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ABSTRACT

Martinez, Arturo J., The period of the coefficients of the Gaussian polynomial
[N+3

3

]
. Master of

Science (MS), August, 2020, 24 pp., 4 tables, 1 references.

Definition 1. For any N, the central coefficient(s) of
[N+3

3

]
is denoted by C0(N) and the coefficient

that is x”away" from the central coefficient(s) of
[N+3

3

]
is denoted by Cx(N).

In [1] the following result is proved:

Theorem 2. The central coefficient(s) of the Gaussian polynomial
[N+3

3

]
are described by the

generating function
∞

∑
N=0

C0(N) =
1+q3

(1−q)(1−q2)(1−q4)
. (0.1)

This generating function has period 4.

The main goal of this thesis is to generalize Theorem 0.2 by way of proving the following

conjecture:

Conjecture 3. For any x the generating function for Cx(N) has period 4 and is given in three cases:

∞

∑
N=0

C3a(N)qN =
1+q2 +q3−q4a+2

(1−q)(1−q2)(1−q4)
, (0.2)

∞

∑
N=0

C3a+1(N)qN =
1+q+q3−q4a+3

(1−q)(1−q2)(1−q4)
(0.3)

∞

∑
N=0

C3a+2(N)qN =
1+q+q2−q4a+4

(1−q)(1−q2)(1−q4)
(0.4)

iii
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CHAPTER I

INTRODUCTION

Partition functions have always been an interesting area of research. The work shown here is

only an extension of some results found in [1]. This thesis will look at the coefficients of Gaussian

polynomials in an attempt at proving that the period of all coefficients in the Gaussian polynomial[N+3
3

]
is 4.

1.1 Example of Some Results

Because of [1], we know that the central coefficients of Gaussian polynomials have period
2lcm([m])

m . If we were to focus on m = 3, then we would get that the period of the central coefficients

of
[N+3

3

]
is 4. We hope to proof that the coefficients of

[N+3
3

]
can be described by three rational

functions. We can construct quasipolynomials from these, where the period for the coefficients will

be 4. An example of a Gaussian polynomail is

Example 4.

15

∑
n=0

p(n,3,5)qn =

[
5+3

3

]
=

(q;q)8

(q;q)3(q;q)5
=

(1−q6)(1−q7)(1−q8)

(1−q)(1−q2)(1−q3)

= p(0,3,5)+ p(1,3,5)q+ p(2,3,5)q2 + p(3,3,5)q3 + p(4,3,5)q4 + p(5,3,5)q5

+ p(6,3,5)q6 + p(7,3,5)q7 + p(8,3,5)q8 + p(9,3,5)q9 + p(10,3,5)q10

+ p(11,3,5)q11 + p(12,3,5)q12 + p(13,3,5)q13 + p(14,3,5)q14 + p(15,3,5)q15

= 1+q+q2 +3q3 +4q4 +5q5 +6q6 +6q7 +6q8 +6q9 +5q10 +4q11 +3q12 +2q13 +q14 +q15.

Let C j(N) be the coefficient that is j-away from the central coefficient if the Gaussian

1



polynomial
[N+3

3

]
. Then we can define the generating function

∞

∑
N=0

C j(N)qN

to be the formal power series whose coefficients are defined by C j(N) . The rational functions that

we can derive from this generation function are

∞

∑
N=0

C3a(N)qN =
1+q2 +q3−q4k+2

(1−q)(1−q2)(1−q4)
, (1.1)

∞

∑
N=0

C3a+1(N)qN =
1+q+q3−q4k+3

(1−q)(1−q2)(1−q4)
(1.2)

∞

∑
N=0

C3a+2(N)qN =
1+q+q2−q4k+4

(1−q)(1−q2)(1−q4)
(1.3)

This thesis will go over how these functions were attained. The remainder of this chapter will focus

on presenting background material. In chapter 2, we prove that the period of the central coefficients

is 4. Along with this, the motivation behind the results in this thesis will be made clear. The chapters

that follow will showcase how we arrive at the functions above.

1.2 Background Material

Gaussian polynomials are the q-analogue of binomial coefficients. They are defined as

follows.

Definition 5.

Nm

∑
n=0

p(n,m,N)qn =

[
N +m

m

]
=

(q;q)N+m

(q;q)m(q;q)N
=

(1−q) · · ·(1−qN+m)

(1−q) · · ·(1−qm)(1−q) · · ·(1−qN)
. (1.4)

We give a quick proof as to why this has to simplify to a polynomial. We first define a

cyclotomic polynomial.

Definition 6. Define the nth cyclotomic polynomial Φn(x) to be the polynomial whose roots are the

2



primitive nth roots of unity:

Φn(x) = ∏
ζ primitive ∈µn

(x−ζ ) = ∏
1≤a<n
(a,n)=1

(x−ζ
a
n )

where µn is the group of nth roots of unity of Q.

We can define the gaussian polynomial
[N+m

m

]
as follows

[
N +m

m

]
=

N+m

∏
d=1

(Φd(q))b
N+m

d c−b
N
d c−b

m
d c.

Since ba+bc ≥ bac+ bbc for all a,b≥ 0, we have for all N,m,d > 0

⌊
N +m

d

⌋
=

⌊
N
d
+

m
d

⌋
≥
⌊

N
d

⌋
+
⌊m

d

⌋
.

and consequently ⌊
N +m

d

⌋
−
⌊

N
d

⌋
−
⌊m

d

⌋
≥ 0.

Since Φd(q) is a polynomial for all d ∈ N, this implies that

[
N +m

m

]
=

N+m

∏
d=1

(Φd(q))b
N+m

d c−b
N
d c−b

m
d c

is a polynomial.

Now, what we are interested in is the coefficients of Gaussian polynomials. These coeffi-

cients can be interpreted by partitions.

Definition 7. For integers n,m,N > 0, the function that enumerates the partitions of n into at most

m parts, no part larger than N is denoted by p(n,m,N). For n < 0 and n > Nm, we agree that

p(n,m,N) = 0.

Gaussian polynomials are the generating functions for p(n,m,N). The main Gaussian

3



polynomial we will look at is
[N+3

3

]
.

Example 8.

15

∑
n=0

p(n,3,5)qn =

[
5+3

3

]
=

(q;q)8

(q;q)3(q;q)5
=

(1−q6)(1−q7)(1−q8)

(1−q)(1−q2)(1−q3)

= p(0,3,5)+ p(1,3,5)q+ p(2,3,5)q2 + p(3,3,5)q3 + p(4,3,5)q4 + p(5,3,5)q5

+ p(6,3,5)q6 + p(7,3,5)q7 + p(8,3,5)q8 + p(9,3,5)q9 + p(10,3,5)q10

+ p(11,3,5)q11 + p(12,3,5)q12 + p(13,3,5)q13 + p(14,3,5)q14 + p(15,3,5)q15

= 1+q+q2 +3q3 +4q4 +5q5 +6q6 +6q7 +6q8 +6q9 +5q10 +4q11 +3q12 +2q13 +q14 +q15.

A thing to note is that if we do not define N explicitly, then our approach to compute a

polynomial differs from the example above. This is because we now to take into account the possible

variables at play. Hence we need to generate a quasipolynomial with constituents representing all

possibilities for N.

Definition 9. A function f (k) is a quasipolynomial if there exist polynomials, called constituents,

f0(k), f1(k), . . . , fd−1(k) such that for all k ∈ Z one has

f (k) =



f0(k) if k ≡ 0 (mod d)

f1(k) if k ≡ 1 (mod d)
...

fd−1(k) if k ≡ d−1 (mod d).

The period d of the quasipolynomial is the number of constituents.

When N is defined, we use the constituents of the quasipolynomial formed from
[N+m

m

]
to

compute the coefficients.

With this we can now explain the difference between a central coefficient and a maximal

coefficient. A central coefficient, as the name implies, is located at the center or middle of a

4



Gaussian polynomial and is computed using the equation.

C0(N) = p
(
bnM

2
c,m,N

)
. (1.5)

Notice that this will only give is the lefttmost central coefficient if there were to be two of

them. Since Gaussian polynomials are unimodal and their coefficients symmetric, we need only

work with the first half of the coefficients. The maximal coefficients are the largest coefficients in a

Gaussian polynomial. In Example 4 the central coefficients are

p(7,3,5) = 6 and p(8,3,5) = 6

while the maximal coefficients are

p(6,3,5) = 6, p(7,3,5) = 6, p(8,3,5) = 6 and p(9,3,5) = 6.

Notice that all central coefficients are maximal, but the converse may not always be true.
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CHAPTER II

THE PERIOD OF THE CENTRAL COEFFICIENTS OF
[N+3

3

]
In section 3 of [1], it is proved that the period of the maximal coefficients of

[N+3
3

]
is 4. We

will show why this is the case by using the method we will use later to prove that the period of

C j(N) is 4. Let M3(N) be the set of maximal coefficients, then we have the following theorem.

Theorem 10. For `≥ 0 the quasipolynomial for M3(N) has period 4 and is given by:

M3(4`−2) =


p(6`−4,3,4`−2)

p(6`−3,3,4`−2)

p(6`−2,3,4`−2)

= 2
(
`+1

2

)
+2
(
`

2

)
= 2`2. (2.1)

M3(4`−1) =



p(6`−3,3,4`−1)

p(6`−2,3,4`−1)

p(6`−1,3,4`−1)

p(6`,3,4`−1)


= 3
(
`+1

2

)
+

(
`

2

)
= 2`2 + `. (2.2)

M3(4`) = p(6`,3,4`) =

(
`+2

2

)
+2
(
`+1

2

)
+

(
`

2

)
= 2`2 +2`+1. (2.3)

M3(4`+1) =



p(6`,3,4`+1)

p(6`+1,3,4`+1)

p(6`+2,3,4`+1)

p(6`+3,3,4`+1)


=

(
`+2

2

)
+3
(
`+1

2

)
= 2`2 +3`+1. (2.4)

We know that the central coefficients are maximal, hence they also have period 4. This

6



theorem will not proven in this thesis. Instead we show that the results of the theorem coincide with

the proof that the central coefficients of
[N+3

3

]
is 4. Let C0(N) be the set of central coefficients. As

stated before, there may be times where there are two central coefficients.

Theorem 11. The central coefficients of the Gaussian polynomial
[N+3

3

]
have period 4 and can be

described by the rational function

1+q3

(1−q)(1−q2)(1−q4)
. (2.5)

We will use two methods to prove this theorem. One will involve Theorem 6, since this

method was already used in [1]. The second method will utilize the work this thesis will use to

prove Conjecture 10.

Proo f (1) : From [1], we know that the quasipolynomial is computed from the following expression

(q2 +q3 +2q4 +3q5 +2q6 +3q7 +2q8 +q9 +q10)×
∞

∑
`=0

(
`+2

2

)
q4` (2.6)

which is equal to this expression

q2 +q3 +2q4 +3q5 +2q6 +3q7 +2q8 +q9 +q10

(1−q4)3 . (2.7)

Computing further, we arrive at

q2 +q3 +2q4 +3q5 +2q6 +3q7 +2q8 +q9 +q10

(1−q4)3 =
q2(1+q+q2 +q3)(1+q2)(1+q3)

(1−q)(1+q+q2 +q3)(1−q2)(1+q2)(1−q4)

(2.8)

=
q2(1+q3)

(1−q)(1−q2)(1−q4)
. (2.9)

Since (2.9) comes from ∑
∞
N=0 M3(N−2)qN , by [1], and we are looking at ∑

∞
N=0C0(N)qN , the q2

in (2.9) is not necessary. Thus we have proved Theorem 7. With this done, the next method can

now hold more validity as with the rest of the work in this thesis.

7



Proo f (2) : Let N = 0,1,2,3, . . .. The set of central coefficients is

C0(N) = 1,1,2,3,5,6,8,10,13,15,19,21,25,28,32,36,41,45, . . . .

We know that these coefficients are partitions of the form p(n,3,N). In particular, the even terms

are of the form p(3k,3,2k), and the odd terms are of the form p(3k+1,3,2k+1). Hence we can

make define the generating function ∑
∞
N=0C0(N)qN as follows

∞

∑
k=0

p(3k,3,2k)q2k + p(3k+1,3,2k+1)q2k+1. (2.10)

Here the even terms are

∞

∑
k=0

p(3k,3,2k)q2k = 1+2q2 +5q4 +8q6 +13q8 +19q10 +25q12 +32q14 +41q16 + · · · . (2.11)

By inputting our coefficients into OEIS, we find the sequence A000982 with generating function

q(1+q2)

(1+q)(1−q)3 (2.12)

We fix this generating function to get our desired exponents and remove the zero term. To do this

we change q to q2 and eliminate the first q in the numerator. This gives us

1+q4

(1+q2)(1−q2)3 . (2.13)

Now we do the same for the odd terms. These are defined by

∞

∑
k=0

p(3k+1,3,2k+1)q2k+1 = q+3q3+6q5+10q7+15q9+21q11+28q13+36q15+45q17+ · · · .

8



Using OEIS again we find the sequence A000217 with generating function

q
(1−q)3 . (2.14)

Here, in order to get our desired exponets, we may only need to change the q in the denominator to

q2. This gives us
q

(1−q2)3 . (2.15)

By adding both rational functions, we get

1+q4

(1+q2)(1−q2)3 +
q

(1−q2)3 =
1+q4 +q(1+q2)

(1+q2)(1−q2)3 (2.16)

=
1+q+q3 +q4

(1+q)(1−q)(1−q2)(1−q4)
(2.17)

=
1+q3

(1−q)(1−q2)(1−q4)
, (2.18)

which is exactly the rational function (2.5). We have now proven one part of the theorem. To

prove the second part we express the rational function (2.5) as a quasipolynomial. We begin by

multiplying by 1 in a special way.

1+q3

(1−q)(1−q2)(1−q4)
×

(1−q4)3

(1−q)(1−q2)(1−q4)

(1−q4)3

(1−q)(1−q2)(1−q4)

=
1+q+2q2 +3q3 +2q4 +3q5 +2q6 +q7 +q8

(1−q4)3 .

(2.19)

We call the numerator of this new rational function the Earhart numerator. Now Remark 2.7 in [1]

tells us that we have to “re-cast”, with respect to our current work, the generating function from an

index of k to an index of `. We can see this happen from (2.5) through (2.8). This is because the

final denominator in (2.7) is equal to

∞

∑
`=0

(
`+2

2

)
q4`, (2.20)

where we define the binomial coefficient as follows.

9



Definition 12.

• Whenever a < b then
(a

b

)
= 0.

• Whenever a≥ b we use the normal translation to the monomial basis:
(a

b

)
= a!

b!(a−b)! .

Now let `≥ 0. Then we have

1+q+2q2 +3q3 +2q4 +3q5 +2q6 +q7 +q8

(1−q4)3

= (1+q+2q2 +3q3 +2q4 +3q5 +2q6 +q7 +q8)×
∞

∑
`=0

(
`+2

2

)
q4`. (2.21)

Notice that (1−q4)3 and q4` automatically imply that the period is 4. Nevertheless we construct the

quasipolynomail in order to relate this back to Theorem 6. We begin by grouping the coefficients of

C0(N) in groups of 4, sequentially. This gives us the sets

{1,1,2,3}, {5,6,8,10} {13,15,19,21}, . . .

Remember that every coefficient in C0(N) is represented by a partition function of the form p(n,3,N)

with N = 0,1,2,3,4,5,6,7, . . . and n = 0,1,3,4,6,7,9,10 . . .. We can see that the first element in

every set is of the form p(6`,3,4`) with the second, third, and fourth elements being of the forms

p(6`+1,3,4`+1), p(6`+3,3,4`+2), p(6`+4,3,4`+3) respectively. By computing the product

in (2.6), we have that the quasipolynomial for ∑
∞
N=0C0(N) is

p(6`,3,4`) =
(
`+2

2

)
+2
(
`+1

2

)
+

(
`

2

)
= 2`2 +2`+1 (2.22)

p(6`+1,3,4`+1) =
(
`+2

2

)
+3
(
`+1

2

)
= 2`2 +3`+1 (2.23)

p(6`+2,3,4`+2) = 2
(
`+1

2

)
+2
(
`

2

)
= 2`2 (2.24)

p(6`+3,3,4`+3) = 3
(
`+2

2

)
+1
(
`+1

2

)
= 2`2 + ` (2.25)

10



CHAPTER III

EXPANDING ON THEOREM 9

3.1 Arranging the Coefficients of
[N+3

3

]
The previous chapter proved that the central coefficients of

[N+3
3

]
have period 4. However

[1] proves this for maximal coefficients.Hence other coefficients aside from the central must also be

of period 4. With this in mind we have the following conjecture.

Conjecture 13. The coefficients of the family of Gaussian polynomials that are j-away from the

center of
[N+3

3

]
, have period 4.

As stated before, since the coefficients of Gaussian polynomials are symmetric and unimodal,

we can focus on the first half of the coefficients. Using the same methods as in the previous

chapter we show that the coefficients in C1 have period 4. From Table 3.1 we see that C1 is

1,2,3,4,6,8,10,12,15, . . .. By the sequence A130519 from OEIS, a generating function for these

coefficients is
q4

(1−q)2(1−q4)
. (3.1)

Since we want the denominator to be (1−q)(1−q2)(1−q4), we multiply by 1+q
1+q . Hence we get

q4

(1−q)2(1−q4)
× 1+q

1+q
=

q4(1+q)
(1−q)(1−q2)(1−q4)

. (3.2)

Since the sequence A130519 starts with 4 zeros, we compensate by removing q4 from the generating

function. Thus
1+q

(1−q)(1−q2)(1−q4)
(3.3)

is the generating function for the coefficients of C1. Note that this method only works if a generating

11



Table 3.1:
· · · C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

1 :
[0+3

3

]
1 1 :

[1+3
3

]
1 1 2 2 :

[2+3
3

]
1 1 2 3 3 :

[3+3
3

]
1 1 2 3 4 4 5 :

[4+3
3

]
1 1 2 3 4 5 6 6 :

[5+3
3

]
1 1 2 3 4 5 7 7 8 8 :

[6+3
3

]
1 1 2 3 4 5 7 8 9 10 10 :

[7+3
3

]
1 1 2 3 4 5 7 8 10 11 12 12 13 :

[8+3
3

]
1 1 2 3 4 5 7 8 10 12 13 14 15 15 :

[9+3
3

]
1 1 2 3 4 5 7 8 10 12 14 15 17 17 18 18 :

[10+3
3

]
...

function for any of the Ci exists. An example of it not working is the coefficients of C3. Here we

have the sequence 1,1,3,4,7,8,11,13, . . .. OEIS gives us nothing, hence we take the same method

as for C0. We look at the even and odd terms and we get the sequences A047838 and A034856

respectively from OEIS. The generating functions for each are

q2(1+q+q2−q3)

(1−q)3(1+q)
and

q(1+q−q2)

(1−q)3 (3.4)

respectively. Just like the others, we change these generating functions to accommodate. Hence we

arrive at
q(1+q2−q4)

(1−q2)3 and
1+q2 +q4−q6

(1−q2)3(1+q2)
(3.5)
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for the odd and even terms of C3 respectively. To get a better understanding of what these rational

functions represent, we look at C3 and notice that even terms are of the form p(3k,3,2(k+1) and

odd terms are of the form p(3k+1,3,2(k+1)+1). We can use [1] to compute

∞

∑
N=0

C3(N)qN =
∞

∑
k=0

[
p(3k,3,2(k+1))q2k + p(3k+1,3,2(k+1)+1)q2k+1

]
(3.6)

=
1+q2 +q4−q6

(1−q2)3(1+q2)
+

q(1+q2−q4)

(1−q2)3 (3.7)

=
q(1+q2)(1+q2−q4)+1+q2 +q4−q6

(1+q2)(1−q2)3 (3.8)

=
(1+q)(1−q+2q2−q3 +q4−q5)

(1−q)(1−q2)(1−q4)
(3.9)

=
1+q2 +q3−q6

(1−q)(1−q2)(1−q4)
. (3.10)

Using these techniques we are able to compute the following

∞

∑
N=0

C0(N)qN =
1+q3

(1−q)(1−q2)(1−q4)
(3.11)

∞

∑
N=0

C1(N)qN =
1+q

(1−q)(1−q2)(1−q4)
(3.12)

∞

∑
N=0

C2(N)qN =
1+q+q2−q4

(1−q)(1−q2)(1−q4)
(3.13)

∞

∑
N=0

C3(N)qN =
1+q2 +q3−q6

(1−q)(1−q2)(1−q4)
(3.14)

...

Along with their respective quasipolynomial. The work in chapter 2 suggests that these rational

functions have period 4 due to the denominator (1−q)(1−q2)(1−q4). Since there are an infinite

amount of Ci, we cannot possible prove that each individual set of coefficients is of period 4.

Furthermore, if there is a certain number of coefficients whose period is 4, the number would these

would increase as N increases for
[N+3

3

]
. This motivates the idea of generalizing the Ci.
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3.2 Generalizations

We now formally introduce the three functions at the beginning of this thesis with a theorem.

Theorem 14. Let C j be the set of coefficients j−away from the central coefficient of the Gaussian

polynomial
[N+3

3

]
, then we have the following.

∞

∑
N=0

C3a(N)qN =
1+q2 +q3−q4a+2

(1−q)(1−q2)(1−q4)
, (3.15)

∞

∑
N=0

C3a+1(N)qN =
1+q+q3−q4a+3

(1−q)(1−q2)(1−q4)
(3.16)

∞

∑
N=0

C3a+2(N)qN =
1+q+q2−q4a+4

(1−q)(1−q2)(1−q4)
(3.17)

In the last section it was mentioned that it would be difficult to generalize every Ci with a

single generating function. With this in mind, we shift our attention to C0 and C3. The generating

functions

∞

∑
k=0

[
p(3k,3,2k)q2k + p(3k+1,3,2k+1)q2k+1

]
and

∞

∑
k=0

[
p(3k,3,2(k+1))q2k + p(3k+1,3,2(k+1)+1)q2k+1

]

only differ from the change from 2k + 1 to 2(k + 1) + 1. We show this is actually a natural

occurrence by proving equation. (3.15). From the table we have that

C0 : 1,1,2,3,5,6,8,10,13,15, . . . (3.18)

C3 : 1,1,3,4,6,8,11,13, . . . (3.19)

C6 : 1,1,3,4,7,8, . . . (3.20)
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The generating functions for each are

∞

∑
N=0

C0(N)qN =
∞

∑
k=0

[
p(3k,3,2k)q2k + p(3k+1,3,2k+1)q2k+1

]
(3.21)

∞

∑
N=0

C3(N)qN =
∞

∑
k=0

[
p(3k,3,2(k+1))q2k + p(3k+1,3,2(k+1)+1)q2k+1

]
(3.22)

∞

∑
N=0

C6(N)qN =
∞

∑
k=0

[
p(3k,3,2(k+2))q2k + p(3k+1,3,2(k+2)+1)q2k+1

]
. (3.23)

Following the work from chapter 2 we know that the even and odd terms of C0 are represented by

equations (2.8) and (2.10). For C3, we use OEIS again and find that the even terms coincide with

sequence A047838 which has generating function

q2(1+q1+q2−q3)

(1−q)(1+q)3 . (3.24)

We change the function to fit our desired exponents and get

1+q2 +q4−q6

(1+q2)(1−q2)3 . (3.25)

For the odd terms we have sequence A034856 with generating function

q(1+q−q2)

(1−q)3 (3.26)

which when changed to fit the needed exponents equals

q(1+q2−q4)

(1−q2)3 . (3.27)
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We add (3.26) and (3.25)

1+q2 +q4−q6

(1+q2)(1−q2)3 +
1+q2−q4

(1−q2)3 =
(1+q+q4−q6)+q(1+q2)(1+q2−q4)

(1+q2)(1−q2)3 (3.28)

=
(1+q)(1−q+2q2−q3 +q4−q5)

(1−q)(1−q2)(1−q4)
(3.29)

=
1+q2 +q3−q6

(1−q)(1−q2)(1−q4)
. (3.30)

For C6 we have that the even and odd terms have generating functions

∞

∑
k=0

p(3k,3,2(k+2))q2k =
1+q2 +q4−q10

(1+q2)(1−q2)3 (3.31)

and
∞

∑
k=0

p(3k+1,3,2(k+2)+1)q2k+1 =
q(1+q2−q4 +q6−q8)

(1−q2)3 . (3.32)

With the sum being

1+q2 +q4−q10

(1+q2)(1−q2)3 +
q(1+q2−q4 +q6−q8)

(1−q2)3 =
q(1−q+2q2−q3 +q4−q5 +q6−q7 +q8−q9

(1−q)(1−q2)(1−q4)

(3.33)

=
1+q2 +q3−q10

(1−q)(1−q2)(1−q4)
. (3.34)

Table 3.2:
a = 0 a = 3 a = 6

∑
∞
k=0 p(3k,3,2(k+a))q2k 1+q4

(1+q2)(1−q2)3
1+q2+q4−q6

(1+q2)(1−q2)3
1+q2+q4−q10

(1+q2)(1−q2)3

∑
∞
k=0 p(3k+1,3,2(k+a)+1)q2k+1 q

(1−q2)3
q(1+q2−q4)
(1−q2)3

q(1+q2−q4+q6−q8)
(1−q2)3

∑
∞
N=0C3a(N)qN 1+q3

(1−q)(1−q2)(1−q4)
1+q2+q3−q6

(1−q)(1−q2)(1−q4)
1+q2+q3−q10

(1−q)(1−q2)(1−q4)

With these results we can now arrange the equations like in Table 3.2. Notice that the third
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row of Table 3.2 already hints at (3.15). For even terms we have that as a increases, the general

rational function becomes
1+q2 +q4−q4a+2

(1+q2)(1−q2)3 . (3.35)

In order to prove this, we look at the cases where a = 3x, a = 3x+1, and a = 3x+2.These cases

render (3.35) into

1+q2 +q4−q12x+2

(1+q2)(1−q2)3 , (3.36)

1+q2 +q4−q12x+6

(1+q2)(1−q2)3 , (3.37)

and
1+q2 +q4−q12x+10

(1+q2)(1−q2)3 (3.38)

respectively. In this thesis, (3.36) will be proven. The even terms of any C3a can be described by

p(6(3k),3,6(2k+ x)), p(6(3k),3,6(2k+ x)+4), p(6(3k),3,6(2k+ x+1)+2)

p(6(3k)+3,3,6(2k+ x)+2), p(6(3k)+3,3,6(2k+ x+1)), p(6(3k)+3,3,6(2k+1+ x)+4)

for a = 3x

p(6(3k),3,6(2k+ x)+2), p(6(3k),3,6(2k+ x+1)), p(6(3k),3,6(2k+ x+1)+4)

p(6(3k)+3,3,6(2k+ x)+4), p(6(3k)+3,3,6(2k+ x+1)+2), p(6(3k)+3,3,6(2k+2+ x))

for a = 3x+1, and

p(6(3k),3,6(2k+ x)+4), p(6(3k),3,6(2k+ x+1)+2), p(6(3k),3,6(2k+ x+2))

p(6(3k)+3,3,6(2k+ x+1)), p(6(3k)+3,3,6(2k+ x+1)+4), p(6(3k)+3,3,6(2k+2+ x)+2)
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for a = 3x+2. We use the following constituents from appendix A form [1]

−12
∞

∑
k=x−1

q12k
(

k− x+1
2

)
−6

∞

∑
k=x

q12k
(

k− x
2

)
+4

∞

∑
k=0

(
3k+1

2

)
q12k +

∞

∑
k=0

(
3k+2

2

)
q12k +

∞

∑
k=0

(
3k
2

)
q12k

(3.39)

=−
12
(
q12 +2

)
q12

(q12−1)3 −
3
(
2q12 +1

)
q12

(q12−1)3 +
12q12x+12

(q12−1)3 +
6q12x+24

(q12−1)3 −
q24 +7q12 +1

(q12−1)3 (3.40)

=
12q12(x+1)+6q12(x+2)−19q24−34q12−1

(q12−1)3 (3.41)

−13
∞

∑
k=x−1

q12k+2
(

k− x+1
2

)
−

∞

∑
k=x−2

q12k+2
(

k− x+2
2

)
−4

∞

∑
k=x

q12k+2
(

k− x
2

)
+3

∞

∑
k=0

(
3k+1

2

)
q12k+2 +3

∞

∑
k=0

(
3k+2

2

)
q12k+2 (3.42)

=
q12x+2

(q12−1)3 +
13q12x+14

(q12−1)3 +
4q12x+26

(q12−1)3 −
9
(
q12 +2

)
q14

(q12−1)3 −
3
(
q24 +7q12 +1

)
q2

(q12−1)3 (3.43)

=
q2
(
4q24 +13q12 +1

)(
q12x−3

)
(q12−1)3 (3.44)

−14
∞

∑
k=x−1

q12k+4
(

k− x+1
2

)
−2

∞

∑
k=x−2

q12k+4
(

k− x+2
2

)
−2

∞

∑
k=x

q12k+4
(

k− x
2

)
+

∞

∑
k=0

(
3k+1

2

)
q12k+4 +4

∞

∑
k=0

(
3k+2

2

)
q12k+4 +

∞

∑
k=0

(
3k+3

2

)
q12k+4 (3.45)

=
2q12x+4

(q12−1)3 +
14q12x+16

(q12−1)3 +
2q12x+28

(q12−1)3 −
3
(
q12 +2

)
q16

(q12−1)3 −
3
(
2q12 +1

)
q4

(q12−1)3 −
4
(
q24 +7q12 +1

)
q4

(q12−1)3

(3.46)

=
q4
(
2q12x +14q12(x+1)+2q12(x+2)−7q24−40q12−7

)
(q12−1)3 (3.47)

=−13
∞

∑
k=x−1

q12k+6
(

k− x+1
2

)
−4

∞

∑
k=x−2

q12k+6
(

k− x+2
2

)
−

∞

∑
k=x

q12k+6
(

k− x
2

)
+3

∞

∑
k=0

(
3k+2

2

)
q12k+6 +3

∞

∑
k=0

(
3k+3

2

)
q12k+6 (3.48)

=
4q12x+6

(q12−1)3 +
13q12x+18

(q12−1)3 +
q12x+30

(q12−1)3 −
9
(
2q12 +1

)
q6

(q12−1)3 −
3
(
q24 +7q12 +1

)
q6

(q12−1)3 (3.49)

=
q6
(
q24 +13q12 +4

)(
q12x−3

)
(q12−1)3 (3.50)
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−12
∞

∑
k=x−1

q12k+8
(

k− x+1
2

)
−6

∞

∑
k=x−2

q12k+8
(

k− x+2
2

)
+

∞

∑
k=0

(
3k+2

2

)
q12k+8 +4

∞

∑
k=0

(
3k+3

2

)
q12k+8

+
∞

∑
k=0

(
3k+4

2

)
q12k+8 (3.51)

=
6q12x+8

(q12−1)3 +
12q12x+20

(q12−1)3 −
3
(
q12 +2

)
q8

(q12−1)3 −
12
(
2q12 +1

)
q8

(q12−1)3 −
(
q24 +7q12 +1

)
q8

(q12−1)3 (3.52)

=−
q8
(
−6q12x−12q12(x+1)+q24 +34q12 +19

)
(q12−1)3 (3.53)

−9
∞

∑
k=x−1

q12k+10
(

k− x+1
2

)
−9

∞

∑
k=x−2

q12k+10
(

k− x+2
2

)
+3

∞

∑
k=0

(
3k+3

2

)
q12k+10

+3
∞

∑
k=0

(
3k+4

2

)
q12k+10 (3.54)

=
9q12x+10

(q12−1)3 +
9q12x+22

(q12−1)3 −
9
(
q12 +2

)
q10

(q12−1)3 −
9
(
2q12 +1

)
q10

(q12−1)3 (3.55)

=
9q10

(
q12 +1

)(
q12x−3

)
(q12−1)3 . (3.56)

Now we add (3.41), (3.44), (3.47), (3.50), (3.53), (3.56).

12q12(x+1)+6q12(x+2)−19q24−34q12−1

(q12−1)3 +
q2 (4q24 +13q12 +1

)(
q12x−3

)
(q12−1)3

+
q4
(

2q12x +14q12(x+1)+2q12(x+2)−7q24−40q12−7
)

(q12−1)3 +
q6 (q24 +13q12 +4

)(
q12x−3

)
(q12−1)3

−
q8
(
−6q12x−12q12(x+1)+q24 +34q12 +19

)
(q12−1)3 +

9q10 (q12 +1
)(

q12x−3
)

(q12−1)3 (3.57)

=
1+q2 +q4−q12x+2

(1−q2)
3
(q2 +1)

. (3.58)

Thus we have shown that (3.36) is true. The proof for odd terms follows the same logic. This

also hold for all other rational functions introduced after this. For odd terms, the general rational

function is
q(1+∑

a
β=1(q

4(β+1)+2−q4(β+1)+4))

(1−q2)3 =
q(1+2q2−q4a+2)

(1+q2)(1−q2)3 (3.59)
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Just like before, we add both functions

1+q2 +q4−q4a+2

(1+q2)(1−q2)3 +
q(1+2q2−q4a+2)

(1+q2)(1−q2)3 =
(q(1+2q2−q4a+2)+1+q2 +q4−q4a+2)

(1+q2)(1−q2)3 (3.60)

=
1+q2 +q3−q4a+2

(1−q)3(1+q)2(1+q2)
(3.61)

=
1+q2 +q3−q4a+2

(1−q)(1−q2)(1−q4)
. (3.62)

With this, we have proven equation (3.15) of Theorem 11. We are able to prove that (3.16) and

(3.17) also hold by following the same logic as (3.35).Similarly we have a table for C3a+1. We can

Table 3.3:
a = 1 a = 2 a = 3

∑
∞
k=0 p(3k,3,2(k+a)+1)q2k 1

(1−q2)3
1+q4−q6

(1−q2)3
1+q4−q6+q8−q10

(1−q2)3

∑
∞
k=0 p(3k+2,3,2(k+a+1))q2k+1 2q

(1+q2)(1−q2)3
q(2+q2−q6)

(1+q2)(1−q2)3
q(2+q2−q10)
(1+q2)(1−q2)3

∑
∞
N=0C3a+1(N)qN 1+q

(1−q)(1−q2)(1−q4)
1+q+q3−q7

(1−q)(1−q2)(1−q4)
1+q+q3−q11

(1−q)(1−q2)(1−q4)

see that in Table 3.3, the even terms have a pattern described by

1+∑
a
β=1(q

4β−q4β+2)

(1−q2)3 = 1+
q4(1−q4a)

(1+q2)3 (3.63)

=
1+q2 +q4−q4(a+1)

(1+q2)(1−q2)3 (3.64)

while the odds are described by
2q+q3−q4a+3

(1+q2)(1−q2)3 . (3.65)
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The sum of (3.41) and (3.42) is

1+q2 +q4−q4(a+1)

(1+q2)(1−q2)3 +
2q+q3−q4a+3

(1+q2)(1−q2)3 =
1+q+q3−q4a+3

(1−q)3(1+q)2(1+q2)
(3.66)

=
1+q+q3−q4a+3

(1−q)(1−q2)(1−q4)
. (3.67)

This shows (3.16) is true for all nonnegative integers a. Now we have the table for C3a+2 Again we

Table 3.4:
a = 1 a = 2 a = 3

∑
∞
k=0 p(3k+1,3,2(k+1+a))q2k 1+2q2−q4

(1+q2)(1−q2)3
1+2q2−q8

(1+q2)(1−q2)3
1+2q2−q12

(1+q2)(1−q2)3

∑
∞
k=0 p(3k+2,3,2(k+a+1)+1)q2k+1 q(2−q2)

(1−q2)3
q(2−q2+q4−q6)

(1−q2)3
q(2−q2+q4−q6+q8−q10)

(1−q2)3

∑
∞
N=0C3a+2(N)qN 1+q+q2−q4

(1−q)(1−q2)(1−q4)
1+q+q2−q8

(1−q)(1−q2)(1−q4)
1+q+q2−q12

(1−q)(1−q2)(1−q4)

look at the even terms and their generating functions and notice that they are described by

1+2q2−q4(a+1)

(1+q2)(1−q2)3 . (3.68)

With the odds being described by

q(2−q2 +∑
a
β=1(q

4β−q4β+2
))

(1−q2)3 =
q(2+q2−q4a+4)

(1+q2)(1−q2)3 (3.69)

When (3.45) and (3.46) are added, we arrive at

1+2q2−q4(a+1)

(1+q2)(1−q2)3 +
q(2+q2−q4a+4)

(1+q2)(1−q2)3 =
1+q+q2−q4a+4

(1−q)3(1+q)2(1+q2)
(3.70)

=
1+q+q2−q4(a+1)

(1−q)(1−q2)(1−q4)
. (3.71)

This result along with (3.39) and (3.44) prove Theorem 10.

21



CHAPTER IV

CONCLUSION

This thesis presents an ”orthogonal" view of the coefficients of the Gaussian polynomial[N+3
3

]
and it implies that these coefficients,when viewed in this orthogonal way, can be expressed

as one of three rational functions in Theorem 14. The obvious step is to explore other values for

m starting with 4. From [1], we know that the central coefficients can be expressed by a rational

function with period
2lcm(m)

m
(4.1)

where lcm(m) is defined to be the least common multiple of the numbers in {1,2,3, . . . ,m}. If we

can fully generalize this approach it may be useful in proving the non-negativity of coefficients of

the series expansion of certain rational functions.
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