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ABSTRACT 

 

 

Puri, Sandeep., Design and Modeling of a Tunable non-Hermitian Acoustic Filter. Master of 

Science (MS). May 2021, 65 pp, 2 tables, 32 figures, references, 62 titles. 

    In this thesis, we explore an application of a non-Hermitian acoustic system with 

tunable loss in filtering specific frequencies from an upcoming signal at will. Using the 

commercial computational software, we design our proposed tunable filter made of a phononic 

super-lattice. The super-lattice consists of two sublattices connected in series. The first sublattice 

is Hermitian, whereas the other can be Hermitian or Non-Hermitian depending on the amount of 

loss induced in it. By introducing the loss in the system, we observe the generation of absorbed 

resonances that can be seen in the reflection spectrum. The range of the filtered frequencies can 

be controlled by adjusting the degree of non-Hermiticity and designing the first sublattice's 

resonances. The resonances in the first sub-lattice can be adjusted by increasing or decreasing the 

number of unit cells in the sub-lattice. Our tunable acoustic filter can be extended to higher 

frequency ranges, such as ultrasound and other areas, such as photonics.  In addition, we explore 

the geometry-induced non-Hermitian mode couplings and study the different modes in a system 

of acoustic ring resonators with induced loss and study the field localization within the system.
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Being able to control the propagation of sounds and phonons at will is the long-desired 

goal of modern physics and applications. The latest development of metamaterials has made 

remarkable achievements in acoustics and phonon transport manipulation. Recently, phononic 

crystals have become a subject of importance for many potential applications, due to the 

existence of a complete bandgap in its band structure. The phononic crystals find their 

application in numerous fields including vibration isolation, noise suppression, sound barriers, 

filters, waveguides, and transducers to name a few (Aly & Mehaney, 2012; Chen et al., 2008; 

Pennec et al., 2010; Xiao et al., 2013). However, the practical frequency and bandgaps tunability 

of phononic crystals are the key challenges in order to make them into actual devices in various 

technical fields (Bergamini et al., 2014; Robillard et al., 2009). Many attempts have been made 

to achieve tunability, such as thermal tuning(Bian et al., 2014), electromechanical tuning(Celli & 

Gonella, 2015), piezoelectric shunting (Hou & Assouar, 2015), external magnetic fields (Allein 

et al., 2016; Bilal et al., 2017; Robillard et al., 2009; Vasseur et al., 2011), static loads (P. Wang 

et al., 2014), embedded electromagnets (Z. Wang et al., 2016), nonlinear effects (Boechler et al., 

2011; F. Li et al., 2014; Liang et al., 2010), and acoustic trapping (Caleap & Drinkwater, 2014). 

All these works are focused on the lattice geometry, density, and sound velocity contrast, which 

are the main parameters that affect the frequency and width of the bandgap. 
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Recently, a new perspective has emerged that incorporates non-Hermiticity to propose 

new physics and manipulate sound propagation in acoustic media (Fleury et al., 2015; Zhu et al., 

2014). The degree of non-Hermiticity is induced through the loss and gain mechanism embedded 

in the phononic structure, by means of effective complex bulk modulus and mass density. 

Although many types of research have been conducted on the effect of losses on the propagation 

of sound waves (Andreassen & Jensen, 2013; Jensen, 2003; Langley, 1994; Molerón et al., 2016; 

Morse & Ingard, 1986), their occurrence has been ignored due to their well-known negative 

effects on the performance of the acoustic materials studied (Ward et al., 2015). Recently 

fascinating and peculiar achievements obtained in the non-Hermitian system and judiciously 

introduced balanced absorption (Feng et al., 2017) and amplification mechanisms has inspired 

new ideas to incorporate the degree of non-Hermiticity in the acoustic systems. Several 

noticeable theoretical and experimental parity-time symmetric acoustic structures have been 

proposed so far (Aurégan & Pagneux, 2017; Christensen et al., 2016; Ding et al., 2015; Y. Li et 

al., 2017; Poshakinskiy et al., 2016; Ramezani et al., 2016; Shi et al., 2016; Zhang et al., 2015), 

however, practical application of PT non-Hermitian acoustic structures is still missing. 

The main objective of this study is to design a tunable acoustic filter with the help of 

induced non-Hermiticity in the system. The non-Hermiticity is induced as losses in a phononic 

lattice. The loss in the system can be changed in order to alter the degree of non-Hermiticity. 

Based on which we can filter/eliminate specific frequencies from an upcoming signal at will. 

Using commercial computational software, we design our proposed tunable filter made of a 

phononic super-lattice. The working principle and its details will be discussed in more detail 

further in later chapters. 
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1.2 Thesis Organization 

The central theme of this thesis is to design and characterize an acoustic filter based on 

the application of a non-Hermitian acoustic system. This thesis consists of four chapters. The 

purpose of the present chapter is to briefly introduce the purpose and motivation of this thesis. 

The other three chapters are organized in the following manner: 

In Chapter 2, We will briefly introduce phononic crystals. We will discuss its basic 

properties and its band structure, the parameters that affect the bandgap of the phononic lattice, 

and how to use non-Hermiticity to tune its bandgap. We will conclude by introducing some 

applications of phononic crystals as acoustic filters. 

In Chapter 3, We will briefly discuss the simulation steps and techniques that we used to 

simulate our proposed model.  

In Chapter 4, We will introduce our proposed model. Discuss the results obtained from 

the simulation. Design the realistic model and show that the induced loss in the model can be 

created by designing the side holes in one of the two sublattices of the phononic superlattice. 

Compare the simulation results of the proposed model and the realistic model. Finally, we will 

summarize the tunable acoustic filter we proposed and designed and its working principle. 

In Chapter 5, We study the geometry-induced non-Hermitian mode couplings and study 

the different modes in a system of non-Hermitian acoustic ring resonators. We study the field 

localization within the system. 

In Chapter 6, We will conclude with a review of the key points and future prospects of 

the project.
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CHAPTER II 

PHONONIC CRYSTALS AND NON-HERMITIAN ACOUSTIC SYSTEM 

2.1 Introduction 

Phononic crystals (PnCs) are a type of synthetic periodic material that is used to control 

and manipulate the propagation of elastic (or acoustic waves). In other words, we can say the 

phononic crystals (PnCs) are the acoustic or elastic analog of the photonic crystals for 

electromagnetic waves (Khelif & Adibi, 2016).  The periodic nature of PnC gives them novel 

properties that cannot be found in bulk materials. For example, PnC can exhibit phononic band 

gaps, which are frequency ranges in which sound waves are prohibited from propagating inside 

PnC. It composes of the periodic structure of different acoustic velocities and densities with 

lattice constants on the scale of the wavelength of the sound (or ultrasound).  Adding defects to 

an ideal PnC with a phononic bandgap, devices such as waveguides and cavities can be designed 

to control the propagation of sound waves in the bandgap and achieve novel functions in a very 

compact structure. The first phononic bandstructure for two-dimensional lattices of solid 

cylinders in the solid background was calculated simultaneously by Sigalas(M. Sigalas & 

Economou, 1993) and Economou and Kushwaha et al (M. S. Kushwaha et al., 1993). 

The first experimental measurement of sound attenuation due to periodicity was carried out 

under atmospheric conditions by E. Sempere on a sculpture, which was displayed in the open air
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of Madrid (Fig. 2.1). In 1998, the first phononic crystals with a complete bandgap were reported 

for  the periodic structure of a square lattice of cylindrical holes filled with mercury and drilled 

in an aluminum alloy plate (Sánchez-Pérez et al., 1998) (Montero de Espinosa et al., 1998).  In 

the past few years, various periodic structures with phononic band gaps in various frequency 

ranges have been fabricated. 

In this chapter, we will review the properties of the phononic crystals and the concept of 

the bandstructure. The occurrence of the band gaps in its band structures and its dependence on 

the physical and geometrical parameters with the examples of different types of phononic 

crystals. We will give explore the effects of non-Hermiticity on the band structure and the 

propagation of waves in the phononic crystals and conclude with some applications. 

2.2 Fundamental Properties of Phononic Crystals and their Band Structures 

Controlling and manipulating acoustic/elastic waves is a fundamental problem with a 

wide range of applications, especially in the field of information and communication 

technologies. The propagation of the wave in a periodic medium is based on the dynamical 

equations of motion. The propagating sound wave oscillates with time and is consistent with the 

coordinate sequence of the material displacement, and is accompanied by similar pressure and/or 

shear elastic stress patterns. For a homogeneous and isotropic elastic medium characterized by 

mass density, 𝜌, speed of longitudinal, 𝑐𝑙, and transverse, 𝑐𝑡 sound, the derivation of the wave 

equation can be found (Olsson III & El-Kady, 2009). The longitudinal and transverse sound 

waves decouple and propagate independently in a homogeneous bulk medium, t. The 

displacement vector field u is potential in a longitudinal wave (∇ × 𝐮 = 0) and it is solenoidal 

(∇. 𝐮 = 0) in a transverse wave. The requirement of continuity of the displacements and stresses 



6 
 
 

 

Fig. 2.1 E. Sempere’s sculpture in Madrid shows a two-dimensional phononic crystal composed 

of steel rods with a diameter of 2.9 cm arranged in a square lattice with a period of 10 cm (Deymier, 

2013). 

leads to the mixing of these two modes in presence of a boundary. From the theory of surface 

Rayleigh waves (Landau et al., 1986), it is known that the total elastic displacement is a 

superposition of potential and solenoidal fields and thus cannot be decoupled. Similarly, the 

longitudinal and transverse displacements also cannot be split in the general case of an arbitrary 

inhomogeneous elastic medium. The equation of motion for the components of the displacement 
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vector contains both velocities, 𝑐𝑙,  and 𝑐𝑡, (M. S. Kushwaha et al., 1993; M. Sigalas & 

Economou, 1993) and can be written as follows: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 = ∇. (ρct
2∇ui) +  ∇. (ρct

2 𝜕𝒖

𝜕𝑥𝑖
 ) +  

𝜕

𝜕𝑥𝑖
[(𝜌𝑐𝑡

2 − 2𝜌𝑐𝑡
2)∇. 𝐮]   (2.1) 

Here 𝜌 = 𝜌(𝒓), 𝑐𝑙 = 𝑐𝑙(𝒓), and 𝑐𝑡 = 𝑐𝑡(𝒓) are arbitrary functions of radius-vector 𝒓 =

(𝑥1, 𝑥2, 𝑥3). 

In phononic crystals, all functions that characterize material properties are periodic in 

space and can be explained in the Fourier series of the infinite reciprocal lattice vector G; 

𝜌(𝑟) = Σ𝐺 𝜌(𝐺)exp (𝑖𝑮. 𝒓),      (2.2) 

Where the Fourier component is defined as follows: 

𝜌(𝑮) =
1

Vc
∫ 𝜌(𝒓)

Vc
exp(𝑖𝑮. 𝒓) 𝑑𝒓,     (2.3) 

Here the  integral is taken over the volume of the unit cell Vc, and in the case of 2D 

periodicity, it is replaced by the area of the unit cell Ac, or by the lattice period 𝑙𝑐 for 1D 

superlattices. The displacement vector u is the solution of the wave equation (2.1), which 

satisfies the Bloch theorem and can be expanded on the reciprocal lattice vector 

𝐮(𝐫) = 𝐮𝑘(𝒓) = exp(𝑖𝒌. 𝒓) Σ𝐺𝐮𝑘(𝑮)exp (𝑖𝑮. 𝒓).    (2.4) 

The Bloch vector k plays the role of the phononic momentum and its possible values scan 

the interior of the irreducible part of the Brillouin zone. Substituting the Fourier expansions (2.2) 

and (2.3) we obtain a set of linear homogeneous equations for the coefficients 𝐮𝐤(𝐆). If the 

determinant of the set of equations disappears, then the set has a non-trivial solution. Generally, 

this condition defines the dispersion relation which gives the infinite number of allowable 
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frequencies ωn(𝐤), (n = 1, 2, 3, …) corresponding to the frequency bandstructure of each value 

of the Bloch vector k. In practice, the size of the determinant and the number of allowed 

frequencies (bands) are limited by the finite number of plane waves (reciprocal lattice vectors) in 

the expansions (2.2) and (2.4). This method of calculating the phonon band structure, namely 

"plane wave extension", is the most popular one. There are numerous examples of phononic 

bandstructure calculation with this method (M. S. Kushwaha et al., 1993; Manvir S. Kushwaha, 

1997; Montero de Espinosa et al., 1998; Vasseur et al., 2001). 

2.2.1 Quasi-Static Limit and the Method of PlaneWaves 

We know that the scattering cross-section decreases with decreasing frequency, which 

means that waves propagating through an inhomogeneous medium at a sufficiently low 

frequency will be subject to very weak multiple scattering. Therefore, in the first approximation, 

it is a plane wave. According to this conclusion, the main contribution to the Fourier expansion 

Eq.(2.4) comes from the term with G = 0 and all the other terms with G≠0 vanish linearly at 

𝜔 → 0. Using this property one can calculate the effective speed of the sound as 

𝑐𝑒𝑓𝑓 = lim
𝑘→0

𝜔

𝑘
.       (2.5) 

The effective frequency region of this formula is consistent with the linear dispersion interval 

𝜔 = 𝑐𝑒𝑓𝑓𝑘 in the lowest allowable frequency band. Here, not only the wavelength of 2π/k but 

also the wavelength of each component exceeds the size of the unit cell. Under these conditions, 

all the structural details of the photonic crystal cannot be resolved by sound waves. However, 

this does not mean the effective sound velocity Eq. (2.5) is only determined by the average 

parameters of the structure. The exact formula for the effective sound velocity includes the 

contribution of all reciprocal lattice vectors G. 
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The value of 𝑐𝑒𝑓𝑓 obtained from equation (2.5) corresponds to the quasi-static limit. 

Within this limit, the effective medium does not exhibit internal resonance, and the dispersion 

relationship is linear. Limited but still lower frequencies, internal resonances may appear in the 

scattering cross-section.  

2.2.2 One-Dimensional Periodicity 

When the dispersion relationship can be obtained in a closed form, the case of one-

dimensional phononic crystals, the so-called superlattices, is an important special case. A 

superlattice is a periodic sequence of two (or more) layers of various elastic materials arranged in 

a regular pattern. We mark the characteristics of each material by sub-index a and b. In this 

special case, if the Bloch vector k is oriented along the superlattice axis (z-axis), the waves with 

longitudinal and lateral polarization will propagate independently. For example, considering a 

longitudinal wave with 𝑢𝑧~ exp (𝑖𝑘𝑧 − 𝑖𝜔𝑡), the following dispersion equation can be obtained 

by directly matching the boundary conditions at the interface and applying Bloch's theorem 

(Farnell, 1988) (Bloch, 1929). 

cos 𝑘𝑑 = cos (
𝜔𝑎

𝑐𝑎
) cos (

𝜔𝑏

𝑐𝑏
) −

1

2
(

𝑧𝑎

𝑧𝑏
+

𝑧𝑏

𝑧𝑎
) sin (

𝜔𝑎

𝑐𝑎
) sin (

𝜔𝑏

𝑐𝑏
).                            (2.6) 

Here d = a + b is the period of the superlattice, where the unit cell contains two layers 

with widths a and b. The elastic material of the layer is characterized by the velocities of 

longitudinal sound 𝑐𝑎 and 𝑐𝑏 and acoustic impedances 𝑧𝑎 =  𝜌𝑎𝑐𝑎 and 𝑧𝑏 =  𝜌𝑏𝑐𝑏. For pure 

transverse waves, the form of the dispersion equation is the same as eq. (2.6), where 𝑐𝑎 and 𝑐𝑏 

are the speed of transverse sound waves (Camley et al., 1983). 

For each value of the Bloch vector k lying within the Brillouin zone, |𝑘| ≤ 𝜋/𝑑 Eq. (2.6) 

determines the infinite number of frequencies forming the band structure 𝜔 = 𝜔(𝑘). We can see 
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that within a certain frequency interval, the absolute value of the expression in the RHS of Eq. 

(2.6) may exceed one. In fact, for any arbitrarily small value of the acoustic contrast between 

impedances, the sum (𝑧𝑎/𝑧𝑏 + 𝑧𝑏/𝑧𝑎)/2   exceeds one, so this is also true for the RHS as a 

whole. The frequency interval where the RHS exceeds one in formula (2.6) corresponds to the 

phononic bandgap. Sound waves with frequencies in any gap will not propagate. 

In the quasi-static limit when 𝑘𝑑, 𝜔 𝑎/𝑐𝑎, 𝜔𝑏/𝑐𝑎 ≪ 1, the trigonometric functions in Eq. 

(2.6) can be expanded. Keeping quadratic over 𝜔  and k terms the following linear relation is 

obtained: 

𝜔 = 𝑐𝑒𝑓𝑓𝑘.               (2.7) 

Linear dispersion indicates that the superlattice behaves like a homogeneous elastic 

medium with the speed of sound 𝑐𝑒𝑓𝑓. The elastic parameters of the effective homogeneous 

medium are given by the following relations 

1

𝐵𝑒𝑓𝑓
=

𝛽

𝐵𝑎
+

1−𝛽

𝐵𝑏
, 𝜌𝑒𝑓𝑓 = 𝛽𝜌𝑎 + (1 − 𝛽)𝜌𝑏, 𝑐𝑒𝑓𝑓 = √

𝐵𝑒𝑓𝑓

𝜌𝑒𝑓𝑓
  .    (2.8) 

Here, 𝛽 = 𝑎/𝑑 is the filling fraction of the component 𝑎. The effective bulk constant and 

effective mass density are both positive and consistent with their static values. Dynamic effects 

may lead to negative values of 𝜌𝑒𝑓𝑓 in the vicinity of internal resonance. In a one-dimensional 

phononic crystal, local resonances appear if the unit cell consists of three or more layers of 

different elastic materials (Grimsditch, 1985; Nemat-Nasser et al., 2011). 

2.3 Dispersion Curves and Band Gaps in Phononic Crystals: 

The concept of phononic crystal was followed by the similar concept of photonic crystals 

which are used to propagate electromagnetic waves (Joannopoulos, 2008; Yablonovitch, 1987). 

The phononic crystals were introduced especially looking for the possibilities of absolute band-
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gap (Pennec et al., 2010; Mihail Sigalas et al., 2005). Similar to the photonic crystals, the 

dispersion curve of the phononic crystals exhibits the bandgap in which the propagation of the 

waves is prohibited (Jensen, 2003; Montero de Espinosa et al., 1998; M. Sigalas & Economou, 

1993). Gaps may appear in a specific direction of the wave vector, but they may also span the 

entire 2D or 3D Brillouin zone, where the propagation of elastic waves is prohibited for any 

polarization and any angle of incidence. Thus the structure acts as a perfect mirror at any angle 

of incidence, prohibiting the propagation of sound waves. this phenomenon is well known for the 

electronic bandstructure of crystalline materials in solid-state physics. Similar to photonic band 

gaps, one can tailor the band structure of the phononic or photonic crystals for their potential 

applications such as guiding, filtering, and multiplexing of the acoustic waves at the level of the 

wavelength and realize the advanced censors and acusto-optic devices (Pennec et al., 2010). 

  

2.3.1 Origin of the Band Gaps 
 

The absolute bandgap that exists in phononic crystals are the Bragg type gap, which 

appears at about an angular frequency 𝜔 of the order of 𝑐/𝑎, where 𝑐 → the velocity of sound in 

the structure, and 𝑎 → the lattice parameter. The existence of the absolute bandgaps was 

predicted theoretically (M. S. Kushwaha et al., 1993, 1994; M. Sigalas & Economou, 1993; M. 

M. Sigalas & Economou, 1992) in various phononic crystals made up of solid components 

(Vasseur et al., 1998, 2001), or mixed (solid/fluid) components (Montero de Espinosa et al., 

1998). The existence of the bandwidth of the gaps strongly depends on the nature of the 

constituent materials of the photonic crystals, such as its physical characteristics (density and 

elastic constants) of the inclusion and the matrix, the geometry of the array, the shapes of the 

inclusion, and the filling factor. 
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The gap can also be a resonance type that appears at the frequencies below the Bragg 

limit. It is possible to obtain the absolute gaps at the frequencies one or two orders lower than the 

Bragg diffraction without increasing the size of the unit cell in the crystal. Such type of gaps can 

be realized in the local resonant sonic material that is made up of building units which has the 

localized resonant modes at specific frequencies(Larabi et al., 2007; Liu, 2000). The resonances 

interact and produce a resonance gap or the flat bands around the corresponding 

eigenfrequencies. Since these local resonances depend on the characteristics of the scatterer, their 

frequency position can be tuned by appropriately selecting the parameters of the scatterer. A 

phononic crystal formed from such components resonantly interacts and produces a flat band or 

resonant gap around the corresponding eigenfrequencies. Since these localized resonances 

depend on the properties of the scatterers, their positions in frequency can be tuned by 

appropriately selecting the properties (elastic or geometric) of the scatterers. Such materials can 

find several potential applications, especially in the field of sound insulation or in the realization 

of vibrationless environments for high-precession mechanical systems,  negative refraction, or 

cloaking acoustic metamaterials 

2.3.2 Band Gaps as a Function of the Geometrical and Physical parameter 

The theoretical models of 2D and 3D phononic crystals based on the plane wave 

expansion methods have shown that the width of the acoustic bandgap strongly depends on the 

geometry, composition, and properties of the constituent materials (Khelif & Adibi, 2016). The 

main feature of a phononic crystal is that it exhibits a stop band in its transmission spectrum, in 

which the propagation of waves is prohibited. Three types of phononic crystals can be defined, 

the difference between them lies in the physical properties of inclusions and matrix. In this way, 
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solid-solid, fluid-fluid, and mixed solid-fluid composite phononic crystals can be defined. The 

opening of the wide acoustic band gap requires two main conditions. The first is to have a large 

physical contrast between the inclusion and the matrix, such as density and sound speed. The 

second is to have an adequate filling factor of inclusion in the matrix unit cell (M. S. Kushwaha 

et al., 1993; Vasseur et al., 1998). It can be noticed that the forbidden band gap appears in the 

frequency domain, which is derived from the ratio of the effective sound velocity in the 

composite material to the lattice parameter value of the periodic array of inclusions. In a two-

dimensional solid-solid phononic crystal, the vibration modes can be decoupled between 

propagation in the plane where the elastic displacement is perpendicular to the cylinder and out-

of-plane propagation where the elastic displacement is parallel to the axis of the cylinder. Only 

longitudinal modes are allowed in fluid-fluid phononic crystals. In mixed phononic crystals, 

there may be complex vibration modes in mixed phononic crystals, ranging from the longitudinal 

direction of the fluid to the longitudinal and transverse directions of the solid part. 

Table 2.1 Mass density 𝜌 and elastic constants 𝐶11, 𝐶44, and 𝐶12 of silicon and epoxy, 𝑐1 =

√
𝑐11

𝜌
 and 𝑐𝑡 = √

𝑐44

𝜌
 represent the longitudinal and transverse speed of sound respectively. (Khelif 

& Adibi, 2016) 

 

Material 

 

𝜌 (𝑘𝑔/𝑚3) 

𝐶11 

(× 1011𝑑𝑦𝑛/𝑐𝑚2) 

𝐶44 

(× 1011𝑑𝑦𝑛/𝑐𝑚2) 

𝐶12 

(× 1011𝑑𝑦𝑛/𝑐𝑚2) 

 

𝑐1 (𝑚/𝑠) 

 

𝑐𝑡  (𝑚/𝑠) 

Silicon 2,331 16.57 7.962 6.39 8,430 5,844 

Epoxy 1,180 0.761 0.159 0.44 2,540 1,161 

 

Here we give an example of one of a 2D solid-solid phononic crystal that deals with the 

composition, geometry, and nature of the constituent material. The phononic crystal is made of 

two common materials, silicon, and epoxy. Silicon is a cubic material with a crystallographic 

axis [001] that is parallel to the direction of propagation while the epoxy is 
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Fig. 2.2 Two-dimensional cross-sections of square, hexagonal, and honeycomb lattices and 

corresponding Brillouin zones. The dashed lines represent the elementary unit cell of lattice 

parameter a, and r  is the radius of the inclusions (Khelif & Adibi, 2016). 

 

isotropic (M. S. Kushwaha et al., 1994; Vasseur et al., 1998). The reports of these two materials 

are given in Table 2.1. it clearly shows the strong contrast between them in their densities and 

elastic constants indicating that silicon is a hard material compared to epoxy material. This 

fulfills the first general requirement corresponding to the existence of an absolute bandgap. Fig. 

2.2 depicts the three lattices (square, hexagonal, and honeycomb) of the periodic structures. The 

two-dimensional cross-section of the three arrays under consideration is shown, with a 

representing the lattice parameter. (Γ, X, M) ((Γ, J, X) respectively) are the high symmetry points 

of the first irreducible Brillouin of the corresponding  
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Fig 2.3 Bandgap existence in the phononic crystal made of hard silicon inclusion in the soft 

epoxy matrix. (a) example of dispersion curve for the square array of symmetry with filling 

factor 𝛽 = 0.68. Band gap maps for (b) square, (c) hexagonal, and (d) honeycomb arrays as a 

function of the filling factors (Khelif & Adibi, 2016). 

square (hexagonal and honeycomb) array.Considering first the system with hard materials 

inclusions inside a soft matrix. Figure 2.3a depicts an example of the dispersion curve of a square 

array of silicon cylinders in the epoxy matrix, where, β = 0.68 defines the filling factor. Two 

complete band gaps are observed for the modes in-plane and out-of-plane polarization in the  
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Fig 2.4 (a) Bandgap map for the honeycomb array of soft epoxy inclusions in a hard silicon 

matrix. (b) Example of dispersion curves for the honeycomb structure with filling factor 𝛽 =

0.60 (Khelif & Adibi, 2016). 

frequency spectrum shown in Figure 2.3a. Fig.2.3b shows the evolution of the band gap widths 

(white area) as a function of the filling factor. The first complete band gap is the largest and is 

open for a larger range of filling factors (greater than 0.2). It can be seen that the largest width of 

the band gap (Δ(𝑓𝑎)/(𝑓𝑎)𝑚𝑎𝑥 = 28 % 𝑎𝑡 𝛽 = 0.74) is open for a very high filling fraction 

which can be a limitation for technological fabrication.  

A second smaller band gap opens for 𝛽 > 0.55. With increasing filling factor, the central 

frequencies of both band gaps increases. The evolution of the band gaps for the hexagonal lattice 

is presented in Fig. 2.3c. Here the three-band gaps are obtained. The largest gap opens up for a 

filling fraction of 𝛽 > 0.36, with a maximum width (Δ(𝑓𝑎)/(𝑓𝑎)𝑚𝑎𝑥 = 37 %) around  𝛽 =

0.80. 

The representation of the dispersion curve for the honeycomb lattice is given in Fig. 2.3d. 
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In this lattice, the larger and complete band gap opens at higher frequencies, and for filling 

fraction in the range 0.24 < 𝛽 < 0.44. The gap width (Δ(𝑓𝑎)/(𝑓𝑎)𝑚𝑎𝑥 = 8 % 𝑎𝑡 𝛽 = 0.34) is 

much smaller than the gap width obtained for the two geometries, in this composite system. One 

can conclude that for hard inclusions in the soft matrix, the hexagonal and square lattices can 

obtain the largest band gap, while the former allows lower filling fractions. 

We can note that the band gap also depends on the shape of inclusions. For example, it is 

shown, if the circular inclusion is replaced with the square ones, one can change its position and 

width. Besides, the band gap can also be adjusted by rotating the square with respect to the axis 

of the photonic crystal. 

In contrast to the case of soft epoxy inclusions in the silicon matrix, square and hexagonal 

lattices only show absolute band gaps at very high filling rates, which may be of less interest 

from a manufacturing point of view. On the contrary, for the honeycomb lattice (Figure 2.4), as 

long as the filling rate exceeds 𝛽 = 0.34, the opening of the absolute band gap can be observed. 

Besides, when  𝛽 = 0.60, the band gap width increases sharply and reaches the larger value of 

Δ(𝑓𝑎)/(𝑓𝑎)𝑚𝑎𝑥 = 78 %.  

2.4 Effects of non-Hermiticity on Wave Propagation in the Phononic Crystals 

Loss is a natural phenomenon, accompanied by multiple energy sources. In terms of 

acoustics, the loss is usually caused by the impedance mismatch between two contrast media. 

Since the energy is non-conserved and the information carried by the sound signals is lost. In 

most cases, the loss is undesired in acoustic wave manipulation (Celli & Gonella, 2015; Hou & 

Assouar, 2015; Molerón et al., 2016; Zigoneanu et al., 2011). However, tailored losses and wise 

design of impedance curves can lead to the realization of devices with unconventional 
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characteristics and novel functions. In recent years, the use of metamaterials (composite 

materials with specially tailored impedance curves) to control wave propagation has led to many 

unprecedented technologies. The prospect of using loss or absorption as a key component of 

metamaterials is becoming a new design methodology.  

The most famous example of this non-Hermitian methodology is the creation of even-

odd-time symmetric materials. These materials use loss and/or gain to control the propagation of 

light and sound. New technologies that can emerge from the manipulation of loss and gain 

include shadowless sensing (Fleury et al., 2015), unidirectional transparency, coherent perfect 

absorption (Molerón et al., 2016), and asymmetric transmission (Y. Li et al., 2017). Active 

components are incorporated into these systems through piezoelectric and piezo acoustic effects 

to provide gain and loss (Christensen et al., 2016; Feng et al., 2017). For example, speakers and 

non-linear electronic circuits have been used to control the flow of sound. Passive conservative 

nonlinearity has also been used to achieve asymmetric transmission. In many such conservative 

non-linear systems, the output signal is collected at a different frequency from the input signal.  

The field of non-Hermitian acoustics has risen and has become a hot topic in the field of 

material science. The field has opened a possibility of making benefits from the engineered loss. 

The most represented example should be parity-time symmetric acoustic medium, in which the 

judiciously designed loss gain can lead to one-way reflection as well as the unidirectional 

cloaking (Cummer & Schurig, 2007; Fleury et al., 2015). Such intriguing phenomena are 

demonstrated to be closely related to the existence of exceptional points (EPs) in the non-

Hermitian systems (Feng et al., 2017). The other examples are the realization of photonic and 

phononic crystals, modulated and negative refractive index materials, cloaking, and super-
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resolution systems have demonstrated the increasing ability to design and manufacture the 

dielectric and mechanical impedance curves of basic structures that can modify the propagation 

of waves (light and sound) yielding exotic wave phenomena (Christensen et al., 2016; Feng et 

al., 2017). It has been shown that the value of non-hermiticity alters the width of the band-gaps. 

At EPs, the gap between the two bands becomes zero (Ding et al., 2015). With this, it is also 

possible to manipulate the field propagation only by tuning the loss in the structure utilizing the 

consequences of changes in the gap width resulting from the non-Hermiticity (Y. Li et al., 2017). 

In this thesis, we will demonstrate the effect of non-Hermiticity on the wave propagation 

in the phononic crystal and utilize this to design a filter that can eliminate the undesired 

frequencies by absorption in the phononic lattice. Unlike most existing acoustic rectifiers, our 

design provides a compact system with high-frequency purity that takes advantage of the natural 

losses of the constituent materials without the need for any external power supply. 

2.5 Summary 

In this chapter, we have briefly introduced the concept of phononic crystals. Discussed its 

band structure and the occurrence of the band gaps in its band structures. We demonstrated the 

dependence of the band gaps on the physical and geometrical parameters with the example of a 

2D solid-solid phononic crystal. We have also explored the effects of non-Hermiticity and its 

influence on the propagation of waves in the phononic crystals. In the next chapter, we will 

discuss the methods and steps taken to design and simulate our proposed model of a tunable non-

Hermitian acoustic filter.  
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CHAPTER III 

 

 

PROPOSED MODEL AND STEPS OF SIMULATIONS USING COMSOL MULTIPHYSICS 

3.1 Introduction 

In this chapter, we will introduce our proposed model and briefly describe the steps taken 

to simulate the design. We make use of the COMSOL Multiphysics 5.4 software to design and 

simulate our proposed model. COMSOL Multiphysics is a physics simulation software program 

that offers numerous physical solvers and the option to couple multiple physics interface 

modules such as acoustics, electrodynamics, fluid flow, heat transfer, etc (Multiphysics, C. 

(1998). Introduction to COMSOL Multiphysics Extregistered. COMSOL Multiphysics, 

Burlington, MA, Accessed Feb, 9, 2018., n.d.). We can build models by defining related physical 

quantities (such as material properties, loads, constraints, sources, and fluxes) instead of defining 

basic equations. We can apply these variables, expressions, or numbers directly to solids and 

fluid domains, boundaries, edges, and points, regardless of the computational grid. The 

COMSOL Multiphysics software then internally compiles a set of equations representing the 

entire model. We used the pressure acoustics, frequency domain interface in COMSOL 

Multiphysics 5.4. to simulate our model. The next part of this chapter will explain the proposed 

model and simulation steps. 
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Fig 3.1 (a) Schematic of the super-lattice made of two sub-lattices and works as a tunable acoustic 

filter. (b) unit cell of the first sub-lattice, (c) unit cell of the second sublattice. The unit cell of the 

first sublattice consists of a cube and a cuboid of dimensions 7 × 7 × 7 cm3 and 

7 × 2.3 × 2.3 cm3 respectively, and the unit cell of the second sublattice consists of a cube and a 

cuboid of dimensions 9.3× 9.3 × 9.3 cm3 and 7 × 2.3 × 2.3 cm3 respectively. The first sublattice 

is a Hermitian lattice with a unit cell composed of one square cuboid with 7 × 7 × 7 cm3 volume 

and a rectangular cuboid with  7 × 2.3 × 2.3 cm3 volume, both hollow and filled with air having 

density modulus ρ = 1.4
Kg

m3 and bulk modulus ϵ = 1.01 × 105𝑃𝑎. the second sublattice is the non-

Hermitian lattice with unit cell composed of hollow cuboids of volume 9.3 × 9.3 × 9.3 cm3 and 

7 × 2.3 × 2.3 cm3, filled with air with the same density modulus and bulk modulus as in the first 

sublattice except for the bulk modulus of the air in the cuboids of volume 9.3 × 9.3 × 9.3 cm3 is 

ϵ = 1.01 × 105(1 + 𝑖 𝑎)𝑃𝑎, with a defining effective loss parameter. The value of a determines 

the degree of non-Hermiticity in the second sublattice. 
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3.2 Proposed Model 

Our proposed model is a phononic superlattice that consists of twenty hollow cuboids which are 

connected to each other in a series in the direction of propagation of the acoustic pressure field, 

x. The cuboids are hollow, filled with air, and assumed to be made of polylactic acid (PLA) 

material. Furthermore, they are either square cuboid, five with  7 × 7 × 7 cm3 volume in the first 

sub-lattice, and five with 9.3 × 9.3 × 9.3 cm3 volume in the second sub-lattice, or rectangular 

cuboid of volume 7 × 2.3 × 2.3 cm3 that connects the square cuboids. The schematic of the 

model is shown in Fig 3.1. In our simulations, we assumed that all the cuboids are made from 

polylactic acid (PLA), which is hollow and filled with air. The density modulus of air throughout 

the volume is 𝜌 = 1.4 𝑘𝑔/𝑚3. We assume the bulk modulus in the rectangular cuboids and the 

square cuboids of the first sublattice is given by ϵ = 1.01 × 105𝑃𝑎, while the effective bulk 

modulus of the square cuboids in the second sub-lattice is given by ϵ = 1.01 × 105(1 + 𝑖𝑎)𝑃𝑎. 

The complex bulk modulus effectively describes the intrinsic or induced material loss and 

represents the effective loss parameter. We will show in the next chapter that the induced loss in 

our model can be created using side-holes whose magnitude can be controlled by adjusting the 

hole dimensions which effectively describes the value of the parameter 𝑎. The next section 

explains the details of the steps of the simulation. 

3.3 Steps of Simulations 

We follow a simplified workflow to reflect the entire user interface of the software used 

for the simulation. The modeling workflow can be carried out in the following order: setting up 

the model environment, building the geometry, specifying the material properties, defining 

physics boundary conditions, creating the mesh, run simulations, and post-processing of the 
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simulated results. In the following sections, we will briefly describe each step taken to simulate 

our proposed model. 

3.3.1 Set up the Model Environment 

Setting up the model environment is the first step of the simulation. In this step, we add 

the necessary components to our simulation. From Model Wizard we make selections as a part of 

our model setup. As our model is three-dimensional, we select the 3D space dimension. The next 

step is to choose the physics of our simulation. Since we are investigating the acoustic wave 

propagation through the model, we select the Pressure Acoustics, Frequency Domain (ACPR) 

within the Acoustic interface.  Here the dependent variable is the Pressure denoted as “p”. 

The Pressure Acoustics, Frequency Domain interface is used to compute the pressure 

variation for the propagation of acoustic waves in fluids at quiescent background conditions. It is 

suited for all frequency-domain simulations with harmonic variations of the pressure field. The 

physics interface can be used for linear acoustics described by a scalar pressure variable. It 

includes domain conditions to model losses in a homogenized way, so-called fluid models for 

porous materials, as well as losses in narrow regions. Domain features also include background 

incident acoustic fields, as well as domain monopole and dipole sources. The plane wave 

attenuation behavior of the acoustic waves may be entered as a user-defined quantity, or defined 

to be bulk viscous and thermal losses. The physics interface solves the Helmholtz equation in the 

frequency domain for given frequencies, or as an eigenfrequency or modal analysis study. 

After selecting the Physics, we proceed to the “Select Study” section, where we select 

what we will be calculating in our simulation. Under the “General Studies” section of the Select 

Study, we find “Eigenfrequency” and “Frequency Domain”. The Eigefrequency study is used to 
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calculate eigenmodes and eigenfrequencies of a linear or linearized model. Whereas the 

Frequency Domain study is used to compute the response of a linear or linearized model 

subjected to harmonic excitation for one or several frequencies. In our simulation, we first need 

to calculate the eigenmodes of our model, based on which, we investigate the response of the 

model for several frequency ranges. Therefore, use both Eigenfrequency and Frequency Domain 

in our study, we will discuss it in more detail in the later sections. Now we proceed to the 

building of geometry. 

3.3.2 Build Geometry 

Following various steps in the geometry section of the Model Builder toolbar, we 

construct our model as we have described in section 3.2. The structure is a superlattice that is 

composed of two sub-lattices. The first sublattice consists of five unit cells, with each unit cell 

composed of one cube with 7 × 7 × 7 cm3 volume and a cuboid with 7 × 2.3 × 2.3 cm3 volume. 

Similarly, the second sublattice is composed of five unit cells each having a cube of volume 

9.3 × 9.3 × 9.3 cm3 and a cuboid with 7 × 2.3 × 2.3 cm3 volume. The resulting structure forms 

a superlattice as shown in Fig.3.1. After the construction of the structure, we proceed to specify 

the materials and materials properties to our model. 

3.3.3 Specify Materials and Material Properties 

We can assign the materials of our structure by selecting the materials from the in-built 

materials library within the COMSOL Multiphysics software. By assigning the materials, we 

specify the material properties from the materials library for specific materials.  As described in 

section 3.2, we assume our model to be made up of polylactic acid (PLA) material and filled 
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with air throughout the volume. Therefore we specify the boundary or the wall of the structure to 

be PLA material, and all the domain to be air material.  

The COMSOL automatically assigns the property for the selected materials, however, we 

can also manually modify the properties from the content. In the property section of the material, 

we define the density modulus of air throughout the volume to be  𝜌 = 1.4 𝑘𝑔/𝑚3. Furthermore, 

we assume the bulk modulus in the rectangular cuboids and the square cuboids of the first 

sublattice is given by ϵ = 1.01 × 105𝑃𝑎 while the effective bulk modulus of the square cuboids 

in the second sub-lattice is given by ϵ = 1.01 × 105(1 + 𝑖𝑎)𝑃𝑎, the complex bulk modulus 

effectively describes the intrinsic or induced material loss and represents the effective loss 

parameter. The complex bulk modulus makes the second sublattice non-Hermitian, where, “a” is 

the effective loss parameter, the value of which defines the degree of non-Hermiticity in the 

second sublattice. 

3.3.4 Define Physics Boundary Conditions 

After defining the material properties, next, we define the physics for the model. As now 

we have a geometry with usable modeling domains and boundaries, we assign mathematical 

equations to different parts of the model to simulate our physics. To this end, we have selected 

various parts of the geometry and specified appropriate equations in the physical conditions 

describing these parts. For our model, we configure physics for the pressure acoustics, frequency 

domain interface. All boundary conditions except input and output ports we assume to be sound 

hard boundary or wall. By this, we mean in constant fluid density 𝜌𝑐 the normal derivative of the 

pressure is zero at the boundary, 
𝜕𝑝𝑡

𝜕𝐧
= 0. The input and output ports are the radiation boundary 

condition for the Plane Wave. 
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3.3.5 Creating Mesh 

 After the boundary conditions are defined, we create the mesh for the simulation. We 

choose the physics-controlled mesh, which automatically generates the mesh adapted to the 

physics on the model. The COMSOL automatically generates the mesh for the pressure acoustics 

frequency-domain study, the physics that we have defined for our model. We can also opt for the 

user control mesh and manually control the mesh generation with different element types. Here 

we use the default physics-controlled mesh for our simulation.  

After the mesh is created we then run the simulation followed by post-processing of the 

results obtained from the simulations. We will discuss running the simulation and the processing 

of the results in the next chapter. In the next chapter, we will discuss the results obtained from 

the simulations. We will calculate the eigenfrequencies for both the sublattices and analyze their 

band structures. We will also see the effect of induced loss or the non-Hermiticity in the 

bandstructure of the second sublattice. Based on the eigenfrequencies calculated for the model, 

we will analyze the propagation of the incident frequencies in the particular range by studying 

the reflection spectra for the range of frequencies incident to the input port. 

3.4 Summary 

In this chapter, we introduced our proposed model and discussed the steps taken to 

simulate our model using the COMSOL Multiphysics software. We first introduced our proposed 

model that will result in a tunable acoustic filter. The model is a superlattice formed by the 

superposition of two sublattices. The first sublattice is passive or Hermitian whilst the second 

sublattice is either Hermitian or non-Hermitian depending on the value of effective loss 

parameter a, in the nonzero imaginary bulk modulus. 



 

27 
 

Next, we described the steps of simulations beginning with setting up the model 

environment followed by building geometry and specifying the materials and material properties. 

Then we defined the physics for the model and the appropriate boundary conditions for the 

simulation. We also generated the appropriate mesh that is adapted to the physics on the model 

for running the simulation. After the mesh is created we then run the simulation followed by 

post-processing of the results obtained from the simulations. The next chapter will discuss 

running the simulation and the processing of the results.  
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CHAPTER IV 

SIMULATED RESULTS AND THE REALISTIC MODEL 

4.1 Introduction 

As we discussed in the previous chapter, we assigned physical and boundary conditions 

to the model in order to simulate our model. We configured the pressure acoustics, frequency 

domain interface for the model. In this chapter, we will briefly discuss pressure acoustics, the 

frequency domain. Using the pressure-acoustic interface in COMSOL, we will study the 

eigenfrequencies and calculate the band structure of the model. On this basis, we will also study 

the signal propagation in a specific frequency range by analyzing the reflection spectrum of the 

signal incident through the input port of the phononic crystal. Then, we will study the influence 

of non-Hermiticity in the band structure and the signal propagation due to the induced loss in the 

second sub-lattice, and observe the filtering of specific frequency signals. Finally, we will 

introduce a realistic model in which we will devise square holes on the facets of the larger 

cuboids in the second sublattice and perform the same simulation as before. At this time, 

assuming the bulk modulus of the air in all cuboids of both sublattices (including the larger 

cuboids in the second sublattice) is real, and the results are compared with the theoretical model. 

4.2 Pressure Acoustics, Frequency Domain 

The Pressure Acoustics Frequency Domain interface is designed to analyze various types 

of pressure acoustic problems in the frequency domain, all of which are related to pressure waves 
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in the fluid. The acoustic model is part of a larger multiphysics model that can describe the 

interaction between structures and sound waves. This physical interface is suitable for modeling 

acoustic phenomena that do not involve fluid flow. This interface solves for the acoustic 

pressure, p.  

4.2.1 Frequency Domain Study 

The frequency-domain or time-harmonic formulation uses the following inhomogeneous 

Helmholtz equation (Givoli & Neta, 2003):  

∇. (−
1

𝜌𝑐
(∇𝑝 − 𝒒𝑑)) −

𝜔2𝑝

𝜌𝑐𝑐𝑐
2 = 𝑄𝑚                 4.1 

In this equation, p = p (x, ω) (the dependence on ω is henceforth not explicitly indicated). 𝑄𝑚 (SI 

unit: 1/𝑠2) represents the monopole source and 𝒒d represents the dipole source (SI unit: 

𝑁/𝑚^3). With this formulation, you can compute the frequency response of a system for a 

number of frequencies. The default frequency-domain study sets up a parametric sweep over a 

frequency range using a harmonic load. When there is damping, 𝜌𝑐 and 𝑐𝑐 are complex-valued 

quantities.  

4.2.2 Eigenfrequency Study 

In the eigenfrequency formulation, the source terms are absent, and the eigenmodes and 

eigenfrequencies are solved for (Givoli & Neta, 2003): 

∇. (−
1

 𝜌𝑐
∇𝑝) +

𝜆2𝑝

𝜌𝑐𝑐2
= 0                                                                      4.2 
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The eigenvalue 𝜆 introduced in this equation is related to the eigenfrequency f  and the angular 

frequency 𝜔, through 𝜆 = 𝑖2𝜋𝑓 = 𝑖𝜔. Because they are independent of the pressure, the solver 

ignores any dipole and monopole sources unless a coupled eigenvalue problem is being solved. 

4.3 Simulated Results and Discussion 

In this section, we will discuss the simulated results obtained for the model shown in Fig. 

3.1 (a). We will analyze the band structures of each sublattice. Later we will also study the field 

propagation by analyzing the reflection curve obtained when the signal of a certain frequency 

range is incident to the input port of our model. 

4.3.1 Bandstructures 

We plotted in Fig.4.1 (a) the band structure of an infinite passive lattice with a unit cell 

similar to the passive sub-lattice. In contrast, Figs.4.1 (b),(c) show the band structure of an 

infinite non-Hermitian lattice with the same unit cell as the one in the non-Hermitian sublattice 

in Fig.3.1(a) and with 𝑎 = 0 and 𝑎 ≠ 0, respectively. A comparison between Fig.4.1 (a),(b) 

shows that in the frequency range 0 𝐻𝑧 − 265 𝐻𝑧 there is a partial overlap between the first 

passband of the two lattices. Thus, we expect that if the frequency of the incident field in Fig. 4.1 

lies in this range of frequency, namely 0 𝐻𝑧 − 265 𝐻𝑧, it will pass through both super-lattices 

without any absorption. However, if the imaginary part of the bulk modulus of the large cuboids 

of the second lattice, namely non-Hermitian one, is equal to zero i.e. 𝑎 = 0, in the frequency 

range 265 𝐻𝑧 − 407 𝐻𝑧, highlighted with an orange ribbon in the upper panel of Fig.4.1, where 

the passive lattice has a passband the second sub-lattice has a bandgap. Thus, we anticipate that 

for 𝑎 = 0 any incident field in the frequency range 265 𝐻𝑧 − 407 𝐻𝑧, gets reflected from the  



 

31 
 

 

Fig. 4.1. Schematic of the band structure of each sub-lattices. The first bandstructure is for the 

(a) first (passive) sub-lattice followed by the band structures of the second sublattice when (b) 

𝑎 = 0 and (c) 𝑎 ≠ 2 respectively. The lower passband of the passive sub-lattice has partial 

overlap with the passband of the second sub-lattice when a = 0. Thus the frequency window that 

is not placed at the pass-band of the two sub-lattice gets reflected. The lower passband of the 

lossy sub-lattice moves upward with the increase of the effective loss parameter to a = 2 in the 

larger cubes of the second sublattice. However, in a realistic case, the largest value of loss that 

can be achieved is a = 0.2, and we see such a small amount of 𝑎 has a tiny effect on the band 

structure of the phononic lattice. 
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second sub-lattice. A similar scenario occurs for the second passbands where there is a small 

overlap between the passband of the first and second sub-lattices in the frequency range 

1572 𝐻𝑧 − 1575 𝐻𝑧 which is highlighted with a light blue ribbon shown in the upper panel of 

Fig.4.1. Notice that there is a partial overlap between the second band of the first sub-lattice and 

the third pass-band of the second sub-lattice in the frequency range 1817 𝐻𝑧 − 1897 𝐻𝑧. 

However, in this frequency range, the overlapping occurs at the center of the band structure with 

wave numbers close to zero. The bands are almost flat and the group velocity becomes very 

small. Therefore we expect small transmission and large reflection at this frequency range. The 

third passband of the first sub-lattice is located at frequencies that the second sub-lattice has a 

gap, namely 2070 𝐻𝑧 − 2390 𝐻𝑧. Thus, we expect reflection with zero transmission at these 

frequencies when 𝑎 = 0. 

Now let us consider the effect of increasing losses in the second sublattice. Our 

simulation shows the significant changes in the bandgap of the second sublattice when the value 

of the effective loss parameter is 𝑎 = 2 (Fig. 4.1(c) upper panel). However, the value 𝑎 = 2 is 

very large and not achievable for practical use. Our simulation for the realistic model, which we 

will discuss in the later sections, shows that the largest value of loss that we could achieve is in 

the order of 𝑎 ≈ 0.2. As we can see in Fig. 4.1 (c), such a small amount of 𝑎 has a tiny effect on 

the band structure of the phononic lattice. Consequently, one might naively claim that the 

addition of the loss will not affect the dynamics in the system and the only observation might be 

the addition of trivial absorption in the reflected or transmitted signal. In the next section, we will 

show that surprisingly this picture is not true and the addition of loss can result in the generation 

of additional resonances. While we use the generated resonances to develop a tunable filter, one 
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might potentially use these resonances for designing tunable modulators based on non-

Hermiticity. 

4.3.2 Reflection Curves of the Combined system 

We have plotted the reflection of our lattice in the lower panel of Fig. 4.2 for 𝑎 = 0 (blue 

curve) and for 𝑎 = 0.2 (red curve) using the full-wave simulation where the reflection amplitude 

 𝑅 = |
𝑊𝑅

𝑊𝑖𝑛
|

2

, with 

𝑊𝑖𝑛 = ∫
|𝑃0|2

2𝜌𝑐𝑆2(1)
, 𝑊𝑅 = ∫

|𝑃0−𝑃|2

2𝜌𝑐𝑆1
                            4.3 

In Eq.4.3 𝑃0, 𝑃, 𝜌, and 𝑐 are amplitude of incoming pressure wave, total pressure wave, density, 

and speed of sound, respectively. 𝑆1 is the surface containing the pressure flux at the input port in 

Fig. 4.2 (upper-left panel). 

We observe in the frequency range 0 𝐻𝑧 − 265 𝐻𝑧 the reflection peaks are smaller when 

𝑎 ≠ 0. As depicted in Fig.4.2 at frequency ranges that the two sublattices have band-gap or the 

first sub- lattice has bandgap we expect to have complete reflection irrespective of the value of 𝑎. 

This matches our simulation in Fig.4.2. 

Now let us focus on the frequency ranges where the first sub-lattice has a passband but the 

second sub-lattice has a band-gap. For instance, in the frequency range  265 Hz– 410 Hz the first 

sub-lattice has a passband and the second one has a gap irrespective of the value of 𝑎. Thus, we 

expect that due to the gap of the second sublattice we have a total reflection. In Fig.4.2 and for 

𝑎 = 0 the blue curve shows that our intuition is correct and we have a total reflection. However, 

for 𝑎 ≠ 0, see the red curve, there are two resonances and consequently, we do not have a full 

reflection. The same scenario occurs in other frequencies that the gap of the second sub-lattice  
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Fig 4.2. (Lower panel) Reflection curve of the super-lattice shown in upper-left panel, for a = 0 

(blue curve) and a = 0.2 (red curve). For several frequencies in different frequency windows, we 

observe a large contrast in the reflection when we increase the value of parameter a, even though 

we don’t see any significant difference in the bandstructure when the loss parameter is increased 

to a = 0.2 (upper-right panel). 

overlaps with the passband of the first sub-lattice. The existence of such resonances is the main 

ingredient of our proposed filter. By introducing the non-Hermiticity we can remove specific 

frequencies from the reflected field. The benefit of our proposed system is in the existence of 

such sharp resonances which allow for a very precise filtering process. 

4.3.3 Scattering Formula 

To understand the source of the new resonances that are appearing in the reflection curve 

due to the non-Hermiticity let us look at the scattering matrix associated with our system. The 

transfer matrices of the first sub-lattice, 𝑀1, and second sub-lattice, 𝑀2, as a function of the 

reflection and transmission coefficient of each sub-lattice, are given by 
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𝑀1 = (
𝑡1 −

𝑟1
2

𝑡1

𝑟1

𝑡1

−
𝑟1

𝑡1

1

𝑡1

) , 𝑀2 =  (
𝑡2 −

𝑟2
𝑙𝑟2

𝑟

𝑡2

𝑟2
𝑟

𝑡2

−
𝑟2

𝑙

𝑡2

1

𝑡2

)      4.4 

 

Above, 𝑡1, 𝑟1 are the transmission and reflection coefficient of the first sub-lattice and 𝑡2, 𝑟2
𝑙, 𝑟2

𝑟 

are the transmission, left reflection, and right reflection coefficients of the second sub-lattice 

respectively. Notice that for the second sub-lattice 𝑟2
𝑙 might not be equal to 𝑟2

𝑟 when 𝑎 ≠ 0. We 

can multiply the two above matrices and find the total transfer matrix 𝑀 = 𝑀2 × 𝑀1 =

(
𝑚11 𝑚12

𝑚21 𝑚22
) of our structure. Specifically, 𝑀-matrix is given by 

𝑀 = (

(𝑟1
2−𝑡1

2)(𝑟2
𝑟𝑟2

𝑙−𝑡2
2)− 𝑟1𝑟2

𝑟

𝑡1𝑡2

𝑟2
𝑟(1−𝑟1𝑟2

𝑙)+𝑟1𝑡2
2

𝑡1𝑡2

−
𝑡1

2𝑟2
𝑙−𝑟1

2𝑟2
𝑙+𝑟1

𝑡1𝑡2

1−𝑟1𝑟2
𝑙

𝑡1𝑡2

)    4.5 

The transmission, 𝑡, left and right reflection, 𝑟𝑙, 𝑟𝑟, coefficients of our 1D lattice are related to 

the elements of the transfer matrix  

𝑡 =
1

𝑚22
, 𝑟𝑙 =  −

𝑚21

𝑚22
, 𝑟𝑟 =

𝑚12

𝑚22
     4.6 

and thus the left reflection in our system will be given by  

𝑟𝑙 =
𝑟2

𝑙(𝑡1
2−𝑟1

2)+𝑟1

1−𝑟1𝑟2
𝑙       4.7 

We can use Eq.(4.7) to explain the total reflection on the left side of our structure for different 

scenarios of band structures in the two sub-lattices. For example, if the incident field is at the 

frequency which the first lattice has a gap, then 𝑟1 = 1, 𝑡1 = 0 and consequently 𝑟𝑙 =
−𝑟2

𝑙+1

1−𝑟2
𝑙 = 1, 

which means no matter if the frequency of the incident field is in the band or gap of the second  
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Fig. 4.3 Reflection curves of (a) first sub-lattice, and second sub-lattice when the effective loss 

parameter (b) a = 0,  and (c) a = 0.2 (blue curve). For guiding the eyes of the reader in (c) we 

plotted also the reflection from the left of the combined structure and highlighted the new peaks 

(red curve). 

sub-lattice, we get the total reflection. Now, let us consider a case that the incident field 

frequency is in the passband (gap) of the first (second) sub-lattice. To simplify the analysis let us 

assume that the frequency of the incident beam is at the resonance of the first sub-lattice and thus 

𝑟1 = 0, 𝑡1 = 1. In this case, Eq.(5) simplify to 𝑟𝑙 = 𝑟2
𝑙. This means that when 𝑎 = 0 we get a 

total reflection, however, when 𝑎 ≠ 0 the 𝑟2
𝑙 would not be equal to one due to the absorption. For 

strong absorption, we can completely remove the reflection at certain resonance frequencies of 

the first sublattice. Here it becomes clear that why having the first sub-lattice is useful. It 

generates resonances and thus allows us to have accurate filtering of certain frequencies.  



 

37 
 

 

Fig. 4.4 Schematic of the realistic model (upper-right panel) where we assumed large cuboids in 

the non-Hermitian (lossy) section have the same bulk modulus as the passive section and we 

devised square holes with sides (s = 4.6cm) in large cuboids. (lower panel) Comparison of the 

reflection amplitude from the realistic model (structure with embedded holes, red curve) and 

effective model with a = 0.2 (blue curve). We observe that in the frequency range(406 – 3000)Hz 

the two models match each other. 

Furthermore, by engineering the geometry of the first sub-lattice we can design the number of 

resonances as well as their positions. 

To support the above theoretical analysis we provided the reflection associated first sub-

lattice and second sublattice with 𝑎 = 0 and 𝑎 = 0.2 and the 𝑟𝑙 for the combined system in 

Fig.4.3. 
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4.3.4 The Realistic Model 

As it was mentioned before, for the purpose of simulation we assumed an effective and 

constant imaginary part of the bulk modulus 𝑎 of air in the system in the second sub-lattice 

which does not depend on frequency. However, in more realistic situations the parameter 𝑎 is 

frequency-dependent. To indicate the effect of frequency-dependent losses and have a more 

realistic simulation in our tunable filter we introduced square holes with the side length, 𝑠 =

4.6 𝑐𝑚 on each facet of the last five square cuboids. We performed the same simulation as 

before while this time we assume that the air in all larger cuboids has the real bulk modulus (𝜖 =

1.01 × 105𝑃𝑎). The lower panel in Fig.4.4 compares reflections associated with the structure 

with the holes (red curve) and effective bulk modulus model when 𝑎 = 0.2. We observe that the 

effective model nicely matches the more realistic model. 

4.4 Summary 

In this chapter, we discussed the pressure acoustics, frequency domain in the COMSOL 

and calculated the band structures of the infinite lattices having the unit cells similar to the 

sublattices of our model. Analyzing the bandstructure we also investigated the acoustic field 

propagation in the superlattice by studying the reflection of the superlattice. By introducing the 

non-Hermiticity in the second sublattice, in the form of a complex bulk modulus, we were 

successfully able to eliminate the signal of certain frequencies and achieve the filter. We 

designed the realistic model in which we introduced square holes on each facet of the last five 

square cuboids to include the effect of frequency-dependent losses and have a more realistic 

simulation in our realistic model. The simulation results show the realistic model is consistent 
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with the theoretical/proposed model, and therefore we are able to achieve a tunable non-

Hermitian acoustic filter. 
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CHAPTER V 

INVESTIGATION OF MODE PROPERTIES IN NON-HERMITIAN SYSTEM OF COUPLED 

ACOUSTIC RING RESONATORS 

5.1 Introduction 

In this chapter, we study the geometry-induced non-Hermitian mode couplings and study 

the different modes in a system of non-Hermitian acoustic ring resonators. We propose and 

design a system of coupled ring resonators and analyze the eigenmodes of the system. We study 

the eigenfrequencies and the corresponding pressure field we analyze the localization of the field 

within the system. In the next sections, we will introduce and investigate different modes in a 

coupled ring resonators. 

5.2 Designing the Coupled Ring Resonators 

We designed the ring resonator using the model wizard in COMSOL Multiphysics, following 

similar steps as explained in chapter 3. The schematic of the proposed structure that we used in 

our simulation is depicted in Fig. 5.1. We design a resonator that is formed by coupling ten ring 

resonators, each of inner and outer radius as 𝑟1 = 37 𝑐𝑚 and 𝑟2 = 42 𝑐𝑚 respectively. The 

thickness of the structure is 𝑡 = 5 𝑐𝑚, such that the cross-section of hollow space within the 

resonator is 5 𝑐𝑚 × 5 𝑐𝑚. Among the ring resonators, a resonator in one of the ends encloses an 

S-shaped waveguide with tapered ends. Similar to our acoustic filter model, we assume the 

resonators to be made of polylactic acid (PLA) material and the hollow space within the structure
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 is filled with air. The density modulus and the bulk modulus of the air contained within the 

resonators are given by 𝜌 = 1.4 𝑘𝑔/𝑚3 and  𝜖 = 1.01 × 105𝑃𝑎 respectively. We assume the 

tapered end of the S-shaped waveguide to be lossy and we introduce a complex bulk modulus, 

𝜖 = 1.01 × 105(𝑖 + 𝑎)𝑃𝑎, for the air, contained in the tapered end of the S-shaped waveguide, 

where 𝑎 is the effective loss parameter. The value of loss parameter 𝑎 defines the degree of non-

Hermiticity of our coupled system. Similar to the previous model of tunable acoustic filter that 

we discussed in previous chapters, the larger the value of 𝑎, the larger the non-Hermiticity. 

5.3 Setting up Model for Simulations 

We follow the similar workflow that we followed to simulate our acoustic filter model in 

COMSOL Multiphysics that we discussed in the previous chapters. We select the 3D space 

dimension in Model Wizard to set up our model. Again we are investigating the behavior of 

acoustic waves in the model, we select the Pressure Acoustics, Frequency Domain (ACPR) within 

Acoustic Interface. The details of the pressure acoustics,  frequency domain have been already 

discussed in chapter 3.  

After the model is set up, we build the geometry. Our proposed structure is a set of ten ring 

resonators that are connected and coupled. Each ring resonators have the inner and outer radius 

of 𝑟1 = 37 𝑐𝑚 and 𝑟2 = 42 𝑐𝑚 respectively. The thickness of the structure is 𝑡 = 5 𝑐𝑚, such 

that the cross-section of hollow space within the resonator is 5 𝑐𝑚 × 5 𝑐𝑚. Among the ring 

resonators, a resonator in one of the ends encloses an S-shaped waveguide with tapered ends. 

The S-shaped waveguide has a cross-section similar to the other ring resonator. Similar to our 

acoustic filter model, we assume the resonators to be made of polylactic acid (PLA) material and 

the hollow space within the structure is with air. 
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Fig.5.1 Schematic of the model formed by coupling ten ring resonators. A resonator at the end 

encloses an S-shaped waveguide with tapered ends and is coupled with the ring resonator 

enclosing it. The structure is made of polylactic acid (PLA) material (upper panel). The hollow 

space is filled with air material (lower panel). The inner and outer radius of each resonator is 

𝑟1 = 37 𝑐𝑚 and 𝑟2 = 42 𝑐𝑚 respectively. And the thickness of the structure is 𝑡 = 5 𝑐𝑚, such 

that the cross-section of hollow space within the resonator is 5 𝑐𝑚 × 5 𝑐𝑚. the density modulus 

and the bulk modulus of the air that fills the hollow space is  𝜌 = 1.4 𝑘𝑔/𝑚3 and ϵ =

1.01 × 105𝑃𝑎 respectively. The air within the tapered end of the S-shaped waveguide (the 

orange region in lower panel) as ϵ = 1.01 × 105(1 + 𝑖𝑎)𝑃𝑎, where 𝑎 is the effective loss 

parameter. The complex bulk modulus describes the intrinsic or the induced material loss making 

the system non-Hermitian or Hermitian depending on the value of 𝑎. 

We assume the structure of our model is made up of polylactic acid (PLA) material and is 

filled with air within the hollow space. Therefore, we specify the boundary or the wall of the 

structure as the PLA material and the domain which we assume to be hollow to be air, from the 

materials library within the COMSOL Multiphysics software. We define the density modulus 

and the bulk modulus of the air material to be  𝜌 = 1.4 𝑘𝑔/𝑚3 and ϵ = 1.01 × 105𝑃𝑎 

respectively, in the materials property section. As we want the tapered end of the S-shaped 

waveguide to be lossy  
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Fig.5.2 Schematic of the pressure fields for a system with loss parameter  𝑎 = 2. The figure 

shows strong localization of fields in the frequencies 1067.1 + 38.07𝑖 𝐻𝑧, 1079.7 +

113.67𝑖 𝐻𝑧, and 1082.4 + 100.25𝑖 𝐻𝑧 when 𝑎 = 2. 

we define the complex bulk modulus for the air within the tapered end of the S-shaped 

waveguide as ϵ = 1.01 × 105(1 + 𝑖𝑎)𝑃𝑎, where 𝑎 is the effective loss parameter. The complex 

bulk modulus describes the intrinsic or the induced material loss making the system non-

Hermitian or Hermitian depending on the value of 𝑎. Larger the value of 𝑎, the higher degree of 

non-Hermiticity.  

We define all the boundary conditions to be a sound hard boundary. Since here we will 

be studying the eigenfrequency only, therefore, we do not define port at the time. After all the 

parameters are defined we generate mesh for our simulation. Likewise, we define the extra-fine 

mesh for our simulation by manually generating the mesh for our pressure acoustics frequency-

domain study. 
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Fig.5.3 Schematic of the pressure fields for a system with loss parameter  𝑎 = 2 and with 

obstacles at the center of the intersection of each resonator. The figure shows strong localization 

of fields in the frequencies 1067.1 + 38.07𝑖 𝐻𝑧, 1079.7 + 113.67𝑖 𝐻𝑧, and 1082.4 +

100.25𝑖 𝐻𝑧 when 𝑎 = 2. 

5.4 Simulations and Results Discussion 

We did the simulation to study the different modes in our system after setting up the model. We 

did the eigenfrequency study and plotted the pressure fields for various eigenfrequencies in  the 

structure. At first, we simulated for the non-Hermitian system with effective loss 𝑎 = 2.  Our 

simulation showed (Fig. 5.2) the strong localization of the pressure fields in the frequencies; 

1067.1 + 38.07𝑖 𝐻𝑧, 1079.7 + 113.67𝑖 𝐻𝑧, and 1082.4 + 100.25𝑖 𝐻𝑧. Then, we introduced 

obstacles of random size in the center of the area where the resonators intersect each other, 

except at the intersection point connecting the ring resonator, which surrounds the S-shaped 

waveguide, and performed the same simulation as before. We analyzed the pressure fields for 

different eigenfrequencies. We obtained the pressure field location at the same frequency as 

before. The localized pressure field is not affected by  
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Fig.5.4 Schematic of the pressure fields for a system when loss parameter  𝑎 = 1.9. The figure 

shows strong localization of fields in the frequencies 1063.7 + 36.329𝑖 𝐻𝑧, 1088.2 +

110.58𝑖 𝐻𝑧, and 1094.7 + 98.933𝑖 𝐻𝑧 when 𝑎 = 1.9. 

obstacles, as shown in Figure 5.3. Regardless of whether there are obstacles in the system, the 

positioning of the magnetic field in the frequencies of 1067.1 + 38.07𝑖 𝐻𝑧, 1079.7 +

113.67𝑖 𝐻𝑧, and 1082.4 + 100.25𝑖 𝐻𝑧 is robust.  

In addition, we studied the effect of decreasing value of loss parameter 𝑎 on the behavior 

of the localized field in the system. We simulated in the descending order of the loss parameter 

value 𝑎 from 𝑎 = 2.0 to 𝑎 = 0, with an interval of 0.1. Figure 5.3 to Figure 5.22 depict the 

simulation results for the different values of the loss parameter 𝑎. Table 5.1 reports the field 

localization observed for the loss parameter value 𝑎 = 2.0 𝑡𝑜 𝑎 = 0 in decreasing order. For 

different values of  𝑎, we observe the localization in different frequencies. Or in other words, we 

can say that the localization shifts to the different frequencies by changing the order of the non-

Hermiticity. In addition, we can see that when the system is Hermitian (i.e. 𝑎 = 0), we only 

observe the field localization in the frequencies of 1017.9 Hz and 1059.5 Hz. However, we were  
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Fig.5.5 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.8. The figure 

shows strong localization of fields in the frequencies 1061.1 + 34.004𝑖 𝐻𝑧, 1095.2 +

106.72𝑖 𝐻𝑧, and 1104.6 + 97.127𝑖 𝐻𝑧 when 𝑎 = 1.8. 

able to obtain three localization when the system is non-Hermitian (or when 𝑎 ≠ 0). Our results 

suggest the tunability in localization of the pressure field.  
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Fig.5.6 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.7. The figure 

shows strong localization of fields in the frequencies 1059.1 + 31.96𝑖 𝐻𝑧, 1101 + 102.46𝑖 𝐻𝑧, 

and 1112.5 + 94.931𝑖 𝐻𝑧 when 𝑎 = 1.7. 

 

Fig.5.7 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.6. The figure 

shows strong localization of fields in the frequencies 1057.5 + 30.096𝑖 𝐻𝑧, 1105.6 +

98.083𝑖 𝐻𝑧, and 1118.8 + 92.486𝑖 𝐻𝑧 when 𝑎 = 1.6. 
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Fig.5.8 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.5. The figure 

shows strong localization of fields in the frequencies 1056.2 + 28.425𝑖 𝐻𝑧, 1109.1 +

93.737𝑖 𝐻𝑧, and 1123.8 + 89.908𝑖 𝐻𝑧 when 𝑎 = 1.5. 

 

Fig.5.9 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.4. The figure 

shows strong localization of fields in the frequencies 1055 + 26.95𝑖 𝐻𝑧, 1111.6 + 89.551𝑖 𝐻𝑧, 

and 1127.6 + 87.227𝑖 𝐻𝑧 when 𝑎 = 1.4. 
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Fig.5.10 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.3. The figure 

shows strong localization of fields in the frequencies 1054 + 25.673𝑖 𝐻𝑧, 1113.2 +

85.625𝑖 𝐻𝑧, and 1130.2 + 84.641𝑖 𝐻𝑧 when 𝑎 = 1.3. 

 

Fig.5.11 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.2. The figure 

shows strong localization of fields in the frequencies 1053.1 + 24.598𝑖 𝐻𝑧, 1113.7 +

82.034𝑖 𝐻𝑧, and 1131.8 + 82.006𝑖 𝐻𝑧 when 𝑎 = 1.2. 
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Fig.5.12 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.1. The figure 

shows strong localization of fields in the frequencies 1052.2 + 23.737𝑖 𝐻𝑧, 1113.1 +

78.821𝑖 𝐻𝑧, and 1132.2 + 79.335𝑖 𝐻𝑧 when 𝑎 = 1.1. 

 

Fig.5.13 Schematic of the pressure fields for a system with loss parameter  𝑎 = 1.0. The figure 

shows strong localization of fields in the frequencies 1051.3 + 23.118𝑖 𝐻𝑧, 1111.4 +

75.972𝑖 𝐻𝑧, and 1131.4 + 76.517𝑖 𝐻𝑧 when 𝑎 = 1.0. 



 

51 
 

 

Fig.5.14 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.9. The figure 

shows strong localization of fields in the frequencies 1050.3 + 22.779𝑖 𝐻𝑧, 1108.4 +

73.369𝑖 𝐻𝑧, and 1129.4 + 73.334𝑖 𝐻𝑧 when 𝑎 = 0.9. 

 

Fig.5.15 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.8. The figure 

shows strong localization of fields in the frequencies 1049.1 + 22.781𝑖 𝐻𝑧, 1103.9 +

70.74𝑖 𝐻𝑧, and 1126 + 69.412𝑖 𝐻𝑧 when 𝑎 = 0.8. 
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Fig.5.16 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.7. The figure 

shows strong localization of fields in the frequencies 1047.5 + 23.19𝑖 𝐻𝑧, 1098 + 67.61𝑖 𝐻𝑧, 

and 1121.4 + 64.19𝑖 𝐻𝑧 when 𝑎 = 0.7. 

 

Fig.5.17 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.6. The figure 

shows strong localization of fields in the frequencies 1045.2 + 24.01𝑖 𝐻𝑧, 1090.7 +

63.327𝑖 𝐻𝑧, and 1116.1 + 57.016𝑖 𝐻𝑧 when 𝑎 = 0.6. 
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Fig.5.18 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.5. The figure 

shows strong localization of fields in the frequencies 1041.4 + 24.897𝑖 𝐻𝑧, 1082.5 +

57.209𝑖 𝐻𝑧, and 1111.4 + 47.574𝑖 𝐻𝑧 when 𝑎 = 0.5. 

 

Fig.5.19 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.4. The figure 

shows strong localization of fields in the frequencies 1035.7 + 24.683𝑖 𝐻𝑧, 1074.3 +

48.816𝑖 𝐻𝑧, and 1108.5 + 36.605𝑖 𝐻𝑧 when 𝑎 = 0.4. 



 

54 
 

 

Fig.5.20 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.3. The figure 

shows strong localization of fields in the frequencies 1029.1 + 21.898𝑖 𝐻𝑧, 1067.2 +

38.16𝑖 𝐻𝑧, and 1107.7 + 25.58𝑖 𝐻𝑧 when 𝑎 = 0.3. 

 

Fig.5.21 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.2. The figure 

shows strong localization of fields in the frequencies 1023.2 + 16.248𝑖 𝐻𝑧, 1062 +

25.709𝑖 𝐻𝑧, and 1108.2 + 15.255𝑖 𝐻𝑧 when 𝑎 = 0.2. 
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Fig.5.22 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0.1. The figure 

shows strong localization of fields in the frequencies 1019.3 + 8.525𝑖 𝐻𝑧, 1059.6 +

12.317𝑖 𝐻𝑧, and 1109.6 + 5.4781𝑖 𝐻𝑧 when 𝑎 = 0.1. 

 

 

Fig.5.23 Schematic of the pressure fields for a system with loss parameter  𝑎 = 0. The figure 

shows strong localization of fields in the frequencies 1017.9𝐻𝑧, and 1059.5 𝐻𝑧 when 𝑎 = 0. 
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Table 5.1 Field localization observed for the loss parameter value 𝑎 = 2.0 𝑡𝑜 𝑎 = 0 in 

decreasing order. 

Loss parameter a Localization frequency (Hz) 

1st  2nd  3rd  

2.0 1067.2 + 38.04i 1079.7 + 113.67i 1082.4 + 100.25i 

1.9 1063.7 + 36.12i 1088.2 + 110.58i 1094.7 + 98.93i 

1.8 1061.1 +34.004i 1095.2 + 106.72i 1104.6 +97.127i 

1.7 1059.1 +31.96i 1101 + 102.46i 1112.5 + 94.93i 

1.6 1057.5 + 30.096i 1105.6 + 98.083i 1118.8 + 92.48i 

1.5 1056.2 +28.42i 1109.1 + 93.73i 1123.8 + 89.9.8i 

1.4 1055 + 26.95i 1111.6 + 89.55i 1127.6 +87.27i 

1.3 1054 +25.67i 111.2 + 85.625i 1130.2 + 84.64i 

1.2 1053.1 24.59i 1113.7+82.03i 1131.8 + 82.006i 

1.1 1052.2 +23.73i 1113.1 + 78.821i 1132.2 + 79.335i 

1.0 1051.3 +23.118i 1111.4 + 75.97i 1131.4 + 76.517i 

0.9 1050 +22.77i 1108.4 + 73.36i 1129.4 + 73.33i 

0.8 1049.1 + 22.78i 1103.9 + 70.74i 1126 + 69.412i 

0.7 1047.5 + 23.19i 1098 + 67.61i 1121.4 + 64.19i 

0.6 1045.2 + 24.01i 1090.7 + 63.327i 1116.1 + 57.016i 

0.5 1041.4 + 24.89i 1082.5 + 57.209i 1111.4 + 47.57i 

0.4 1035.7 24.68i 1074.3 + 48.816i 1108.5 + 36.6.5i 

0.3 1029.1 +21.898i 1067.2 + 38.16i 1107.7 + 25.58i 

0.2 1023.2 + 16.248i 1062 + 25.709i 1108.2 + 15.255i 

0.1 1019.3 + 8.525i 1059.6 + 12.317i 1109.6 +5.478i 

0 1017.9 1059.5 - 
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5.5 Summary and Future Prospects  

In conclusion, we studied the geometry-induced non-Hermitian mode couplings and 

study the different modes in a system of non-Hermitian acoustic ring resonators in whispering 

gallery mode and the pressure field localization within the system. We have shown that by the 

introduction of non-Hermiticity in the system of coupled acoustic ring resonators we were able to 

tune the field localization that occurs in the various eigenfrequencies. It was also observed that 

we can generate a field localization with the introduction of non-Hermiticity in the system. By 

changing the degree of non-Hermiticity we can selectively generate the field localization in 

certain frequencies. Moreover, our proposed design can have application in designing compact 

isolators, circulators, unidirectional sensors, and filters.  
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CHAPTER VI 

CONCLUSION 

In this thesis, we explored the concept of phononic crystal and designed a tunable 

acoustic filter utilizing the induced non-Hermiticity in the system. We studied the concept of the 

band structure of a phononic crystal and the occurrence of complete bandgaps in its band 

structure. Exploring the effect of non-Hermiticity in the phononic crystal we applied the concept 

to our proposed model and studied its influence in the field propagation within the phononic 

crystal. The non-Hermiticity is induced as losses in a phononic lattice. The value of which can be 

changed in order to alter the degree of non-Hermiticity. Based on this we can filter/eliminate 

specific frequencies from an upcoming signal at will.  

We designed our proposed tunable filter that is made of a phononic super-lattice formed 

by the superposition of two sublattices.  We chose the geometry of the two sublattices in a way 

such that their bandstructure differs from each other. Besides, we introduced non-Hermiticity in 

one of the sublattices by introducing the complex bulk modulus in the material (air in our case) 

that the lattice is composed of. The resulting model works as a filter depending on the degree of 

non-Hermiticity introduced.  The larger the degree of non-Hermiticity, the more the generation 

of absorbed resonances that appear in the reflected spectrum. This provided us a powerful knob 

to absorb or reflect several frequencies at will with high accuracy.  The number of filtered 

frequencies can be controlled by designing the resonances in the first sublattice. By exploiting 

this we were able to eliminate the specific frequencies at will. 
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Using commercial computational software, we design our proposed tunable filter made of 

a phononic super-lattice. We discussed the steps taken to simulate our model using the 

COMSOL Multiphysics software, beginning with setting up the model environment followed by 

building geometry and specifying the materials and material properties. Then we defined the 

physics for the model and the appropriate boundary conditions for the simulation.  

In conclusion, we have proposed and designed a tunable phononic filter based on the 

superposition of two sub-lattices, one passive and the other with tunable loss. The filtering 

process in our proposed structure occurs in the reflected field. Apart from the tunability or filter 

is working based on the resonances and thus can accurately filter specific frequencies. Thus by 

designing the resonances in the Hermitian lattice and increasing the loss one can remove specific 

frequencies on the reflected wave at will. Our proposed tunable filter can be easily adapted to the 

microwave domain as well as photonic structures.  

We also studied the geometry-induced non-Hermitian mode couplings and studied 

different modes in a system of non-Hermitian acoustic ring resonators. We have shown by 

introducing the non-Hermiticity in the system of coupled acoustic ring resonators we can tune 

the field localization that occurs in the various eigenfrequencies. By changing the degree of non-

Hermiticity we can selectively generate the field localization in certain frequencies. Moreover, 

our proposed design can have application in designing compact isolators, circulators, 

unidirectional sensors, and filters. 
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