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ABSTRACT 

 

Masud, Saumik Sakib Bin, Traffic time headway prediction, and analysis: a deep learning 

approach. Master of Science (MS), December 2020, 112 pp., 7 tables, 35 figures, 74 references. 

In the modern world of Intelligent Transportation System (ITS), time headway is a key 

traffic flow parameter affecting ITS operations and planning. Defined as “the time difference 

between any two successive vehicles when they cross a given point”, time headway is used in 

various traffic and transportation engineering research domains, such as capacity analysis, safety 

studies, car-following, and lane-changing behavior modeling, and level of service evaluation 

describing stochastic features of traffic flow. Advanced travel and headway information can also 

help road users avoid traffic congestion through dynamic route planning, for instance. Hence, it 

is crucial to accurately model headway distribution patterns for the purpose of analyzing traffic 

operations and making subsequent infrastructure-related decisions. Previous studies have applied 

a variety of probabilistic models, machine learning algorithms (for example, support vector 

machine, relevance vector machine, etc.), and neural networks for short-term headway 

prediction. Recently, deep learning has become increasingly popular following a surge of traffic 

big data with high resolution, thriving algorithms, and evolved computational capacity. 

However, only a few studies have exploited this emerging technology for headway prediction 

applications. This is largely due to the difficulty in capturing the random, seasonal, nonlinear, 

and spatiotemporal correlated nature of traffic data and asymmetric human driving behavior 
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which has a significant impact on headway. This study employs a novel architecture of deep 

neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic 

dynamics effectively to predict vehicle headway. LSTM NN can overcome the issue of back-

propagated error decay (that is, vanishing gradient problem) existing in regular Recurrent Neural 

Network (RNN) through memory blocks which is its special feature, and thus exhibits superior 

capability for time series prediction with long temporal dependency.  

There is no existing appropriate model for long term prediction of traffic headway, as 

existing models lack using big dataset and solving the vanishing gradient problem because of not 

having a memory block. To overcome these critics and fill the gaps in previous works, multiple 

LSTM layers are stacked to incorporate temporal information. For model training and validation, 

this study used the USDOT’s Next Generation Simulation (NGSIM) dataset, which contains 

historical data of some important features to describe the headway distribution such as lane 

numbers, microscopic traffic flow parameters, vehicle and road shape, vehicle type, and velocity. 

LSTM NN can capture the historical relationships between these variables and save them using 

its unique memory block. At the headway prediction stage, the related spatiotemporal features 

from the dataset (HighwayI-80) were fed into a fully connected layer and again tested with 

testing data for validation (both highway I-80  & US 101). The predicted accuracy outperforms 

previous time headway predictions.

 

  



v 

 

 

DEDICATION 

 

The completion of my master’s studies would not have been possible without the love and 

support of my family and friends. This study is dedicated to my dear father MOHAMMAD 

MASUDUL HAQUE, my mother HOSNE JAHAN, my sister SAMIRA MEHNAZ, and my 

loving wife NAZIFA AKTER who wholeheartedly inspired, motivated and supported me by all 

means to accomplish this degree. Without their support I could not achieve any of my 

accomplishments. Thank you for your love and patience. Most importantly, all the praises to the 

almighty Who made everything possible and easy for me. 

 

 

 

 



 

 



vi 

 

ACKNOWLEDGEMENTS 

 

I will be always grateful to my supervisor/advisor Dr. Mohamadhossein Noruzoliaee for 

his invaluable supervision in scientific research and encouraging me with infinite patience and 

relentless support instead of his limitations to complete my research work. He has been a great 

mentor for me. It would be wrong if I do not mention respected and well known data scientists, 

Mr. Andrew Ng and Mr. Lex Fridmen because their works and guidelines motivated me to dig 

deeper into Artificial Intelligence. Being one of the advanced and latest algorithms, deep 

learning was not that easy to cope up with. But my advisor was patient and had believe in me 

which motivated me more to learn and apply new technologies into transportation engineering 

quickly. I am also thankful to my friend Sabeel Al Ferdous for helping me out when no one was 

there. I cannot defy the help from all Bangladeshi Students and Community living in the Rio 

Grande Valley during my research period. I should mention especially my roommates Md. Wasif 

Zaman, Apu Deb, Md Mashfiqur Rahman and Mohammad Anis who made me feel a new place 

like home, living 8,500 miles away from family. Without their constant support and motivation I 

could not finish my work smoothly. I would also like to mention two of my closest respected 

senior brothers, Abdullah Al Masum & Aminur Rashid Chowdhury who guided and motivated 

me to not only do research but also to enrich my personality and goals. I should particularly 

express my gratitude to all the respected professors of the Civil Engineering Department of 

UTRGV, especially to Dr. Ho and Dr. Kim for their immense support and guidance throughout 

the last two years. My research motivation mostly came from my supervisor Dr. Noruzoliaee 



vii 

 

who was able to draw a big picture of future transportation engineering. His given flexibility 

made me think out of the box and utilize most of my potential. 



viii 

 

 

TABLE OF CONTENTS 

                                      Page 

ABSTRACT ................................................................................................................................... iii 

DEDICATION ................................................................................................................................ v 

ACKNOWLEDGEMENTS ........................................................................................................... vi 

TABLE OF CONTENTS ............................................................................................................. viii 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ...................................................................................................................... xii 

CHAPTER I. INTRODUCTION .................................................................................................... 1 

CHAPTER II. LITERATURE REVIEW ....................................................................................... 5 

2.1. Traffic Time Headway ......................................................................................................... 5 

2.2. Headway models .................................................................................................................. 6 

2.2.1.  Mathematical/ probabilistic models.............................................................................. 6 

2.2.2. Artificial Intelligence ..................................................................................................... 9 

2.3 Artificial Intelligence (AI) in ITS ....................................................................................... 10 

2.3.1. Machine learning ......................................................................................................... 11 

2.3.2. Deep learning ............................................................................................................... 12 

2.4. Contributing factors for headway estimation ..................................................................... 17 

CHAPTER III. METHODOLOGY .............................................................................................. 20 

3.1. Recurrent Neural Network (RNN) and 

Long Short-Term Memory (LSTM NN) ................................................................................... 20 

3.2. Framework of LSTM ......................................................................................................... 23 

3.2.1. Gates ............................................................................................................................ 24 

3.2.2. Inputs and output ......................................................................................................... 26 

3.2.3. The shape of the neural network.................................................................................. 26 



ix 

 

4.1. Data overview .................................................................................................................... 28 

4.2. Data preparation ................................................................................................................. 30 

4.2.1. Feature engineering ..................................................................................................... 30 

4.2.2. Preprocessing ............................................................................................................... 31 

4.2.3. Splitting and reframing ................................................................................................ 32 

4.3 Time Headway Analysis ..................................................................................................... 36 

4.3.1. Velocity and flow rate ................................................................................................. 38 

4.3.2. Vehicle type-wise analysis .......................................................................................... 44 

4.3.3. Lane-wise Analysis...................................................................................................... 48 

CHAPTER V. MODEL IMPLEMENTATION & VALIDATION ............................................. 54 

5.1. Model Set-up and Configuration ........................................................................................ 54 

5.1.1. Hyperparameters .......................................................................................................... 54 

5.1.2. Neurons and Hidden Layers ........................................................................................ 55 

5.1.3. Activation function ...................................................................................................... 56 

5.1.4. Loss function ............................................................................................................... 57 

5.1.5. Optimizer ..................................................................................................................... 58 

5.2. Training the model ............................................................................................................. 60 

5.3. Validation ........................................................................................................................... 61 

CHAPTER VI. RESULTS AND ANALYSIS ............................................................................. 64 

6.1. Prediction ........................................................................................................................... 65 

6.2. Prediction Analysis ............................................................................................................ 69 

6.2.1. Headway distribution ................................................................................................... 69 

6.2.2. Correlations ................................................................................................................. 71 

6.3. Model Comparison ............................................................................................................. 76 

CHAPTER VII. CONCLUSION & FUTURE RECOMMENDATIONS .................................... 80 



x 

 

REFERENCES ............................................................................................................................. 83 

BIOGRAPHICAL SKETCH ........................................................................................................ 92 

 

 

 

 



 

 

 

 

 

 



xi 

 

 

LIST OF TABLES 

    

                                                                                                                                                    Page 

Table 1. Recent deep learning techniques used in ITS are listed in this table. ............................. 13 

Table 2. Recent works implementing LSTM in different studies of ITS ..................................... 16 

Table 3. Contributing features for analyzing vehicle headway of a road network ....................... 17 

Table 4 Data overview .................................................................................................................. 33 

Table 5. Lane wise statistics ......................................................................................................... 52 

Table 6. Model summary .............................................................................................................. 59 

Table 7. One step prediction comparison of time headway .......................................................... 78 

 

 



 

 

 

 

 



xii 

 

 

LIST OF FIGURES 

 

                                     Page 

Figure 1. Recurrent Neural Network ............................................................................................ 21 

Figure 2. Unit LSTM cell.............................................................................................................. 22 

Figure 3. LSTM Neural Networks ................................................................................................ 23 

Figure 4. Aerial view of the subject area (left) and a digital video camera mounted  

                on top of a building recording vehicle trajectory data of I-80 (right) ........................... 29 

Figure 5. Spliting & reframing the dataset .................................................................................... 35 

Figure 6. Statistics & distribution of Time Headway (x-axis: time headway,  

                y-axis: counts of headway) ........................................................................................... 38 

Figure 7: Velocity-headway relationship ...................................................................................... 39 

Figure 8 Velocity of preceding vehicle vs Time headway of subject vehicle .............................. 40 

Figure 9. Correlation of time headway with flow rates and velocity............................................ 41 

Figure 10. Correlation of headway with velocity and flowrate (last four minutes) ...................... 42 

Figure 11. Microscopic analysis (for vehicle ID 2483) ................................................................ 43 

Figure 12 Time Headway distribution of Vehicle Class-2 (Passenger Car) ................................. 44 

Figure 13. Time Headway distribution of Vehicle Class-3 (truck) .............................................. 45 

Figure 14. Relationship of headway and velocity with vehicle shape .......................................... 45 

Figure 15. Headway diversity of different vehicle classes  

                 (Class-3: upper figure, Class-2: lower figure) ............................................................. 47 

Figure 16. Effect of the velocity of preceding vehicle on Passenger Cars ................................... 47 

Figure 17. Effect of the velocity of the preceding vehicle on Heavy vehicles ............................. 48 

file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971279
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971280
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971280
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971287
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971288
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971289
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971289
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971290


xiii 

 

Figure 18. Lane usage percentage of each vehicle class ............................................................... 49 

Figure 19. Lane usage ................................................................................................................... 49 

Figure 20. Average Time Headways in each lane ........................................................................ 50 

Figure 21. Lane-wise Time Headway distributions ( upper left= lane 7, 

                 upper right= lane 1, lower left= lane 4, lower right= lane 3) ....................................... 51 

Figure 22. Loss functions over epochs ......................................................................................... 61 

Figure 23. Predicted Time Headway on test set ........................................................................... 65 

Figure 24. Actual Time Headway vs Predicted Time Headway (Mean value) ............................ 66 

Figure 25.Actual Time Headway vs Predicted Time Headway (Summed value) ........................ 67 

Figure 26. Time headway prediction of US-101 highway ............................................................ 68 

Figure 27. Time headway distribution of I-80 .............................................................................. 69 

Figure 28. Time headway distribution of US-101 ........................................................................ 70 

Figure 29. PDF of predicted and actual Time Headway (I-80) .................................................... 71 

Figure 30. Correlation of vehicle velocity with time headway  

                  in I-80 (actual vs predicted) ........................................................................................ 72 

Figure 31. Correlation of vehicle velocity with time headway  

                  in US-101 (actual vs predicted) .................................................................................. 73 

Figure 32. Correlation of Preceding (front vehicle) velocity  

                  with time headway in I-80 (actual vs predicted) ......................................................... 74 

Figure 33. Correlation of Preceding (front vehicle) velocity with  

                  time headway in US-101 (actual vs predicted) ........................................................... 75 

Figure 34. Correlation of time headway (actual vs predicted)  

                  with flow rate in highway I-80.................................................................................... 75 

Figure 35. Correlation of time headway (actual and predicted)  

                  with flow rate in US-101............................................................................................. 76 

file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971292
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971293
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971294
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971295
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971295
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971297
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971300
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971301
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971302
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971304
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971304
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971305
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971305
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971306
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971306
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971307
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971307
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971308
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971308
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971309
file:///C:/Thesis/Thesis%20-%20FINAL.docx%23_Toc58971309


1 

 

CHAPTER I 

 

INTRODUCTION 

 

Headway is one of the most significant traffic parameters, used in different transportation 

aspects like traffic flow theory and infrastructure decision-making policies. Headway can be 

represented in two ways. One is headway distance (length) and another one is time headway 

(time, usually in seconds). Time headway refers to the time needed for a vehicle to pass its front 

vehicle completely where both vehicles are moving in the same lane of a road segment. To be 

precise, time headway can be defined as ‘‘the time, in seconds, between two successive vehicles 

as they pass a point on the roadway, measured from the same common feature of both 

vehicles.’’[73]. The same common feature refers to the rear to rear bump or front to front bump 

calculation. The time headway of a subject vehicle can be calculated by taking the distance 

between the subject and the front vehicle and dividing it by the instantaneous velocity of the 

subject vehicle.  

The distribution of the vehicle time headway also represents the overall scenario and the 

positions of the vehicles explaining whether the road is congested or a freeway. Thus time 

headway has a remarkable effect on traffic flow and vice-versa. Traffic flow is a macroscopic 

flow parameter. Being an influence on velocity, density, and traffic flow, time headway is 

considered as a key parameter for calculating highway capacity, safety, and level of service. 

Though time headway has effects on macroscopic parameters, it has vast microscopic features 
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that explains the microscopic vehicle to vehicle relationships as well. When congestion arises, 

the inter-vehicle distance gets shorter which occurs heterogeneity in time headway distribution. 

At congestion drivers mostly tend to follow the front vehicle. This following behavior can be 

different for different types of vehicles as well. This kind of model is called the ‘car-following’ 

model where the vehicle to vehicle relationships are explored. Car-following models are the link 

between the macroscopic and microscopic models which can explain both micro and macro 

effects. The driver’s behavior is thus very necessary to analyze for a complete headway 

distribution model because time headway is stochastic and changes frequently.  

Time headway is not constant for many reasons including stochastic actions of the 

drivers, difference in vehicle performances, lane changing behaviors of the drivers, etc. 

Evaluating the behavior of the drivers can be a good feature for making planning and safety 

policies. The main causes of rear-end crashes, which typically constitute approximately 30% of 

all police-reported crashes (National Highway Traffic Safety Administration, 1999), are driver 

inattention and following too closely, alone or in combination [73]. This reflects the driver’s 

inadequacy to maintain a safer headway and misjudgment. Appropriate time headway prediction 

can also make the driver aware of the surroundings through the vehicle to vehicle and vehicle to 

infrastructure communications. Thus time headway is a key parameter for predicting crashes and 

making safety protocols.  

When vehicles are in a platoon maintaining a decreased time headway can increase the 

capacity of the road. Researchers are using headway models to predict the minimum safety 

distance within the vehicles which can be also reproductive in researches including connected 

autonomous vehicles. [74]. Time headway has been studied over a long period. As traffic 

scenarios are constantly changing through rapid changes in the economy, population, mobility, 
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technologies, etc, the distribution and modeling of time headway have also changed over time. 

The availability of modern technologies and heterogeneity in traffic leads us to a better 

understanding of time headway. For example, in ancient times there were not too many car 

owners like today. Infrastructures were much lesser than it is now. Type of the vehicles or the 

lane changing behaviors were not considered in models of those times. Sara et al. (2014) 

explained the effect of different types of vehicles on headway distribution analyzing different 

mathematical models for different sets of vehicles [20]. But an investigation on choosing lanes 

and lane changing behaviors was not explained. Guo et al. (2016) filled the void by introducing 

headway distribution models for a multi-lane freeway [16]. They came up with different 

distribution models for different scenarios. Several studies have implemented separate headway 

models for different traffic flows.  

Researchers are trying to generate a single model that describes and predicts time 

headway in various traffic conditions regardless of the place and type of road. Recently 

developed technologies and artificial intelligence implemented models are overtaking the 

previous probabilistic and mathematical models. Because these models can describe travel 

behavior and predict very accurately. Different machine learning and deep learning technologies 

have been already introduced in different aspects of ITS (Intelligent Transportation System), 

modern transportation planning, and also infrastructure asset management. Deep neural networks 

can perform behavior analysis more precisely, taking different features into action. Long Short-

Term Memory (LSTM) is a deep learning algorithm that is a modified version of Recurrent 

Neural Network (RNN) which has an excellent performance in time series forecasting. LSTM has 

been already implemented in predicting different traffic parameters such as speed, travel time, 

aircraft boarding time, etc (Table 2). It has been found to be one of the most accurate prediction 
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models for describing car-following and lane-changing behaviors. But it is yet to be implemented 

on traffic time headway prediction. As time headway is constantly changing and highly 

correlated with the driver’s behavior, to build a single model describing all the scenarios 

altogether, a deep learning approach has been made in this study.  

This study explains the complex relationship of traffic characteristics, vehicle shape & 

class, lane usage with traffic time headway. Historical time headway and actions of the drivers in 

different traffic conditions have been trained by the model. The model learns from past trajectory 

history and predicts accordingly. A safety constraint of 1s in time headway has been taken into 

account so that the model can be used in safety analysis as well. The NGSIM data of highway I-

80 and US-101 have been used in our model. We trained our model with the trajectory dataset of 

highway I-80 and further validated with the trajectory dataset of US-101. We chose highway I-

80 as our training dataset because the data includes a lot of heterogeneity and a high ranged of 

time headways (including very small and very high headway). Thus the model can learn more 

sophisticated scenarios in a mixed traffic condition and predict accurately. Chapter 2 describes 

the literature about headway models and the use of AI in ITS. The methodology behind the 

model is explained in the 3rd chapter. A vast analysis of data and time headway has been shown 

in chapter 4 through distributions and graphs. Data analysis include both vehicle type wise and 

lane wise analysis explaining the effects of other important features on headway. The summary 

of the model parameters with the detailed implementation and validation process is described in 

the 5th chapter. Results and further analysis have been visualized in chapter 6 where a 

comparison of current and past headway models has been also shown. The study is summarized 

and shown how it can be useful in different applications of ITS as a further recommendation in 

chapter 7. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1. Traffic Time Headway 

The headway between two successive vehicles is considered as a random variable which 

is one of the main variables in traffic flow theory. Time headway is the time elapsed between 

two consecutive vehicles arriving at a measurement point of a road section. As the vehicle, 

driver, road, and environmental factors vary even in the same roadway network, this arrival of 

vehicles is considered as a stochastic variable. Headway distribution model being the basis of the 

traffic flow modeling and microscopic simulation, the distribution of this variable is being used 

in many studies including qualitative measurement of traffic (free flow, congested, etc.) on a 

given road under given conditions; quantitative analysis of road capacity (the ability of a road to 

service vehicles); traffic safety analysis and generating traffic simulation for analysis and 

prediction. (Tohbi et al., 2018). 

There have been a lot of works and findings regarding the modeling of traffic headway 

using various tools and methods. We have divided these models into two parts based on their 

methodology (probabilistic models & use of artificial intelligence).
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2.2. Headway models 

 

2.2.1.  Mathematical/ probabilistic models 

Several authors have proposed many sophisticated models for different distributions 

which were accumulated by Faderico Pascucci in his work [9]. In fact, the very first study of 

headway distribution for low traffic (uninterrupted flows) is dated back to the 1930s (Adams, 

1936) [1] where Gaussian distribution and Negative exponential distribution methods were 

introduced. In 1966, Greenburg described time headways applying Shifted exponential 

distribution and Shifted log-normal distribution which described the right-skewness of headway 

distribution [2]. The skewness of distribution represents the preference of drivers to maintain a 

short headway than a large headway. As traffic flow was very low, vehicles were considered to 

be running at a free-flow speed which eliminated the fact of interaction between vehicles in 

earlier theories. Vehicle arriving rate for a road segment was considered as an important feature 

in those previous studies which was strongly correlated with the headway distribution.  

As roads were becoming congested day by day, researchers began to modify their models 

to complex models, trying to fit the headway distribution precisely. In 1976, Tolle et al. came up 

with composite exponential, Pearson Type III, and log-normal distributions which represented 

the best results for headway distribution in a wide range of traffic volume [3]. Pearson type III 

model is the most suitable time headway mathematical distribution for the intermediate headway 

state, including both random and constant boundary conditions. Some common Pearson’s 

distributions like Gamma, Erlang, negative exponential, and shift-negative exponential 

probability distributions are used in some studies (Luttinen, 1999) [4]. In 1975, Cowan 

developed an important new model named the M3 headway distribution model which was used 
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later in different traffic applications (for example, modeling roundabout flow by Hagring in 

1996) [5]. Many researchers thought that the lognormal model should be used in analyzing the 

traffic flow in the freeway, while Mr. Luttinen in 1999 found the M3 distribution model as a 

better choice for analyzing traffic practically, especially for larger vehicle headways G[4].  

Many factors such as traffic volume, the proportion of heavy vehicles, lane position, road 

structure, time of the day, and weather conditions were not considered in earlier studies which 

are key features for analyzing and modeling headway distribution [6]. Making lane numbers an 

important factor, Mei and Bullen measured the headway for high traffic flow in a four-lane 

highway using different statistical distribution and found the lognormal distribution (with a shift 

of 0.3 or 0.4 seconds) was the best fit for the time headways in high traffic volumes. (Mei M and 

Bullen, 1993) [7]. In the year 2000, Al-Ghamdi conducted research on different vehicle 

distribution under different flow rates and ended up finding negative-exponential, shift-

exponential, and Erlang distributions are the optimal models for low, medium, and high levels of 

flow, respectively [8]. Before earlier 1990, researchers proposed their models without 

considering vehicle speed which was later proved to be one of the most influencing factors for 

headway distribution (Krbálek et al., 2001; Nishinari et al. 2003) [11, 12].  

Another study of the headway distribution was investigated for a four-lane divided urban 

arterial in Chennai City in India [10] by Arasan in 2003 where negative exponential distribution 

was found to be best fitted for modeling headways at different lanes and over the entire range of 

traffic flows. To investigate headway distribution in different types of sections of a road, In 

2006, Bham and Ancha analyzed the headway distribution in three sections where (i) a ramp 

merges, (ii) a lane drops, and (iii) a ramp weaving section and found shifted lognormal 

distribution accurately fits for all studied areas [13]. For blessings of technology, road-side video 
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cameras, drones, on-vehicle radars, laser scanners, etc. have been used in the data collection 

process nowadays which enables us to further investigate both microscopic and macroscopic 

analysis quite accurately. Chen et al. (2010) carefully studying the headway data retrieved from 

Next-Generation Simulation (NGSIM) trajectory datasets (NGSIM, 2006) explained the 

relationship between headway and speed as well as traffic flow and speed in both macroscopic 

and microscopic point of view by a Markov model [19]. It certainly became important to 

investigate the headway distribution in different lanes. So, Zwahlen et al. analyzed the 

cumulative headway distributions at different traffic flows at each lane in Ohio freeways in the 

U.S [14] and interestingly found that for hourly traffic flow, the distributions at each lane are 

almost the same in shape.  

As the world changes with time, there has been an increase in different types of vehicles 

on a road. Ye and Zhang analyzed the headway distribution between two different types of 

leading and following vehicles [15]. To dig deeper, in 2016 Kong and Guo found the optimal 

distribution considering six common distribution models (lognormal, gamma, exponential, 

normal, inverse Gaussian, and Erlang) to fit the Car-Car (C-C), Car-Truck (C-T), and Truck-

Truck (T-T) headway types which resulted that, the lognormal model is suitable for C-C and T-T 

type headway distribution and inverse Gaussian is accepted by the C-T headway type. Also 

found different traffic flow rates, percentage of trucks, and lane positions have a great impact on 

each distribution model [16]. The time headways of preceding and following vehicles for 

different types of vehicles (heavy & passenger) were analyzed for an urban highway at different 

traffic flow rates during the congestion period using the trajectory data for a highway section in 

California: Berkeley Highway, I-80. The log-normal distribution model with different shifting 

values was found well fitted for different types of vehicles (both preceding and following) [20]. 
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For being slow in movement, greater in length, and safety concerns, both the preceding and 

following headways of the heavy vehicles were greater than passenger cars. A study on mixed 

traffic, however, indicates that headway between two vehicles also depends on the length of the 

lead vehicle [17]. R. Roy and P. Saha. conducted a field study on two-way lane highways in 

India having a heterogenic traffic condition in 2018 [18]. They evaluated four distribution 

functions (log-logistic, lognormal, Pearson 5, and Pearson 6) while modeling the headway data 

and proposed that, Log-logistic distribution is an appropriate model for moderate flow whereas, 

Pearson 5 satisfies well at congested flow. 

 

2.2.2. Artificial Intelligence 

In recent years, there has been a huge usage of Artificial Intelligence in several sectors 

both in engineering and the general field. For the blessing of technology, big data can be 

collected through several techs. One of the promising facts of AI methods is, it enables 

computers to sort through large datasets which makes the predictions more accurate and faster. 

Though there has been the usage of AI methods in traffic forecasting in some studies, limited 

work has been done on predicting traffic headway.  

There is a complex inter-relationship between individual driver behaviors, vehicle 

characteristics, and traffic conditions which makes the headway prediction for an individual 

vehicle more challenging (Lee and Chen, 1986). Tong and Hung used feed-forward neural 

network to model vehicle discharge headway at the signalized intersection where they used eight 

variables concluding lane width and position, queue position & vehicle type of subject and 

preceding vehicles, etc. in 2000 [22]. Also, many researchers proposed the arriving time 

prediction models of the bus transit system, by modeling the bus headway using different 
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machine learning algorithms (Support Vector Machine, K-Nearest-Neighbor, Kalman Filtering, 

Artificial Neural Network, Time Series and Hybrid model, etc.). For example, Chien et al. [25] 

proposed a headway-based microscopic simulation model, both link-based and stop-based ANN 

models for bus arrival time prediction. They used historical arrival and departure times, travel 

speed, traffic volume, as well as dwell time as inputs showing a superior prediction performance. 

Yu et al. [23] proposed an SVM (Support Vector Machine) model to predict bus arrival time 

considering segment-level travel time (current and next segment), weather condition, and 

headway based on GPS data as inputs. Later in 2011, they enhanced the prediction model by 

considering data from multiple routes at the same time, which results in higher accuracy than 

using single-route information [24]. To reduce operating cost and waiting time for passengers, 

Recently, Yu et al. (2016) established a Least Squares Support Vector Machine regression to 

predict the headway irregularity to detect bus bunching. They used transit smart cards as their 

data which included historical headway, travel time, and passenger demands. [26]. 

 

2.3 Artificial Intelligence (AI) in ITS 

 

AI reflects the natural evolution of technology as increased computing power enables 

computers to sort through large data sets to identify patterns and predict more accurately and 

time efficiently. Machine learning and deep learning are the subsets of Artificial Intelligence. 

The goal of machine learning generally is not only to learn from the experience for specific tasks 

but also to further analyze and predict that can be understood and utilized by people. The 

performance is considered to be increased with experience. Two of the most widely adopted 

machine learning methods are supervised learning and unsupervised learning. Supervised 

learning deals with labeled data (for example, regression analysis) whereas unsupervised 
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learning is used in unlabeled data to find the shape and structure of the data (classification 

problems). [27]. Being a subset of machine learning, deep learning performs the same task using 

the training data that should not necessarily be structured or labeled. Deep learning enables 

computers to learn on their own by training historical data. 

 

2.3.1. Machine learning 

Sababa et al. in 2016 estimated average daily traffic (AADT) and missing hourly volume 

using machine learning algorithms where a comparison between artificial neural network (ANN) 

and support vector regression (SVR) revealed that SVR functions better than ANN in AADT 

estimation for different functional classes of roadways [28]. Laha et al. used machine learning 

algorithms in multivariate multiple regression, spherical-spherical regression, and randomized 

spherical K-NN regression to predict real-time location with taxi-GPS data streams. The 

Multivariate multiple regression method has the best performance in terms of prediction 

accuracy [29]. Another prediction model (supervised learning model) with added behavioral and 

physiological features was presented by Ba et al. in 2017 to predict vehicle crashes which is the 

key component of the Vehicle Collision Avoidance System (VCAS) [30].  

Besides predicting using regression, there have been some works on classification and 

clustering as well as using machine learning. To further improve the accuracy of traffic 

classifiers and reduce the cost, Zhao et al. (2019) proposed a feature selection algorithm based on 

Machine Learning which provided internet traffic classification and application identification 

associated with network traffic. Hasnat et al. (2018) came up with an ensemble machine learning 

classification technique to identify tourists and analyze the patterns of destination choices of 

tourists from location-based social media data [31]. 



12 

 

Machine learning has been widely used to predict traffic flow, volume, and vehicle 

velocity over recent years. Cheng et al. (2017) used chaos theory and support vector machine for 

traffic flow prediction where the stochastic characteristics of traffic flow associated with the 

speed, occupancy, and flow are identified. The support vector regression (SVR) model was 

designed to predict the traffic flow which had better performance for the short-term traffic flow 

prediction in terms of accuracy and timeliness [32]. Another short-term traffic forecasting model 

was introduced by Guo et al. (2018) which had a fusion-based framework (which combines 

individual predictors like, Machine Learning, Neural Networks (NN), Support Vector Regression 

(SVR), and Random Forests (RF)) under different traffic conditions [33].  A tailored machine 

learning approach for urban transport network flow estimation was proposed by Liu et al. (2019) 

which aims to estimate traffic flow on a single link extracting Spatio-temporal traffic features 

[34]. Li et al. (2019) predicted traffic speed based on a deep feature fusion model where different 

AI methods were implemented and compared. The most validated result was obtained when the 

deep feature fusion model and support vector regression were jointly applied [35]. A hybrid 

genetic algorithm (a new soft unsupervised classification method) and machine learning 

(backpropagation network (BPN)) were combined to predict the rental demand for a bicycle-

sharing transportation system to increase profits and also to improve user satisfaction. (Guo et 

al., 2019) [36]. 

 

2.3.2. Deep learning 

Deep learning has been successfully employed in computer vision, speech & audio 

recognition, inspection process, and natural language processing which eventually provoked a 

storm in ITS (Intelligent Transportation Systems). This new learning technique replaced 

traditional ML models in many applications and the outlook of ITS is being reshaped. DL has 
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been used in different transportation engineering applications; for example, visual recognition 

tasks, traffic flow prediction (TFP), traffic speed prediction (TSP), travel time prediction (TTP), 

Car-following models, and Miscellaneous tasks by introducing new learning models like Deep 

Neural Network (MLP, DBN, SAE), Recurrent Neural Network (RNN), Convolutional Neural 

Network (CNN), Graph Convolutional Network (GraphCNN), Long Short-Term Memory 

(LSTM), etc. 

There have been a lot of works regarding traffic flow prediction using various deep 

learning techniques achieving promising results. Some useful recent works have been 

accumulated in table 1.  

Table 1. Recent deep learning techniques used in ITS are listed in this table. 

Author and Year Model used Output 

Lv et al. (2015) Stacked Autoencoder (SAE Model) Traffic Flow Prediction 

Miyajima et al. 

(2016) 

Hidden Markov models (HMMs) and deep learning Driver-Behavior Modeling 

Li et al. (2019) Deep feature fusion model and support vector regression is 

jointly applied 

Traffic speed prediction 

Wu et al. (2018) A Deep Neural Network (DNN)-Bidirectional Texture 

Function (DNN-BTF) 

Traffic flow prediction 

Duan et al. (2016) LSTM Travel time prediction 

Liu et al. (2019) Deep Passenger Flow (DeepPF) Metro passenger flow prediction 

Hao et al. (2019) End-to-end deep learning framework Short-term passenger flow prediction 

Zhang et al. (2019) Graph convolutional sequence-to-sequence model (AGC-

Seq2Seq). 

Multistep speed prediction 

Gu et al. (2019) Combination of long short-term memory (LSTM) neural 

network and the gated recurrent unit (GRU) neural network 

Lane-level traffic speeds predictions 

Yang et al. (2019) Graph-Convolutional Neural Networks (GCNN) Predicting block-level parking occupancy 

in real-time (30 mins advance) 

Lee et al. (2019) Deep learning Modeling car-following behaviors on a 

multi-lane motorway 

Wang et al. (2019) Bidirectional long short-term memory neural Better traffic speed prediction at city 

Xu et al. (2018) A deep learning method Dynamic demand forecasting model for 

station-free bike sharing 
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Zhang et al. (2018) Deep Belief Network (DBN) and Long Short-Term 

Memory (LSTM) 

Detects traffic accidents with social media. 

Polson et al. (2017) Deep learning Short-time traffic flows prediction. 

Liu et al. (2017) A hybrid deep network of unsupervised SAE and 

supervised DNN 

Passenger flow prediction 

Ke et al. (2017) The fusion convolutional long short-term memory network 

(FCL-Net) 

Short-term forecasting of passenger 

demand 

Do et al. (2019) Deep learning-based traffic flow predictor with spatial and 

temporal attention (STANN) 

Traffic flow prediction 

Dabiri et al. (2018) Convolutional Neural Network (CNN) Predict travel modes based on raw GPS 

trajectories 

Simoncini et al 

(2018) 

Long Short-Term Memory (LSTM) recurrent neural 

networks 

Vehicle classification 

 

Some works may focus on predicting the traffic flow of the next several time intervals 

from (t + 1) to (t + n) as well where ‘t’ denotes the current time. In practice, traffic flow forecasts 

are divided into three groups according to the length of projection time, such as short-term (5–30 

min), medium-term (30–60 min), and long-term (over an hour) (Yu et al., 2017). 

Lv et al. (2015) predicted traffic flow using a deep learning approach named Sparse 

Autoencoder (SAE) which proved to be superior in performance to probabilistic and machine 

learning models [37]. Traffic flow being nonlinear in nature, Polson and Sokolov (2017) used 

deep learning architecture to capture these nonlinear Spatio-temporal effects which outperform 

the linear and single-layer neural network models and predicted short-time traffic flow. They 

also explained this non-linearity because of anonymous transitions between free flow and 

breakdown [38]. A hybrid deep learning-based traffic flow prediction method (DNN-BTF) has 

been proposed by Wu et al. (2018) which has been used in several studies. Recurrent Neural 

Network (RNN) was implemented to capture the temporal feature and Convolutional Neural 

Network (CNN) was used to extract the spatial feature of the historical data of traffic flow and 

velocity. [39].  
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Usually, limited historical data (for example, 15 mins, 30 mins, 1 hour) is being used for 

training in deep learning models.  It may fail to capture the trending nature of that particular road 

segment. Dai et al. (2018) introduced a detrending-based many-to-many traffic prediction model 

called DeepTrend 2.0 where graph convolutional neural networks (GCNN) were used to extract 

spatial dependency [40]. Deep learning techniques are not only being used to predict traffic flow 

but also in passenger flow prediction. Liu et al. (2017) proposed a hybrid deep network of Stack 

Autoencoder and supervised DNN to predict the passenger flow. The input features included 

real-time passenger flow and average historical passenger flow. These features were stacked 

together after encoding. Autoencoder extracts the non-linear relationship. DNN was then further 

used for prediction. The proposed model provided high accuracy predicting in different BRT 

stations in different traffic conditions. [41]. There had been a lack of multistep traffic prediction. 

Recently, Zhang et al. (2019) implemented the attention graph convolutional network in a 

sequence-to-sequence framework (AGC-Seq2Seq) to not only capture the stochastic Spatio-

temporal characteristics of traffic flow but also produce multistep traffic prediction. [42]. 

Convolutional Neural Networks (CNNs) have been successfully applied to exploit the spatial 

correlations of the road network in several studies as it has a great visual ability. [43, 44]. A 

combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) has 

been used in many studies as these networks work well in capturing different aspects (spatial or 

temporal) of the data. Wang et al. [45] and Wu et al. [39], proposed the combination model to 

predict the traffic speed and volume, respectively. CNN has also been used in predicting travel 

modes used by passengers based on only raw GPS trajectories. Five travel modes (by walk, bike, 

bus, driving, and train) were taken into consideration where  CNN detected the characteristics of 

moving vehicles [46]. Deep reinforcement learning (RL) models are good at decision making. It 
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has been used in various fields of ITS. For example, in route prediction problems in stochastic 

and time-dependent (STD) network (Mao et al. (2018) [47]), also in controlling passenger inflow 

of urban rail transit system in congested and peak hours [48]. 

Recurrent neural network (RNN) is one of the best network models to process the time-

sequence data themselves which were structured to learn temporal correlations from sequences 

of data and have been applied to predict traffic flow in several studies (49–53). Long Short-Term 

Memory (LSTM) units are an element of RNNs that can correlate both spatial and temporal 

features of historical time series data across different timesteps. LSTM has been widely used to 

model car following and lane changing behavior in several studies recently [54-58]. Duan et al. 

(2016) used LSTM in travel time prediction [60]. LSTM is also being used to predict traffic 

speed in some studies [60, 61] including lane-level speed prediction [61]. Providing greater 

accuracy in time series prediction, LSTM has been used widely in other different fields of ITS, 

such as traffic flow [63], bike-sharing demand model [64], route prediction, boarding time 

prediction[65], etc. Some of the recent works implementing LSTM in ITS are listed in table-2.  

Table 2. Recent works implementing LSTM in different studies of ITS 

Year Author  Output 

2016 Duan et al.  Travel time prediction 

2017 Ke et al. 
Short-term forecasting of passenger demand 

under an on-demand ride service platform. 

2018 LI et al.  Missing value imputation 

2018 Xu et al. 
Demand forecasting model 

for station-free bike sharing 

2018 Zhang et al. 
Detecting traffic accidents 

with social media. 

2018 
Simoncini et 

al. 

The categorization of the type of vehicles 

on a road network 

2018 Huang et al. 
A car-following model considering 

asymmetric driving behavior 

2018 Rosberg et al. Route and travel time prediction 

2019 Gu et al.  Lane-level traffic speed prediction 
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2019 Zhang et al. 
Modeling the Car following (CF) and 

Lane Changing (LC) behaviors. 

2019 Yang et al. 
Predicting block-level parking occupancy 

in real-time (30 mins advance) 

2019 Wang et al. 
Traffic speed prediction 

for urban transportation 

2019 Schultz et al. Aircraft boarding time prediction 

 

Though LSTM has touched on various aspects of ITS, it has not been used to predict 

traffic time headway. In this study, the novel Long-Short-Term Memory (LSTM) has been 

introduced for time headway prediction with microscopic and mesoscopic analysis.  

 

2.4. Contributing factors for headway estimation 

As described earlier, various probabilistic, machine learning, and deep learning models 

have been implemented to analyze and predict headway. Each author used different contributing 

features to estimate headway. Selections of features have been changed over time due to 

innovative models and updated literature. Table-3 describes the selected features used for 

predicting headway over time. 

Table 3. Contributing features for analyzing vehicle headway of a road network 

Name of the Article Author Contributing Features  

Evaluating the Time Headway Distributions in` 

Congested Highways 

Sara et al., 

2014 

Traffic volume,                            

Proportion of heavy vehicles,             

Lane position,                                             

Road structure,                                

Time of the day and                       

Weather condition 

Drivers' Time Headway Characteristics and Factors Affecting 

Tailgating Crashes 

Hassan et al, 

2017, TRB 

Drivers’ factors (i.e., gender and 

nationality),                                 

Vehicle factor (i.e., vehicle type),                                     

Road and environment factors           

(i.e., road type,                                                 

number of lanes and                              

road surface condition). 

Determinants of the following headway in congested traffic 
Mark et. Al, 

2009 

Type of vehicle,                                    

Traffic flow,                                    

Road type,                                                   

A distinct day-to-day variation in 

individual behavior                                
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Determinants of time headway in staggered car following conditions 
Das, et al., 

2017 

Distance headway,                       

Preceding & subject  vehicle 

speed,            Road width  

Headway distribution models of two-lane roads under mixed traffic 

conditions: a case study from India 

Roy et al.,   

2018 

Traffic flow,                                               

Length of the vehicle                                 

Analysis of vehicle headway 

distribution on multi-lane freeway 

considering car–truck interaction 

Guo et al.,   

2016 

Traffic flow rate,                                        

Percentage of Truck,                            

Traffic speed,                                             

Lane number,                                            

Vehicle type          

Flow–headway Distribution Relationship: A Case Study of Yangon 
San et al.,   

2019 

Traffic flow rate,                                        

Number of lanes                                                   

NN model of vehicle discharge headway 
Tong et al., 

2000 

Lane width,                                             

Lane position,                                                 

Vehicle type of sub and preceding, 

Headway of preceding vehicle 

Scheduling Combination and Headway Optimization 

of Bus Rapid Transit 

Wey et al., 

2008 

Traffic flow,                                             

Traffic speed                                 

 

From table-3 it can be understood that vehicle time headway depends mainly on three factors.  

(i) Vehicle factors (vehicle type, width, length, velocity, etc.) 

(ii) Driver’s factors (driver behavior, gender, nationality, etc.) 

(iii) Road & traffic factors (traffic flow, density, lane number, road width, time of the day, 

etc.) 

In this study, we have selected eight features which include traffic flow rate, the velocity of 

the subject and preceding vehicle, acceleration of the subject vehicle, vehicle length, width & 

class, and lane number. These features were devided by the following four groups which 

includes both microscopic and macroscopi traffic parameters. 
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The inputs will be the historical data of these features for modeling traffic time headway.
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CHAPTER III 

 

METHODOLOGY 

 

As Traffic time headway has both spatial and temporal correlations, traditional Artificial 

Neural Network (ANN) cannot perform adequately.  On the other hand, RNN, especially the 

LSTM model has unique features to capture the trajectory and Spatio-temporal time series data 

very well. In this study LSTM neural network (LSTM NN) has been implemented to predict 

vehicle time headway.  This chapter describes the framework of the LSTM network, it’s usage 

and specialty, as well as the proposed model configuration in detail. 

 

3.1. Recurrent Neural Network (RNN) and  

Long Short-Term Memory (LSTM NN) 
 

RNN is a sequential prediction model that is one of the most used and valuable models of 

Artificial Intelligence. It is designed to take sequential data as inputs that can recognize the 

pattern and temporal correlations between the features of the data. Remembering the previous 

step, RNN can predict the next step quite successfully. The model can be visualized by several 

units (RNNs) connecting through their hidden layer (figure 1). From figure 1, each RNN cell has 

three units- input, output, and hidden unit. xt, ht, and xt-1, ht-1 are considered as input and output at 

time t and (t-1) respectfully.  Each unit is interconnected by their hidden unit. This hidden unit 

can pass the information from the previous timestep to the next one. Win, Wout, and Wrec are the 
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weights of input, output, and hidden unit(s) respectively. So, RNN learns from the previous 

scenarios and predicts the next scenario ht+1 using xt+1 as input. 

 

 

Figure 1. Recurrent Neural Network 

 

Though RNN works well for time series data, it has some limitations. Being a 

memoryless model, RNN cannot remember much longer historical scenarios that may correlate 

with recent data. This problem is called a vanishing gradient problem. The lower the gradient, 

the more difficult and unlikely to find the optimal solution. To eradicate this limitation, a 

memory-based RNN model named Long-Short-Time Memory was introduced by Hochreiter and 

Schmidhuber (1997) which has the ability to remember and pass information from long periods 

of time [66]. The basic LSTM cell unit is shown in figure 2. Previous state condition Ct-1, hidden 
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units from previous step ht-1, and present data/ feature xt are the inputs and ht is the output which 

is feed forwarded to next LSTM cell. 

 
Figure 2. Unit LSTM cell 

                                                   

The main difference between RNN and LSTM is, LSTM includes the memory and forget 

cell which can consider new important information and ignore less important information. The 

prediction through LSTM depends on the previous cell state (Ct-1), previous hidden state (ht-1), 

and current information/ input. (xt). 

The unique features of LSTM are: 

(i) It can overcome previous critics of RNN resolving the vanishing gradient problem. 

LSTMs (and GRUs) can model long-term sequential dependencies. 

(ii) As it has a forget gate and a memory gate, it can easily forget and remember data that 

are necessary for a prediction which enables to control the flow of information.  
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(iii) LSTMs are better for capturing the non-linear relationship between the data. 

 

3.2. Framework of LSTM 

Cell state and memory block are some of the unique features of LSTM. It represents the 

information passing from the previous time step which is connected with three gates and 

eventually generates a new cell state (Ct) which is again transferred to the next LSTM layer 

(figure 3) Thus, the state changes over time which has an impact on prediction.  

 

 

Figure 3. LSTM Neural Networks 
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3.2.1. Gates 

The main framework of the LSTM network lies on three unique gates named forget gate (ft), 

input gate (it), and output gate (ot) over time interval t (figure 3). These gates have different 

purposes and capabilities.  

 

(i) Forget gate (ft): The hidden result from the previous state (ht-1) and current 

information (input) (xt) are jointly connected to cell state (Ct-1) by scaler product (·). 

This gate decides which information to pass to the cell state and avoids outdated 

information by forgetting them. Inputs (x) and hidden output (h) are imported as 

vectors. They may have different vector shapes from each other. 

 

 

Here, 𝑊𝑥𝑓 , 𝑊ℎ𝑓 , 𝑊𝑐𝑓 are the forget gate weights of input, previous hidden unit, 

and state respectfully. 𝑏𝑓 is the bias vector.  

 

(ii) Input gate (it): In the previous gate, it was decided what information to forget. By 

this gate, new information can be added and replaced the outdated one. Previous 

hidden vector (ht-1) and current input vector (xt) are first concatenated by scaler 

product (·). 𝐶𝑡̅ refers to the candidate new information vector. This new information 

is added to the state. State will be then updated to Ct from Ct-1. 

 𝑖𝑡 =  𝜎 (𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡−1 + 𝑏𝑖)  (2) 

         𝐶𝑡̅ = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)  (3) 

         𝑓𝑡 =  𝜎 (𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝐶𝑡−1 + 𝑏𝑓) (1) 



25 

 

 

𝑊𝑥𝑖, 𝑊ℎ𝑖, 𝑊𝑐𝑖 are the input gate weights of input, previous hidden unit, and state vectors 

respectfully. 𝑏𝑖 is the bias vector of the input gate. 

 

(iii) Output gate (ot): After updating the state what output is needed for a particular 

project can be decided by the output gate. Updated state (Ct) and the previous hidden 

vector (ht-1) will be scaler multiplicated to decide which values to generate in output. 

ht will be the final output which may be again connected to another LSTM cell. 

 

 𝑜𝑡 =  𝜎 (𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡−1 + 𝑏𝑜) 

 

(5) 

      ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝐶𝑡) (6) 

 

𝑊𝑥𝑜 , 𝑊ℎ𝑜 , 𝑊𝑐𝑜 are the output gate weights of input, previous hidden unit, and state 

vectors respectfully. 𝑏𝑜 is the bias vector of the output gate. ht denotes the output of 

the current LSTM unit. 

Sigma 𝜎(·) refers to a standard logistic sigmoid function that can transfer the input values 

into the range of (0,1). Hyperbolic tangent function (tanh) squashes input values to output 

between -1 and 1, not 0. It overcomes the vanishing gradient problem. Both are defined as 

nonlinear activation functions 

 
𝜎(𝑥) =

1

1 + 𝑒−𝑥
 

 

(7) 

 
𝑡𝑎𝑛ℎ(𝑥) =

𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

 

(8) 

 

      𝐶𝑡 =  𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡̅ (4) 
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3.2.2. Inputs and output 

The time headway of a vehicle depends on several traffic parameters. Deep learning 

algorithms can learn through the past data about how different factors had effected headway and 

predict according to nature. In this study traffic flow (q), the velocity of the preceding (vp) and 

subject vehicle (vs), vehicle length (l), vehicle width (w), vehicle acceleration (a), vehicle class 

(c), lane ID (i) are considered as features. The historical values of these features construct the 

input matrix which has been trained with the LSTM model.  

Let xt be the vector form of mentioned features of tth time. It can be written as follows: 

 xt = [qt, vp
t, vs

t, lt, wt, at, ct it] (9) 

For example, st denotes the velocity of the subject vehicle at time t. The input matrix 

includes the scenario of the features before tth time.  

Let ∆t and Z respectfully be the timestep and the number of timesteps taken into this study where 

(∆t × Z) < t. The expression for the input matrix (Xt) is as follows:  

 Xt = [𝑥𝑡−𝑍∆𝑡, 𝑥𝑡−(𝑍−1)∆𝑡,….,𝑥𝑡−2∆𝑡, 𝑥𝑡−∆𝑡] (10) 

The output of the model Yt denotes the traffic time headway prediction of at the tth time step 

corresponding the input matrix Xt. The row numbers of both Xt and Yt matrixes are the same. 

 

3.2.3. The shape of the neural network 

The number of layers, total neuron number, number of neurons in each layer combine the 

structure and shape of the model. Every model has one input and one output layer. It is not 

necessary to have a hidden layer or more than one hidden layer if the problem is simple and 

linear. Traffic time headway is a complex parameter that has non-linear relationships with its 
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features. The factors have also a non-linear relationship between them. So, more than one hidden 

layer must be included.  

Different studies used different numbers of neurons and layers which fit accordingly. 

Stathakis (2009) described how to choose layer and neuron numbers in neural network modeling. 

It can be seen from past studies that most of the studies performed trials and found the optimal 

neuron and layer numbers. Yang et al (2019) while implementing the LSTM model for 

prediction of parking occupancy used both two layers and three layers of structured separated 

LSTM structures to show the difference in results [67]. They used 1024 & 256 neurons for the 

two-layer LSTM structure and neuron configuration of 2048-512-128 for three layers. Wang et 

al. (2019) in his prediction over vehicle velocity used only one hidden layer of 512 neurons [61]. 

In another study of vehicle velocity prediction, Ma et al. (2015) showed that the prediction 

accuracy of the LSTM network is independent on the input time lag.  

Some authors used different algorithms and analysis as well to automatically discover the 

optimal shape of the neural network [69]. For example, Xu et al. (2018) performed parameter 

tuning, and sensitivity analysis to show the relationship between time interval, number of nodes 

and layers, batch size [64]. They elaborately described how changing these parameters in 

between them have effects on Mean Average Percentage Error (MAPE) of the model. Huang et 

al. (2018) came up with the LSTM model having 8 layers and 32 neurons in each layer produces 

the best accuracy for describing car following and lane changing behavior [70]. 

In this study, several combinations of trials have been initiated. It is found that 2 hidden 

layers having 512 & 256 neurons generate the best accuracy for time headway prediction.



28 

 

CHAPTER IV 

 

DATA ANALYSIS 

 

4.1. Data overview 

 

Applying artificial intelligence using machine learning and deep learning algorithms to 

establish a microscopic simulation needs lots of versatile data with mixed scenarios so that 

machine can gather more experiences and predict accurately. The dataset we used, was collected 

from the Next Generation Simulation (NGSIM) program which was initiated by the United 

States Department of Transportation (US DOT) Federal Highway Administration (FHWA). They 

have collected several detailed, high-quality datasets. The proposed model has been implemented 

on vehicle trajectory data on eastbound I-80 in San Francisco and also validated with training a 

different set of trajectory data from another highway on southbound US 101 (also known as the 

Hollywood Freeway), Los Angeles, California. These vehicle trajectory data provide the precise 

location of each vehicle with detailed lane positions and longitudinal locations relative to other 

vehicles within the study area every one-tenth of a second. Data not only contains information on 

multimode and lane choices but also describes the behavior of travelers in different traffic 

conditions (for example, traffic congestion, freeway, etc.). 
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Trajectory data of I-80 was collected on April 13th, 2005 which contains both spatial and 

temporal information. The length of the study area was approximately 500 meters (1,640 feet) 

consisting of six freeway lanes, including a high-occupancy vehicle (HOV) lane and an on-ramp 

road. Seven synchronized digital video cameras mounted from the top of a 30-story building 

adjacent to the freeway recorded vehicles passing through the study area. A total of 45 minutes 

of data are available in the full dataset, segmented into three 15-minute periods: 4:00 p.m. to 

4:15 p.m.; 5:00 p.m. to 5:15 p.m.; and 5:15 p.m. to 5:30 p.m. These segments represent the 

transition periods between uncongested and congested traffic conditions. We have used the total 

data (total 45mins) which describes the instantaneous movements of around 3000 vehicles.  

 

Figure 4. Aerial view of the subject area (left) and a digital video camera mounted on top of a 

building recording vehicle trajectory data of I-80 (right) 
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We selected data having time headway greater than 1 second. This is a safety constraint 

that was added so that the model can also be used in trajectory planning of vehicles such as 

connected and autonomous vehicles (CAVs). 

 

4.2. Data preparation 

 

Before feeding into the model data has to be preprocessed, making things easier for the 

machine to learn and analyze. As it is a panel data, some feature engineering techniques were 

also applied to extract spatial and temporal dependency. Traffic time headway, as a mesoscopic 

parameter of traffic engineering, can be described by both microscopic and macroscopic 

simulation.  

 

4.2.1. Feature engineering 

Traffic flow, defined as the number of vehicles passing a certain location on a highway 

per unit time, is one of the most important influencing macroscopic factors of time headway. 

Vehicle flow in every one-minute interval was calculated and used as a feature. Headway varies 

during different traffic flow and conditions. Flow rate also describes the building up congestions 

and how it can correlate with vehicle velocity and headway. 

In addition, time headway of a subject vehicle heavily depends not only on its own 

velocity but also on the velocity of the preceding vehicle (The front vehicle). For example, if the 

velocity of the preceding vehicle is too high, it will certainly take more time than usual for a 

subject vehicle to pass that vehicle. So considering the velocity of the preceding vehicle as an 

important feature, it was calculated using the ID numbers of preceding vehicles in each 0.1s of 

the data. This microscopic feature also reflects the behavioral tendency of the driver whether the 
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driver drives slow, fast, or overtakes regarding the velocity of the preceding vehicle at that time. 

This is how the macro and microscopic information with Spatio-temporal dependency were 

extracted from the raw data. 

A dummy variable is a numerical variable taking only 0 or 1 that is used to represent 

subgroups or categories of the sample data. Two categorical variables in the dataset, representing 

the vehicle class (namely, cars, trucks, and motorcycles) and the lane number/position of the 

moving vehicle (seven lanes), have been transformed into a number of dummy variables. For 

example, three dummy variables are defined to represent the categorical variable associated with 

vehicle class. That is, one dummy variable is defined for each vehicle class (e.g., the dummy 

variable of cars takes 1 if the vehicle of interest is a car and takes 0 otherwise). 

 

4.2.2. Preprocessing 

Raw data has to be preprocessed into a useful and efficient format to promote the 

extraction of meaningful insights from the data before implementing the model. Data 

preprocessing has some necessary steps but it may vary depending on the dataset and the model 

to feed-forward into. As NGSIM data suffer from some noises it was properly cleaned first and 

then a lower bound constraint of 1s was set to time headway for safety. It means we used the data 

of vehicles having more than 1s time headway. Most of the machine learning and deep learning 

algorithms need categorical values to be encoded before feeding for training. Ordinal categorical 

values are ordered numeric values, for example, 0,1,2 numbers can be referred to good, better, 

and best respectively. As vehicle ID numbers are unique for each vehicle, it has to be treated as a 

nominal categorical column. For this reason, the column which represents vehicle ID number 
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was encoded so that the machine can interpret these numbers as nominal categorical values 

rather than ordinal values. 

Furthermore, to ensure that the gradient descent moves smoothly towards the minima and 

that the steps for gradient descent are updated at the same rate for all the features, raw data has to 

be properly scaled in a specific range before feeding it to the model. Data transformation is a 

crucial step in preprocessing which can be done through several techniques such as 

standardization, normalization, etc. This is also known as feature scaling. Normalization refers to 

scaling the data into a specific range (for example, [-1, 1] or, [0, 1], etc.). In this study, the data 

were normalized into zero to one value range ([0, 1]). This can be represented by the following 

equation. 

 
𝑋′ =  

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(11) 

 

Where X is the raw and 𝑋′ is the scaled value of each feature. 

 

4.2.3. Splitting and reframing 

After finishing the preprocessing of the data, a total of 4,122,130 records of the whole 

dataset has been split into three groups for training, validation, and, testing purposes. 65% of the 

dataset has been used for training and 15% was used to validate the model. The rest of the data 

(20%) is used for prediction so that the testing data are unseen and new to the model. The 

summary of the dataset is represented in table 4. 
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Table 4 Data overview 

Dataset 

Number 

of 

samples 

Mean      

(sec) 

Standard 

Deviation 

Minimum 

(sec) 

Maximum  

(sec) 

1st 

quartile 

(Q1) 

(sec) 

2nd 

quartile 

(Q2) 

(sec) 

3rd 

quartile 

(Q3) 

(sec) 

Training 2,677,951 4.63 10.34 1.01 399.54 2.17 3.01 4.41 

Validation 618,551 4.87 10.21 1.01 398.85 2.32 3.23 4.79 

Testing 825,628 4.77 11.48 1.01 399.72 2.09 2.88 4.23 

 

As it is a time series panel data, the data was sorted properly reshaping into a multi-index 

dataset. A multi-index dataset refers to data having more than one index. Here, we have chosen 

time and the vehicle ID columns as two indexes. By doing this, data having the same vehicle IDs 

were stacked together by the index ‘Vehicle_ID’ and after that, it was sorted by ‘Global_Time’, 

which is another index. Data of each vehicle was split into training, validation, and test sets 

sequentially by time.  In this way, the model can learn easily and predict more accurately. 

As it is a supervised problem, the dataset contains information about both the 

independent variables (𝑥1, 𝑥2, 𝑥3, …) which are also called features and the output/dependent 

variable which is also known as labels (y). As mentioned in chapter 2, we selected the 

contributing factors of time headway such as vehicle velocity, flow rate, type and shape of the 

vehicles, lane numbers, etc. as independent variables and time headway as the dependent 

variable. The goal of the model is to map between input features (𝑥1, 𝑥2, 𝑥3, …) and the output (y) 

finding correlations and learning from the historical data to predict over unseen features. 

Training the Long-Short-Term-Memory networks (LSTM NN) requires each data 

reshaped as three-dimensional tensors. To this end, we first converted the data frame into a 

supervised stationary structure by lagging the feature columns and shifting the target column 
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(Time Headway) lth step into the future. The lagged structure of the whole data frame can be 

written as follows: 

 [
𝑥1

𝑡−𝑙 𝑥2
𝑡−𝑙 𝑥3 𝑡−𝑙  

⋮ ⋮  ⋮  

𝑥1
𝑇−𝑙 𝑥2

𝑇−𝑙 𝑥3 𝑇−𝑙   

⋯

𝑥𝑛
𝑡−𝑙 𝑥1

𝑡−(𝑙−1)

⋮ ⋮

𝑥𝑛 𝑇−𝑙 𝑥1
𝑇−(𝑙−1)

 

𝑥2
𝑡−(𝑙−1)

⋮

𝑥2
𝑇−(𝑙−1)

⋯

𝑥𝑛
𝑡−(𝑙−1)

⋮

𝑥𝑛
𝑇−(𝑙−1)

 𝑥1
𝑡−(𝑙−(𝑙−1)

𝑥2
𝑡−(𝑙−(𝑙−1)

⋮ ⋮

 𝑥1
𝑇−(𝑙−(𝑙−1)

𝑥2
𝑇−(𝑙−(𝑙−1)

⋯

𝑥𝑛
𝑡−(𝑙−(𝑙−1)

⋮

𝑥𝑛
𝑇−(𝑙−(𝑙−1)

  

𝑥𝑛
𝑡

⋮

𝑥𝑛
𝑇

 ] (12) 

 

To illustrate, let us assume that x represents all the variables present in the dataset (𝑥1, 

𝑥2,…, 𝑥𝑛), ‘n’ being the number of variables, where we want to predict the variable 𝑥𝑛 and the 

rest of the variables are independent time series features. Here, l is the lag length which is one of 

the hyperparameters that has to be trialed to get the optimum lag length. It varies within different 

types of model implementation and data structure. Lag length indicates the historical data that 

the model would look back to predict the future. Generally, complex relationships between the 

variables need greater lag length to be understood accurately by the machine. For this reason, 

some trials and errors were performed to see how many lag length is optimum for the model. We 

have concluded that the model works better with a single lag unit (l=1). While using different lag 

numbers (l=3,5,10,60,80), it was found that accuracy did not get higher than using a single lag 

length, and also it was very time-consuming. T is the total time frame of the study which is total 

45 minutes (4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.; and 5:15 p.m. to 5:30 p.m.) having a 

minimum timestep of 0.1s. From this structure, the nth variable, 𝑥𝑛 is representing the dependent 

variable (time headway) which was used as the output (y). The rest of the variables with their 

lagged time frame including lagged time headways were considered as the input of the model.  

 

𝑋 = [
𝑥1

𝑡−1 𝑥2
𝑡−1 𝑥3 𝑡−1  

⋮ ⋮  ⋮  
𝑥1

𝑇−1 𝑥2
𝑇−1 𝑥3 𝑇−1  

⋯
𝑥𝑛

𝑡−1 𝑥1
𝑡

⋮ ⋮
𝑥𝑛 𝑇−1 𝑥1

𝑇
  

𝑥2
𝑡

⋮
𝑥2

𝑇
⋯

𝑥(𝑛−1)
𝑡

⋮
𝑥(𝑛−1)

𝑇
   ] 

(13) 
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Here, X is the input matrix consisting of the historical and present values of the 

independent variables throughout time T, including the historical values of the dependent 

variable (time headway). For example, if t denotes as present time, 𝑥1
𝑡−1 defines as the value of 

the variable x1 at the previous time step.  

It means the model will be experiencing the different headways in the previous and the 

present states and predict accordingly to the next step. So, the output or label matrix can be 

shown as: 

 y = [𝑥𝑛
𝑡 , 𝑥𝑛

𝑡+1 … 𝑥𝑛
𝑇] (14) 

Predicting farther steps can be transited from one to many. Which means more the one 

step ahead prediction to the future. Although the accuracy might get lower while predicting more 

than one step. In this study, a single-step prediction has been performed. 

 

 

Figure 5. Spliting & reframing the dataset 
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Figure 5 represents the summarized version of reshaping and splitting the training data into 

features (X) and target data (Y) which is time headway. 

  After reframing the data frame into the stationary structure, the values of the three split 

datasets (training, validation, and, testing) were reshaped into 3-D Tensors like (X, Y, Z) where 

X, Y, and Z represent the total length of the data, time steps (lag number), and, number of 

features, respectively, where the input of the model was shaped like (Y, Z). It is because the 

Long Short-Term Memory networks require the input shapes to be in 3-D tensors. For example, 

our training data consisted of  2,677,951 numbers of data having 31 features. These 31 features are 

cumulative of lagged and present data of each variable after the final reformation of data. As we 

considered lag length to be 1, the final 3-D shape of the input data was (2677950, 1, 31); where the shape 

(historical step, feature numbers) = (1, 31) was fed into the model as input for every 2677950 times. It 

means the model will experience the headways of lagged variables (31 features) in every step,  and learn 

from each scenario of each vehicle ID to predict the next time step. This is where the LSTM network can 

be very powerful as it can memorize the present and previous states to predict the next state. 

 

4.3 Time Headway Analysis 

 

The distribution of time headway has been studied over a long period introducing various 

mathematical models. Varieties of study regarding this distribution have been established using 

different traffic flow and scenarios. Most of the ancient studies indicated negative exponential 

distribution as a well fit probabilistic model for describing time headway distribution. It is 

because at that time traffic flow was low and beyond today’s high and mixed traffic scenarios. 

To establish a boundary, Al-Ghamdi stated that the negative exponential distribution describes 

the time headways well under low traffic conditions (<400 vehicles/hour) whereas shifted 
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exponential and gamma distributions were found to be well fit in moderate traffic flow 

conditions (400~1200 vehicles/hour) [8]. Similar comments were proposed by Kumar and Rao 

where negative exponential distribution was found suitable for low and moderate traffic flow 

[72]. But headway distribution in a congested flow generally does not follow exponential 

distributions. They also formed a relationship between the vehicle platooning and mean time 

headway which stated that vehicles are considered to be in platoon if the time headway is less 

than 2 seconds. Platooning of the vehicles leads to a car-following situation. Mei and Bullen 

described this scenario very well and proposed log-normal distribution to be the best fit for 

congested traffic flow [8]. According to them, although individual time headways are always 

changing over time, as vehicles enter into a congestion state, drivers tend to maintain a specific 

range of headway. This condition arises the car-following situation where drivers are mostly 

biased on their front vehicle’s movement.  

The difference in time headways of the vehicle at congested states being very small leads 

to a shifted/ skewed log-normal distribution. From figure 6, it can be seen that the velocity is 

very low in the 3rd quartile (around 17 mph), which leads to a congested state. As congested 

situations are stochastic in mixed traffic flows, the skewed log-normal distribution was found 

while plotting the time headway distribution which aligns with the recent literature on headway 

distributions. Log-normal distributions are positively skewed with long right tails due to low 

mean values and high variances in the random variables which tells us that time headway is 

stochastic in nature. From Figure 6 it can be seen that percentiles (Q1, Q2, Q3) of time headway 

are increasing and which means congestion is being occurred gradually. As the standard 

deviation seems greater than the mean value it can be stated that the gathered data has a good 

amount of diversity which is good for models to learn. 
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Figure 6. Statistics & distribution of Time Headway (x-axis: time headway, y-axis: counts of headway) 

 

 

 

 

 

 

Features that were used as the input matrix are correlated with time headway. These 

relationships also satisfy the previous literature about traffic flow theory. We will discuss how 

these explanatory variables affect time headway both spatially and temporally.  

 

4.3.1. Velocity and flow rate 

Vehicle velocity, traffic flow, and time headway are highly correlated with each other 

maintaining a complex relationship. But this relation can vary across different traffic densities. 

Li et al. (2017) described this relationship vastly with the use of the probability density function 

(pdf) [71]. Traffic phenomena being stochastic as nature, these relationships can be stated 

differently for different traffic and vehicle condition. It can be explained in both microscopic and 

macroscopic ways.  

By ‘velocity’ in general, we understand the average or mean velocity of the vehicles 

traveling on the same road. When this average velocity is used for modeling purposes, the model 

 Time 

Headway (s) 

Vehicle 

Velocity (ft/s) 

Counts 4,122,130 4,122,130  
Mean 4.69 19.85 

Standard Deviation 10.56 12.49 

1st quartile (Q1) 2.18 10.00 

2nd quartile (Q2) 3.01 18.50 

3rd quartile (Q3) 4.43 26.52 
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becomes a ‘macro’ simulated model. If we want to perform a microanalysis, the instantaneous 

velocity of the vehicles will be used. There can be seen differences describing the relationships 

in the micro and macro analyses. Generally, vehicles follow the relationship 𝑠 = ℎ𝑣, where s is 

the travel distance (i.e., inter-vehicle spacing), h is the vehicle time headway (i.e., inter-vehicle 

time distance), and v denotes the vehicle speed. So, the reciprocal relationship between velocity 

and time headway can be stated which is shown by a graph in figure 7. There is a highly negative 

correlation between average velocity and time headway which follows the previous findings.  

 

 

Figure 7: Velocity-headway relationship 

 

Data also explained that not only the velocity of the subject vehicle but also the velocity 

of the preceding vehicle has an impact on the time headway of the subject vehicle. In mixed flow 

and congested conditions, drivers tend to be more alert and follow the preceding vehicle as it is 

the main object the driver can view. It can be further visualized through a microscopic analysis 
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showed in figure 8. When the velocity of the vehicle in front of a subject vehicle (preceding 

vehicle) increases, the time headway of the subject vehicle decreases and vice versa. This 

explains that driver maintains a greater distance when the difference in velocity of the subject 

and the preceding vehicle gets smaller.  

 

 

Figure 8 Velocity of preceding vehicle vs Time headway of subject vehicle 

 

While analyzing at the macro-level, it can be seen that the flow rate has a stochastic 

impact on headway and vehicle velocity. This impact cannot be specifically stated as positive or 

negative on headway. Because traffic phenomena and driver behaviors are different in free flow 

and congested flow. This complex relationship can be viewed clearly by plotting the whole time-

series data for better interpretation. We have shown the summed graph to zoom in for a detailed 

analysis. Velocity and the flow rate have been scaled into a similar range (o to 1) for showing 

correlation with the time headway in Figure 9. The graphs indicate that, when flowrate increases 

the time headway increases drastically after attenuating some durations. Whereas the vehicle 
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velocity gradually decreases, while the time headway increases. This means vehicles were 

entering more in the road segment and as time goes by, congestion was about to occur. When the 

road segment was gradually being filled with more vehicles the time headway increased and 

velocity decreased, which indicates the congestion state of the road segment. 

 

 

Figure 9. Correlation of time headway with flow rates and velocity 

 

The reciprocal relationship between velocity and time headway can be stated as follows: 

 
ℎ ∝

1

𝑣
 

(15) 

Here, ℎ  and 𝑣  are represented as time head way and vehivle velocity respectfully. Time 

headway is inversely proportional to the instantaneous velocity of the vehicle. It means that 

driving at a higher speed leads the vehicle to pass a reference point more quickly and vice versa.  
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In the last few minutes, as there have been added more vehicles on the segment, the flow 

rate gradually becomes to decrease which made higher time headway and lower velocity (close 

to zero). At the end of the study time, it can be farther viewed in a zoomed figure (Figure 10) that 

the flow rate is very close to ‘0’ which is stated as the total congestion where time headway is 

the largest and average velocity is in a lower range (0~5 ft/s). 

 

Figure 10. Correlation of headway with velocity and flowrate (last four minutes) 

 

This flow-velocity-headway relationship can be also stated microscopically. For 

analyzing microscopically we selected a single vehicle within a specific study time and plotted 

the same graph for that vehicle. It can be seen in figure 11 that the relationship of flow rate with 

the vehicle velocity and time headway conflicts the macroscopic point of view. Because now, 

‘velocity’ is considered as instantaneous velocity, not the average velocity.  
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Figure 11. Microscopic analysis (for vehicle ID 2483) 

) 

This graph shows a positive correlation of flow rate with the instantaneous velocity. It 

means as the instantaneous velocity is increasing, there will be more vehicles entering the road 

segment which will begin to rise the flow rate. As there will be more vehicles on the road the 

traffic density will be gradually increasing.  

 

 

Traffic density =
Number of vehicles on a specific road segment

Length of that road segment
 

 

 

(16) 

Eventually, the gaps between the vehicles will be getting shorter which will lead traffic time 

headway to get higher ( at 10:38 to 10:39). 
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4.3.2. Vehicle type-wise analysis 

As the diversity of passenger types is incrementing day by day, the mode choices of 

passengers have been gradually changing which leads to present more than one type of vehicle 

on a road segment. Having different width and length of the vehicle certainly affects the total 

traffic phenomena. Especially in attendance of a mixed type of vehicles on a road segment 

describe the stochastic nature of traffic theory.  In our dataset, there are three types of vehicles on 

the segment- Truck, Passenger car, and Bike. Expectedly the shape of time headway distribution 

over time of each type of vehicle has shown similarity (Log-normal distribution with different 

means and standard deviations).  

 

  

 

 

 

 

 

 

 

Figure 12 Time Headway distribution of Vehicle Class-2 (Passenger Car) 

 

Figures 12 and 13 both show the same shape which are time headway distributions for 

passenger cars and trucks respectfully. But clearly, time headways (mean and percentiles) of trucks 

are higher than passenger cars. Also, they have different standard deviations. As heavy vehicles 

Passenger Car 

(95%) 

Time 

Headway  

Vehicle 

Velocity 

Mean 4.64 19.90 

Standard Deviation 11.20 12.52 

1st quartile (Q1) 2.14 10.00 

2nd quartile (Q2) 2.96 18.55 

3rd quartile (Q3) 4.34 26.67 
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Figure 13. Time Headway distribution of Vehicle Class-3 (truck) 

tend to maintain a similar range of velocity, the standard deviation is lower than the class-2 

vehicles. It implies passenger cars have more stochastic time headway than trucks. 

 

  

 

 

 

 

 

 

 

 

The length of the vehicle has a considerable effect on the headway of the surrounding 

vehicles. From theory, we know that generally larger vehicles tend to have longer time headway 

as they move at a constant speed most of the time and take a longer time to pass the next vehicle 

and vice-versa. Also, the type of preceding vehicles affects the trajectories of subject vehicles 

traveling in the same lane, which results in variations on the headway. It is due to the vehicle  
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Time 
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Vehicle 

Velocity 

Mean 5.98 19.96 

Standard Deviation 10.23 11.86 

1st quartile (Q1) 2.98 10.75 

2nd quartile (Q2) 4.31 18.83 

3rd quartile (Q3) 6.75 25.53 
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Figure 14. Relationship of headway and velocity with vehicle shape 
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length and shape.  

Drivers tend to be more cautious and generally maintain a greater distance when a truck 

or a bigger vehicle is at the front. This phenomenon can be explained in Figures 14, where we 

show two scatter plots regarding changes in velocity and headway with vehicle width and length. 

Time headway is greater when the width of the vehicle increases and instantaneous velocity is 

lower when the length of the vehicle increases. The velocity of passenger cars has a longer range 

than heavy vehicles. It means class-2 vehicles provide more variation in time headway than the 

class-3 vehicles. It can be further visualized in figure 15, where the velocity of class-2 vehicles 

seems more scattered than class-3 vehicles which cause the diversity in their headways as well. 

Also, it can be seen that the velocity of class-3 vehicles has a velocity range of 10 ft/s to 60 ft/s 

whereas class-2 vehicles have a velocity range of 0 ft/s to 90 ft/s which also affects the 

heterogeneity of their time headways. 
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This also shows heavy vehicles maintain lower velocity and greater time headway. When 

a vehicle of bigger length is moving next to a passenger car, the lower velocity of the larger 

vehicle will certainly affect the headway of the following passenger car. Also, drivers tend to 

keep a good distance from heavy vehicles and avoid being in the same lane. Passenger cars are 

more dependent on their preceding vehicles than heavy vehicles.  
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Figure 15. Headway diversity of different vehicle classes 

(Class-3: upper figure, Class-2: lower figure) 

Figure 16. Effect of the velocity of preceding vehicle on Passenger Cars 



48 

 

Figures 16 and 17 explain that the velocity of a passenger car varies a lot concerning its 

preceding vehicle’s velocity but as heavier vehicles try to maintain a steady speed range, the type 

or the velocity of its preceding vehicle do not affect that much on their headways.  

 

 
 

Figure 17. Effect of the velocity of the preceding vehicle on Heavy vehicles 

 

 

 

4.3.3. Lane-wise Analysis 

Different classes of vehicles have been seen to use some specific range of lanes in recent 

years. There are even rules for some roads also for different classes of vehicles to travel on 

specified lanes. It is because of the variant speeds and characteristics of the vehicles. As 

discussed earlier, preceding vehicles have a significant effect on the headways of the subject 

vehicle, thus it is useful to travel similar types of vehicles on the same lanes for traffic safety and 

maintaining regular headways. Irregularity in headways can lead to traffic jams and affect driver 

behaviors also. For example, if a heavy vehicle is in front of a bike or passenger car, the driver of 

T
im

e 
H

ea
d

w
ay

 (
s)

 (
C

la
ss

-3
) 

Front vehicle velocity (ft/s) 



49 

 

the subject vehicle may get frustrated as the heavier vehicle in front of him is moving slowly. So, 

the driver may end up overtaking the front vehicle. As the heavy vehicles are generally bigger, it 

is always risky to overtake these types of vehicles which may arise crashes.  

In our dataset, it can be visualized that not all the lanes were used equally, and each class 

of vehicles tried to maintain specific lanes 

to travel. From figure 19, lane 4 was mostly 

used by all of the vehicles together where 

lane 7 was least used. It is expected 

because lane 7 is the on-ramp lane, not one 

of the main lanes. On-ramp is a lane that 

connects to a highway merging into the 

auxiliary and main lanes.  As there was 

less density on lane 7, the characteristics 

of this lane are different from the main highway lanes. It is used to get prepared for a highway. 

While entering the highway, drivers need to gradually speed up to adjust with the auxiliary and 

highway lanes. As lane 1 is the farthest left 

lane, most of the class 1 vehicles (from figure 

18, 80% of total class 1 vehicles) traveled 

within this lane. The density of class 1 

vehicles being high in lane 1 also affected the 

headway of other vehicle types traveling on 

the same lane. From figure 20, it can be 

visualized that the average time headways of 
Figure 19. Lane usage  

Figure 18. Lane usage percentage of each vehicle class 
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vehicle classes 2 and 3 are the lowest in lane 1. This indicates the effect of getting space in this 

lane smaller vehicles on time headway of other vehicles. Heavy vehicles avoided the 2nd lane 

because the lane was covered the most with passenger cars (class 2). As there were fewer heavy 

vehicles in the 2nd lane, the difference between the average headways of class 2 and class 3 

vehicles was the least (figure 20). It is because being the lower percentage in numbers, heavier 

vehicles had to maintain a speed range with passenger cars to avoid congestion and confliction.  

Around 55% of the class 3 vehicles used lane 3 (from figure 18) whereas class-2 vehicles 

were lower in percentage rather than in any other lanes. It describes the driver's behavior of 

avoiding lanes which are occupied by heavy vehicles. Traveling most of the heavier vehicles on 

lane 3 also increased their headways from lane 2 to 3. As lane 3 was less occupied by passenger 

cars because of the high percentage of heavy vehicles, they shifted to lane 4. It can be seen in 

figure 19 that lane-4 has the most number of vehicles moving by. Most of them are passenger 

cars. The highest percentage of passenger cars (20%) were traveling on this lane (from figure 

18). The 4th lane had enough heavier vehicles which also had an impact on their (passenger cars) 

Figure 20. Average Time Headways in each lane 
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headways. We can see from figure 20 that, only in lane 4 the passenger cars had higher average 

time headway than any other lanes. It indicates lane-4 as a bit congested lane than other lanes. In 

lane-5, the percentage of heavy vehicles was a bit higher and the percentage of passenger cars 

was a bit lower than lane-4 which again made lane-5 consisting of a bit higher proportion of 

heavy vehicles than other lanes (except lane-3). For this reason, the average time headway of 

class-3 vehicles was increased and passenger cars were traveling by slightly higher velocity than 

lane 4. It is also because lane 5 is the lane next to the auxiliary lane.  

The shape of the headway distribution of each lane is similar and the same shape of the 

vehicle type-wise headway distribution. These distributions also provide a log-normal 

distribution. But as the usage of lanes for various vehicles was not similar, the mean and variance 

of the lane-wise distributions vary lane to lane. From figure 21, it can be explained that the on-  

 

        

  

 

 
Figure 21. Lane-wise Time Headway distributions ( upper left= lane 7, upper right= lane 1, 

lower left= lane 4, lower right= lane 3) 
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ramp lane (lane 7) had fewer vehicles indicating different flow rates with higher average time 

headway. In the on-ramp lane, drivers tend to transit the velocity to enter into highways which 

resulted in higher variance in headway distribution (figure 15, upper left). While entering into the 

auxiliary lane drivers increased the velocity to cope up with the highway lanes.  But because of  

Table 5. Lane wise statistics 

 

the congestion in lane 4, vehicles were moving slower in lane 5 than the auxiliary lanes. It can be 

seen from Table 5 that, time headway was increased drastically in lane 5 from the auxiliary lane. 

Lane-1 did not face too much congestion because vehicles were moving fast and freely. This 

lowered the mean headway and variance. Investigating the quartiles (Q1, Q2, Q3) of headways, 

it can be seen from Table 5 that, lane 1  and lane 2 did not have many differences in their 

quartiles but in lane 3, there is a bigger increment in time headways. This means transiting into a 

more congested situation. As there was the highest number of vehicles on lane 4, vehicle density 

was higher which led to mean time headway to get higher (especially for class 2 and 3 vehicles). 

Also, as the number of heavy vehicles increased in lane 3, the mean time headway was a bit 

higher than lane-2 (Table 5). Because of the increased traffic density, the standard deviation of 

the time headway was higher too in lane 4, which means variations in speed and headway. In 

fact, the average time headway was the highest in lane 4 than in any other lanes.  

  Mean Standard Deviation 1st Quartile (Q1) 2nd Quartile (Q2) 3rd Quartile (Q3) 

Lane 

No. 

Time 

Headway 

(s) 

Velocity 

(ft/s) 

Time 

Headway 

(s) 

Velocity 

(ft/s) 

Time 

Headway 

(s) 

Velocity 

(ft/s) 

Time 

Headway 

(s) 

Velocity 

(ft/s) 

Time 

Headway 

(s) 

Velocity 

(ft/s) 

1 2.33 44.78 1.56 11.84 1.62 36.42 2.08 43.83 2.75 51.75 

2 4.88 18.67 13.14 9.67 2.13 11.04 2.87 19.50 4.09 25.63 

3 4.99 17.22 9.94 8.71 2.42 10.00 3.37 16.72 5.06 23.85 

4 5.54 15.93 14.30 9.29 2.34 8.63 3.25 15.00 4.85 22.33 

 5 5.04 17.80 11.80 10.03 2.31 10.00 3.18 16.95 4.62 24.89 

6 3.97 18.93 7.71 10.31 2.02 10.02 2.81 18.47 4.17 25.75 

7 5.51 12.42 9.85 9.69 2.78 5.83 3.97 9.68 5.73 15.05 
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From the above analysis, it can be justified that, variables (features) selected for training have 

significant influences on predicting traffic time headway. 
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CHAPTER V 

 

MODEL IMPLEMENTATION & VALIDATION 

 

5.1. Model Set-up and Configuration 

Deep learning models perform well in solving complex relationships between features if 

all the parameters are tuned properly. Recently these models are being used in different sectors 

of ITS and prediction problems. The Long Short-Term Memory networks (LSTM) has been 

implemented in travel time prediction (Duan et al., 2016, Rosberg et al., 2018), car-following 

models (Huang et al., 2018, Zhang et al., 2019), speed predictions (Gu et al., 2019, Wang et al., 

2019) and some other demand modeling and forecasting problems. In each problem, the model 

configurations were different as model setup completely depends on the shape and complexity of 

the data that is being fed into it.  

 

5.1.1. Hyperparameters 

LSTM networks have several hyperparameters to tune for better prediction performance. 

These hyperparameters are- historical time step, batch size, number of epochs, number of 

neurons and layers, learning rate, etc. As mentioned earlier, the historical time step refers to the 

number of previous steps to look back while training. Our model has provided higher accuracy 

prediction using a single historical time step which took a shorter time to train rather than using 

more than a single time step. Batch size defines how much data is being trained at a time.
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For example, if n numbers of the sample are being trained with the batch size of b, the model 

will train n/b times in every epoch. It means it will train every b number of samples and update 

the weights until it reaches to nth sample in every epoch. Epoch refers to how many times the 

model will be trained where the updated weights will be transferred to the next epoch. That’s 

how the training and validation accuracy keeps decreasing which indicates that the model is 

learning well in every epoch and weights are being updated in every epoch. But overtraining the 

same sample may leed to an overfitting problem. To eradicate this situation we used a callback 

function named ‘Early stopping’ which stops the iteration when validation accuracy does not 

improve. It has been described in detail later. The learning rate is one of the most important 

hyperparameters of optimization problems in machine learning. It indicates the time steps to be 

taken by an optimizer while moving towards a minimum of the loss function. Initial arbitrary 

weights are generated by the model at the beginning of the training. As it is being trained, the 

weights will be changed throughout time. This change of weights is the result of the learning 

rate, which indicates how many time steps to learn for reaching into the minimum loss. 

 

5.1.2. Neurons and Hidden Layers 

Selecting the appropriate number of neurons and hidden layers in a deep learning 

network is a challenging first task for training. Though there are several rules of thumb for 

selecting the optimal number of neurons and layers, in reality, it is all about performing several 

trial and errors. After completing several trials, we can point out that increasing the number of 

layers does not necessarily improve the training accuracy. Increasing the number of layers from 

1 to 2 enables the model to learn some complex correlations. But the performance of the model 

deteriorates when the number of layers is increased to more than two. Thus, two hidden layers 
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and one dense layer (output layer) have been chosen. We obtained the optimal model 

performance while setting up the number of neurons to 512 and 256 in 1st and 2nd layers 

respectively.  

 

5.1.3. Activation function 

The neurons of our human body transmit information from different parts of the body to 

the brain which eventually leads to an output. Like the human body, artificial neural networks 

map each node's inputs to its corresponding output within a specific range (for example, 0 to 1, -

1 to +1, etc,). This is referred to as an activation function. There are several individual activity 

functions for different purposes. For example, ReLU (Rectified Linear Unit) is usually used for 

regression problems and Softmax for classification problems. Generally, for regression problems, 

there are two kinds of activation functions- linear and non-linear. 

In this study, the activation function that was used in hidden layers is ReLU (Rectified 

Linear Unit). It is a nonlinear function which is as follows: 

 
𝑅𝑒𝐿𝑈(𝑥) = {

 0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 
(17) 

The basic use of ReLU is to transfer negative values to 0, making it efficient and easy for 

computation. One of the most important reasons to use ReLU is that it resolves the vanishing 

gradient problem, which other functions like sigmoid and hyperbolic tangent fail to do so. 
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5.1.4. Loss function 

The objective function refers to the absolute difference between the predicted and the true 

value. When this function is being minimized in a model, its called loss function or cost function. 

There are different loss functions for regression and classification problems. This function has to 

be estimated repeatedly in every iteration so that the weights used in the function can be updated 

to minimize the error in the following iteration.  

For regression, Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPL), and Mean Squared Logarithmic Error Loss (MSLE) have 

been used as loss function in previous studies. Among them, MSE and MAE perform well for 

LSTM and other deep neural networks as DL models generally are trained using the stochastic 

gradient descent optimization algorithm. Some regression problems have outliers, e.g. large or 

small values far from the mean value. For example, our target variable (Time Headway) has lots 

of outliers as it contains data from mixed vehicle types and diverse traffic conditions. The Mean 

Absolute Error (MAE) is an appropriate loss function in this case as it is more robust to outliers. 

It is calculated as the average of the absolute difference between the actual and predicted values. 

So, in this study Mean Absolute Error (MAE) has been used as a loss function.  

 

 𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦̂ − 𝑦|

𝑁

𝑖=1

 (18) 

 
𝑀𝑆𝐸 =  

1

𝑁
∑(𝑦̂ − 𝑦)

𝑁

𝑖=1

 (19) 
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Here, N denotes the number of training samples, 𝑦̂ and y refer to the predicted and true 

values respectively. By plotting the graph of loss function over the iterations the fluctuation and 

shape of the error can be visualized. To get more information on the gradual accuracy of training 

we considered Mean Squared Error (MSE) as to accuracy metrics. We used this metric to 

observe how the model learns after each epoch in the different loss functions. 

 

5.1.5. Optimizer 

The basic idea of implementing neural network models is to learn and teach gradients of 

the original network which is called meta-learning. Optimization algorithms enable the model to 

exploit the structure automatically by adjusting network weights. Different optimizers have been 

used in different studies. Among them, Adam, RMSprop, and AdaGrad optimizer are being 

vastly used as these optimizers can detect nonlinearity. As headway modeling is a stochastic 

gradient-based optimization problem, the Adaptive Moment Estimation (Adam) optimizer 

(reference: https://keras.io/api/optimizers/adam/) has been used in this study. Having impressive 

computational efficiency, low memory requirement, and low loss make adam optimizer one of 

the brightest choices for predicting through LSTM NN. The update rule for Adam optimizer is 

stated in the following equation.  

    𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 +  𝜖
𝑚̂𝑡 

 

(20) 

   𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 

 

           (21) 

                                      𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 

 

 (22) 
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Here, 𝑚𝑡 and 𝑣𝑡 are estimates of the first moment (the mean) and the second moment (the 

uncentered variance) of the gradients respectively. 𝛽1, 𝛽1, and 𝜖 are hyperparameters of Adam 

which are set to be 0.9, 0.999, and 10^ − 8 respectively. The learning rate (lr) is set to be 1𝑒−2. 

But as the ‘Early Stopping’ callback function was included in the model, the learning rate would 

change according to the improvement or deterioration of the loss functions. The summary of the 

selected model parameters is shown in the following table. 

 

Table 6. Model summary 

Model parameters Descriptions 
Value/ 

Name 

Input features Number of variables (reshaped data frame) 31 

Output dimension Dimension of Output 1 

Training size Number of training samples 2,677,950 

Hidden layers Number of Hidden Layers 2 

Neurons 
1st Hidden layer 512 

2nd Hidden layer 256 

Loss function Loss calculator of training and validation MAE 

Activation function Obtaining outputs from nodes in hidden layers ReLU  

Optimizer Adjust weights to minimize loss Adam 

Initial earning rate The initial rate for the machine to learn 1𝑒−2  

Batch size Number of samples trained in each iteration 192 

Epochs Number of training update 35 
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5.2. Training the model 

 

The model is a sequential model where two LSTM hidden layers have been stacked 

together and connected with a Dense layer which enables the output of one value. After 

compiling the loss function and the optimizer, the model structure has been finalized. But before 

training, we need to set up some callback functions. The callback is a set of functions that 

enables automating some tasks after every training epoch that helps us to have control over the 

training process. We have used two callback functions. One of them is called “Early Stopping” 

which allows us to specify an arbitrarily large number of training epochs and stop training once 

the model performance stops improving on a hold-out validation dataset. It also protects the 

model from overfitting restoring the best weights after each epoch. As mentioned earlier, we 

have set the initial learning rate (lr) to be 1𝑒−2. But training on a dataset having stochastic 

nature, this rate should not be set permanently throughout the training process. To overcome this 

issue we used another callback function named ‘Reduce Learning-rate), which monitors the 

validation loss and adjusts the learning rate if the validation loss deteriorates. Callbacks provide 

a way to execute code interacting with the training model process automatically. 

Batch size and number of epochs are other hyperparameters. This pair of values were 

obtained by performing several trials. We selected a batch size of 192 and trained the model for 

35 epochs which gave us the optimum result. As deep learning and machine learning algorithms 

are not deterministic the output will vary every time training on the same model structure. This is 

due to the random initialization of the weights. So, the model was repeated 10 times and selected 

the one that returned the lowest error (both training and validation losses).  
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5.3. Validation 

 

65% of the total data was trained and validated with 15% data. The rest 20% of the data 

was applied to test the model. While training, the validation loss was monitored closely over 

time. The model stopped after 14 epochs restoring the best weights. From Figure 22, we can see 

the declination of both training and testing loss. Validation loss was a bit higher than training 

loss on initial epochs which is expected. But it gradually decreased over epochs and maintained a 

close gap with training loss. This means the model was capable to learn the data well. Both 

losses declined sharply within two epochs and after that declination rate became slow. 

Eventually, validation loss slightly decreased than training loss at the last epoch after preserving 

minimal distance with the training loss. 

 

 

Figure 22. Loss functions over epochs 

 

After validating the model with the validation data our model is ready to predict over 

unknown data. It is always recommended to use different validation and test data so that the 
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model can be evaluated without any bias. To get an overall accuracy on predicting over unseen 

data (test set), Root Mean Squared Error (RMSE) was calculated between the actual and 

predicted value. We chose to calculate RMSE value as the model is sequential regression in type. 

To be more precise, it was one of the important parameters to look at after each training and 

prediction to see if or which parameter(s) needed to be tuned farther. Root Meaned Squared 

Error (RMSE) indicates the standard deviation of the residuals (predicting errors) which can be 

also stated as the difference between the actual and predicted values. It is calculated by taking 

the square root of the average squared residuals. The equation is as follows: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦̂ − 𝑦)

𝑁

𝑖=1

2 

 

(23) 

Here, 𝑦̂ is predicted and 𝑦 is the actual value (test values). N denotes the number of 

predicted values which is the length of the test set. Our model gives the RMSE value of 0.088, 

which is an acceptable value for regression and time series problems.  

A model can be treated as a general model if it has higher predictability on different sets 

of data. To be more precise and accurate, we tested the model with a completely different type of 

roadway data. Data from the US-101 road segment was used for further validation. It’s consisted 

of 43,98,832 rows, each representing unique information of around 3500 vehicles. The RMSE 

value was close to 0.07 which is also in an acceptable range. Despite having different flow rates 

and other trajectory parameters our model was able to map the relationship between the variables 

and predicted time headway quite accurately. This generalized our model, having good 

prediction capabilities on unseen data. In both cases, the time headway distribution of predicted 
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and actual values was almost overlapped completely. The distribution of predicted headway also 

gave us the log-normal distribution curve with almost similar to the mean and standard deviation 

of the actual time headway distribution. 
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CHAPTER VI 

 

RESULTS AND ANALYSIS 

 

The Long Short-Term Memory (LSTM) networks have been producing a very high 

accuracy in predicting time series data in various fields. The implemented model of this study 

shows the highest accuracy in analyzing and predicting time headway until now. In this chapter, 

the results of our model will be visualized and analyzed. The correlations of the variables with 

the predicted time headway will also be visualized for both I-80 and US-101 datasets including 

the comparison of the headway distribution of actual and predicted values.
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6.1. Prediction 

The predicted time headway of highway I-80 is shown in figure 23, where green points 

indicate historical data by which the model was trained. The blue and red lines indicate the actual 

and predicted values. The void space on the graph represents the range of validation tests (which  

 

was 15% of the total data). This is a scatter plot of each vehicle's time headway wherein each 

time steps the time headways of multivariate vehicles have been presented. It can be seen that 

red lines almost fully covered and overlapped the blue lines. It indicates the high prediction 

accuracy on the test set. Different sets of datasets have been used for validation and prediction to 

avoid overfitting. Overfitting is suspected when the training accuracy is high but the validation 

and prediction accuracy drops significantly. It implies the model knows the training data well 

and training loss is very small but it fails to generalize and predicts poorly on unseen data. To be 

more precise, we validated the model with one set of data and tested it with a different set of 

data. High accuracy on testing data refers to the ability of the model to generalize the overall 

scenarios for predicting time headway. 

Figure 23. Predicted Time Headway on test set 



66 

 

The predicted average and summed time headways of all the vehicles throughout a 

specific time range (last 30 minutes data) are also visualized in figures 24 & 5. As our data 

consisted of two separate time-series data (one for 15 minutes and another series is for 30 

minutes), in figure 24 the 30 minutes time-series data with predictions has been shown. 

 

Figure 24. Actual Time Headway vs Predicted Time Headway (Mean value) 

 

Figure 24 presents the average time headway prediction. Here the same scenario can be 

observed where almost all of the predicted values (red lines) have converged with the actual values 

(blue lines) of time headway. To be more precise, the summation of the predicted time headways 

in each timestep have been calculated and is shown in figure 25, where the legend of the graph is 

similar to the previous graphs.  
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Figure 25.Actual Time Headway vs Predicted Time Headway (Summed value) 

 

Though the graphs indicate overall precise time headway predictions, the goodness and 

overall error of the model have been also calculated to validate the anticipated time headway. 

The goodness of the predicted values have been determined through Root Mean Squared 

Error (RMSE) and Mean Absolute Percentage Error (MAPE). MAPE is a widely used statistical 

measurement for forecasting accuracy. It is calculated by taking the percentage of the average 

absolute error of the total dataset. It can be expressed in the form of the following equation. 

 
𝑀𝐴𝑃𝐸 =  

1

𝑁
∑

|𝑦 − 𝑦̂|

𝑦

𝑁

𝑖=1

× 100 
(24) 
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Here, y is the actual value, 𝑦̂ is the predicted value, and N represents the total number of 

the predicted samples. The overall optimum RMSE and MAPE values of the model were found 

to be 0.088 and 2.36% respectively. These values give us satisfactory comments on time 

headway predictions.   

But to be more consistent with accurate prediction, we further validated our model on 

another high way dataset (US-101) consisting of 4,398,832 numbers of data. Data was divided 

into train, test, and validation sets according to the previous ratio used in the I-80 dataset. The  

 

model performs well on prediction having RMSE and MAPE value of 0.07 and 1.89% 

respectively. These results outperform the previous headway prediction models.  

Figure 26 presents the predicted time headway of the US-101 highway over the actual 

time headway. Predicted headways again followed the actual values and overlapped almost all of 

them. It can be farther investigated that, the model can predict time headways nearly 100% 

Figure 26. Time headway prediction of US-101 highway 
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Figure 27. Time headway distribution of I-80 

accurately which are below 100 seconds. Despite having the robustness and outliers, our model 

was able to detect the pattern and predict accordingly.  

 

6.2. Prediction Analysis 

 

6.2.1. Headway distribution 

The predicted time headways were further analyzed visualizing the distribution and the 

correlations with the variables considered in the model. The I-80 and US-101 highways are 

different in their natures. Though the traffic density and flow rate were different, the distribution 

of the headway is similar in shape.  

 

 

 

 

 

 

 

 

 

 

 

The distribution of the predicted time headway follows the log-normal shape which 

matches the actual distribution. Figure 27 shows the actual and predicted time headway 

  Predictions 
Actual 

Values 

mean 4.784441 4.772496 

std 11.509615 11.480304 

min 1.027996 1.01 

25% 2.09595 2.09 

50% 2.884892 2.88 

75% 4.241404 4.23 

max 400.694458 399.72 
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Figure 28. Time headway distribution of US-101 

distribution of I-80. The graph shows that, both actual and predicted headways follow the shifted 

log-normal distribution. A similar trend can be found on the US-101 dataset. Figure 28 shows the 

actual and predicted time headway distribution of US-101. Both actual and predicted histograms 

also returned the log-normal shape. Comparing figure 27 and figure 28 we can comment that,  

 

 

 

 

 

 

 

 

 

 

 

though the mean and the variance of the distributions are different, they both followed a similar 

right-skewed distribution which is also known as log-normal distribution. This shape implies the 

basic nature of time headway on each roadway, lanes, and for each type of vehicle. 

This distribution can also be visualized as a probability density function (pdf). Here we 

used kernel density estimation (KDE) to estimate the probability density function of time 

headway. Kernel density estimation is a fundamental data smoothing problem where inferences 

about the population are made, based on a finite data sample. 

 

  
Prediction 

Actual 

Values 

mean 3.065998 3.050331 

std 5.267111 5.267975 

min 0.98528 1.01 

25% 1.812439 1.8 

50% 2.390278 2.38 

75% 3.264356 3.25 

max 448.122345 448.43 
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Figure 29. PDF of predicted and actual Time Headway (I-80) 

 

From figure 29, it can be seen that the predicted density function overlaps the actual probability 

density function which indicates the accurate prediction of the time headway. 

 

6.2.2. Correlations 

To deeply investigate the predicted time headways, we visualized the correlations of the 

predicted time headway with the features that were used as inputs of the model. We wanted to 

explore how much our predicted values can be correlated with the explanatory variables and also 

the deviation in correlations while using the actual values. This will also give us a closer outlook 

about the important features of time headway too.  

We would also like to show the Spearman’s correlation coefficients of the important 

features of the headway with both predicted and actual headway. The Spearman rank-order 

correlation is a statistical procedure that is designed to measure the relationship between two 

variables on an ordinal scale of measurement. Spearman’s correlation quantifies the degree to 
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which ranked variables are associated by a monotonic function, meaning an increasing or 

decreasing relationship. 

 
𝜌𝑟𝑔𝑋,𝑟𝑔𝑌 =  

𝑐𝑜𝑣 (𝑟𝑔𝑋 , 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋
, 𝜎𝑟𝑔𝑌

 

 

(25) 

Here, 

 𝜌𝑟𝑔𝑋,𝑟𝑔𝑌 = The usual Spearman correlation coefficient 

𝑐𝑜𝑣 (𝑟𝑔𝑋 , 𝑟𝑔𝑌) = The covariance of the rank variables 

𝜎𝑟𝑔𝑋
, 𝜎𝑟𝑔𝑌

 = The standard deviations of the rank variables. 

Figure 30 shows the correlation of vehicle velocity with the actual time headway and 

predicted time headway in I-80 dataset. It can be seen that relationship between the time headway 

and velocity is similar for both actual and predicted values. 

 

 

 

 

 

Figure 30. Correlation of vehicle velocity with time headway in I-80 

(actual vs predicted) 
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Spearman’s correlation coefficient of velocity with the predicted and actual time 

headway are -0.682 and -0.680 respectfully. Negative value implies the inverse relationship 

between time heaway and vehicle velocity. We can see the correlation coefficients for the actual 

and predicted values are closer to each other. 

This implies velocity has a great impact on predicting time headway and thus it’s 

considered one of the most important affecting features for analyzing headways. Figure 8 

represents the same graph for US-101 dataset. By looking closely into figure 30 and figure 31 it 

can be interpreted that, the correlation shapes are not completely similar for two different 

highways. 

 

 

 

 

 

 

It is because the average velocity and vehicle density were different on the two highways. 

But the correlation between actual and predicted time headway is completely similar in shape for 

an independent highway which is inversely proportional to the vehicle velocity. As discussed 

earlier, the velocity of the preceding vehicle (front vehicle) has been considered as another 

important feature for headway prediction, 

Figure 31. Correlation of vehicle velocity with time headway in US-101 (actual vs predicted) 
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Figures 32 and 33 explain the correlation of the velocity of the preceding vehicle with 

time headway for different road networks. It can be visualized that the correlation of preceding 

velocity with predicted time headway matches with the actual time headway. The Spearman’s 

correlation coefficients of the velocity of front vehicle with the predicted and actual time 

headways are similar which is -0.588. As the coefficients are similar for the predicted and actual 

time headway it means our model did well to extract this relationship between the headway and 

the velocity of the front vehicle. 

In figure 33, the same relationship has been shown for US-101. As US-101 did not have 

too many varieties in velocity and headway like I-80, the shape is different. But the shapes of the 

correlation of actual and prediction values with the preceding velocity are very similar 

 

Figure 32. Correlation of Preceding (front vehicle) velocity with time headway in I-80 

(actual vs predicted) 
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The flow rate of a road segment has been considered as an important feature for headway 

prediction in this study. Its importance has been validated by visualizing the correlation graphs 

for both highways. This is a non-linear complex relationship that was captured smoothly by our 

model. 

 

 

 

 

Figure 33. Correlation of Preceding (front vehicle) velocity with time headway in US-101 

(actual vs predicted) 

Figure 34. Correlation of time headway (actual vs predicted) with flow rate in highway I-80 
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The correlation for highway I-80 is represented by a scattered plot in figure 34. The 

Spearman’s correlation coefficiants for the flow rate with the actual and predicted headways are 

0.09 and 0.085. We can see that our model was able to find the relationship pattern very well 

though highway I-80 had a lot of variations in data. Figure 35 represents the correlation of time 

headway with different flow rates in the US-101 highway. As US-101 data provided less 

variation than highway I-80, the model could extract the complex relationship more accurately.  

 

 

 

 

6.3. Model Comparison 
 

There has been a lot of analysis in headway distribution through probabilistic methods. 

Recently some new and improved methods have been implemented to predict time headway 

which is described in chapter 2 (Literature Review). Among them, RVM, SVM, ANN, and some 

hybrid models have been mostly used. In those prediction models, there were some shortcomings 

which are as follows: 

Figure 35. Correlation of time headway (actual and predicted) with flow rate in US-101 
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1. Almost all of the models lacked in high ranged headway prediction. It means not 

predicting greater time headways (>100 seconds). Also, the robustness of the headway 

was neglected. 

2. The variance of the headway was not adequate to generalize the model. As most of the 

models were probabilistic models, high variance data was difficult to adapt and predict. 

By introducing novel deep learning techniques we have overcome this issue as deep 

learning and machine learning algorithms need more variations in data so that the 

machine can learn from different scenarios and adopt the stochastic robustness nature. 

3. Not having enough data size. One of the most important features of artificial intelligence 

is that it can learn from a huge dataset and it is often recommended to use a bigger dataset 

for training. 

4. Not validating on different road segments. Training and validating different sets of 

datasets provide the picture of the overall accuracy and learning ability of the model.  

In this study previously faced problems and the above-listed lackings were overcome. The 

maximum predicted time headway of our model is close to 400 seconds (over 5 minutes). A deep 

learning approach has been made for the first time to predict and analyze traffic time headway. 

Deep learning models can capture complex relationships from big data which makes it easier to 

use numerous stochastic data. Moreover, LSTM networks are specialized in time series analysis 

and predictions. It has proved to be one of the finest predicting algorithms in recent years. 

Though it has already been introduced to predict traffic velocity, time, etc., still there are some 

sectors in traffic engineering where these kinds of deep learning algorithms haven’t been 

implemented yet. Time headway is one of those important parameters of traffic engineering 

which did not have any reliable predicting model with the use of new emerging technologies. 
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A comparison has been made between the result of this study and some recent headway 

predictions in Table 7. From the table, it can be seen that new techniques have been used 

recently which lowered the RMSE and MAPE values gradually over time. 

Table 7. One step prediction comparison of time headway 

Author & 

year 
Data usage 

Algorithm(s)/ 

Model(s) 
RMSE 

MAPE 

(%) 
Comment(s) 

Moridpour 

et al. 

(2014) 

Highway I-

80 (similar to 

this study) 

Probabilistic 

method                    

(Chi-Square 

tests) 

N/A N/A 

Only distribution;                      

no prediction. 

Tong et al. 

(2000) 

16,976 

samples 

ANN N/A 6.8 Discharge headway 

estimation. 
Regression N/A 10.4 

Wu et al.    

(2016) 

Based on 

only smart 

card data 

RVM 1.494 15.39 
Bus arrival time estimation 

using headway prediction 

without considering other 

traffic parameters. 

SVM 1.5598 16.29 

GA-SVM 4.0833 31.77 

KF 9.7916 74.57 

KNN 3.111 15.92 

SNN 2.852 24.8 

Yu et al.      

(2016) 

Transit smart 

card data 

LS-SVM 1.3439 5.42 Fails to predict the extreme 

high bus headways;                             

Bus arrival time prediction. 
KNN 2.0933 6.71 

ANN 7.2992 9.99 

RF 2.7804 8.7 

GPR 4.1122 10.24 

Guo et al. 

(2016) 

Four 

segments of 

Shanghai-

Nanjing 

freeway 

(6,202 

samples) 

The maximum-

likelihood 

estimation 

N/A N/A 

Headway distribution in 

mixed traffic scenarios but 

no prediction. 

Roy et al. 

(2018) 

8,000 

samples 

Probabilistic 

methods 
N/A N/A 

Modeling headway 

distribution on two-lane 

rural highways with mixed 

traffic.;                                 

no prediction. 

Current 

study  

(2020) 

4.1 million 

samples 
LSTM 

0.088       

(I-80) 

2.36      

(I-80) 

Modeling time headway 

distribution with one step 

prediction in mixed traffic 

scenarios. 
0.07     

(US-101) 

1.89    

(US-101) 
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The RMSE and MAPE values of the current study are the lowest so far in predicting time 

headway. This accuracy outperforms the previous models which show another dominant display 

of deep neural networks in the field of ITS. 
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CHAPTER VII 

 

CONCLUSION & FUTURE RECOMMENDATIONS 

 

Traffic congestion has become one of the serious problems in most of the countries 

worldwide. Increased waiting time for traffic leads to an overall loss in productivity and 

economy. For example, Americans lost an average of 97 hours a year due to congestion, costing 

them nearly $87 billion in 2018, an average of $1,348 per driver [1]. At the global level, Moscow 

topped the list of the world’s most gridlocked cities (210 hours lost due to congestion) when 

weighting for population, followed by Istanbul, Bogota, Mexico City, and São Paulo. So, to 

eradicate this issue proper planning and modeling have become mandatory tasks nowadays. 

Traffic jam occurs due to the heterogeneity of the time headways which is the various arrival 

time of the vehicles. Thus scientists have been working on headway modeling for a long time. 

Appropriate headway models can give us insights about traffic congestion, pointing out the cause 

and solutions to overcome this problem. In congested flow, drivers maintain shorter headways 

(larger time headways). This condition leads to skewness in headway distribution. The log-

normal distribution was the best fit for the time headway distribution.  

There have been introduced a lot of probabilistic and mathematical models to analyze and 

predict time headway. Those models were fine but could not predict accurately for various traffic 

scenarios. It is because time headway is stochastic and it does not only depend on traffic 

conditions, it heavily depends on the driver’s behavior during various traffic scenarios. 
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Mathematical models can not accurately describe human behavior. Recently, the 

invention and provision of artificial intelligence have enabled us to visualize and learn more 

about human nature. These new techniques are replacing the ancient mathematical and 

probabilistic models in various other disciplines as well. Deep learning algorithms, especially 

Long Short-Term Memory networks have been providing high accuracy prediction on time series 

analysis in various fields. This network has been also used in predicting other parameters of 

transportation such as traffic flow, vehicle velocity, etc. This technique has been introduced for 

the first time to analyze and predict time headway in this study. The prediction error has been 

decreased to a great extent using this deep learning method.  

After analyzing, several facts were revealed regarding time headway. Vehicles having 

higher length and width are considered as heavy vehicles. Heavy vehicles (Class-3 vehicles in 

this study) have greater time headway than passenger cars. This is due to operational limitations 

(acceleration, deceleration, etc) of heavy vehicles. The effect of the positions of heavy vehicles 

on time headway has been explored and visualized. Not only do the drivers of heavy vehicles 

maintain higher time headway, but also the vehicles around a heavy vehicle tend to maintain 

greater time headway. This behavior explains the safety concerns of the drivers. Thus velocity 

and the velocity of the preceding vehicle (front vehicle) have been considered as the two most 

important features for time headway. The behavior of the drivers also changes with the different 

traffic flow. For example, in a freeway, drivers do not follow their front vehicles that much 

whereas, during a congested flow, the driver follows the front vehicle to a great extent. This 

situation is explained by the car-following behaviors of the drivers. Time headway differences in 

each lane were also visualized through separated lane-wise and vehicle-type wise analysis. 

Though there are differences in headway values in each lane, and for each vehicle type, the 
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distribution of the time headway was similar in each case (shifted log-normal distribution). This 

describes the similar nature of time headway.  

Though our model provided high accuracy predictions, there were some flaws that can be 

easily modified and updated in the future. Future recommendations can be pointed out as 

follows: 

1. The data we used in this study was not up to date (gathered from 2005). As traffic 

conditions and human behaviors are constantly changing, it is best to build a model using 

the most recent instantaneous data.  

2. If the instantaneous data can be gathered while traveling, the instantaneous predictions 

can be also made through our model scripts which will enable drivers to visualize the 

overall traffic conditions and vehicle movements instantly. This visualization can prevent 

traffic accidents and also provide the accurate arrival time of the vehicles instantly. 

3. The scripts can also be used in modeling trajectories of Connected Autonomous Vehicles 

(CAV) and for more advanced CAV modeling such as how CAVs form platoons, interact 

across lanes in freeway merge areas. This opens a new door to explore research on CAVs 

using time headway prediction.  

4. Weather conditions of the road segment were not considered in this study. It can be 

further added to the data to get more precise results and human behaviors. 

5. The model can also be used in describing lane-changing behaviors.  

Time headway analysis can provide both macroscopic and microscopic analysis which is 

very useful for interpreting different parameters of traffic engineering.  
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