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ABSTRACT 

 

Rahman, Al Mazedur, Mono and Multi-Objective Optimization and Modeling of Machining 

Performance in Face Milling of Ti6Al4V Alloy Master of Science in Engineering (MSE), 

December 2020, 70 pp., 25 Figures, 23 Tables, 111 References. 

 

 Titanium alloys are extensively used in numerous industries like aerospace, automotive, 

military, etc., due to their exclusive characteristics. But machining these alloys has always been 

challenging for manufacturers. This research investigates the effect of radial depth of cut on 

cutting forces, tool life, surface roughness (Ra), and material removal rate (MRR) during face 

milling of Ti6Al4V alloy. It also aims to perform mono and multi-objective optimization of 

response characteristics to determine the optimal input parameters, namely cutting speed, feed 

rate, and radial depth of cut. Taguchi method and analysis of variance (ANOVA) have been used 

for mono-objective optimization, whereas Taguchi-based Grey relational analysis (GRA) and 

Genetic algorithm (GA) have been used for multi-objective optimization. Regression analysis 

has been performed for developing mathematical models to predict Ra, tool life, average cutting 

forces, and MRR. According to ANOVA analysis, the most significant parameter for tool life is 

cutting speed. For MRR and average cutting force (Avg. FY), the most influential parameter is 

the radial depth of cut. On the other hand, feed rate is the most significant parameter for Ra and 

average feed force (Avg. FX). The optimal combination of input parameters for tool life and Avg. 

FY is 50 m/min cutting speed, 0.2 mm/rev feed rate, and 7.5 mm radial depth of cut. However, 
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the optimal parameters for Ra are 65 m/min cutting speed, 0.2 mm/rev feed rate, and 7.5 mm 

radial depth of cut. For Avg. FX, the optimal conditions are 57.5 m/min cutting speed, 0.2 

mm/rev feed rate, and 7.5 mm radial depth of cut. Similarly, for MRR, the optimal parameters 

are 65 m/min cutting speed, 0.3 mm/rev feed rate, and 12.5 mm radial depth of cut. A validation 

experiment has been conducted at the optimal Ra parameters, which shows an improvement of 

31.29% compared to the Ra measured at the initial condition. A minor error has been found 

while comparing the experimental data with the predicted values calculated from the 

mathematical models. GRA for multi-objective (3 objectives: tool life, Ra, and Avg. FY) 

optimization has improved 55.81% tool life, 6.12% Ra, and 23.98% Avg. FY. ANOVA analysis 

based on grey relational grade has demonstrated that radial depth of cut is the most significant 

parameter for multi-objective (three objectives) optimization during the face milling of Ti6Al4V. 

The results obtained from the GRA considering four output characteristics (tool life, Ra, Avg. 

FY, and MRR) are compared with GA optimization results for both roughing and finishing, and a 

negligible deviation has been observed. 
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CHAPTER I 

 

INTRODUCTION 

 

 Titanium and its alloys have extraordinary properties like extreme corrosion and fracture 

resistance, high strength-to-density ratio, and show unique performance at elevated temperatures. 

These alloys are about 40% lighter and nearly possess similar mechanical and physical properties 

as steel. Due to these capabilities, titanium alloys are extensively used in aircraft engines, 

airframe manufacturers, and military applications to decrease the weight and enhance durability 

in extreme circumstances for increasing mobility and battle efficiency [1]. Usually, for alloying 

with titanium, materials such as V, Al, Mn, Sn, Zr, Mo, S, etc., are used [2]. Many alloys like 

Ti6Al4V, Ti6Al2Sn4Zr2Mo, Ti5Al2.5Sn, etc., are produced by combining these materials. 

Ti6Al2Sn4Zr2Mo is used mostly in discs, blades, jet engines; Ti6Al4V is used in jet engines, gas 

turbines, airframe components, and Ti5Al2.5Sn is used in a corrosive environment, gas turbine 

engines, aerospace structures [3]. Among all the alloys, Ti6Al4V is the most popular one and 

occupies most of the market percentage of titanium products used all over the world now [4]. 

The high strength-to-weight ratio, biocompatibility, high corrosion resistance properties have 

extended its use in bridges and implants, marine, automobile, energy, chemical, and biomedical 

industries [4-8]. Titanium alloys are divided into three main groups which are α-alloys, β-alloys, 
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and α/β-alloys and Ti6Al4V belongs to α/β-alloys, which has a chemical composition of 6% 

Aluminum, 4% Vanadium, .25% Iron, .2% Oxygen, and the rest is Titanium [9]. 

Although having many superior qualities, it is one of the most difficult-to-cut materials. 

Titanium alloys are hard to machine because of their high chemical reactivity at high 

temperatures, comparatively low modulus of elasticity, high strength, low heat conductivity, high 

rigidity [10, 11]. These characteristics of Ti6Al4V cause severe manufacturing difficulties, 

which makes the machining process costly. Typically, manufacturers make the components by 

forging or casting to the nearest final shape in military applications, then milling with roughing 

and final cut results in the finished product [12]. 

While machining titanium, no built-up edge forms on the cutting tool, which enhances 

the abrading and alloying action of the thin chip forcing over a small tool chip contact area under 

high pressure [13]. This high pressure along with less heat conductivity creates a high 

temperature in the tooltip area. As the material shows a hot strength behavior, it offers the 

highest pulsating loads because of the formation of segmented chips [14], resulting in high-

pressure loads through the reduced contact surface. High thermal stress grows at the cutting edge 

due to low heat dissipation by the chips and workpiece. While machining steels and aluminum 

alloys, a large amount of the heat generated is transmitted into the chips. But, when it comes to 

titanium alloys, a significant portion of the heat gets transferred into the cutting tool, which 

makes a high heat concentration on the tool's cutting edge, resulting in a faster tool failure [15]. 

Low thermal conductivity and high thermal capacity are the main reason for absorbing 30% 

more heat by the cutting edge compared to steel machining [16]. Enhanced diffusion and 

adhesion processes are observed where thermal stress emerges. Self-induced chatter and cutting 

forces are reasons for continuous tool chippings and, finally, tool failure. Due to the low Young’s 
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modulus, there is a vibration affinity of unstable workpieces. As heat is accumulated in the 

cutting zone, a strong affinity to adhesion is observed. Titanium chips can make a hazard of 

exoergic reaction with atmospheric oxygen [17-19]. For these reasons, while machining titanium 

alloys, the parameters are restricted to avoid the heat build-up edge formation. 

In selecting cutting tool material, high-speed steel (HSS) tools can be used for full-cut 

operations for their high tenacity [20]. Tungsten carbide/Cobalt (WC/Co) has superiority in all 

cutting applications of titanium alloys, no matter what wear mechanism occurs [21]. U.S. 

industry grade C2, represented by International organization for standardization (ISO) code K20 

(Carbide tools having a PVD coating of TiAlN) has been found to be the best grade of cutting 

tool in machining applications for titanium alloys [22]. Research indicates that K grade carbides 

like WC/Co alloys with Co percentage of 6 wt% and medium grain size can give the optimum 

performance for machining titanium alloys [23]. Straight Cobalt-base tungsten carbide implanted 

with Chlorine and Indium is also proven efficient in cutting titanium and its alloys [24]. P grades 

of ISO codes used for steel cutting are not efficient for cutting titanium alloys as they have 

mixed grain sizes and inauspicious thermal properties [25, 26]. All the cemented carbide tools 

coated with TiCN, TiC, TiN, Al2O3-TiC, TiC-TiN, HfN, TiB2 have been tested and showed 

larger wear rates than straight grade cemented carbides [27, 28]. The coating of TiN with the 

PVD technique has given an excellent performance while milling titanium alloys [29]. HSS tools 

like M1, M2, M7, M10 grades have shown promising results while machining titanium alloys, 

but M33, M40, M42 grades are the best to use [30].  

The research field related to cutting fluid, in general, is quite inconsistent as some 

researchers have used dry cutting, and some researchers tried conventional flood cooling [31]. In 

some cases, metalworking fluid plays a vital role in increasing the tool life and machining 
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quality. At lower speed, coolant can contribute a significant impact as it can improve average 

heat extraction from cutting zone, alter viscosity, surface tension, etc. Lubrication with a 3-7% 

percentage is generally used in cutting titanium alloys [32, 33]. The cost of cutting fluid is about 

15-17% of the total production cost, whereas cutting tools are accounted for only 2-4% of the 

total cost [34]. Environment-friendly cutting fluids, minimum quantity lubrication (MQL), dry 

cutting, biodegradable vegetable oil, and many investigations are going on for machining of 

titanium alloys at less cost and in a more effective way [35, 36]. The variation in the efficacy of 

cutting fluid and the cooling method impacts machining of titanium alloy significantly [37]. The 

lubrication method's actual problem is that the coolant fails to reach the real cutting edge because 

the extreme heat developed in the tool-workpiece-chip interface evaporates the coolant at a 

higher cutting speed. The MQL method reduces the production cost and improves Ra. This 

method is called the near dry lubrication method or micro lubrication method, where cutting 

fluid used for machining is much lower than the flood cooling method [38]. In some recent 

articles, a new cooling method has been shown where an atomized-based cutting fluid spray 

system has been introduced [39]. 

As there are many difficulties in the machinability of titanium alloys, many researchers 

have used different modeling and optimization techniques. Response surface methodology 

(RSM) has been used to model cutting-forces data obtained from machining Ti6Al4V by 

physical vapor deposition (PVD) coated tools [40]. Various cutting tools with different coatings 

have been used in an article for machining Ti6Al4V, where the Taguchi technique has been used 

for analyzing the data [15]. 

Ra is considered as one of the most important quality characteristics for determining the 

surface quality. Better Ra facilitates improvements in various characteristics such as corrosion 



5 

and wear resistance, fatigue strength, friction, etc. To minimize the production cost, 

manufacturers focus on increasing tool life or reducing tool wear. Tool wear has a significant 

effect on cutting forces, which plays a crucial role in measuring power consumption and 

designing the cutting tool [41]. MRR is directly related to production time. Therefore, tool life, 

cutting forces, Ra, and MRR have been considered for optimization as the performance 

characteristics in this study. All those output characteristics have a relation with the cutting 

parameters. Machining operators use a trial and error basis determination process as the 

theoretical calculation is challenging [42]. These processes can be lengthy and repetitive, and 

empirical, which results in inefficiency. For improving yield in the industrial environment, the 

Taguchi process has been introduced. It can consider multiple factors at once and show the 

insensitive factors resulting in greater output in the manufacturing process and improve the final 

product's performance. 

 

Figure 1. Taguchi Design System 

Taguchi analysis shortens the product development cycle for design and production, 

which decreases cost and increases profit. From Figure 1, Taguchi design can be better 

understood. The whole designing system is divided into three steps, where parameter design is 

the most significant step [43]. The factors that affect the outputs are required for making the 
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orthogonal array, and then experiments are conducted according to the orthogonal array. The 

goal is to obtain the best output characteristics by analyzing the experimental data obtained and 

then conducting the validation experiment at the optimal parameters.  

For applying Taguchi design, factors that affect the output characteristics should be 

identified at first from the literature. The most important factors related to tool wear, Ra, forces, 

and MRR are found in the literature. Factors that affect those output characteristics are mainly 

speed, feed, depth of cut, cutter runout, cutter geometry, tool wear, vibration, forces, etc. [44]. 

Another article added tool nose radius, flank wear as control factors [45]. One research stated 

that cutting speed, feed per tooth, and cutting depth(only axial depth of cut) can be considered as 

control parameters for finding optimum surface integrity and cutting force [46]. Multiple 

characteristics can be studied with these factors, such as material removed, burr height in face 

milling operation. Most of the articles show the use of three factors in face milling: speed, feed, 

and axial depth of cut. These articles proved that the Taguchi design worked very well in 

optimizing all the cutting parameters. Different optimization techniques have been used by 

researchers along with artificial neural network (ANN) [3].  

This study is based on the following five steps.  

1. The cutting tool used in this study has a special coating, which is identified with X-ray 

photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD) analysis. 

2. For Taguchi analysis, the factors usually selected are speed, feed rate, and axial depth of 

cut. But for this study, radial depth of cut is used in place of the axial depth of cut to see 

the impact of radial depth of cut on the output characteristics. 
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3. Analyzing the coated cutting tool's performance and optimizing the parameters for better 

Ra, increased tool life, reduced forces, and maximum MRR using Taguchi and ANOVA 

analysis. 

4. Regression analysis is performed to predict the output characteristics and a validation 

experiment is conducted to validate the mathematical models and optimized results. 

5. Mono and multi-objective optimization is performed using GRA and GA, and results are 

compared. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

In the aerospace industry, machining of titanium alloys is common. Researchers have 

done extensive work to enhance productivity while machining such high strength alloys. 

However,  machinability and optimization problems are still under investigation to some extent. 

New cutting tools are developed with different coatings and coating techniques and cutting tool 

parameters are being optimized depending on various factors. This chapter introduces a concise 

overview of the face milling of Ti6Al4V and optimization of the different machining process 

parameters to enhance product quality and productivity.  

Previous work on the machining of titanium alloys 

Titanium and its alloys have low thermal conductivity; thus, the heat generated by the 

cutting actions doesn't dissipate rapidly and remains concentrated near the cutting edge. This 

heat affects the cutting tool life adversely.  

Titanium alloys have a high ratio of yield stress to tensile strength (>0.9), and the flow 

stresses increase rapidly with a strain rate greater than 103 s-1 [47]. Strain hardening is extremely 

influenced by twin dislocation interactions during plastic deformation of titanium alloys  [48]. 

Titanium also shows a high affinity at high temperatures with the cutting tool materials which 
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causes welding of workpiece material to the cutting tool while cutting. Continuous galling, 

chipping, and smearing on the machined surface result in a fast decrease in tool life. High 

chemical reactivity, high thermal strength, low thermal conductivity, low modulus of elasticity, 

high strain hardening, inferior dislocation motion are the main reasons that cause poor 

machinability of titanium alloys [49].  

For process optimization, predictive modeling is the primary step. Finding the 

relationship between the input parameters, which are independent variables, and output 

parameters, which are dependent variables, is the main target of predictive modeling. Two 

approaches are well known to acquire this model: (i) the fundamental practice using analytical 

systems and (ii) empirical methods. Design of experiments, curve fitting, and many more 

sophisticated study tools are needed for finding the empirical solution from the obtained 

experimental data. Considering too many factors in machining of titanium alloys makes it 

difficult to explain the process, and results obtained are different for each change in phenomenon 

[50]. 

Several researchers have used theoretical or fundamental approach. This approach 

consists of geometric, analytical, or mechanistic modeling methods. This chapter summarizes the 

findings from various researchers for measuring machining performances while machining 

different alloys with a focus on titanium alloys. 

Cutting Forces/Power 

In 1932, researchers started investigating the empirical modeling approach where the 

equation for cutting forces was presented as a function of feed, depth of cut, and tool wear. 

Cutting fluid was also considered during the investigations. Comparisons were made between up 
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and down milling for aluminum alloys. That’s where the idea was generated for creating 

mathematical models for titanium alloys [51]. Analytical models for orthogonal and oblique 

cutting started developing for the mechanism of metal cutting[52]. 

For predicting cutting forces, mechanistic models have become popular as these models 

could predict cutting forces from the theoretical equations having basic machining parameters. 

These mechanistic models became the basis for deriving empirical equations using based on the 

experiments and using the exponents or considering the coefficients [53]. Different coefficients 

were investigated for variety of other materials to make different equations, and several 

combinations of parameters were tried [54]. While developing models for force predictions, 

sometimes the cutter geometry was considered an important factor. One of the research groups 

divided the cutter into different layers and then calculated each layer separately [55]. Many 

researchers have used this concept. 

During milling operations, the tool geometry was defined as a function of number of 

flutes, cutter's angular position, and flutes' helix angle for discretizing the cutting edge. This 

theory was only for the tools having constant helix angle and identical profile for all the flutes. 

For complex shapes, the model didn’t work because the profile was described by combining a 

cylindrical surface and a semi-spherical surface for the ball end mill. This model limited the 

geometry into a perfect ball shape geometry as the flutes earlier [56]. Researchers then described 

the intricate shapes in different geometries and angles, and many limiting functions were 

obtained while developing the mechanistic models for those complex shapes [57-59]. 

One researcher presented a model and compared the chip formation for up and down 

milling for two forces: tangential and normal [60]. Another mechanistic model was proposed by 
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a researcher who represented the dynamics of cutting forces in end milling with variable adaptive 

control [61].  

Another model was described using orthogonal cutting data for three-dimensional cutting 

for a single point machining tool for predicting forces in plain milling [62]. This model replaced 

the oblique angle's inclination with the helix angle and worked well for small helix angles.  In 

another research work, for the corner-milling process which is a particular case of peripheral 

milling,  three-dimensional cutting was considered as a collection of orthogonal cuts, and a 

model was developed based on chip formation and cutting conditions [63]Another researcher 

used cutting conditions, tool geometry, process and workpiece geometry for the empirical model 

for face milling [63]. Later, another model was proposed considering the effects of varying chip 

thickness by applying the theory of orthogonal machining [64]. Both models investigated the 

orthogonal machining theory for a single cutting tooth. Later, a new model was proposed for 

multiple-tooth oblique cutting where the process was described for static and dynamic cutting 

forces in face milling, considering the initial positioning error and eccentricity of the spindle 

[65]. In another research,  the effect of edge-wear was also included in the process modeling 

[66]. 

In 1999, a theoretical model was developed based on oblique cutting and mechanics of 

face milling for predicting cutting forces where the intermittent cutting force and effect of tool 

wear on chip-load variation were taken into consideration [67]. Later, a different model was 

proposed where Oxley’s predictive machining theory was applied, and a dynamic shear length 

model replaced the conventional simplified shear plane model [68]. The prediction modeling of 

forces can be used for determining one or more performance measures too. The following 

paragraph elaborates on the use of force modeling for tool-wear and tool failure analysis.  
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By investigating the cutting tool's breakage in milling, it was shown that tool failure 

could be determined by first and second-order differentiation of a time-averaged resultant force 

[69]. A different approach was then taken for on-line monitoring of flank wear, which was based 

on the variation pattern of cutting force concerning flank wear [70]. The observations found that 

the radial depth of cut should be considered for the modeling approach. This research 

emphasizes finding the mathematical equation for force as a function of speed, feed, and radial 

depth of cut. 

Surface Roughness 

Analytical methods were used for finding the effect of clearance angle, rake angle, radial 

chip thickness, the curvature of the tool path, over the quality of surface generated during 

milling. In the beginning, most of the researches were based on the force modeling approach and 

then the surface error modeling was predicted by combining the force model, deflection of the 

end mill, and the radial depth of cut. The researchers found that milling cutter tool path was the 

most crucial factor at the beginning of this modeling approach for Ra [60]. 

In another research, cutting forces and surface error prediction models were approached 

in end milling by considering it as a flexible system, and this model considered the deflection 

effect on chip-load for finding the balance of cutting forces. This research demonstrated that the 

deflection of the system reduces the impact of runout along with peak cutting force and 

maximum surface error [71]. Another researcher added tool dynamics and tool-wear into 

consideration for predicting Ra [72]. 

Later, a mathematical model was developed in face milling for Ra, which considered 

static characteristics of the process such as cutting tool geometry, machining conditions, insert 
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runout, and dynamic characteristics like force and vibration of the process [73]. The chatter 

vibration was not included in that model, but relative displacement between the workpiece and 

cutting tool on the cutting process was considered. This model successfully predicted Ra for 

different feed rates. A dynamic Ra model was also introduced, and bisection method was used to 

obtain an optimal feed rate. 

One empirical model included residual stresses, nose radius, and flank width for 

predicting surface roughness. Response Surface Methodology (RSM) was used to find the 

empirical constants, and a second-order equation was used to show dimensional anomalies [45]. 

Later, the same researcher showed that Ra accuracy was mostly dependent on the value of 

workpiece hardness and cutting conditions [74].  

Classification of various modeling approaches is found in reference  [50]. Recently, 

artificial intelligence tools like GA, neural networks, neuro-fuzzy techniques, programming, and 

regression-based modeling have also been used to predict Ra [75-78].  

For creating the design of experiment, many methods like Box-Behnken design, Taguchi 

design, factorial design, etc., have been used. RSM was one of the most popular approaches for 

measuring surface integrity [79]. RSM analyzes the experimental data to create mathematical 

models for predicting the Ra [80]. But these techniques for the modeling approach had some 

significant limitations like they couldn’t determine the roughness for various materials [50]. 

Another approach, called ANOVA analysis, has become much famous for regression 

analysis, where experimental data are given as input, and by regression analysis, the model is 

obtained. [81].   



14 

In this research, average Ra has been measured using a profilometer. Regression analysis 

has been performed on those data for obtaining the mathematical model and each input 

parameter's significance has been calculated using ANOVA analysis. The predicted and 

experimental values are shown in graph for better understanding in a later chapter. For future 

work, Adaptive Neuro-Fuzzy Inference system can be developed for predicting Ra and then the 

results can be compared with conventional analysis results [82, 83].  

Tool Life 

Better tool life is one of the industry's essential requirements, and many mathematical 

models have been developed for predicting tool life. Though different approaches have been 

considered, none of the methods estimates the tool life accurately. Most of the models are for 

flat-faced tools, in which cases both flank wear and crater wear were considered. The most used 

tool wear modeling approaches are summarized later in this section. 

It was found in 1907 that cutting tool life has a massive impact on the economic success 

of the cutting or machining industry [84]. High and low cutting speed both were not desirable 

because the high speed would result in frequent tool changing, and the lower cutting would give 

less output. The first tool life empirical equation was developed by Taylor as: 

𝑉𝑇𝑛=C           (2.1) 

Where V is the machining speed, C is a constant, which represents the cutting speed of 

one-minute tool life, n is the slope of the curve obtained. The equation was then modified as n 

varies with different cutting conditions, and many extensions were added after that [85]. 

𝑛 = 𝑡𝑎𝑛𝛼 = (𝑙𝑜𝑔𝑉1 − 𝑙𝑜𝑔𝑣2)/(𝑙𝑜𝑔𝑇2 − 𝑙𝑜𝑔𝑇1)      (2.2) 
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𝑇 = 𝐾𝑉
1

𝑛 ∗ 𝑓
1

𝑛1 ∗ 𝑑
1

𝑛2           (2.3) 

Here, f is feed rate, d is depth of cut, V is cutting speed, and n, n1, n2, k are constants, and 

generally n < n1 < n2. It means the cutting speed has the most significant impact on tool life and 

depth of cut has the least impact. In further research, the Brinell hardness number was considered 

[86]. 

𝐾 = 𝑉𝑇𝑛 ∗ 𝑓𝑛1 ∗ 𝑑𝑛2 ∗ 𝐵 ∗ ℎ ∗ 𝑛1.25        (2.4) 

Here, n, n1, n2 are experimental constants. Then cutting tool geometry was added to the 

modeling equation [87]. After that, the tool coatings and chip grove geometry were added to the 

modeling equation [88]. 

𝑇 = 𝑇𝑅 ∗ 𝑊𝑔 ∗ (
𝑉𝑅

𝑉
)

𝑊𝑐
𝑛           (2.5) 

T represents tool life, V is speed, n is from the earlier equation, WC= effect of tool 

coating factor and Wg = chip-groove effect factor, TR is reference tool life, and VR is reference 

cutting speed. 

𝑊𝑐 =
𝑛

𝑛𝑐
           (2.6) 

𝑊𝑔 = (𝐾 ∗ 𝑚)/(𝑓𝑛1 ∗ 𝑑𝑛2)         (2.7) 

Here, m is the machining factor. 

In one research,  a mechanistic modeling approach was taken considering the force 

equilibrium equation, where the flank force was used as an input, and the effects were calculated 

for predicting tool life [89]. A similar modeling approach was taken by another researcher 
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considering the uniform tool wear to calculate the constants for speed, feed, and depth of cut 

[90].  

Mono and Multi-objective Optimization process 

Some researchers optimized the process parameters (cutting speed, feed rate, and axial 

depth of cut) for better Ra, minimizing the tool wear, and tool vibration during the face milling 

of Ti6Al4V alloy using an uncoated carbide insert using the RSM approach [91]. Later, 

researchers performed mono-objective optimization of cutting forces and Ra by varying three 

cutting parameters as input factors (cutting speed, feed rate, and axial depth of cut) using 

ANOVA and Taguchi method, where they observed that the axial depth of cut and feed per tooth 

were the most significant input parameters for cutting forces and Ra respectively during end-

milling of Ti6Al4V alloy [92]. Another research group studied the effects of cutting parameters 

(cutting speed, feed rate, and axial depth of cut) on tool life, Ra, and MRR by using Taguchi and 

ANOVA analysis and found that feed rate was the most significant among the cutting parameters 

in multi-objective optimization [93]. By applying the Taguchi method and ANOVA analysis, a 

team of researchers investigated the impact of input parameters, namely, cutting speed, feed rate, 

and axial depth of cut on output characteristics (tool wear, Ra, and cutting forces) during micro-

milling of Ti6Al4V alloy and developed corresponding mathematical models by regression 

analysis to predict the performance characteristics [94]. 

Mono-objective optimization is widely used for optimizing various response 

characteristics. But this process cannot find the optimized combination of cutting parameters that 

can simultaneously improve the multiple output characteristics. Literature survey reveals that 

different multi-objective optimization techniques such as GRA, GA, etc. have been used in the 

past to solve this problem. Recently, GRA has been used as a popular statistical tool to optimize 
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complex multi-objective machining systems. Deng developed GRA to find the correlation 

between input parameters and output characteristics using Grey Relational Grade [95]. For 

investigating the micro-milling process of Ti6Al4V alloy, one research group used GRA for 

optimizing the multiple quality characteristics (Ra and burr width) based on the variation of 

cutting parameters [96]. Another literature search revealed that the researchers performed the 

multi-objective optimization of Ra, surface microhardness, and surface residual stress by using 

the GRA method for different cutting parameters during high-speed milling of titanium alloy 

TB17 [97]. For optimizing both mono and multi-response characteristics of milling AISI 1050 

Steel, researchers used Taguchi and GRA, where the axial depth of cut, feed rate, cutting speed, 

and the number of inserts were used as input parameters [98]. 

The literature survey reveals that, for multi-objective optimization (tool life, Ra, and Avg. 

FY) for the face milling of Ti6Al4V alloy, GRA has not been used earlier. In most of the 

research work, the optimization of the performance characteristics is based on the variation of 

cutting speed, feed rate, and axial depth of cut. However,  the radial depth of cut can also be a 

significant factor in the milling of Ti6Al4V alloy [99]. In order to investigate the impact of radial 

depth of cut on cutting force, Ra, tool life, and MRR during face milling of Ti6Al4V alloy, 

ANOVA and Taguchi analysis have been applied in this study for mono-objective optimization. 

Also, GRA and GA have been used for performing multi-objective (tool life, Ra, Avg. FY, 

MRR) optimization. Moreover, mathematical models for tool life, Ra, cutting forces (Avg. FX, 

Avg. FY), and MRR have been developed through regression analysis to predict the 

corresponding response characteristics. 
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CHAPTER III 

 

OBJECTIVES 

 

This research aims to investigate the relationship between cutting parameters ( speed, feed 

rate, and radial depth of cut) and response characteristics (surface roughness (Ra), cutting forces, 

tool life, and MRR) in face milling of Ti6Al4V. the research is focused on: 

➢ Finding the impact of radial depth of cut on the output characteristics while face milling 

with coated carbide cutting tools. 

➢ Analyzing the coated cutting tool's performance and conducting mono-objective 

optimization to obtain better Ra, increased tool life, reduced forces, and increased MRR 

using Taguchi analysis and determining each parameter's significance on the output 

characteristics using ANOVA analysis. 

➢ Creating mathematical models by performing regression analysis after analyzing the data 

as no models are found for predicting output characteristics as a function of cutting speed, 

feed rate, and radial depth of cut and, subsequently, validation of the mathematical models. 

➢ Performing multi-objective optimization for three and four objectives by using GRA and 

GA and, finally, comparing the results. 
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Methodology 

 

Coated cutting tool 

The cutting tool is a tungsten carbide coated insert having a specification as  

SEAN1203AFTN-M14-k, 150. The dimensions of the cutting tool are shown in Figure 2.  

 

Figure 2. Dimensions of the cutting tool [100] 

To analyze the PVD coating on the substrate of the carbide inserts XPS and XRD 

analysis have been done. The data obtained from the XPS analysis is given below in Table 1. 

Table 1. XPS analysis results 

Name  Start BE Peak BE End BE Height 

CPS 

FWHM 

eV 

Area (P) 

CPS. eV 

Atomic 

% 

C 294.58 287.87 277.08 313334.4 2.91 1096577 80.91 

O 541.08 534.91 525.08 114862.2 3.28 447571.6 13.67 

Al 360.08 350.4 343.08 23874.72 3.01 121744.2 1.57 

Ti 469.08 458.49 454.08 12501.94 5.15 80592.63 1.03 

N 405.58 398.85 395.08 7720.47 4.12 48925.25 2.32 

S 174.08 171.02 164.58 3038.78 4.04 13657.27 0.5 
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As it is a carbide tool, the analysis shows about 81% carbon under the coating. The coating 

material has been ensured by the XRD analysis given in Figure 3.  

 

Figure 3. The graph shows the presence of coating materials 

TiN coating has the maximum adhesion and ductility characteristics among any of the 

coatings and has a lower coefficient of friction, good thermal stability, and high wear resistance. 

These all together reduce built-up edge and give longer tool life if used as a coating [101]. TiAlN 

coating is suitable for having high hot hardness compared to other coatings. As a result, the 

coating works better in high-speed dry cutting operations [102].  

Taguchi Methodology 

Taguchi method uses an orthogonal array to design the experiments and determines the 

optimal level of input parameters considering their respective ranges. Thus, Taguchi's 

experimental design is used to organize experiments with a reduced number of experiments. The 
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output characteristics are classified into (i) desirable and (ii)  undesirable effects. Desirable 

effects of output characteristics are known as “Signal” and the undesirable effects are called 

“Noise”. There are three types of performance characteristics in the analysis of the Signal to 

Noise (S/N) ratio, which are known as smaller the better, higher the better, and nominal the 

better. S/N ratio is used to find out the optimal condition of the control parameters. In this 

experiment, the goal is to minimize the Ra, and the cutting forces and to maximize the tool life, 

and MRR; therefore, the smaller the better S/N ratio has been applied for Ra, and cutting forces 

and the larger the better S/N ratio has been applied for tool life, and MRR. The smaller the better 

S/N ratio is calculated as follows- 

S/N =  −10 log10 [
1

n
(∑ yi

2

n

i=1

)] 
(3. 1) 

The larger the better S/N ratio is calculated as follows- 

𝑆/𝑁 =  −10 log10 [
1

𝑛
(∑

1

𝑦𝑖
2

𝑛

𝑖=1

)] 
(3. 2) 

 Here, 𝑦𝑖 is the 𝑖𝑡ℎ measurement value in a run and n is the number of measurements in 

each trial.  The optimal level of process parameters always corresponds to the highest S/N ratio 

when the optimization is performed based on a single performance characteristic. However, the 

optimization of multiple performance characteristics differs from that of single performance 

characteristic. The higher S/N ratio for one response characteristic may correspond to the lower 

S/N ratio for another response characteristic. Therefore, the optimization of multiple 

performance characteristics may require the overall evaluation of the S/N ratio. A GRA has been 

performed in this study to overcome this problem. 
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Grey Relational Analysis for multi-objective optimization 

 In this study, GRA has been used to analyze multiple response characteristics. 

Normalizing the experimental results of tool life, Avg. FY, and Ra is the first step of GRA. The 

normalized data is used to calculate the grey relational coefficients which demonstrate the 

correlation between expected and experimental data. In the following step, the grey relational 

grade is determined using the average value of the grey relational coefficients corresponding to 

each response characteristic. The calculated grey relational grade is used to evaluate the overall 

multiple output characteristics. The level of process parameters having the highest grey relational 

grade is considered as the optimal level. In this way, the GRA transforms the complex multi-

objective optimization problem into a single grey relational grade optimization problem [103]. 

 In this study, the higher the better S/N ratio characteristic is used to maximize the tool 

life, which is expressed as- 

𝑥𝑖(𝑘) =
𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)

max 𝑦𝑖(𝑘) − min 𝑦𝑖(𝑘)
 (3. 3) 

 The smaller the better S/N ratio characteristic is used to minimize the Avg. FY, and Ra, 

which is expressed as- 

𝑥𝑖(𝑘) =
max 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘)

max 𝑦𝑖(𝑘) − 𝑚𝑖𝑛𝑖 𝑦𝑖(𝑘)
 (3. 4) 

 Here, 𝑥𝑖(𝑘) depicts the value after the grey relational generation, the lowest value of 

𝑦𝑖(𝑘) for the kth response is min 𝑦𝑖(𝑘) and the highest value of 𝑦𝑖(𝑘) for the kth response is 

max 𝑦𝑖(𝑘). 
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 An ideal order xo (k) (k=1,2, 3) is considered for cutting force, tool life, and Ra. The 

purpose of grey relational grade is to demonstrate the relational degree among the nine sequences 

[𝑥0(𝑘) 𝑎𝑛𝑑 𝑥𝑖(𝑘), 𝑖 = 1,2,3, … ,9; 𝑘 = 1,2,3]. The grey relational coefficient, ф𝑖(𝑘) is calculated 

as follows, 

ф𝑖(𝑘) =
𝛿𝑚𝑖𝑛 + 𝜁𝛿𝑚𝑎𝑥  

𝛿0𝑖(𝑘) + 𝜁𝛿𝑚𝑎𝑥
 (3. 5) 

 Where, 𝛿0𝑖 = ‖𝑥0(𝑘) − 𝑥𝑖(𝑘)‖ = difference of absolute value between 𝑥0(𝑘) and 𝑥𝑖(𝑘); 

ζ= distinguishing coefficient (0~1); 𝛿𝑚𝑖𝑛 = ∀𝑗𝑚𝑖𝑛 ∈ 𝑖∀𝑘𝑚𝑖𝑛‖𝑥0(𝑘) − 𝑥𝑗(𝑘)‖ = smallest value 

of 𝛿0𝑖; and 𝛿𝑚𝑎𝑥 = ∀𝑗𝑚𝑎𝑥 ∈ 𝑖∀𝑘𝑚𝑎𝑥‖𝑥0(𝑘) − 𝑥𝑗(𝑘)‖ = largest value of 𝛿0𝑖. Using the average 

value of the grey relational coefficients, the grey relational grade 𝜓𝑖 can be calculated from the 

following equation. 

𝜓𝑖 =
1

𝑛
∑ф

𝑖
(𝑘)

𝑛

𝑘=1

 (3. 6) 

 Here, n indicates the number of process outputs. The higher value of the grey relational 

grade indicates not only a stronger relational degree between the reference sequence 𝑥0(𝑘) and 

the given sequence 𝑥𝑖(𝑘) but also the optimality of the corresponding cutting parameter [104]. 

 In this study, Analysis of Variance (ANOVA) has been performed along with GRA to 

predict the optimal combination of process parameters. GRA has been used for optimizing three 

objectives (tool life, Ra, Avg. FY) and four objectives (tool life, Ra, Avg. FY, and MRR) 

separately. 
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Regression Analysis 

 Regression analysis is used as a statistical tool for developing a model to find out the 

relationship between the dependent and independent variables. Generally, the first-order 

modeling form is expressed as follows- 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ 𝜀 
(3. 7) 

 Here, β, k, and ε represent the coefficient of each term, number of independent variables, 

and an error respectively.  

 The value of the correlation coefficient (R2) is used to justify the validity of the obtained 

first-order model. Higher R2 indicates that the relationship between the face milling parameters 

and the response values is high. 

ANOVA analysis 

 ANOVA analysis is used to identify the significant machining parameters that influence 

the output characteristic. In this analysis, the total variation of each input parameter is divided 

into proper elements. By using equation (3. 8) the total sum of squares can be calculated, 

𝑆𝑆𝑇 = ∑𝑦𝑖
2 

(3. 8) 

For i =1, 2, …., n. This can also be expressed as 

𝑆𝑆𝑇 = 𝑆𝑆𝑚 + 𝑆𝑆𝑒 
(3. 9) 

 Here, mean of sum squares 𝑆𝑆𝑚 = 𝑛𝑀2 and error sum of squares  𝑆𝑆𝑒 = ∑(𝑦𝑖 − 𝑀)2 

where 𝑀 =
∑ 𝑦𝑖

𝑛
 (𝑖 = 1,2 … 𝑛). 
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 While performing ANOVA for GRA, the total variation of the grey relational grades is 

calculated using the sum of the squared deviations from the total mean of the grey relational 

grade. Then the contribution of each machining parameter and the error is calculated. The total 

sum of the squared deviations SST is calculated from the total mean of the grey relational grade 

𝜓𝑚 using the following equation- 

𝑆𝑆𝑇 = ∑(𝜓𝑗 − 𝜓𝑚)

𝑝

𝑗=1

2

 
(3.10) 

 Where, p= number of experiments in the orthogonal array, and ψj= mean of the grey the 

relational grade for the jth experiment. 

 The significance of each machining parameter change on the total response characteristic 

is determined by the percentage contribution of the corresponding machining parameter to the 

total sum of squared deviations SST. Alternatively, from the F value of the Fisher test (F-test), 

the larger F value indicates that the corresponding parameter has a significant impact on response 

characteristics.  

Genetic Algorithm (GA) 

 For optimizing machining parameters, GA is widely used as it is a handy tool. For 

optimizing input parameters, this algorithm follows a population-based search method. After 

processing data by GA, the obtained output includes a set of chromosomes having an infinite 

length where every bit is called a gene. A fixed number of chromosomes are selected. They are 

called a population. For a fixed time, this population is called generation, and this generation of 

the primary population of chromosomes is chosen randomly. As the binary alphabet provides the 

maximum number of schemes per bit of information in any coding, it is usually used to denote 
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the chromosomes using ones and zeros. Then each member is evaluated through the fitness 

function (objective function). By operating the population by reproduction, crossover, and 

mutation, a new population is created for further evaluation and then tested for optimization. The 

whole process can be divided into three steps for implementing optimization using GA. Coding, 

fitness function are the basic operators of GA. Obtained results after using GA are used to 

validate the multi-objective optimization results obtained from GRA optimization process [105]. 

 For optimizing face milling parameters, the input parameters are encoded as genes by 

binary coding. Chromosomes are created with a set of genes used to perform basic GA 

mechanisms, namely, crossover, mutation. For creating new children, parts of chromosomes are 

exchanged. This process helps to explore the whole search space. The mutation is then done to 

provide randomness to the new chromosome to prevent losing essential information from the 

earlier stage. An objective function is needed for this face milling optimization process and for 

creating new generations. After performing several iterations, the optimal face milling 

parameters have been obtained.  Weighting factors and constraints are also necessary for 

performing GA efficiently. 

The objective function can be expressed as follows: 

𝑈(𝑇, 𝑅, 𝐹𝑌, 𝑀) = 𝐶𝑇 (
T՛ − Tc

Tmax − Tc
) + 𝐶𝑅 (

Rc − R՛

Rc − Rmin
) + 𝐶𝐹 (

Fc − F՛

Fc − Fmin
) + 𝐶𝑀 (

M՛ − Mc

Mmax − Mc
) (3.11) 

Here, M = MRR, F = Avg. FY, R= Ra, and T= tool life. 

Subjected to,  T՛ ≥ Tc, Rc ≥ R՛, Fc ≥ F՛, M՛ ≥ Mc 

𝐶𝑇 + 𝐶𝑅 + 𝐶𝐹 + 𝐶𝑀 = 1 
(3.12) 

Here, CT, CR, CF, CM are weighting factors.  
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Experimentation 

 

Workpiece and cutting tool material 

Face milling experiments were conducted using the Ganesh VMC-1814 CNC milling 

machine. Ti6Al4V titanium alloy of hardness 315-345 BHN (Figure 4) has been used as the 

workpiece material and its composition is shown in Table 2. The workpieces were prepared in a 

dimension of 152.4 mm×101.6 mm ×101.6 mm (Figure 5 (a)).  Square shaped carbide inserts 

were used in this study which were PVD coated with TiN+TiAlN (Figure 5 (b)). The inserts 

were of F40M grade with a 0° rake angle.  

 

Figure 4. Brinell Hardness values on the workpiece surface 
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Figure 5. (a) workpiece; (b) cutting insert and tool holder. 

Table 2. Composition of Ti6Al4V alloy. 

Content Composition(%) 

Aluminum 6 

Vanadium 4 

Iron .25 

Oxygen .2 

Titanium Balance 

Design of Experiment using Taguchi Method 

 In this study, face milling experiments of titanium alloy is designed using the Taguchi 

design of experiment (DOE) where Taguchi’s L9 orthogonal array is used. Cutting speed, feed 

rate, and radial depth of cut are selected as input factors while cutting forces, Ra, tool life, and 

MRR are considered as response characteristics. Levels of input factors and corresponding 

Taguchi’s L9 orthogonal array are shown in Table 3, and Table 4, respectively. Levels of all the 

factors are determined based on some trial experiments and the axial depth of cut is kept constant 

at 2.54 mm.  
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Table 3: Factors and corresponding levels 

Factors Level 1 Level 2 Level 3 

Cutting speed (m/min) 50 57.5 65 

Feed rate (mm/rev) 0.2 0.25 0.3 

Radial depth of cut (mm) 7.5 10 12.5 

Table 4: DOE using Taguchi L9 orthogonal array 

Experiment Level of factors 

Cutting Speed Feed rate Radial Depth of cut 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 

Cutting forces, surface roughness, and tool wear measurements 

 Kistler 9255C dynamometer has been used to measure the cutting forces. The 

dynamometer has been placed under a fixture specially made for holding the workpiece and a 

charge amplifier is used to transfer the corresponding force signals which are then processed 

using DynoWare software. A complete schematic diagram of the experimental setup and force 

measurements are shown in Figure 6 and Figure 7 respectively. 
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Figure 6. (a) Schematic diagram of the experimental setup, (b) Autodesk Fusion program for 

cutting Ti6Al4V 

 

Figure 7. (a) Force measurement set up; (b) Tool path and cutting force direction. 

 

Figure 8. Surface roughness measurement set up. 
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Figure 9. Tool wear measurement. 

 Tool wear has been measured using a Keyence VHX-5000 optical microscope. The 

maximum tool life corresponds to 0.3 mm flank wear. MahrSurf M 300 C profilometer has been 

used to measure the machined workpiece surface roughness value (Ra). Figure 8 and Figure 9 

show Ra, and tool wear measurement setup, respectively. 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 

 

Non-uniform flank wear has been found throughout the experiment. Figure 10 depicts the 

tool wear from the top view and 45° angle view to get a better observation. The wear in the 

minor cutting edge is too small to be considered as significant for measuring tool life, hence 

flank wear has been measured as the dominant tool wear to find the maximum tool life. When 

the flank wear reaches 300µm, the corresponding tool life is considered maximum. Flank wear 

has been measured each time after cutting 152.4 mm length of the workpiece.  

 

Figure 10. Tool wear during face milling of Ti6Al4V at feed rate 0.25 mm, cutting speed 50 

m/min and radial depth of cut 10 mm (a) top view; (b) 45-degree angle view. 
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Figure 11 demonstrates the variation of flank wear with machining time at different 

machining parameters where a sharp increase in wear is found both at the beginning and the end 

of the experiments. 

 

Figure 11. Variation of flank wear with machining time at different machining parameter values. 

 Ra is considered an important machining characteristic to evaluate machined surface 

quality. Although many factors can have significant impacts on the machined surface, parameters 

such as cutting speed, feed rate, and radial depth of cut are varied in this study to find an 

optimum average Ra. After cutting every 152.4 mm length of the workpiece, Ra has been 

measured at five different places of the machined surface and then an average value of Ra has 

been taken for every pass to draw the graph as shown in Figure 12. In the Ra vs. cutting time 

graph, some sharp changes have been observed in some places due to the fact that the hardness 

values of the workpiece material are not uniform throughout the whole workpiece [106]. An 

optical microscopic view of the machined surface is shown in Figure 13. 
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 It is observed that the dynamic cutting forces have the most significant impact on tool 

wear during the face milling process. Increased Ra has been observed due to the vibrations 

created by the cutting forces. 

 

Figure 12. Average surface roughness vs. Machining time at different machining parameter 

values. 

 

Figure 13. Optical Microscopic view of workpiece Surfaces at feed .2 mm/rev, cutting speed 50 

m/min, and radial depth of cut 7.5 mm. 
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 Average cutting forces (Avg. Fx, Avg. Fy, and Avg. Fz ) are measured in X, Y, and Z  

directions as shown in Figure 14. Avg. FZ is not considered during process optimization.  Avg. 

FX and Avg. FY are measured for each 152.4 mm pass and used for the analysis which are shown 

in Figure 15 and Figure 16 respectively. 

 

Figure 14. Cutting forces vs. Time graph obtained at feed rate 0.2 mm/rev, cutting speed 50 

m/min, and radial depth of cut 7.5 mm. 

 

Figure 15. Avg. FX vs. Machining time at different machining parameter values. 
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Figure 16. Avg. FY vs. Machining time at different machining parameter values. 

Signal to Noise (S/N) ratio analysis 

 Minitab 19 software has been used to perform the Taguchi and regression analysis. The 

impact of each level of input parameter on the output characteristics is analyzed using the S/N 

ratio based on equation (3. 1) and (3. 2). During the optimization of cutting forces and Ra the 

smaller the better characteristic is chosen and for tool life and MRR the larger the better 

characteristic is chosen which are shown in Table 5. Figure 23 illustrates the main effects of S/N 

ratios, where the optimal parameters are highlighted in red circles. The highest S/N ratio 

indicates the optimal level.  
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Table 5: Experiment and S/N (dB) results 

Experiment 

Number 

Tool Life 

(min) 

Ra 

(µm) 

Avg. FX 

(N) 

Avg. FY 

(N) 

MRR 

(cm3/min) 

1 87.860 0.138 36.080 82.450 9.234 

2 50.200 0.173 49.040 115.710 15.389 

3 33.470 0.260 74.350 175.250 23.084 

4 56.390 0.147 36.140 108.460 14.158 

5 17.460 0.182 49.360 176.690 22.122 

6 32.740 0.192 53.822 121.800 15.928 

7 14.480 0.153 39.938 162.740 20.006 

8 25.100 0.119 45.258 119.070 15.005 

9 11.260 0.182 57.091 202.300 24.007 

 Figure 17 (a) demonstrates that the optimum parameter setting for tool life is A1B1C1 

during the face milling of Ti6Al4V. So, using 50 m/min cutting speed, 0.2 mm/rev feed rate, and 

7.5 mm radial depth of cut the maximum tool life can be obtained. Tool life has decreased with 

the increase of cutting speed, feed rate, and depth of cut. Higher cutting speed generates higher 

temperatures at the cutting zone which reduces the tool strength resulting in plastic deformation. 

Therefore, higher cutting speed results in higher tool wear. A similar result is found in the study 

of the face milling of titanium alloy with coated carbide tools [107]. With the increase of feed 

rate and radial depth of cut, the cutting forces increase [3] which leads to faster tool wear and 

reduced tool life. From the literature review, a similar result is found [108]. Compared to the 

cutting speed the effect of radial depth of cut on tool life is smaller. 
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Figure 17. Main effects plot of S/N ratios for (a) Tool life, (b) Ra, (c) Avg. FX, (d) Avg. FY 

during face milling of Ti6Al4V. 

 The optimal condition of cutting parameters for Ra is A3B1C1 as shown in Figure 17 (b), 

which corresponds to cutting speed 65 m/min, feed rate 0.2 mm/rev, and radial depth of cut 7.5 

mm. Ra increases with the decrease of cutting speed and with the increase of feed rate and radial 

depth of cut. Higher cutting speed results in higher temperatures in the cutting zone which 

softens the workpiece material. As a result, machining vibration reduces, and therefore Ra 

reduces. A higher feed rate increases mechanical load and MRR resulting in higher vibrations 

and material resistance respectively, therefore, the surface quality deteriorates. A similar study is 

found in the literature [109]. With the decrease of radial depth of cut, the contact area between 
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tool and workpiece decreases resulting in a reduction in friction between the cutting tool and 

workpiece surface. As a result, the average Ra value decreases. 

 The optimal condition for Avg. FX is A2B1C1 as shown in Figure 17 (c), which 

corresponds to cutting speed 57.5 m/min, feed rate 0.2 mm/rev, and radial depth of cut 7.5 mm 

and optimum setting for Avg. FY is A1B1C1 as shown in Figure 17 (d), which corresponds to 

cutting speed 50 m/min, feed rate 0.2 mm/rev, and radial depth of cut 7.5 mm. With the increase 

of feed rate and depth of cut both Avg. FX and Avg. FY increase. For Avg. FX, the force has 

decreased initially and then starts to increase again with the increase of cutting speed. For Avg. 

FY, the force increases with the increase in cutting speed. Higher feed rate and radial depth of cut 

result in a larger contact area and contact length between the workpiece and cutting tool which 

raises the cutting forces. A similar study has been obtained from the literature search [110]. 

Analysis of Variance 

 For evaluating the significant factors which affect the expected response parameters, 

Analysis of Variance (ANOVA) is performed using a 95% confidence level. Results of ANOVA 

analysis are shown in Table 6, Table 7, Table 8, and Table 9. 

 Based on Table 6, cutting speed has the highest impact on tool life. Cutting speed has 

shown a significant contribution of 50.06%, and feed rate and radial depth of cut have shown 

25.59% and 22.80%, respectively. From the experimental findings shown in Figure 17 (a) the 

highest S/N ratio (34.461) has been found for the lowest cutting speed which is consistent with 

ANOVA analysis. F values have shown that all the input parameters are statistically significant 

for tool life.  
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Table 6: ANOVA results for Tool life (min) 

Source  DF Seq SS Adj SS Adj MS F Value, 

α < 0.05 

Contribution 

Cutting speed 

(m/min) 

2 2432.37 2432.37 1216.19 32.32 50.06% 

Feed rate 

(mm/rev) 

2 1243.22 1243.22 621.61 16.52 25.59% 

Radial depth of 

cut (mm) 

2 1108.01 1108.01 554.00 14.72 22.80% 

Error 2 75.26 75.26 37.63  1.55% 

Total 8 4858.87    100.00% 

SS = Sum of Squares; Adj SS= Adjusted Sum of Squares; Adj MS = Adjusted Mean of Squares; 

DF = Degree of Freedom 

 According to Table 7, the impact of cutting speed, feed rate, and radial depth of cut on Ra 

are 17.28%, 54.58%, and 27.39%, respectively. So, the feed rate is the most influential parameter 

for Ra. The same result is obtained from the experimental analysis shown in Figure 17 (b) where 

the highest S/N ratio has been obtained for the lowest feed rate (16.72 dB). From the literature, a 

similar result is found [93]. All the input parameters are found statistically significant for Ra 

according to their F values. 

Table 7: ANOVA results for Ra (µm). 

Source DF Seq SS Adj SS Adj MS 
F-Value, 

α < 0.05 
Contribution 

Cutting speed 

(m/min) 

2 0.002298 0.002298 0.001149 23.08 17.28% 

Feed rate 

(mm/rev) 

2 0.007257 0.007257 0.003628 72.89 54.58% 

Radial depth 

of cut (mm) 

2 0.003642 0.003642 0.001821 36.58 27.39% 

Error 2 0.000100 0.000100 0.000050  0.75% 

Total 8 0.013296    100.00% 
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 From Table 8, it is found that Avg. FX is mostly influenced by feed rate. Cutting speed, 

feed rate, and radial depth of cut have 6.80%, 77.28%, and 12.64% contributions, respectively. 

From the F values, it is found that the feed rate is the most significant parameter that affects Avg. 

FX. Similarly, the experimental analysis also (Figure 17 (c)) shows that the lowest feed rate has 

provided the maximum S/N ratio (-31.44 dB). A similar result is found in the previous study 

[94]. However, the radial depth of cut is found insignificant for Avg. FX. 

Table 8: ANOVA results for Avg. FX (N) 

Source DF Seq SS Adj SS Adj MS F-Value, 

α < 0.05 

Contribution 

Cutting speed 

(m/min) 

2 78.88 78.88 39.44 2.07 6.80% 

Feed rate 

(mm/rev) 

2 896.40 896.40 448.20 23.56 77.28% 

Radial depth of 

cut(mm) 

2 146.57 146.57 73.28 3.85 12.64% 

Error 2 38.04 38.04 19.02  3.28% 

Total 8 1159.89    100.00% 

 The most important machining parameter for Avg. FY is the radial depth of cut and it has 

a 48.34% contribution as shown in Table 9. The contributions of cutting speed and feed rate were 

16.98%, and 28.36%, respectively. From the F values, it can be concluded that only radial depth 

of cut and feed rate are statistically significant. A previous study also showed similar results 

[92]. 
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Table 9: ANOVA results for Avg. FY (N) 

Source DF Seq SS Adj SS Adj MS F-Value, 

α < 0.05 

Contribution 

Cutting speed 

(m/min) 

2 2148.1 2148.1 1074.0 2.69 16.98% 

Feed rate 

(mm/rev) 

2 3588.2 3588.2 1794.1 4.49 28.36% 

Radial depth 

of cut (mm) 

2 6115.5 6115.5 3057.7 7.65 48.34% 

Error 2 799.1 799.1 399.5  6.32% 

Total 8 12650.9    100.00% 

Regression Analysis 

 Statistical software Minitab 19 is used for developing mathematical models and the first-

order models which are illustrated here and their results are shown compared with the actual 

results from the experiments in Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22. 

Tool life (min) = 312.0 − 2.682 V𝑐 − 270.9 f − 5.35 a𝑒 
(4. 1) 

𝑅2 = 94.73%; 𝑅2(adj) = 91.56%  

𝑅𝑎(µm) = 0.0606 − 0.002600 V𝑐 + 0.653 f + 0.00973 a𝑒 
(4. 2) 

𝑅2 = 92.04%; 𝑅2(adj) = 87.26%  

𝐴𝑣𝑔. 𝐹𝑋 (𝑁) = −8.9 − 0.382 V𝑐 + 243.7 f + 1.899 a𝑒 
(4. 3) 

𝑅2 = 92.70%; 𝑅2(adj) = 88.32%  

𝐴𝑣𝑔. 𝐹𝑌 (𝑁) = −249.9 + 2.460 V𝑐 + 486 f + 12.76 a𝑒 
(4. 4) 

𝑅2 = 92.35%; 𝑅2(adj) = 87.76%  

𝑀𝑅𝑅 (
𝑐𝑚3

𝑚𝑖𝑛
) = −29.84 + 2.514 V𝑐 + 6.54 f + 1.67 a𝑒 (4. 5) 

𝑅2 = 98.16%; 𝑅2(adj) = 97.06%  
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Figure 18. Actual and predicted values obtained from experiments and equation (4. 1) 

 

Figure 19. Actual and predicted values obtained from experiments and equation (4. 2) 
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Figure 20. Actual and predicted values obtained from experiments and equation (4. 3) 

 

Figure 21. Actual and predicted values obtained from experiments and equation (4. 4) 
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Figure 22. Actual and predicted values obtained from experiments and equation (4. 5) 

Grey Relational Analysis 

 Combining the data of different levels of factors, a level average analysis has been 

performed to explain the results. The greatest difference between the highest and lowest average 

response of any factor is defined as the measurement of the largest effect of that factor. Data 

preprocessing has been performed for all the response characteristics using equations (3. 3) and 

(3. 4) and the corresponding results are shown in Table 10. Grey Relational coefficient and Grey 

Relational Grade are computed using equations (3. 5) and (3. 6) respectively which are shown in 

Table 11. Tool life, Ra, and Avg. FY are considered for multi-objective (three objectives) 

optimization in this study.  
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Table 10: Data preprocessing for each performance characteristics 

Run Tool life  

δOi(1) 

Avg. FY 

 δOi(2) 

Ra 

δOi(3) 

1 1.000 1.000 0.865 

2 0.508 0.722 0.617 

3 0.290 0.226 0.000 

4 0.589 0.783 0.801 

5 0.081 0.214 0.553 

6 0.280 0.672 0.482 

7 0.042 0.330 0.759 

8 0.181 0.694 1.000 

9 0.000 0.000 0.553 

 The difference between the high and low effect of each factor is used to find the statistic 

delta and then a classification has been done for finding the foremost influential factor. This 

process converts the multi-objective optimization problem into a one-objective optimization 

problem. The condition having a higher grey relational grade will be nearer to the optimal 

condition. Using the grey relational grade values obtained in Table 11, the mean of each level of 

the factors and the total mean of the grey relational grade are calculated, which are shown in 

Table 12. By using the main effect analytical computation method, a response graph is obtained 

(Figure 23) which shows that the optimal condition for these experiments is A1B1C1 which 

corresponds to 50  m/min cutting speed, 0.2 mm feed per revolution, and 7.5 mm radial depth of 

cut. According to Table 12, the radial depth of cut has the largest effect on the response 

characteristics while feed rate and cutting speed are the second and third, respectively. 
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Table 11: Grey relational coefficient (ξi) of each performance output and Grey relational grade 

(𝜓𝑖) 

Run Grey Relational Coefficient Grey Relational 

Grade 

Rank 

Ф (1) Ф (2) Ф (3) 𝜓𝑖  

1 1.000 1.000 0.788 0.929 1 

2 0.504 0.643 0.566 0.571 3 

3 0.413 0.392 0.333 0.380 9 

4 0.549 0.697 0.716 0.654 4 

5 0.352 0.389 0.528 0.423 7 

6 0.410 0.604 0.392 0.502 5 

7 0.343 0.427 0.580 0.482 6 

8 0.379 0.621 1.000 0.667 2 

9 0.333 0.333 0.427 0.398 8 

Here, distinguishing coefficient ζ= 0.5 is considered. 

Table 12: Response table Grey relational grade values 

Level Cutting Speed Feed Radial depth of cut 

1 0.627 0.688 0.699 

2 0.526 0.554 0.541 

3 0.515 0.427 0.428 

Delta 0.112 0.261 0.271 

Rank 3 2 1 

Total mean grey relational grade 0.556 
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Figure 23. Response graph for mean grey relational grades. 

Table 13: ANOVA results for process factors 

Source DF Seq SS Adj SS Adj MS F-Value Contribution 

Cutting speed 

(m/min) 

2 0.023 0.023 0.011 3.28 9.25% 

Feed rate 

(mm/rev) 

2 0.103 0.103 0.051 14.98 42.23% 

Radial depth of 

cut (mm) 

2 0.111 0.111 0.056 16.21 45.71% 

Error 2 0.007 0.007 0.003   2.82% 

Total 8 0.243       100.00% 

 From the ANOVA analysis shown in Table 13, it is observed that feed rate and radial 

depth of cut have 42.23% and 45.71% contribution respectively. The F value obtained from 

Table 12 infers that feed rate and radial depth of cut are the most significant factors affecting the 

multiple performance characteristics. The results also indicate that cutting speed has no 

significant impact on performance characteristics. 
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Confirmation Experiment 

 

Prediction and Validation for the Taguchi Analysis 

 The last stage of Taguchi analysis is to conduct an additional experiment to validate the 

predicted response values which are called a confirmation experiment. The confirmation 

experiment is conducted at the optimal parameters obtained during the analysis of Ra. The 

predicted values for Tool life, Ra, Avg. FX, and Avg. FY are obtained from equations (4. 1), (4. 

2), (4. 3), and (4. 4) respectively which are compared with the measured values from the 

confirmation experiment as shown in Figure 24 (a-d). In A3B1C1 validation experiment, the 

average percentage error for tool life, Ra, Avg. FX and Avg. FY are 0.39%, 6.32%, 0.13% and 

10.59%, respectively. The percent improvement of Ra at optimal condition is 31.29% shown in 

Table 14. 

Table 14: Results of confirmation experiments  

Response Parameter Initial Setting 

(A2B1C3) 

Optimal Setting 

(A3B1C1) 

Percentage Improved 

Ra (µm) 0.147 0.101 31.29% 
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Figure 24. Results of confirmation experiments (a) Tool life, (b) Ra, (c) Avg. FX, (d) Avg. FY. 

 It is observed that the predicted values obtained from the developed mathematical models 

in this study are very close to the measured results from the confirmation experiment. Thus, it 

can be concluded that the mathematical models found in this study can be used for predicting 

tool life, Ra, and cutting forces in the face milling of Ti6Al4V alloy. 

Prediction and Validation for the Grey Relational Analysis 

 After selecting the optimal level of each factor, the final stage is to predict the output 

characteristics based on the optimal level of factors. Grey Relational Grade is predicted using the 

following equation-   
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𝜃 = 𝜃𝑚 + ∑(𝜃𝑖 − 𝜃𝑚)

𝑘

𝑖

 
(4. 6) 

 θ is the estimated grey relational grade, θm the mean of the grey relational grade, θi is the 

mean of the grey relational grade at the optimal level, k is the number of machining parameters 

that significantly impact the multiple response characteristics. The grey relational grade can be 

predicted using equation (4. 6) for optimal cutting parameters even when the combination of 

input parameters cannot be found in the orthogonal array. 

 Comparison results of output responses at initial and optimal settings are shown in Table 

15, where it is found that the tool life, Ra, and Avg. FY have improved by 55.81%, 6.12%, and 

23.9% respectively. 

Table 15: Results of output responses at an initial and optimal setting using GRA 

 
Initial 

Condition 

Optimal Output characteristics 
 

Prediction Experiment Percent 

Improved 

Level A2B1C3 A1B1C1 A1B1C1 
 

Tool Life (min) 56.39 
 

87.86 55.81% 

Ra (µm) 0.147 0.138 6.12% 

Avg. FY (N) 108.46 82.45 23.98% 

Grey Relational Grade 0.654 0.831 0.929 
 

Improvement of Grey 

Relational Grade 

0.275 

Genetic Algorithm and Grey relational analysis results comparison 

For both analyses, four response characteristics are chosen here: tool life, Ra, Avg. FY, 

and MRR. The following optimization is based on considering four objectives. Table 16 

represents the range of input parameters used for the optimization process with GA tool. 
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Table 16: Range of Input parameters 

Factors Upper Bound Lower Bound 

Cutting Speed (m/min) 65 50 

Feed rate (mm/rev) .3 .2 

Radial depth of cut (mm) 12.5 7.5 

For roughing, equation (3.11) is used as the objective function and equation (4. 1), (4. 2), 

(4. 4),(4. 5) are used as constraints. Weighting factor, CT = .3, CR = .1, CF = .1, CM = .5 are 

considered. These constraints are used T՛ ≥ 11.26, . 26 ≥ R՛, 202.3 ≥ F՛, M՛ ≥ 9.234. 

For finishing, equation (3.11) is used as the objective function and equation (4. 1), (4. 2), 

(4. 4), (4. 5) are used as constraints. Weighting factor, CT = .2, CR = .6, CF = .1, CM = .1 are 

considered. These constraints are used T՛ ≥ 11.26, . 15 ≥ R՛, 150 ≥ F՛, M՛ ≥ 9.234. 

Population size 20, Elit count 2, generation 100, crossover fraction 0.8, and mutation rate 

0.01 are used for both optimization and for roughing and finishing, 55 and 61 iterations are 

illustrated in Figure 25 (a) and (b), respectively. The final optimized results using GA tool are 

shown in Table 23. 
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Figure 25: Optimization history with generation for (a) Roughing, (b) Finishing. 

(a) 

(b) 
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For including MRR into the GRA, the data obtained from the experiments have been 

normalized. The grey coefficients are found by calculating the deviation, and then using equation 

((3. 6), the new grey relational grades are calculated. The weighting factors used in the GRA are 

same as the GA optimization weighting factors. 

Table 17: Data preprocessing for four output characteristics including MRR. 

Run Tool life  

δOi(1) 

FY  

δOi(2) 

Ra  

δOi(3) 

MRR  

δOi(4) 

1 1.000 1.000 0.865 0.000 

2 0.508 0.722 0.617 0.417 

3 0.290 0.226 0.000 0.937 

4 0.589 0.783 0.801 0.333 

5 0.081 0.214 0.553 0.872 

6 0.280 0.672 0.482 0.453 

7 0.042 0.330 0.759 0.729 

8 0.181 0.694 1.000 0.391 

9 0.000 0.000 0.553 1.000 

Table 18. Grey relational Co-efficient. 

Run Tool life  

Ф(1) 

FY  

Ф(2) 

Ra  

Ф(3) 

MRR  

Ф(4) 

1 1.000 1.000 0.788 0.333 

2 0.504 0.643 0.566 0.462 

3 0.413 0.392 0.333 0.889 

4 0.549 0.697 0.716 0.429 

5 0.352 0.389 0.528 0.797 

6 0.410 0.604 0.491 0.478 

7 0.343 0.427 0.675 0.649 

8 0.379 0.621 1.000 0.451 

9 0.333 0.333 0.528 1.000 

For roughing, weighting factors are different from those of finishing.  
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Table 19. Different weighting factors for roughing and finishing. 

Weighting factors Tool life, n FY Ra MRR 

Roughing 0.3 0.1 0.1 0.5 

Finishing 0.2 0.1 0.6 0.1 

Table 20. Grey relational grades for roughing and finishing in face milling. 

Run GRG roughing GRG finishing 

1 0.645 0.806 

2 0.503 0.551 

3 0.641 0.411 

4 0.520 0.652 

5 0.596 0.506 

6 0.471 0.485 

7 0.537 0.581 

8 0.501 0.783 

9 0.686 0.517 

Table 21: Results obtained for roughing. 

Level Cutting Speed Feed Radial depth of cut 

1 0.596 0.568 0.539 

2 0.529 0.533 0.570 

3 0.575 0.599 0.591 

Table 22: Results obtained for finishing. 

Level Cutting Speed Feed Radial depth of cut 

1 0.589 0.680 0.691 

2 0.548 0.613 0.573 

3 0.627 0.471 0.499 

Table 21 shows that for roughing, the input parameters should be 50 m/min cutting speed, .3 

mm/rev feed rate, and 12.5 mm depth of cut. On the other hand, Table 22 demonstrates that for 

finishing 65 m/min cutting speed, .2 mm/rev feed rate, and 7.5 mm radial depth of cut should be 

used as input parameters. The results obtained from the GA and GRA are compared in Table 23. 
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Table 23: The optimum values of the machining of Ti6Al4V obtained from different 

optimization processes. 

Input Parameters Roughing  Finishing  

GA 

results 

Grey 

relational 

analysis 

results 

Deviation 

(%) 

GA 

results 

Grey 

relational 

analysis 

results 

Deviation 

(%) 

Cutting speed 

(m/min) 

50 50 0 64.436 65 .867 

Feed rate 

(mm/rev) 

.289 .3 3.67 .205 .2 2.44 

Radial depth of 

cut (mm) 

12.473 12.5 .216 7.584 7.5 1.107 

The validation experiment, done earlier with the parameters obtained from Ra 

optimization, is the same as the input parameters obtained from finishing face milling 

optimization with GRA and using GA. The results obtained from the confirmation experiment 

has shown a 31.29% improvement in Ra from the initial condition. 

On the other hand, for obtaining higher MRR in roughing operation, the results indicate 

to use  50 m/min cutting speed, 0.3 mm/rev feed rate, and 12.5 mm radial depth of cut. The 

experiment, conducted following the Taguchi orthogonal array, the third experiment is done 

following the resultant parameters, and a higher MRR with a reasonable tool life is obtained. The 

results are shown in Table 5.  
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CHAPTER V 

 

CONCLUSIONS 

 

For Ti6Al4V alloy, the impacts of various face milling parameters, namely, cutting 

speed, feed rate, and radial depth of cut on cutting force, Ra, tool life, and MRR have been 

investigated using the Taguchi, ANOVA, GRA, and GA for mono and multi-objective 

optimization, respectively. ANOVA analysis has been performed to determine the significance 

of the input parameters on the response characteristics, and mathematical models have been 

developed using regression analysis for the prediction of response characteristics. 

 From S/N ratio analysis, it is found that the optimal parameter setting for maximizing 

tool life during face milling of Ti6Al4V alloy is cutting speed 50 m/min, feed rate 0.2 mm/rev, 

and radial depth of cut 7.5 mm. For minimum Ra, the optimal parameters are cutting speed 65 

mm/min, feed rate 0.2 mm/rev, and radial depth of cut 7.5 mm. The optimal cutting parameters 

for minimum Avg. FX, are cutting speed 57.5 m/min, feed rate 0.2 mm/rev, and radial depth of 

cut 7.5 mm. For minimum Avg. FY, the optimal cutting parameters are cutting speed 50 m/min, 

feed rate 0.2 mm/rev, and radial depth of cut 7.5 mm. From ANOVA analysis, it is found that the 

most significant parameter for tool life is cutting speed. For Ra and Avg. FX, the most significant 

parameter is feed rate and for Avg. FY, and MRR, radial depth of cut is found the most 

significant one. The mathematical models, developed using regression analysis, have been 
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validated by conducting a validation experiment. It is concluded that the models can be used to 

closely predict the tool life, Ra, cutting forces, and MRR.  

 From multi-objective optimization (maximizing tool life, minimizing Ra, and Avg. FY) 

using GRA, the optimal combination of input parameters is cutting speed 50 m/min, feed rate 0.2 

mm/rev, radial depth of cut 7.5 mm. The most significant factor using GRA is radial depth of cut 

for three objectives. The grey relation grade obtained at the optimal setting has shown an 

improvement of 0.275 compared to the initial condition. Therefore, it can be concluded from this 

study that radial depth of cut should be considered as a significant factor for face milling of 

Ti6Al4V.  

 Multi-objective optimization, considering four objectives (tool life, Ra, Avg. FY, and 

MRR) using GRA and GA for both roughing and finishing, have shown similar results with a 

negligible deviation, and the experimental results validate the optimization results too. 
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