightly different way than usual. Rather than starting with
the boundary conditions and “fitting” in the waves—an order
of ideas that we may call the “boundary-first” approach—we
will do it the other way around. That is, we start with the
superposition of the traveling waves and point out that the
resulting nodes are “opportunities” to introduce the boundary
conditions. In other words, we first find the nodes and then
introduce the fixed ends of a string—a “boundary-last”
approach that will better serve the argument for the 2D mem-
brane that we discuss in Secs. III and IV. For the 2D case,
we first superimpose oppositely directed quasi-1D traveling
waves to get quasi-1D standing waves and then superimpose
those quasi-1D standing waves to get the final 2D standing-
wave oscillations having fixed rectangular boundaries. We
conclude in Sec. V with a brief discussion.

We relegate to the Appendixes more advanced mathemati-
cal details: a brief summary of the standard separation-
of-variable approach for 2D rectangular membranes
(Appendix A), a graphical version of the boundary-first
approach (Appendix B), and a trigonometric proof that a
superposition of oppositely directed traveling waves yields
standing waves (Appendix C).
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II. 1D STANDING WAVES AS COMBINATIONS OF

TRAVELING WAVES

So, let us begin with the 1D case by considering traveling
waves on an “infinite” string (more generally for a 1D wave
with no boundaries). In this approach to the problem, the
wavelength k (or, equivalently by (2), the frequency f) of the
waves can have an arbitrary specified value. The top curve in
Fig. 1 shows such a traveling wave. Let us focus on a partic-
ular location on the first wave pattern, a point at which the
deviation of the string (i.e., its displacement away from its
equilibrium position) is zero. This point moves to the right.
Immediately below that wave is a picture of another wave
that has the same wavelength and same amplitude, but it
travels to the left. There will be some point on this pattern at
which the deviation is zero, and this point moves to the left.
There will be some instant, let’s somewhat arbitrarily call it
time t¼ 0, at which these two points line up, an event that is
marked by the vertical dashed line in Fig. 1.

Now, let us combine the right- and left-moving waves into
a single dynamical motion of the string. We do that by sim-
ply adding the deviations of the two waves away from equi-
librium, taking into account the signs of the deviations. As
time increases, the contribution from the right-moving wave
will decrease, while that of the left-moving wave will
increase at the same rate, so the deviation of the combined
wave will remain zero; we call such a point a node in the
combined wave. It is easy to see that there will be an infinity
of such nodes, one at every half wavelength.

We show the result of combining the waves in the third
panel from the top in Fig. 1, where we show the pattern of
deviations for the combined wave not only at t¼ 0 (corre-
sponding to the solid curve with the largest amplitude) but
also at subsequent (and earlier) times. Since the nodes are
permanent zeroes, the motion of the string between the nodes
is that of just oscillating up and down, something that is
called a “standing wave” (standing because it is not travel-
ing, showing no preference for right or left).

In the bottom-most panel of Fig. 1, we show one more
curve in order to introduce a new notation that will be very
useful below. We show the standing-wave pattern at an
instant of time, e.g., at the time we have chosen to call t¼ 0,
and we denote with plus and minus the sign of the deviation
for the half wavelengths between the nodes.

Finally, we raise the issue of boundary conditions, and
note that the nodes of the standing-wave oscillations are
locations at which we can place boundaries, e.g., mechanical
fixtures for a string at which the string is fixed to have zero
deviation, like the fixed ends of a guitar string.

It follows that the length L of a bounded string must be an
integer number, call it n, of half wavelengths, so L ¼ n k=2.
So, in this approach, where we start with traveling waves
having an arbitrary wavelength (or frequency), it is the
length of the bounded string that is constrained by the
requirement that it have fixed ends. This is the boundary-last
approach, but the real value of this argument requires that
we turn it around in order to apply it to the physical situation
we confront—one in which nature, or, e.g., a guitar maker,
gives us the value of L, and we are to infer the wavelength
(or frequency) of the traveling waves that combine to yield
standing waves fixed at the boundaries. So, for the boundary-
first approach, if there are n oscillating sections of the string
(i.e., sections between nodes) and the string has fixed ends a
distance L apart, then the frequency of the oscillation is
f ¼ v=k ¼ nv=2L, which is the same as (1).

III. 2D STANDING WAVES FROM ORTHOGONAL

STANDING WAVES

We now consider an “infinite” 2D membrane, the 2D
extension of our infinite 1D string. This could be something
like a drumhead, except that—like the string initially consid-
ered above—it has no boundary. We start by realizing that
there can be quasi-1D traveling waves in this membrane.
These are waves (often called plane waves) that have
straight-line wavefronts (e.g., lines of maximum deviation)
and which propagate in a direction perpendicular to those
wavefronts. The left panel of Fig. 2 shows such a wave. We
can imagine this to be a quasi-1D wave traveling either
toward or away from us. Or we can imagine it, as will we
now do, to be a quasi-1D standing wave—the superposition
of two quasi-1D traveling waves of equal wavelength and
amplitude propagating in opposite directions.

We next add to our considerations a quasi 1D standing
wave with its wavefronts oriented at 90� with respect to the
first standing wave, as shown in the right panel in Fig. 2.
This second, orthogonal standing wave has the same ampli-
tude and wavelength (and hence frequency) as the first. We
then combine the two quasi-1D standing waves just as we
combined traveling waves, and we illustrate this superposi-
tion with the (relatively) simplified diagram of Fig. 3.

In this figure, the lines of nodes (i.e., lines of zero devia-
tion) are indicated by solid and dotted lines; the solid black
lines are the lines of zero deviation for the first standing
wave and dotted red lines for the second. We use the plus/
minus notation introduced for 1D waves, in which, at the
moment of time we choose, a black plus sign indicates a pos-
itive deviation of the first standing wave and a black minus
sign indicates a negative deviation. The red plus and minus
signs do the same for the second standing wave. For defini-
tiveness we choose an x, y coordinate system in which the
origin lies in a positive deviation region of the first standing

Fig. 1. The superposition of two oppositely directed traveling waves (top

two panels) produces a standing wave (third panel), shown at multiple

instants of time. Fourth panel: a snapshot of the standing wave at t¼ 0.

Here, þ and � denote positive and negative deviations of the string away

from equilibrium.
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wave, halfway between two lines of nodes, and in a negative
region of the second standing wave, halfway between two
lines of nodes. We choose the orientation of our coordinate
system so that the wavefronts (and hence the lines of nodes)
lie at 45� to the coordinate axes, as shown in Fig. 3.

The blue dots in Fig. 3 mark the crossing of the lines of
nodes. Let us focus for the moment on the points labeled 1
and 2, and let us consider the total deviation as we move
from point 1 to point 2. As we proceed along this line, at the
moment we discuss, the contribution from the first standing
wave becomes more (and then less) negative at exactly the
same rate that the contribution from the second standing
wave becomes more (and then less) positive. The result is
that the points along this dashed line are points of zero devia-
tion. As time goes on, the changes in the contributions of
both waves oscillate at the same frequency and always can-
cel; the dashed line going through points 1 and 2 is therefore
a line on which the deviation is always zero—in other words,
a nodal line.

Straightforward modifications of the above argument
show that all the horizontal and vertical dashed blue lines

are zero-deviation lines. As in the case of imposing fixed
ends on a guitar string, we now have an opportunity to
impose fixed boundary conditions. We can choose any of the
dashed blue lines as fixed positions of the edge of the 2D
membrane.

So, just as we did for the 1D string, we now relate the fre-
quency of the waves to the edge lengths of a 2D rectangular
membrane that will be fixed at the boundaries. We first note
that the region between a pair of neighboring vertical and
horizontal dashed blue lines is simply a square (see the
highlighted gray square in Fig. 3). This is a consequence of
the wavefronts of the two quasi-1D standing waves being at
right angles to one another. The length of a side of this
square, which we will denote by l, is fixed by the wavelength
k. From Fig. 3, we see that l is

ffiffiffi
2
p

times k=2, so l ¼ k=
ffiffiffi
2
p

.
However, we are not limited to choosing a square; we can
choose any of the dashed blue lines in Fig. 3 as boundaries.
Thus, the edge lengths Lx and Ly for a rectangular membrane
with fixed boundaries must be integer multiples of l, so Lx

¼ n k=
ffiffiffi
2
p

and Ly ¼ m k=
ffiffiffi
2
p

for n;m ¼ 1; 2;…. As before,
we will apply these relations to the physical situation where
the edge lengths Lx, Ly are given, and we are to infer the fre-
quency of the standing waves. So, we invert these equations

for the wavelength,
ffiffiffi
2
p

=k ¼ n=Lx ¼ m=Ly, and combine

these last two expressions for
ffiffiffi
2
p

=k by squaring and adding.
The frequency is

f ¼ v

k
¼ v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Lx

� �2

þ m

Ly

� �2
s

; (5)

which agrees with (4) for the special geometry of orthogonal
quasi-1D standing waves.

IV. GENERAL CASE: 2D STANDING WAVES FROM

NON-ORTHOGONAL STANDING WAVES

To generalize the above construction, we start with quasi-
1D traveling waves again having an arbitrary specified wave-
length k but not orthogonal to one another. For definiteness,
we impose an x, y coordinate system and choose a propaga-
tion direction that has a slope of 2/3—i.e., a point on the
wave advances two units in the y direction for every three
units in the x direction. The second propagation direction is
chosen to be symmetric about the x axis with respect to the

Fig. 2. Deviations from equilibrium of two orthogonal quasi-1D waves on a 2D membrane.

Fig. 3. Superposition of two quasi-1D standing waves oriented at 90� with

respect to one another. The highlighted gray square is the region between a

pair of neighboring vertical and horizontal nodal lines.
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first. These directions and the choice of x, y coordinates are
shown in the left panel of Fig. 4.

We now superimpose traveling waves having the same
amplitude and wavelength as these but with opposite direc-
tions, so that we produce quasi-1D standing waves with non-
orthogonal wavefronts. For the 62=3 propagation directions
that we have chosen, the wavefronts are shown in the right
panel of Fig. 4, which is the equivalent of Fig. 3. All the
arguments we applied to Fig. 3 now apply to Fig. 4, and we
find the new lines of zero deviation, shown, as in Fig. 3, by
dashed blue lines. Again, these dashed blue lines represent
the locations at which zero deviation (i.e., fixed) boundaries
might be imposed.

As we did earlier, we now want to find the relationship
between the geometry of the boundaries and the frequencies of
the 2D standing waves. This will require some high school
geometry. (You knew it would be useful some day; today is
the day.) We first note from the right panel of Fig. 4 that the
aspect ratio of the rectangular region enclosed by neighboring
vertical and horizontal boundaries is 2:3. This is a consequence
of the propagation directions of the non-orthogonal quasi-1D
traveling waves. To determine the overall length scale of this
region, which we denote by l, we focus attention on the space
between two wavefronts and add some lines to support the
analysis. (See the highlighted gray triangle in Fig. 4 and an
enlarged version of it in Fig. 5 for details.) One of those lines
shows the distance, k=2, between two zero deviation wave-
fronts of the quasi-1D standing wave. The other lines serve to
show the slope of the wavefronts. To discuss the triangles we
have just formed, we label vertices with Greek letters.

We can now see that abc and adb are similar right trian-
gles, so k/2 divided by 2l is equal to 3l divided by the lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lÞ2 þ ð3lÞ2

q
of line segment ac, so

k=2ð Þ
2l
¼ 3lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lð Þ2þ 3lð Þ2
q () 1

k=2ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2l

� �2

þ 1

3l

� �2
s

:

(6)

While we have used the specific 2:3 geometry for definiteness
in our figures, it should be clear that the arguments apply just
as well to any value of a:b describing the propagation direc-
tion of the traveling waves. The generalization of (6) is

1

k=2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

al

� �2

þ 1

bl

� �2
s

: (7)

As before, the edge lengths Lx and Ly for a rectangular
membrane with fixed boundaries must be 2l (generally al)
times some integer n and 3l (generally bl) times some integer
m. Eliminating al and bl in (7) in favor of Lx=n; Ly=m, we
can conclude that

f ¼ v

k
¼ v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Lx

� �2

þ m

Ly

� �2
s

; (8)

which again recovers (4) but this time for the general case of
non-orthogonal quasi-1D standing waves.

To aid with visualization, we have produced animations
showing the various traveling and standing-wave patterns for
two different cases: (i) a square membrane (Lx=Ly ¼ 1) with
n¼ 1, m¼ 1 and (ii) a rectangular membrane (Lx=Ly ¼ 2Þ
with n¼ 3, m¼ 2. (See Fig. 6 for snapshots of the standing-
wave oscillations.) The animations and the Matlab17 script
that produced them can be found in the supplementary
material.18

V. DISCUSSION

The presentation in this paper is our approach for obtain-
ing the frequencies of standing-wave oscillations on a rectan-
gular membrane using only algebra and basic geometry. It
generalizes the explanation of standing waves on a 1D string
by considering the superposition of two pairs of oppositely
directed quasi-1D traveling waves to first get quasi-1D stand-
ing waves, which then combine to yield the final 2D
standing-wave oscillations. The approach that we have taken
here, the boundary-last approach, starts by specifying the
directions and wavelength of the traveling waves and then
finds the locations of the zero-deviation lines, where we can
place fixed boundaries of a rectangular membrane. However,
we can easily turn the argument around and apply it to the
cases where the edge lengths Lx, Ly and mode numbers n, m
are given a priori, and we are to determine the frequencies
of standing-wave oscillations fixed at the boundary. We
obtain the standard results for the standing-wave frequencies
(4) with minimal math, sidestepping the more mathematical
standard analyses, such as separation of variables. Of course,

Fig. 4. Left panel: directions of non-orthogonal quasi-1D waves. Right panel:

superposition of non-orthogonal standing waves on a two-dimensional mem-

brane. The blue dashed lines are lines of zero deviation for the 2D standing-

wave oscillations, locations where we can impose fixed boundaries. (See Fig. 5

for an enlarged version of the highlighted gray triangle.)

Fig. 5. Geometry of 2D standing waves for the non-orthogonal quasi-1D

waves. (This is the highlighted gray triangle in the right-hand panel of Fig. 4.)

608 Am. J. Phys., Vol. 88, No. 8, August 2020 J. D. Romano and R. H. Price 608

 31 January 2024 15:10:47



all our constructions can be interpreted in terms of more
mathematical approaches. Details relating our approach to
those can be found in the Appendixes.
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APPENDIX A: STANDARD APPROACH—

SEPARATION OF VARIABLES

The standard approach for obtaining the frequencies (4)
for standing-wave oscillations on a rectangular membrane
fixed at the boundaries is to solve the 2D wave equation,

� 1

v2

@2u

@t2
þ @

2u

@x2
þ @

2u

@y2
¼0; (A1)

for the displacement uðt; x; yÞ of the membrane using separa-
tion of variables.15,16 One starts by assuming a product solu-
tion of the form uðt; x; yÞ � TðtÞXðxÞYðyÞ, for which (A1)
can be written as

� 1

v2

T00 tð Þ
T tð Þ þ

X00 xð Þ
X xð Þ þ

Y00 yð Þ
Y yð Þ

¼ 0: (A2)

Since the above equation is a sum of functions of t, x, and y
separately, we can introduce separation constants k, kx, and
ky defined by

� 1

v2

T00 tð Þ
T tð Þ � k2;

X00 xð Þ
X xð Þ � �k2

x ;
Y00 yð Þ
Y yð Þ

� �k2
y ;

(A3)

with k2 ¼ k2
x þ k2

y . Imposing the boundary conditions
uðt; x; yÞ ¼ 0 for x¼ 0 and Lx and y¼ 0 and Ly, for all t, leads
to

kx ¼
np
Lx
; ky ¼

mp
Ly
; n;m ¼ 1; 2;…: (A4)

The product vk has the interpretation of an angular frequency
x, so k2 ¼ k2

x þ k2
y implies

x ¼ vk ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
; (A5)

leading to

f � x
2p
¼ v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Lx

� �2

þ m

Ly

� �2
s

; (A6)

which are the desired standing-wave frequencies (4).

APPENDIX B: A GRAPHICAL BOUNDARY-FIRST

APPROACH

In the main text, we described the boundary-last approach,
where we start by specifying the directions and wavelength of
quasi-1D traveling waves and then infer the location of hori-
zontal and vertical nodal lines where we can place fixed
boundaries of a rectangular membrane. In the boundary-first
approach, we are given a rectangular membrane with specified
edge lengths Lx and Ly, and we are asked to find the frequen-
cies of standing-wave oscillations that are fixed at the bound-
aries of the rectangle. In the latter approach, we infer the
directions and wavelength of the quasi-1D traveling waves
from which the standing waves are subsequently made; we
don’t specify the directions and wavelength a priori.

Just as we saw for the boundary-last approach, the solu-
tion to this problem is not unique: there are many different
directions and wavelengths for the quasi-1D traveling
waves that yield standing-wave oscillations fixed at the
boundary. These different solutions are labeled by a pair of
integers n and m, which indicate the number of oscillating
sections of the membrane in the x and y directions,
respectively.

The direction and wavelength of the quasi-1D waves can
be determined from the values of kx and ky, which are
defined in the left panel of Fig. 7. The wavelength k can be
calculated in terms of kx and ky using the following
“reciprocal-space version” of Pythagorean’s theorem,

1

k2
¼ 1

k2
x

þ 1

k2
y

; (B1)

Fig. 6. Snapshots of standing wave oscillations. Left: square membrane (Lx=Ly ¼ 1) with n¼ 1, m¼ 1. Right: rectangular membrane (Lx=Ly ¼ 2Þ with n¼ 3,

m¼ 2. The actual animations can be found in the supplementary material (Ref. 18).
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which relates the lengths of the two sides of a right triangle
to the perpendicular distance to the hypotenuse. (One can
prove (B1) using similar triangles as we did in the main text
in the context of Fig. 5.) From Fig. 7, we also see that the
slope of the wavefronts is given by �ky=kx, which in turn

implies that the slope of the propagation direction D̂1 is

kx=ky. Thus, D̂1 is proportional to ðky; kxÞ; normalizing so
that it has unit length leads to

D̂1¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
xþk2

y

q ky;kx

� �
() D̂1¼

k
kx
;

k
ky

� �
; (B2)

where we used (B1) to get the last equality.
From the right panel of Fig. 7, we see that the propagation

directions of the quasi-1D traveling waves change due to
reflections off the horizontal and vertical boundaries of the
rectangular membrane. Upon reflection off a horizontal
boundary, only the y-component of the propagation direction
changes (its sign flips). Similarly, upon reflection off a verti-
cal boundary, only the x-component of the propagation direc-
tion changes (again its sign will flip). Multiple reflections
recover one of these four directions, which we denote as
6D̂1;6D̂2, where D̂2 ¼ ðk=kx;�k=kyÞ.

To produce standing waves fixed at the boundaries of the
rectangular membrane, we need to divide each of Lx and Ly

into an integer number of segments, such that

kx=2 ¼ Lx=n; ky=2 ¼ Ly=m; n;m ¼ 1; 2;…: (B3)

The wavefronts connecting the midpoints of these segments are
lines of zero deviation for the quasi-1D standing waves formed
from the superposition of quasi-1D traveling waves propagating

in the directions 6D̂1;6D̂2 (see Fig. 8). Substituting the above
expression for kx and ky into (B1), we find

1

k
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

Lx

� �2

þ m

Ly

� �2
s

; n;m¼ 1;2;…: (B4)

Then, the frequency of the waves, f ¼ v=k, agrees with (4).

APPENDIX C: STANDING WAVES FROM TRIG

IDENTITIES

In the main text, we gave a graphical proof that the super-
position of two 1D traveling waves (for a 1D string) or two
quasi-1D traveling waves (for a 2D membrane) that have the
same amplitude and wavelength but propagate in opposite
directions gives rise to standing waves. We also gave a
graphical proof that two quasi-1D standing waves with the
same amplitude and wavelength can give rise to a single 2D
standing wave. Here, we give an algebraic proof of these
statements that makes use of a standard trig identity for the
cosine of a sum (or difference) of two angles.

For the 1D string, we consider the superposition of right-
moving and left-moving waves with the same amplitude and
wavelength k,

u x; tð Þ ¼ cos
2p
k

x� vtð Þ
� �

� cos
2p
k

xþ vtð Þ
� �

; (C1)

where the minus sign comes from the inversion of a right-
moving wave when it is reflected off the right-most end of a
fixed string. Using the trig identity,

cos ðA 6 BÞ ¼ cos A cos B7 sin A sin B; (C2)

with A � 2px=k and B � 2pvt=k ¼ 2pft, it follows that

Fig. 7. Rectangular membrane with edge lengths Lx and Ly. Left: a partial set of wavefronts for the quasi-1D traveling wave with propagation direction D̂1.

The wavefronts are perpendicular to the direction of propagation and correspond here to zeros of the wave; hence, they are separated by half a wavelength,

k=2. The corresponding half-wavelengths in the x and y directions, kx=2 and ky=2, are also shown. Right: directions of propagation of the quasi-1D traveling

waves reflecting off all four boundaries of the membrane.

Fig. 8. Rectangular membrane with n¼ 3, m¼ 2. Propagation directions 6D̂1;6D̂2, half-wavelength k=2, and lines of zero deviation for the quasi-1D

standing waves are shown.
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uðx; tÞ ¼ 2 sin ð2px=kÞ sin ð2pftÞ: (C3)

This is a standing-wave oscillation since the time-dependent
term has factored out. Note that in order for the displacement
u(x, t) to be zero at the endpoints of the string (i.e., at x¼ 0,
L) for all t, we need

2pL=k ¼ np; n ¼ 1; 2;…: (C4)

When solved for k, this yields (3) as before and similarly the
standing-wave frequencies (1).

For the 2D rectangular membrane, we have four quasi-
1D traveling waves instead of two, taking into account the
reflections off all the fixed boundaries. From the right
panel of Fig. 7, we see that the traveling waves propagat-
ing in the 6D̂2 directions are obtained from the initial D̂1

wave after an odd number of reflections off the bound-
aries. Subsequent 6D̂1 waves are obtained after an even
number of reflections. Since each reflection introduces a
180� phase shift in the wave (i.e., a minus sign), the super-
position of the two-dimensional traveling waves has the
form

u x; y; tð Þ ¼ cos
2p
k

D̂1 �~r � vt
� �� �

þ cos
2p
k
�D̂1 �~r � vt
� �� �

� cos
2p
k

D̂2 �~r � vt
� �� �

� cos
2p
k
�D̂2 �~r � vt
� �� �

: (C5)

Here,

D̂1 �~r ¼ k
x

kx
þ y

ky

� �
; D̂2 �~r ¼ k

x

kx
� y

ky

� �
(C6)

are equations for the wavefronts perpendicular to D̂1 and D̂2

(relative to the bottom-left corner of the rectangular mem-
brane, x¼ 0, y¼ 0), and v=k ¼ f is the frequency of the
waves.

Using cos ð�hÞ ¼ cos h and the trig identity (C2), it fol-
lows that

u x; y; tð Þ ¼ 2 cos 2p
x

kx
þ y

ky

� �� �	

�cos 2p
x

kx
� y

ky

� �� �)
cos 2pftð Þ: (C7)

Note that each of the two terms on the right-hand side of the
above expression is a quasi-1D standing wave since the
time-dependent term has again factored out. Using (C2) once
more, we obtain

u x; y; tð Þ ¼ �4 sin
2px

kx

� �
sin

2py

ky

� �
cos 2pftð Þ; (C8)

which is now a single 2D standing wave. The condition that
this standing wave vanishes everywhere on the boundaries
(x¼ 0, Lx and y¼ 0, Ly) for all t implies that the arguments
of the individual sine functions must be integer multiples of
p, which is equivalent to (B3). Since these values for kx and
ky agree with what we found earlier, so too do the expres-
sions for the wavelength k, cf. (B4), and frequency f ¼ v=k,
cf. (4). So, we have again recovered the standing-wave fre-
quencies for a rectangular membrane and the standard
product-solution form for the standing waves.
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