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Abstract
We answer frequently asked questions (FAQs) about the Hellings and Downs
correlation curve—the ‘smoking-gun’ signature that pulsar timing arrays
(PTAs) have detected gravitational waves (GWs). Many of these questions arise
from inadvertently applying intuition about the effects of GWs on LIGO-like
detectors to the case of pulsar timing, where not all of it applies. This is because
Earth-based detectors, like LIGO and Virgo, have arms that are short (km scale)
compared to the wavelengths of the GWs that they detect (≈102–104 km). In
contrast, PTAs respond to GWs whose wavelengths (tens of light-years) are
much shorter than their arms (a typical PTA pulsar is hundreds to thousands
of light-years from Earth). To demonstrate this, we calculate the time delay
induced by a passing GW along an Earth-pulsar baseline (a ‘one-arm, one-way’
detector) and compare it in the ‘short-arm’ (LIGO-like) and ‘long-arm’ (PTA)
limits. This provides qualitative and quantitative answers to many questions
about the Hellings and Downs curve. The resulting FAQ sheet should help
in understanding the ‘evidence for GWs’ recently announced by several PTA
collaborations.
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1. Introduction

Four pulsar timing array (PTA) collaborations recently announced the results of their latest
searches for correlated low-frequency (∼10−9 Hz) gravitational waves (GWs). The findings
span the range from ‘weak evidence’ for GWs for the (Australian) Parkes PTA [1], ‘some
evidence’ for GWs for the Chinese PTA [2], ‘evidence/marginal evidence’ for GWs for the
European PTA [3], and ‘compelling evidence’ for GWs for the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [4].

These observations can be challenging to understand, in part because the observed signal in
the PTA band is unlike the short duration (∼0.25 s) GW ‘chirp’ signal that LIGO observed on
14 Sep 2015, from the final inspiral and merger of two ∼30M⊙ black holes. Instead of short
(1 s) audio frequency (100 Hz) deterministic GW signals, PTAs search for persistent (signals
with correlation times≲500 yr [5, figure 9] and which are in band for∼106 yr), low-frequency
(nHz) stochastic GW signals. These are too feeble to observe directly, but should produce
correlated perturbations in the arrival times of pulses from an array of galactic millisecond
pulsars.

Although the current PTA observations are not statistically significant enough to unam-
biguously claim a detection or to identify a source, a credible candidate is the superposition of
GWs from hundreds of thousands of supermassive (∼109M⊙) black holes (SMBH) orbiting
one another in the centers of merging galaxies. While any one of those binaries would produce
a deterministic almost-constant-frequency signal, the incoherent sum of the GWs from many
such sources creates a stochastic confusion noise: a ‘hubbub’ or ‘hum’ of GWs.

PTAs search for correlations that are predicted to follow the so-called ‘Hellings and Downs’
curve. This correlation curve is named after RonHellings and George Downs, who first derived
it in 1983 [6]. The idea is that pulsars act as high-quality clocks, emitting radio pulses that arrive
at Earth3 with very predictable and regular arrival times. GWs induce slight perturbations in
these arrival times, and these perturbations (called timing residuals) are correlated between
different pulsars in a very specific fashion.

The Hellings and Downs curve is a plot of the expected or average correlation in the timing
residuals from a pair of pulsars, as a function of their angular separation on the sky as seen
from Earth. This curve is a prediction of general relativity for a gravitational-wave background
(GWB) that is unpolarized and isotropic. More precisely, the Hellings and Downs curve is
the expected value of the pulsar-pair correlations averaged over all pulsar pairs having the
same angular separation and over GW sources having independent, random phases. Later,
we will discuss several different interpretations for the curve, depending upon the type of
averaging which is employed. Figure 1 shows how the timing residuals in NANOGravs 15-
year dataset [4] appear to match this predicted Hellings and Downs curve.

3 Our treatment is simplified: it assumes that the Earth is isolated, and that it is not orbiting the Sun, orbited by the
Moon, or affected by other planets. In practice, these and other deterministic effects are removed by converting all
pulse arrival times to pulse arrival times at the center of gravity of the Solar System, which is called the Solar System
Barycenter (SSB). The SSB is located near the surface of the Sun, about 8 light-minutes from Earth. On the scale of
the GWs of interest, this is close enough to the Earth that we do not make a distinction here.
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Figure 1. The spatial correlations observed in the pulsar timing residuals for
the NANOGrav 15-year dataset [4] are shown in blue; the Hellings and Downs
curve/prediction is shown in black. The blue points and error bars are optimally
weighted averages of approximately 150 pulsar-pair correlations in each angular separ-
ation bin, which take into account covariances between the correlations induced by the
GWB itself. Reproduced from [4]. © Agazie et al. Published by IOP Publishing Ltd.
CC BY 4.0.

1.1. Frequently asked questions (FAQs) about the Hellings and Downs curve and the
Hellings and Downs correlation

When giving talks about the recent PTA observations, the authors have repeatedly been asked
certain questions about the properties of the Hellings and Downs correlation curve. The most
common questions vary a bit, but can be summarized as:

Q1: Why is the Hellings and Downs curve in figure 1 normalized to 1/2 at zero angular sep-
aration, but is normalized to 1/3 in other papers? Does it matter?

Q2: Why does the Hellings and Downs curve have different values at 0◦ and 180◦ if the quad-
rupolar deformation of space produced by a passing GW affects two test masses 180◦

apart in exactly the same way?
Q3: Why is the value of the Hellings and Downs curve for two pulsars separated by 180◦

exactly half that for 0◦ angular separation?
Q4: Why is the most negative value of the Hellings and Downs curve not at 90◦?
Q5: Why is the Hellings and Downs curve frequency independent, whereas overlap functions

for Earth-based interferometers are frequency dependent?
Q6: Does recovery of the Hellings and Downs curve imply that the GWB is isotropic?
Q7: In the distant future, when PTA observations are carried out with larger and more sensitive

telescopes, more pulsars, and much longer observation periods, will we exactly recover
the Hellings and Downs curve?

Q8: Assuming noise-free observations, are the fluctuations away from the expected Hellings
and Downs curve only due to the pulsar-term contributions to the timing residual
response?

Q9: Why does the Hellings and Downs recovery plot shown in figure 1 have error bars that
are much larger than one would expect for the reported 3− 4σ significance?

Q10: If a deviation from the Hellings and Downs curve is detected, what does that mean?

We believe that many of these questions arise because much of our intuition regarding the
response of a detector to a passing GW was developed for Earth-based GW detectors such as

3
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LIGO and Virgo. Not all of it carries over to the case of PTAs. This is because the distance
between the Earth and a pulsar (one ‘arm’ of a PTA detector) is typically hundreds to thousands
of times longer than the wavelengths (λ≈ 100 − 101 light-years) of the GWs that PTAs are
trying to detect. In contrast, Earth-based interferometers have km-long arms that are much
shorter than the wavelengths (λ≈ 102–104 km) of the GWs that these detectors are sensitive
to. In summary: PTA detectors operate in the ‘long-arm’ (or short-wavelength) limit, whereas
Earth-based laser interferometers operate in the ‘short-arm’ (or long-wavelength) limit.

The goal of this paper is to provide qualitative and quantitative answers to the questions
above, highlighting the differences between PTAs and LIGO-like detectors as appropriate.

Note that, as suggested by Q7, we make a distinction between (a) the Hellings and Downs
curve, which is the black curve shown in figure 1 and (b) the observed Hellings and Downs
bin-averaged correlation, shown by the blue points and error bars in the same figure, which
might or might not follow this curve.

1.2. Outline

The remainder of this paper is organized as follows. There are two main parts: Part I consists
of sections 2 and 3, which provide the background information needed to derive the Hellings
and Downs curve. This includes the calculation of the exact response of a single Earth-pulsar
baseline to a passing GW, and two different averaging procedures used to obtain the expec-
ted correlation for pairs of Earth-pulsar baselines. Part II consists of sections 4 and 5, which
provide the answers to the FAQs listed above and a brief summary of the key points of the
paper.

Readers who are already familiar with pulsar timing and the definition of the Hellings and
Downs correlation could skip sections 2 and 3 and jump directly to section 4. However, we
advise against this for two reasons: (i) in sections 2.2 and 2.4, we compare the response of
‘long-arm’ PTA pulsars to that of ‘short-arm’ LIGO-like detectors, which we believe is the
source of many of the misconceptions regarding the Hellings and Downs curve. (ii) Our dis-
cussion of pulsar averaging in section 3.2 will be new to many, and the concepts introduced
there are important for understanding what follows.

To make this article more accessible, we take a pedagogical approach. We avoid jargon,
and either give ‘first-principles’ explanations or provide pointers to papers containing these.
We also suggest exercises for the reader. While no solutions are given, for the more involved
exercises we point to published papers that contain these solutions.

From here forward, we use units in which the propagation speed c of light and of GWs
is set equal to one. This means that both time and distance are measured in units of seconds
or years as appropriate. More precisely, a distance is given by the time that it takes light to
traverse that distance. For example, a meter stick is approximately 3 nanosec long, the LIGO
detectors’ arms are about 10 microseconds long, the wavelengths of the GWs that PTAs are
sensitive to are typically 10 years long, and typical pulsars are thousands of years from Earth.

We also adopt the Einstein summation convention for repeated spatial indices such as i
and j.

2. Single pulsar response

2.1. Single GW point source

We begin by describing the GWs emitted by a single very distant point source, and consider
their effect on light (i.e. a radio pulse) propagating along an Earth-pulsar baseline. For example,

4
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Figure 2. Geometry for the single pulsar analysis. The Earth is located at the origin
of a rectangular Cartesian coordinate system. The components hij(t, x⃗) of the metric
perturbations are functions of time and of the spatial coordinates x⃗. A single point source
of GWs is located a distance d from Earth in direction−Ω̂ on the sky. A galactic pulsar
is located a distance L from Earth in direction p̂. The distances λ, L and d are related by
λ≪ L≪ d, where λ is the characteristic wavelength of the GWs that PTAs search for
(of order 10 light-years).

imagine that the GWs are produced by an orbiting pair of SMBHs in the centers of twomerging
galaxies, ∼108 years from Earth. The SMBHs are separated by a distance of a few years, so
from the perspective of Earth are a point source. For such a large distance from the source,
the associated metric perturbations hij(t, x⃗) are solutions of the vacuum wave equation and are
well approximated in the neighborhood of the Earth and pulsar by plane waves propagating in
direction Ω̂, where −Ω̂ is the direction from Earth to the SMBH pair (see figure 2).

In transverse-traceless-synchronous coordinates (t, x⃗)≡ (t,xi), where i = 1,2,3, we have4

hij (t, x⃗) =
∑

A=+,×
hA(t− Ω̂ · x⃗)eAij(Ω̂) (1a)

= ℜ
[
h(t− Ω̂ · x⃗)e∗ij(Ω̂)

]
, (1b)

where

h(u)≡ h+ (u)+ ih× (u) , eij(Ω̂)≡ e+ij (Ω̂)+ ie×ij (Ω̂) (2)

are complex combinations of the arbitrary real functions h+(u), h×(u) and real polarization
tensors e+ij (Ω̂), e

×
ij (Ω̂) defined by

4 It is immediate from the functional form of hA(t− Ω̂ · x⃗), and the definitions of the polarization tensors e+ij (Ω̂),

e×ij (Ω̂) (see (3a) and (3b)) in terms of the unit vectors Ω̂, m̂, n̂ (see (4a)–(4c) that themetric perturbations hij(t, x⃗) satisfy

the vacuum wave equation, (∂2/∂t2 −∇2)hij = 0, are transverse hijΩ̂j = 0, and traceless hijδij = 0. The coordinates
are called ‘synchronous’ because the metric perturbations are purely spatial: their time components vanish.

5
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Figure 3. Left panel: Coordinate system and unit vectors used in the plane wave expan-
sion. Right panel (top): two orthogonal polarizations of a GW. A circular ring of freely
falling test particles is placed at rest in the plane orthogonal to the propagation direction
Ω̂ of the wave. These are periodically deformed into ellipses, as space is ‘squeezed’ and
‘stretched’ (here very exaggerated) by the passing of the GW. Right panel (bottom): an
alternative basis of two orthogonal polarization vectors may be obtained by rotating m̂
and n̂ through angle ψ to obtain new vectors m̂ ′ and n̂ ′.

e+ij (Ω̂) = m̂i m̂j− n̂i n̂j , (3a)

e×ij (Ω̂) = m̂i n̂j+ n̂i m̂j . (3b)

Here, m̂ and n̂ are any two orthogonal unit vectors in the plane perpendicular to Ω̂. For
stochastic background analyses, a common convention which we adopt here is

Ω̂≡−x̂ sinθ cosϕ− ŷ sinθ sinϕ− ẑ cosθ =−r̂ , (4a)

m̂≡ x̂ sinϕ− ŷ cosϕ =−ϕ̂ , (4b)

n̂≡−x̂ cosθ cosϕ− ŷ cosθ sinϕ+ ẑ sinθ =−θ̂ , (4c)

where r̂, θ̂, ϕ̂ are the standard spherical polar coordinate unit vectors, which are normal and
tangent to the two-sphere. The vectors Ω̂, m̂, and n̂ are shown in figure 3.

The reader should be aware that in the literature there are two commonly-used mappings
between the wave propagation direction and spherical polar coordinates θ,ϕ. In this work, as
in [7, 8] the minus signs that appear in the mapping (4a) mean that θ,ϕ are the sky coordinates
of the GW source. In the other papers that we cite [5, 9–12], θ,ϕ are the sky coordinates of the
propagation direction; the GW source has antipodal coordinates π− θ,ϕ+π.

Note that for any GW propagation direction Ω̂, one can form an alternative orthonormal set
of unit vectors by rotating m̂ and n̂ through an angle ψ (called the polarization angle) in the
plane orthogonal to Ω̂, as shown in the bottom right panel of figure 3. We leave it as an exercise
for the reader to show that such a rotation of m̂ and n̂ leads to a new set of polarization tensors

[
e ′+ij
e ′×ij

]
=

[
cos2ψ sin2ψ

−sin2ψ cos2ψ

][
e+ij
e×ij

]
, (5)

6
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or, equivalently5,

e ′ij(Ω̂,ψ) = exp(−i2ψ) eij(Ω̂) . (6)

This change of polarization basis is a spin-two gauge transformation that leaves the metric
perturbations hij(t, x⃗) unchanged. This is because the complex amplitude is multiplied by a
phase which cancels that of (6):

h ′ (u) = exp(−i2ψ)h(u) , (7)

as can be seen from (1b). Note that this mixes h+(u) and h×(u): h ′+ and h ′× are linear com-
binations of h+ and h×. The gauge transformation is local, because if there are many sources
with different Ω̂, then ψ may be picked differently for each of these. The spin-two interpret-
ation comes from quantum mechanics, where it indicates that the phase of the wave function
rotates at twice the rate of the physical coordinate axes.

A particularly interesting case is the GWs emitted by a pair of SMBHs which are in a
circular orbit with constant angular frequency, with an orbit that lies in the plane of the sky. This
means that Ω̂ is parallel to the orbital angular momentum. The resulting GWs have components

h+ (t) = Acos(2π f0t+ϕ0) , h× (t) = Asin(2π f0t+ϕ0) , (8)

where A is a constant which is inversely proportional to the distance from Earth or pulsars to
the SMBHs. The complex waveform is

h(t)≡ h+ (t)+ ih× (t) = Aexp(i(2π f0t+ϕ0)) . (9)

Using (1b) and (6), it follows that6

hij(t, 0⃗) = Ae ′+ij (Ω̂,ψ(t)) , ψ (t)≡ 1
2
(2π f0t+ϕ0) , (10)

which describes a circularly polarized GW. The unit vectors m̂ ′ and n̂ ′ defining e ′+ij (Ω̂,ψ(t))

rotate uniformly in the plane orthogonal to Ω̂ with angular velocity dψ/dt= π f0, which is the
orbital angular velocity of the SMBH pair; the GW angular frequency is twice this.

For a circularly polarized GW source, the two linear polarization strain components are
uncorrelated in time and have equal time-averaged squared values:

h+ (t)2 = h× (t)2 , h+ (t)h× (t) = 0 . (11)

Here, overbar denotes an average

F(t)≡ 1
T

ˆ T/2

−T/2
dt F(t) (12)

over the observation time T, and we have assumed that T is commensurate with the period of
the wave, so that f0T= n, where n ̸= 0 is an integer.

Any gravitational-wave source whose+ and× components satisfy (11) is said to be unpo-
larized. At first, this seems to be a strange use of language, since it means that a circularly

5 As illustrated by comparing (5) and (6), it is often more convenient to work with complex quantities and then take
their real and imaginary parts, as opposed to working with just the real polarizations. This usually leads to equations
that have half as many terms.
6 As written in (10), the time dependence of the metric perturbations hij(t, x⃗) has been moved from the functions hA(t)
into the polarization tensor e ′+ij (Ω̂,ψ(t)), via the time dependence of ψ(t). Normally, the polarization tensors are
taken to be time independent.

7
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polarized source is ‘unpolarized’. A better way to think about it is this: an unpolarized source
has no preferred polarization direction, as defined by the polarization angle ψ, in the plane per-
pendicular to Ω̂. So, according to this definition, a circularly polarized source is unpolarized,
whereas a linearly polarized or elliptically polarized source is not unpolarized. The Hellings
and Downs curve that we will discuss later is appropriate for a GWB made up of a superpos-
ition of unpolarized GW sources, or for a collection of polarized sources, provided that the
collection does not define any preferred polarization angle.

2.2. Redshift response for a single Earth-pulsar baseline

As the GW passes the Earth-pulsar baseline, it affects the pulse arrival times. The change ∆T
in the arrival time of the pulse as measured at Earth at time t is obtained by projecting the
metric perturbations along the direction to the pulsar p̂, and then integrating that projection
along the spacetime path of the pulse from emission at the pulsar to reception at Earth:

∆T(t) =
1
2
p̂ip̂ j
ˆ L

0
ds hij (t(s) , x⃗(s)) where (13a)

t(s) = t− (L− s) , x⃗(s) = (L− s) p̂ . (13b)

Thus, the pulse ‘samples’ the metric perturbations along its (null) path through spacetime.
Note that we do not need to include any corrections to the straight-line path for the photon
given above, as the metric perturbations are already first-order small and we can ignore all
second- and higher-order terms in the calculation [13].

It turns out to be somewhat simpler mathematically to work instead with the Doppler shift
in the pulse frequency induced by the GW. This Doppler or ‘redshift’ response, which we will
denote by Z(t), is obtained by differentiating the timing residual response ∆T(t) with respect
to time:

Z(t)≡ d∆T(t)
dt

=
1
2
p̂ip̂j
ˆ L

0
ds
∂hij
∂t

(t(s) , x⃗(s)) . (14)

A redshift means an apparent lowering of the clock frequency, corresponding to an increase in
the arrival period of the pulse, while a blueshift is the opposite. While ‘redshift’ and ‘blueshift’
are normally used in the context of visible light, they also apply to radio signals and even to
the time delays between pulses from a pulsar, since relativistic effects are felt by all types of
clocks and oscillators. (A detailed derivation of this equation in the context of temperature
fluctuations in the cosmic microwave background was given by Sachs and Wolfe in [13]; see
equation (39) in that paper. This was the first such occurrence of this equation that we are
aware of.)

To perform the integration and differentiation that appear in (14), we first bring the time
derivative inside the integral, differentiating the complex function h(u(t,s)) that enters the
expression for hij(t(s), x⃗(s)), see (1b) and (13b). Since

u(t,s)≡ t(s)− Ω̂ · x⃗(s) = t− (L− s)(1+Ω̂ · p̂) , (15)

it follows that

∂h
∂t

=
dh
du
∂u
∂t

=
dh
du
,

∂h
∂s

=
dh
du
∂u
∂s

= (1+Ω̂ · p̂)dh
du
, (16)

8
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leading to

∂h
∂t

=
dh
du

=
∂h/∂s
∂u/∂s

=
1

(1+Ω̂ · p̂)
∂h
∂s
. (17)

The expression (14) can now be trivially integrated over s. Since the prefactor 1/(1+Ω̂ · p̂)
does not depend on s, the integral is just the difference of h(u(t,s)) at the endpoints:

Z(t) =
1
2

p̂i p̂j

1+Ω̂ · p̂

[
hij(t, 0⃗)− hij (t−L,Lp̂)

]
. (18)

This is the difference of the metric perturbations at the Earth at the instant when the pulse
was received [s= L⇒ spacetime point (t, 0⃗)] and at the pulsar at the instant when the pulse
was emitted [s= 0⇒ spacetime point (t−L,Lp̂)], projected onto the pulsar direction. The
two terms are called the Earth term and pulsar term, respectively, and are explicitly shown in
figure 2.

This difference between the Earth and pulsar terms has a simple physical interpretation.
As explained in [14, 15], the redshift (18) can be interpreted as a Doppler shift resulting from
a relative velocity between the Earth and the pulsar, projected along the line of sight to the
pulsar. This projected relative velocity is obtained by parallel-transporting the pulsar 4-velocity
vector along the null geodesic traversed by the radio pulse. Via the Doppler effect, this nonzero
relative velocity redshifts or blueshifts the photon frequency. If both source and receiver have
the same projected velocity, then the Earth and pulsar term cancel, and the GW has no net
effect on the photon redshift/pulsar timing residual.

We can write the above expression for the redshift response Z(t) as

Z(t) =
∑
A

∆hA (t,Lp̂)FA(Ω̂) = ℜ
{
∆h(t,Lp̂)F∗(Ω̂)

}
, (19)

where ∆hA are the the Earth-to-pulsar differences in retarded waveforms:

∆hA (t,Lp̂)≡ hA (t)− hA(t−L(1+Ω̂ · p̂)) , (20)

and the FA are geometrical projection factors

FA(Ω̂)≡ 1
2

p̂i p̂j

1+Ω̂ · p̂
eAij(Ω̂) , A=+,× . (21)

The corresponding complex quantities∆h(t,Lp̂) and F(Ω̂) are defined by∆h≡∆h+ + i∆h×

and F≡ F+ + iF×.
At first glance it appears that the geometrical projection factor FA(Ω̂) diverges if the GW

source is located behind the pulsar (Ω̂ =−p̂), since the denominator 1+Ω̂ · p̂ in (21) then
vanishes. But the reader can easily verify that this zero in the denominator is canceled by a
zero from the projection p̂i p̂jeAij(Ω̂) when p̂ is proportional to Ω̂. In this Ω̂→−p̂ case, the
response |F| → 1 is finite, as can be seen clearly from (27). Nevertheless, the redshift Z(t)
vanishes: because 1+Ω̂ · p̂= 0, the two functions in (20) are both evaluated at t, and cancel.
Physically, the radio pulse ‘surfs’ on the GW, so the Earth and pulsar term are identical and
their difference is zero. However, if the GW direction Ω̂ is displaced slightly away from −p̂,
the response has its maximum value as shown by the nearly vertical ‘lobes’ in the rightmost
panel of figure 6.
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2.3. Transfer functions and geometric projection factors

To visualize the response of a pulsar to a GW source, consider the simplest case: a circularly
polarized GW source at sky position −Ω̂ radiating at a fixed GW frequency f. In a linear
polarization basis the waveform is given by (8), and in a circular (≡ complex) polarization
basis it is given by (9). Without loss of generality, the amplitude A⩾ 0. From (19), the redshift
at Earth for a pulsar in direction p̂ is

Z(t) = ℜ
(
Aei(2π f t+ϕ0)

[
1− e−i2π f L(1+Ω̂·p̂)

][
F+(Ω̂)− iF×(Ω̂)

])
. (22)

The first quantity in square brackets is the redshift transfer function, which is the difference
between the Earth term (unity) and the pulsar term (complex phase):

T (α, Ω̂ · p̂)≡ 1− e−i2πα(1+Ω̂·p̂) . (23)

The dimensionless parameter α≡ fL= L/λ we have introduced is the ratio of the arm-length
(i.e. the distance from Earth to pulsar) to the wavelength of the GW.

Return to the redshift in (22). Let r⩾ 0 denote a real modulus and ϕ ∈ [0,2π) denote a real
phase, so the redshift is

Z(t) = ℜ
(
rei(2π f t+ϕ)

)
= rcos(2π f t+ϕ) . (24)

The squared modulus can be read directly from (22), and is

r2 = A2
∣∣∣1− e−i2π f L(1+Ω̂·p̂)

∣∣∣2 |F(Ω̂)|2 . (25)

Thus, the redshift oscillates sinusoidally with time according to (24), with an overall amplitude

r= A
∣∣T (α, Ω̂ · p̂)

∣∣|F(Ω̂)|, (26)

where

|F(Ω̂)| ≡
√
F+(Ω̂)2 +F×(Ω̂)2 =

1
2
(1− Ω̂ · p̂) (27)

is the quadrature combination of the pulsar’s responses to the two polarizations. We recom-
mend that the reader verify the last equality in (27); see also [17, equation (2.7)].

Is the redshift response for a source which is unpolarized [as defined by (11)] described by
the same quadrature combination? No, not unless the definition of ‘unpolarized’ is generalized.
This can be seen by computing the average squared redshift Z2(t), where the overbar denotes
the time average in (12). This is proportional to F+(Ω̂)2 +F×(Ω̂)2 if

h+ (t)h+ (t+T) = h× (t)h× (t+T) ,and h+ (t)h× (t+T) = 0 , (28)

for an arbitrary value of T. If h+ and h× are ergodic processes, then these auto-correlation
functions are related to the spectrum and cross spectrum of the two polarizations: the mean-
squared redshift response will be described by the quadrature combination if h+ and h× have
the same power spectrum and a vanishing cross spectrum.

The quadrature combination is also relevant for polarized sources, if there are no
preferred orientations. To see this, first consider a single polarized source, defined by
some complex waveform h(u) = h+(u)+ ih×(u). From (19), the redshift at Earth is
Z(t) = ℜ[∆h(t,Lp̂)F∗(Ω̂)]. How would that be changed if the axes which define the source’s
polarization are rotated through an angle ψ as shown in the bottom right panel of figure 3?
Because this does not change Ω̂ or the direction p̂ to the pulsar, it only affects the redshift via
F, which is modified because the complex polarization tensor appearing in F is transformed

10
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Figure 4. Modulus of the redshift transfer function T (α, Ω̂ · p̂) for a normally incident
(Ω̂ · p̂= 0) GW. It vanishes if the arm length is a multiple of the GW wavelength, α≡
fL= n for n= 1,2,3, . . . .

according to (6). Let CR and CI denote the real and imaginary parts of the complex quantity
C= CR + iCI =∆h(t,Lp̂)F∗(Ω). Then the redshift for this new source, with rotated polariza-
tion axes, is

Z(t) = ℜ
[
Cei2ψ

]
= CR cos(2ψ)−CI sin(2ψ) . (29)

The average squared value of this quantity (uniformly averaged over all polarization
orientations) is

Z2
rms (t)≡

1
2π

ˆ 2π

0
dψ Z2 (t) =

1
2

(
C2

R +C2
I

)
=

1
2
|C|2 . (30)

Taking the square root of both sides, we find that the rms redshift is

Zrms =
1√
2

∣∣h(t)− h(t−L(1+Ω̂ · p̂))
∣∣∣∣F(Ω)∣∣. (31)

Thus, these quadrature combinations characterize the response of a PTA to an unpolarized
source, or to a polarized source whose orientation is random.

The redshift (19) is linear in the GW strain, and any GW strain can be decomposed into a
sum of (left and right) circularly polarized plane waves of constant frequency. Hence, we can
understand the response of a PTA to any GW signal by understanding the response of the PTA
to a circularly polarized GW of constant frequency. In light of (22) it is convenient to define
response functions

RA( f, Ω̂)≡
[
1− e−i2π fL(1+Ω̂·p̂)

]
FA(Ω̂) = T (α, Ω̂ · p̂)FA(Ω̂) . (32)

The redshift transfer function T vanishes if the pulse from the pulsar traverses an integer
number of cycles of GW-induced stretching and squeezing, because these integrate to give zero
net timing delay. At fixed GW frequency f, this occurs for int[2α] different incident directions,
given by values of Ω̂ · p̂ that satisfy

1+Ω̂ · p̂= n/α where n= 1,2, . . . , int [2α] . (33)

The limit on n arises because the left-hand side of (33) lies in the interval [0,2]. However, for
a given GW direction (fixed Ω̂ · p̂) there are an infinite number of α values (or frequencies) at
which T vanishes. For normal incidence of the GW (i.e. Ω̂ · p̂= 0), these zeroes lie at α= n
for n= 1,2, . . . , as shown in figure 4.

11
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Figure 5. Antenna pattern functions R( f, Ω̂) for the polarization-averaged redshift
response of an Earth-pulsar baseline having p̂= ẑ, evaluated for different fixed values of
α≡ fL (from left to right, α= 0.05, 0.5, 2, 10). The top row of plots are cross-sections:
the antenna pattern functions are axially symmetric about the z-axis. For example, the
leftmost pattern resembles a doughnut with no hole, as shown in the bottom row of plots,
which are the corresponding antenna patterns viewed from slightly above the xy plane.

For a short-arm LIGO-like detector, the redshift transfer function (23) and the response
function (32) take simple forms. Expanding the exponential in (23) to first order in α≪ 1
gives T ≃ i2πα(1+Ω̂ · p̂), which implies (using α≡ fL)

RA( f, Ω̂)≃ i2π fLGA(Ω̂) , GA(Ω̂)≡ 1
2
p̂i p̂jeAij(Ω̂) . (34)

The geometrical projection factors GA(Ω̂), where A=+,×, are just the strain (i.e. ∆L/L)
response functions for a short one-arm, one-way LIGO-like detector. Note that this short-arm
response function is symmetric under the interchange p̂→−p̂, unlikeFA(Ω̂). This implies that
if the distance from the Earth to a pulsar were much less than the GW wavelength, then the
timing response of that Earth-pulsar baseline p̂would be exactly the same as that for a pulsar in
the opposite sky direction, −p̂. This symmetry can be seen graphically in the leftmost panels
of figures 5 and 6.

2.4. Visualizing the redshift response (antenna pattern functions)

It is helpful to visualize the response of a single Earth-pulsar baseline to an ‘unpolarized
source’ in the sense described above. From (26), for a unit-amplitude source (A= 1) the rel-
evant quantity is the polarization-averaged response function

R( f, Ω̂) =
√

|R+( f, Ω̂)|2 + |R×( f, Ω̂)|2 = |T (α, Ω̂ · p̂)| |F(Ω̂)| , (35)

with α≡ fL as previously defined, and |F(Ω̂)| given by (27). To examine the short-arm limit,
we also define the quadrature combination

|G(Ω̂)| ≡
√
G+(Ω̂)2 +G×(Ω̂)2 (36)

12
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Figure 6. Antenna pattern functions for the polarization-averaged geometrical projec-
tion factors |G(Ω̂)| (left panel) and |F(Ω̂)| (middle panel). The right panel compares
|F(Ω̂)| (white dashed curve) with the full polarization-averaged timing response func-
tion R( f, Ω̂) for fL= 100. All of these antenna pattern functions are axially symmetric
around the z-axis.

for the response in the short-arm limit, ignoring the prefactor i2π fL relating RA( f, Ω̂) and
GA(Ω̂), see (34).

Without loss of generality, consider a pulsar located in the p̂= ẑ direction

|F(Ω̂)|= 1
2
(1+ cosθ) , |G(Ω̂)|= 1

2
sin2 θ , (37)

where −Ω̂ · p̂= cosθ is the cosine of the angle of the GW source relative to the pulsar dir-
ection. You will need to use (3a), (3b), (4a), (4b), (4c), (34) and (21) to obtain these explicit
expressions. As discussed above, |F(Ω̂)| is finite as θ→ 0 and vanishes as θ→ π, while |G(Ω̂)|
vanishes at both θ = 0,π (see the middle and left panels of figure 6).

For fixed frequency f and fixed distance L to a pulsar, the shape of the polarization-averaged
response function R( f, Ω̂) depends only on the relative orientation of the GW propagation
direction Ω̂ and the direction to the pulsar p̂. The shape of R( f, Ω̂) is often called an antenna
pattern, because the magnitude of R is the ‘strength’ of the response. Figure 5 shows plots of
the antenna patterns R( f, Ω̂) for a pulsar located in the ẑ direction for different fixed values of
α≡ fL. The left panel shows the antenna pattern in the ‘short-arm’ LIGO-like limit, α≪ 1,
which is proportional to sin2 θ, as shown in (34) and (37). Note that the number of lobes of the
antenna pattern increases as α increases, and that the overall magnitude of the antenna pattern
function is proportional to α for α≪ 1. Both of these behaviors are a consequence of the form
of the redshift transfer function given in (23) and seen in figure 4.

Recall that for most pulsars, α will be of order 100 or more, since the distance to typical
pulsars is of order a kpc (so a few thousand light-years) or more, while the GWwavelengths are
only of order tens of light-years. The rightmost panel of figure 6 is a plot ofR( f, Ω̂) appropriate
for the (semirealistic) case α= 100. Also plotted in this figure are the polarization-averaged
antenna pattern functions for the geometrical projection factors |G(Ω̂)| (left panel) and |F(Ω̂)|
(middle panel). Note that |F(Ω̂)| is half of the ‘envelope’ of the full response functionR( f, Ω̂),
illustrated by the dashed white curve in the rightmost panel plot.

These differences in antenna patterns and responses for ‘short-arm’ and ‘long-arm’ GW
detectors have close equivalents in the context of electromagnetic (EM) antennas and phased
arrays. Those which are small compared to the EM wavelength are analogous to short-arm
GW detectors, and vice versa. Because of reciprocity, it does not matter if the antennas are
receiving or broadcasting.

13
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Figure 7. Six hypothetical pulsar locations relative to the Earth and a monochromatic
GWpropagating in direction Ω̂. All the pulsars lie in a plane, and are at distances L= 5λ
with respect to the Earth, where λ is the wavelength of the GW.

A simple example is the center-fed linear antenna. This a straight wire of length d, laid
along the z-axis between−d/2< z< d/2, and broken open at the origin, where the two halves
are driven by a voltage difference that varies sinusoidally with time. This creates a current
distribution along the wire which is sinsoidal with respect to both time and space, and which
vanishes at the ends of the wire, see [18, section 9.4] for details. In the radiation zone r≫
d, r≫ λ, where r is the distance from the antenna, the electric field E⃗ has an azimuthally-
symmetric magnitude proportional to

|E⃗| ∝
cos
(
π d
λ cosθ

)
− cos

(
π d
λ

)
sinθ

1
r
. (38)

If the antenna is long, d≫ λ, then this radiation pattern has multiple lobes, similar to
that shown in the rightmost panel of figure 6 for a PTA. If the antenna is short, d≪ λ,
then (38) approaches the single-lobed radiation pattern of a short EM dipole antenna r|E⃗| ∝
(πd/λ)2 sinθ. This is similar to the response shown in the left-hand panel of figure 6 for a
short-arm GW detector.

In the EM case, the multiple lobes are due to constructive and destructive interference
from the sinusoidally-varying current distribution along the length of the long antenna. In
the GW PTA case, the multiple lobes are due to constructive and destructive interference of
the sinusoidally-varying GW amplitude along the photon path.

To end this section, we leave it as an exercise for the reader to calculate the values of the
various antenna pattern functions |G(Ω̂)|, |F(Ω̂)|, andR( f, Ω̂) for the different pulsar locations
and GW shown in figure 7. As in figure 2, there is a single GW point source in direction
−Ω̂ relative to Earth, sufficiently far away that the wavefronts are planar when they reach the
vicinity of the Earth and the pulsars. We also assume that the GW is monochromatic with
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Table 1. Values of the different antenna pattern functions for the GW source and pulsar
locations shown in figure 7.

Pulsar label a= 1 a= 2 a= 3 a= 4 a= 5 a= 6
Pulsar direction p̂1 p̂2 p̂3 p̂4 p̂5 p̂6
|Ga(Ω̂)| 0 0 1/2 1/2 3/8 3/8
|Fa(Ω̂)| 1 0 1/2 1/2 3/4 1/4
Ra( f, Ω̂) 0 0 0 0 3/2 1/2

fL≡ L/λ= 5, where λ is the GW wavelength and L is the distance of the pulsars from Earth.
The values of the various antenna patterns are given in table 1.

2.5. The plane wave expansion

The plane wave expansion is widely used in the literature and provides a simple and precise
way to write the pulsar response in the most general case of interest. If the PTA is far from the
GW sources, then the GW metric perturbations in the PTA’s neighborhood may be written as
a sum of plane waves

hij (t, x⃗) =
∑
A

ˆ
df
ˆ

dΩ̂hA( f, Ω̂)e
A
ij(Ω̂)e

i2π f(t−Ω̂·⃗x), (39)

where
´
dΩ̂≡

´ 2π
0 dϕ

´ π
0 sinθdθ. Here and elsewhere, frequency and time integrals are over

the range (−∞,∞), unless explicit limits are given.
One can see by inspection that hij(t, x⃗) satisfies the wave equation (−∂2

t +∇2)hij = 0 and
that it is transverse∇i hij = 0, traceless, and synchronous. The functions hA( f, Ω̂) = h∗A(−f, Ω̂)
are the complex Fourier amplitudes of the GW sources in direction−Ω̂ at frequency f. If there
is a discrete set of sources, then the integral over Ω̂ may be replaced by a sum over those
discrete sources, each of which has its own direction vector.

Substitute this plane wave expansion (39) into the formula for the redshift (14), differentiate
with respect to t, and then integrate along the null ray coming from pulsar ‘a’ as specified
in (13b). One obtains a compact formula for the redshift Za(t) of an arbitrary pulsar in an
arbitrary GW background:

Za (t) =
∑
A

ˆ
df
ˆ

dΩ̂RAa ( f, Ω̂)hA( f, Ω̂)e
i2π ft . (40)

The response function (32) and the geometrical projection factor (21) carry the pulsar label
‘a’, and depend upon the pulsar’s distance La and sky direction p̂a. They are given by

RAa ( f, Ω̂)≡
[
1− e−i2πfLa(1+Ω̂·p̂a)

]
FAa (Ω̂) ⇔ Ra = R+

a + iR×
a (41)

and

FAa (Ω̂)≡
1
2

p̂ia p̂
j
a

1+Ω̂ · p̂a
eAij(Ω̂) , A=+,× . (42)

The response function elegantly incorporates the difference between the Earth term (unity)
and the pulsar term (a complex phase).
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Figure 8. The geometry for the pulsar-pair correlation analysis is the same as in figure 2,
but with two Earth-pulsar baselines. The pulsars are labeled by a and b and are at dis-
tances La and Lb and directions p̂a and p̂b as seen from Earth. They are separated by
angle γ on the sky. As discussed in the text, we assume that the Earth-pulsar distances
La, Lb and the distance between the two pulsars |Lap̂a− Lbp̂b| are much greater than the
correlation length of the relevant GWs. Consequently, the expression for the expected
correlation only contains the Earth-term response functions Fa(Ω̂) and Fb(Ω̂) for the
two pulsars.

3. Pulsar-pair correlations

Large amplitude GWs would be directly visible in the GW detector output. Indeed, in the
early days of pulsar timing, upper limits were set on the amplitude of GWs by examining the
timing residuals from single pulsars [19]. The smallness of those residuals meant that the GW
amplitudes could not have been too large.

However, the GWs predicted for typical background sources are too weak to be directly
visible in the data; they cannot be separated from noise in the measurements or other physical
effects. Fortunately, there is a way around this: look for a common GW signal by correlating
the redshift measurements for two or more Earth-pulsar baselines for a PTA. With sufficient
integration or averaging, one can ‘dig below the noise’. The same method (correlating signals
from pairs of LIGO-like Earth-based detectors) is used to hunt for a stochastic GWbackground
at audio frequencies [7, 10, 20].

3.1. Hellings and Downs correlation (source averaging)

To analyze these correlations, we extend the calculations of sections 2.1–2.3 to two Earth-
pulsar baselines as shown in figure 8. With respect to Earth, the two pulsars are at distances
La and Lb and have sky directions p̂a and p̂b.

As shown in figure 8, we begin with a single GW point source, located very far
away in direction −Ω̂ with respect to Earth. The correlation between noise-free redshift
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measurements Za(t), Zb(t) for the two pulsars is given by the time-averaged product over the
observation time

ρab ≡ Za (t)Zb (t)≡
1
T

ˆ T/2

−T/2
dt Za (t)Zb (t) . (43)

To study the properties of the correlation ρab, particularly for an ensemble of GW sources, it
is helpful to work in the frequency domain.

The frequency-domain representation for a single GW source is a special case of the general
plane wave expansion (39), where the Fourier amplitudes vanish except for a single direction
Ω̂. Alternatively, and equivalently, we can return to the formulation (1a) for a single source,
and define Fourier amplitudes h̃A( f) for the source waveforms by

h̃A ( f)≡
ˆ

dt e−i2π ft hA (t) ⇔ h̃( f) = h̃+ ( f)+ ih̃× ( f) , (44)

where we give both the linear and complex polarization forms. The redshift of pulsar a may
then be written as

Za (t) =
ˆ

df ei2π ft
∑
A

h̃A ( f)RAa ( f, Ω̂) = ℜ
[ˆ

df ei2π ft h̃( f)R∗
a( f, Ω̂)

]
. (45)

The redshift of pulsar b is given by the same expression as in (45), with a→ b.
The right-hand side of (43) contains 16 terms, because each pulsar redshift has contributions

from two polarization components evaluated at both the Earth and pulsar, so there are four
terms per pulsar. All of these terms contribute to ρab for a fixed set of GW sources and a fixed
pair of pulsars.

However, for calculating the mean correlation for a pair of distinct Earth-pulsar baselines,
only four terms survive, as described in detail in, e.g. [5, 9]. The argument that one uses to
show this depends on the averaging procedure used to define the mean.

The first form of averaging, employed by Hellings and Downs [6], keeps the pulsars fixed
and averages the correlation ρab over GW source directions Ω̂, assuming that the sources are
unpolarized and isotropic on the sky. In doing this, Hellings and Downs also (implicitly)
assumed that distinct sources were uncorrelated, because they dropped cross-terms arising
from the interference between different GW sources. This is valid if one computes an average
over many different universes, but such terms are present in any given Universe and cause
deviations from that average, as discussed in Question 7.

By performing the all-sky average for an unpolarized signal, the Earth-pulsar and pulsar-
pulsar terms enter the expected correlation via integrals over Ω̂ of terms proportional to the
auto-correlation function C(τ) of the GW signal7 evaluated at τ = τa, τ b, and τa− τb, where
τa ≡ La(1+Ω̂ · p̂a) and τb ≡ Lb(1+Ω̂ · p̂b). As shown in [5], if we assume that the coherence
time of theGWsignal is short compared to τ a, τ b, and |τa− τb|, then these terms can be ignored
relative to the Earth-Earth terms [see (C13) and figures 8 and 9 in appendix C of [5] for details].
However, for the correlation of a single pulsar with itself (i.e., a= b), it immediately follows
that τa− τb = 0. Thus, the auto-correlation function is evaluated at 0, and hence doubles the
contribution of the Earth-Earth term for a stationary GW background.

The final result of this source-averaging approach, assuming that the coherence length is
small as described above, is

7 The auto-correlation function C(τ) is the Fourier transform of the power spectrum of the GW signal, C(τ)≡´
df ei2π fτ |h̃( f )|2/

´
df ′|h̃( f ′)|2.
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⟨ρab⟩= h2µu (γ) [1+ δab] , (46)

where

h2 ≡ 1
2

(
(h+)2 +(h×)2

)
=

1
2
|h|2 , (47a)

µu (γ)≡
1
4π

ˆ
dΩ̂
∑
A

FAa (Ω̂)F
A
b (Ω̂) =

1
4π

ˆ
dΩ̂Fa(Ω̂)F

∗
b(Ω̂) . (47b)

Here, h2 is the squared GW strain and µu(γ) is the Hellings and Downs curve, which is the
mean Hellings and Downs correlation for an unpolarized and isotropic GW background [6].
There is no contribution from the cross-polarization terms since h+h× = 0 for unpolarized
GW sources. The δab term in (46) is needed to account for auto-correlations.

Simple symmetry arguments show that the integral in (47b) can depend only on the angle
γ between the lines of sight to the two pulsars. So, without loss of generality, we can place
pulsar a on the z-axis and pulsar b in the xz-plane so that p̂a = ẑ and p̂b = sinγ x̂+ cosγ ẑ. The
polarization tensors needed to calculate FAa (Ω̂) and F

A
b (Ω̂) are defined by (3a) and (3b), with Ω̂,

m̂, n̂ given by (4a)–(4c). The integral can be evaluated analytically using contour integration,
as detailed in [5, 9, 21], giving

µu (γ) =
1
3
− 1

6

(
1− cosγ

2

)
+

(
1− cosγ

2

)
ln

(
1− cosγ

2

)
. (48)

This is an analytic expression for the Hellings and Downs curve for pulsar timing, expressed
as a function of the angular separation between the directions to pairs of pulsars. A plot of this
expected correlation is shown in the left panel of figure 9, and also as the black dashed curve
in figure 1.

We leave it as an exercise for the reader to show that a similar calculation of the expected
correlation for an array of ‘short-arm’ LIGO-like detectors yields8

µu (γ)∝ P2 (cosγ) =
1
2
(3cos2 γ− 1) , (49)

where P2(x) is the l= 2 Legendre polynomial. For this calculation, one needs to replace the
response functions RA( f, Ω̂) in (32) with the short-arm limiting expressions (34). This substi-
tution simplifies the integrand in (47b) to quadratics in sinϕ and cosϕ and quartics in cosθ.
The short-arm expected correlation is plotted in the right panel of figure 9. Since the short-arm
function involves only the l= 2 Legendre polynomial, it is an example of a purely quadrupolar
correlation.

3.2. Pulsar averaging

The second form of averaging, originally employed by Cornish and Sesana [22] and then fur-
ther developed by the authors in [5, 23], is called pulsar averaging. Here, for a fixed set of
GW sources, one averages the correlation ρab over all pulsar pairs separated by the same angle
γ, assuming that one has access to a large number of pulsar pairs uniformly distributed on
the sky. Pulsar averaging, like source averaging, eliminates the pulsar-pulsar and Earth-pulsar
terms, provided the distances to pulsars in the same direction p̂ are large compared to the GW
wavelengths that PTAs are expected to detect. The result of pulsar averaging is a quantity

8 We have used a proportionality sign in (49) since there are frequency-dependent factors of 2π fL in (34) that we are
ignoring.
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Figure 9. Left panel: Expected Hellings and Downs correlation for pairs of PTA pulsars.
Right panel: Expected correlation for pairs of short-arm LIGO-like detectors, normal-
ized with the same zero-angular-separation value of 1/3. Note that the zero-angular-
separation value in the left panel corresponds to a pair of pulsars located close on the sky
but at significantly different distances. If they are much closer than a GW wavelength,
or if they are the same pulsar, then the correlation is twice the zero-angular-separation
value that is shown in this plot.

Γ(γ)≡ ⟨ρab⟩ab∈γ , (50)

which depends only on the angular separation γ between pulsars p̂a and p̂b.
Pulsar averaging corresponds to observational practice. PTA collaborations monitor many

pulsars distributed across the sky, so they can average together the correlations from all pulsar
pairs lying in an angular separation bin centered on angle γ. As more pulsars are added to a
PTA, this ‘binned’ pulsar averaging will get closer to ideal pulsar averaging, where one has
access in principle to an infinite number of pulsar pairs uniformly distributed over the sky. In
contrast, source averaging is not observationally possible, since we have access to only one
Universe and its associated (fixed) collection of GW sources.

As shown in [5, 22], pulsar averaging yields the same mean correlation (46) as the original
Hellings and Downs source-averaging prescription for a single GW source:

Γ(γ) = h2µu (γ) [1+ δab] . (51)

In FAQ Q6, we demonstrate the mathematical equivalence of these two approaches for this
simple model Universe consisting of a single GW source in a random direction. But for mul-
tiple GW sources, the result of pulsar averaging is more complicated; it depends on the type
of sources that contribute to the combined GW signal as described in detail in [5] and in the
answer to FAQ Q7.

4. Answers to FAQs

Given the above background information, we are now ready to answer the questions that we
listed in section 1.

Q1: Why is the Hellings and Downs curve in figure 1 normalized to 1/2 at zero angular separ-
ation, but is normalized to 1/3 in figure 9 and in other papers, e.g. [5, 6]? Does it matter?

Answer: This normalization difference is an overall scale. It is completely arbitrary and makes
no difference: any physically observable quantity (for example, the expected time-averaged
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Figure 10. Integrands of the Hellings and Downs correlation curve for two pulsars sep-
arated by 0◦ (p̂1 = p̂2 = ẑ, solid curve) and by 180◦ (p̂1 =−p̂2 = ẑ, dashed curve). The
first two panels are polar plots, which are axially symmetric about the z-axis. The left
plot shows F+

1 (Ω̂)F
+
2 (Ω̂)+F×

1 (Ω̂)F
×
2 (Ω̂) for the two different choices of p̂1 and p̂2.

The polar plots in the middle panel include an additional factor of sinθ, which arises
when integrating over θ. The right panel is the same as the middle panel, but plotted as
a function of θ. The area under the solid curve is twice the area under the dashed curve.

product of the timing residuals or redshift responses of two pulsars) is independent of this
normalization.

The reason why 1/3 and 1/2 have appeared in the literature is historical. The Hellings
and Downs curve was first computed as the average product of the redshift responses of two
pulsars to a unit-amplitude GW source, averaged over the sphere of GW source directions as
described in section 3.1. This average introduces a factor of 1/4π in (47b). Later, the Hellings
and Downs curve was reinterpreted as a correlation coefficient for the redshift response of two
pulsars, responding to the same GW source. For this case, one wants the correlation coefficient
to equal unity if the two pulsars are identical (i.e. a= b). Since the expected correlation for
two identical pulsars is twice that for two distinct pulsars separated by 0◦ [due to the δab
term in (46)], one needs µu(0) = 1/2 for the correlation-coefficient interpretation. This means
multiplying the right-hand sides of (47b) and (48) by 3/2.

Q2: Why does the Hellings and Downs curve have different values at 0◦ and 180◦ if the quad-
rupolar deformation of space produced by a passing GW affects two test masses 180◦

apart in exactly the same way?

Answer: The Hellings and Downs curve has different values at 0◦ and 180◦ due to the different
denominators 1+Ω̂ · p̂1 and 1+Ω̂ · p̂2, which appear in the antenna pattern functions |F1(Ω̂)|
and |F2(Ω̂)| for the two pulsars. The two cases to consider for pairs of pulsars separated by 0◦

and 180◦ are p̂1 = p̂2 = ẑ and p̂1 =−p̂2 = ẑ, respectively. This difference is illustrated graphic-
ally in the left panel of figure 10, where we plot the integrandF+

1 (Ω̂)F
+
2 (Ω̂)+F×

1 (Ω̂)F
×
2 (Ω̂) of

the expected Hellings and Downs correlation for these two different cases. It is apparent from
this plot that if the GWB consisted of waves that only came from directions perpendicular to
the Earth-pulsar baselines (so, in the xy-plane of this plot), then the values of the Hellings and
Downs correlation at 0◦ and 180◦ would be exactly the same. But since an isotropic GWB has
equal contributions from GWs coming from all different directions on the sky, the Hellings
and Downs correlation for the case p̂1 = p̂2 will be larger than that for p̂1 =−p̂2. Why these
values differ by exactly a factor of two is the topic of the next question.

Q3: Why is the value of the Hellings and Downs curve for two pulsars separated by 180◦

exactly half that for 0◦ angular separation?
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Answer: To prove this, start with (47b) for the expected Hellings and Downs correlation
and (21) for the Earth-term-only response functions FA(Ω̂). Taking the two pulsars to point in
the same direction (p̂1 = p̂2 = ẑ), we have∑

A

FA1 (Ω̂)F
A
2 (Ω̂) =

1
4
(1+ cosθ)2 =

1
4
(1+ u)2 , (52)

where u= cosθ. Having them point in opposite directions (p̂1 =−p̂2 = ẑ) leads to∑
A

FA1 (Ω̂)F
A
2 (Ω̂) =

1
4

(
1− cos2 θ

)
=

1
4

(
1− u2

)
. (53)

These functions are plotted in figure 10, where θ is the usual polar angle measured with respect
to the z-axis. [Note: the comment following (4c) explains why u= cosθ has the opposite sign
in some of the literature, for example in equation D10 of [5].]

The overlap function is the average of this quantity over the sphere. From the three panel
plots in figure 10, we see that when the two pulsars both point in the ẑ direction, the majority of
support for the overlap function comes from sky directions n̂=−Ω̂ having z> 0.When the two
pulsars point in opposite directions, p̂1 =−p̂2 = ẑ, the overlap function has equal contributions
from z> 0 and z< 0. These contributions are only slightly larger than those for p̂1 = p̂2 for
z< 0, but much smaller for z> 0.

Visual inspection of the areas under the two curves shown in the rightmost panel of figure 10
shows why the value of the HD curve for two pulsars separated by 0◦ is twice as large as that
for two pulsars separated by 180◦. Indeed, averaging these quantities over the sphere gives

µu (0
◦) =

1
3

(p̂1 = p̂2 = ẑ) , µu (180
◦) =

1
6

(p̂1 =−p̂2 = ẑ) . (54)

These values are easy to check, since the average of a function Q(u) over the sphere is
(1/4π)

´
dΩ̂Q(cosθ) = (1/4π)

´ 2π
0 dϕ

´ π
0 dθ sinθQ(cosθ) = (1/2)

´ 1
−1 duQ(u). The integ-

rals of (52) and (53) with respect to u are trivial.

Q4: Why is the most negative value of the Hellings and Downs curve not at 90◦?

Answer: Again, this is because the Earth-term-only response functions FA(Ω̂) given in (21) are
not symmetric under p̂→−p̂. If the Hellings and Downs correlation were purely quadrupolar,
then its most negative value would be exactly at 90◦, as it is for the case of an array of short-arm
LIGO-like detectors (see the right panel of figure 9). If it had only even multipoles (no odd-l
terms), then it would be reflection symmetric about 90◦, but it might not have its minimum
there.

Although the dominant contribution to the Hellings and Downs curve is the quadrupole
pattern P2(cosγ), there are nonzero contributions from all higher order l-modes as well. We
leave it as an exercise for the reader to show that

µu (γ) =
∞∑
l=2

(2l+ 1)clPl (cosγ) , where (55)

cl = [(l+ 2)(l+ 1) l(l− 1)]−1
. (56)

To obtain this result, one needs to use (a) the orthogonality propertyˆ 1

−1
dx Pl (x)Pl′ (x) =

2
2l+ 1

δll′ (57)
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Figure 11. Approximations to the Hellings and Downs curve (solid black) obtained by
terminating the sum in (56) with two to five Legendre polynomials (grey curves).

of the Legendre polynomials, where x≡ cosγ, (b) Rodrigues’ Formula for Legendre polyno-
mials, and (c) integration by parts. See equations (97)–(105) in [12] for a step-by-step deriva-
tion of (55) and (56), or see secs. III and IV of [17].

Figure 11 compares approximate versions of the Hellings and Downs curve, terminating
the sum at different maximum values lmax = 2,3,4,5. Since the cl’s in (56) fall off like 1/l4,
only a few values of l are needed to get a very good approximation.

Q5: Why is theHellings andDowns curve/correlation frequency independent, whereas overlap
functions for Earth-based interferometers are frequency dependent, for example, as shown
in figure 2 of [10]?

Answer: The expected Hellings and Downs correlation for a pair of pulsars a and b does
not depend on frequency since the frequency dependence of the redshift response functions
RAa ( f, Ω̂) and RAb ( f, Ω̂) given in (32) enters only via the pulsar terms e−i2π fLa(1+Ω̂·p̂a) and

e−i2π fLb(1+Ω̂·p̂b). These terms drop out when calculating the expected correlation of Za(t) and
Zb(t), as described in section 3.1.

However, for a pair of Earth-based interferometers, each of which has two perpendicular
equal-length arms, the corresponding response functions have the form [24]:

RAa ( f, Ω̂) = FAa (Ω̂)e
−i2π fΩ̂·⃗ra , (58a)

FAa (Ω̂)≡
1
2

(
X̂iaX̂

j
a− ŶiaŶ

j
a

)
eAij(Ω̂) , A=+,× , (58b)

where X̂a, Ŷa are unit vectors pointing along the two arms of the interferometer, and r⃗a is the
position vector of the interferometer’s central station. (Similar equations hold for the second
interferometer with a replaced by b.) When forming the expected correlation, we need to eval-
uate the integral

1
4π

ˆ
dΩ̂
∑
A

FAa (Ω̂)F
A
b (Ω̂)e

−i2π fΩ̂·(⃗ra−⃗rb) . (59)

Now, for two interferometers on Earth, the distanceDab ≡ |⃗ra− r⃗b| between the central stations
is comparable to the wavelength λ≡ 1/f (hundreds to thousands of km) of the GWs that these
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instruments detect. Hence, this exponential factor cannot be approximated by unity. (As dis-
cussed in section 1, for PTAs, the timing residuals are determined at the same point, the SSB,
for all pulsars and all telescopes. So for PTAs, r⃗a− r⃗b = 0⃗, implying that e−i2π fΩ̂·(⃗ra−⃗rb) = 1.)
Thus, while individual Earth-based interferometers operate in the short-arm limit L≪ λ, it is
not also the case that Dab ≪ λ, but rather that λ≲ Dab. Since the frequency dependence for
Earth-based interferometers is tied to the detector locations, it cannot be factored out of the
correlation as a detector-independent function of frequency.

Q6: Does recovery of the Hellings and Downs curve from observed pulsar-pair correlations
imply that the GWB is isotropic?

Answer: No. The Hellings and Downs curve is a robust prediction for the correlation produced
by any (small or large) set of noninterfering GW sources, provided pulsar averaging is carried
out using many pairs of pulsars uniformly distributed over the sky. It is independent of the
angular distribution of the GW sources on the sky. This result was first demonstrated for the
special case of GWs produced by a single black-hole binary in [22]. It was then extended to an
arbitrary set of noninterfering sources in [5] (see also FAQ Q7 below), which further exploited
pulsar averaging. For interfering sources, we do not expect to recover exactly the Hellings and
Downs curve (see [5] and FAQ Q7 below).

As discussed in section 3.1, the original/traditional approach to compute the expected
Hellings and Downs correlation is to take a single fixed pair of pulsars, and then to average
their correlation over GW propagation directions Ω̂, assuming that the sources are unpolarized
and isotropic on the sky [6], and that they do not interfere with each other. In [5, 22], some-
what involved calculations were done to show the equivalence of pulsar averaging and source
averaging for the case of a single GW source, see (51).

Happily, one can show the equivalence of these two approaches without any calculation.
Here, we show that pulsar averaging is equivalent to GW-source averaging with a purely geo-
metric argument, using a series of three Euler-angle rotations. At first, this appears to require
adding something to the traditional source-averaging calculation: in addition to averaging over
the GW propagation direction Ω̂ = Ω̂(θ,ϕ), one must also average over the polarization angle
ψ. In fact, while often overlooked, this is also required by the traditional calculation: it gives
rise to the quadrature sum. It is overlooked because the original [6] calculation obscures this
point by not giving enough detail. To obtain that result, one must assign a polarization direction
or angle to each source, and also average over that, for example, as in the calculation starting
from (29). Hence, even in the traditional GW-source averaging approach, the averages must
be calculated with respect to three angles, not just two.

To see the equivalence purely from geometry, start with the averaging over GW source
directions. As previously done, without loss of generality, put p̂1 along the z-axis and p̂2 in the
xz-plane, so that p̂2 = sinγ x̂+ cosγ ẑ. In contrast, pulsar averaging is carried out with respect
to the angular coordinates of p̂1 (polar coordinate θ, azimuthal coordinate ψ) and those of p̂2
(which lies on a cone about p̂1 with fixed half-opening angle γ, with its location on the cone
parameterized by ϕ ∈ [0,2π)). See figure 12 and compare with figure 5 of [5].

The sequence of rotations needed to go from source averaging to pulsar averaging is as
follows: first rotate by−ϕ about the z-axis, which moves the GW propagation direction Ω̂ into
the xz-plane and p̂2 around a cone with central axis p̂1 through angle ϕ. Then rotate by −θ
around the y axis, which puts Ω̂ along −ẑ, and makes p̂1 have polar angle θ. Finally, rotate
around Ω̂ (which now points in the −ẑ direction) by −ψ, which becomes the azimuthal angle
for p̂1 (with respect to the −x-axis).
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Figure 12. GW source averaging (left panel) and pulsar averaging (right panel) are equi-
valent, as can be seen by carrying out a series of rotations.

In practice, we do not have an infinite number of pulsar pairs separated by the angle γ.
So, to do pulsar averaging, one divides the Npul(Npul − 1)/2 interpulsar correlations into a
smaller number Nbins of angular separation bins. This form of pulsar averaging is always used
when attempting to recover or reconstruct the Hellings and Downs curve based on observed
interpulsar correlations. For example, for the NANOGrav 15-year analysis shown in figure 1,
Npul = 67 and Nbins = 15, which implies that the estimated correlation value in each angular
separation bin involved averaging the correlations of approximately 150 pulsar pairs.

Q7: In the distant future, when PTA observations are carried out with larger and more sensitive
telescopes, more pulsars, and much longer observation periods, will we exactly recover
the Hellings and Downs curve?

Answer: As we shall show below, this would be the case if the GWBwere produced by a set of
discrete noninterfering sources [5, 25]. But it is much more likely that our Universe contains
many GW sources radiating at frequencies that are close enough together that they cannot
be resolved individually over the time span of the PTA experiments (say, tens to hundreds of
years). This means that the GWB is produced by a sum of interfering sources. An example of
such a GWB is the ‘confusion noise’ created by a set of sources randomly distributed on the
sky, emitting monochromatic GWs with random phases, but occupying the same frequency bin
[11]. In this case, pulsar-averaged noise-free measurements over an infinite number of pulsar
pairs with the same angular separation do not give exactly the Hellings and Downs curve.

If we have an infinite collection of universes, each of which has GW sources having inde-
pendent random phases, and we were also able to average the correlation over all of those
universes (called an ‘ensemble average’), then we would get exactly the Hellings and Downs
curve. But in any givenUniverse, wewould find something different fromHellings andDowns.
The (mean squared) difference betweenwhat would be observed in any givenUniverse, and the
(unobservable) average over many universes, is called the cosmic variance. In what follows,
we show how the cosmic variance arises from interference between different GW sources.

Consider a universe which contains N point sources of GWs, which we label n= 1, . . . ,N.
These GW sources are located far from the neighborhood containing the Earth and the PTA
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pulsars. The GW sources have sky locations −Ω̂n, and the n’th source produces a com-
plex strain at Earth hij(t) = ℜ[hn(t)e∗ij(Ω̂n)], where the complex waveform is hn(t) = h+n (t)+
ih+n (t). Since the PTA is far from the sources, these GW strains are small, so the total strain
at Earth can be obtained by summing them. The redshift of pulsar a is then obtained by sum-
ming (19) to obtain

Za (t) = ℜ

[
N∑
n=1

hn (t)F
∗
a(Ω̂n)

]
(60a)

=
1
2

∑
n

[
hn (t)F

∗
a(Ω̂n)+ h∗n (t)Fa(Ω̂n)

]
, (60b)

where Fa(Ω̂)≡ F+
a (Ω̂)+ iF×

a (Ω̂) are the complex antenna patterns, and we adopt the conven-
tion that sums over n and m are from 1, . . . ,N unless otherwise indicated. A similar expression
holds for pulsar b. We assume that the pulsars a and b are distinct and are separated from
one another by many GW wavelengths, and therefore have neglected the pulsar terms for the
reasons discussed earlier. (We work with complex quantities because it simplifies some of the
following expressions.)

The correlation between the redshifts of the two pulsars is the time-averaged product ρab ≡
Za(t)Zb(t), which evaluates to

ρab =
1
4

∑
n

∑
m

[
hnh∗mF

∗
a(Ω̂n)Fb(Ω̂m)+ h∗nhmFa(Ω̂n)F

∗
b(Ω̂m)

+hnhmF
∗
a(Ω̂n)F

∗
b(Ω̂m)+ h∗nh∗mFa(Ω̂n)Fb(Ω̂m)

]
. (61)

To make the expression more compact, we do not explicitly show the time dependence of the
quantities being time-averaged.

Consider the pulsar average of (61), which is obtained by averaging the correlation over all
pulsar pairs ab separated by angle γ. As discussed briefly in section 3.2, and in more detail in
[23], this corresponds closely to experimental practice: as illustrated in figure 1, PTA experi-
ments ‘reconstruct’ the angular dependence of the Hellings and Downs correlation via a pulsar
averaging procedure. Also, note that we dropped the pulsar terms from (60a). Had we included
them, they would have been eliminated by this pulsar averaging step, as shown in section IV
of [5].

Consider first the case where there is no interference between GW sources, for example,
because the sources are radiating GWs at different frequencies. This means that the time aver-
ages hnhm and hnh∗m vanish if n is different thanm. Thus, in this no-interference case, the double
sum reduces to a single sum:

ρab =
1
4

∑
n

[(
F∗
a(Ω̂n)Fb(Ω̂n)+Fa(Ω̂n)F

∗
b(Ω̂n)

)
|hn|2

+2ℜ
(
F∗
a(Ω̂n)F

∗
b(Ω̂n)h2n

)]
. (62)

We now pulsar-average the correlation (62). The only dependence on a and b in (62) is
via the antenna pattern functions. As explained in Q6 and figure 12, the pulsar average of
Fa(Ω̂n)F∗

b(Ω̂n) is independent of the source direction Ω̂n and gives exactly the Hellings and
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Downs curve µu(γ). The pulsar average of Fa(Ω̂n)Fb(Ω̂n) vanishes. Hence, the pulsar average
of (62) gives

⟨ρab⟩ab∈γ =
1
2

(∑
n

|hn|2
)
µu (γ) , (63)

where the subscript ‘ab ∈ γ’ indicates that we have averaged over pulsar pairs separated by
angle γ. Thus, we have proved that if there is no interference between the GW sources, then
the pulsar average of the correlation exactly matches the Hellings and Downs curve in any
instance of the universe.

However, the situation changes in an important way if the GW sources interfere. This seems
to be a possibility that Ron Hellings and George Downs had not considered, perhaps because
they approached the topic from the perspective of radio astronomy. In radio astronomy, dis-
tinct radio sources, observed over a long period of time at different sky locations, undergo
destructive interference; in our language they do not interfere. (At GHz frequencies, these
sources go through 109 oscillations per second, and over intervals longer than a small fraction
of a second, the time-averaged product of their electric field components is zero.) However, for
PTAs, the relevant GW sources undergo at most a few oscillations over an observation interval
of years or decades. Although the sources have no causal connection, and are ‘independent’ in
the normal sense, the time-averaged product of their strain waveforms can nevertheless have a
magnitude which is comparable to the time-averaged square of either one. The sign is positive
if the two sources happen to be in phase, negative if they happen to be out of phase, and zero
if two sources are exactly in quadrature. Thus, the case of interfering GW sources is not just
realistic, it is inevitable for the sources relevant to PTAs for the typical PTA observation times.

If the GW sources interfere, then the pulsar average of (61) contains the ‘diagonal’ n=m
terms whose pulsar average we found in (63), and also has additional contributions arising
from the off-diagonal n ̸= m interference terms. To understand the effects of these interference
terms, it is helpful to introduce the ‘Hellings and Downs two-point function’. This was first
defined and computed for a particular pair of GW source directions in appendix G of [5]. It was
then generalized to arbitrary source directions in [17], giving rise to an additional unit-modulus
complex phase, whose argument 2χ is defined by [17, Equation (6.5)].

The Hellings and Downs two-point function is the pulsar average of Fa(Ω̂n)F∗
b(Ω̂m) over

all pulsar pairs a and b, uniformly distributed over the sphere, and separated by angle γ, as
discussed in section 3.2. It may be written in the form〈

Fa(Ω̂n)F
∗
b(Ω̂m)

〉
ab∈γ

= µ(γ,βnm)e
2iχnm , (64)

where µ(γ,β) is a real function of two variables given explicitly in equation (G5) of [5] and
plotted in figure 12 of that reference. We will assume that the reader is familiar with this plot;
γ is the angle between the directions to the two pulsars in the averaging (cosγ = p̂a · p̂b), and
βnm = βmn is the angle between the directions to the two GW sources (cosβnm = Ω̂n · Ω̂m).
The real angle χnm ≡ χ(Ω̂n, Ω̂m), where χ(Ω̂n, Ω̂m) is defined by [17, equation (6.5)]. Note
that χ is an antisymmetric function of the positions Ω̂n and Ω̂m of the sources9 χnm =−χmn;
it vanishes for the particular GW source locations Ω̂ and Ω̂ ′ considered in [5]. Note that if the

9 While this analysis only needs the symmetry properties of χnm and χ ′
nm, for completeness we note that χnm ≡

χ(Ω̂n, Ω̂m) and χ ′
nm ≡ χ(Ω̂n,−Ω̂m), where χ(Ω̂, Ω̂ ′) is defined by [17, equation (6.5)]. In this definition of χ ′, the

second argument has been shifted to the antipodal point. Thus, if Ω̂m has spherical polar coordinates (θm,ϕm) then its
antipodal point −Ω̂m has coordinates (π− θm,ϕm +π).
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two GW sources are coincident, then βnm = χnm = 0, and the two-point function reduces to
µ(γ,0) = µu(γ), which is the Hellings and Downs curve.

The pulsar average of Fa(Ω̂n)Fb(Ω̂m) can be obtained from (64) by sending both b and
Ω̂m to their antipodal points on the sphere, as detailed in [5, 17]. This sends γ→ π − γ and
β→ π −β and also modifies the phase; one obtains in footnote 9〈

Fa(Ω̂n)Fb(Ω̂m)
〉
ab∈γ

= µ(π− γ,π−βnm)e
2iχ ′

nm , (65)

where χ ′
nm ≡ χ(Ω̂n,−Ω̂m) is real and symmetric, so χ ′

nm = χ ′
mn; see [17, equation (C4)]. If the

two GW sources are antipodal, then the two-point function vanishes: µ(γ,π) = 0, as can be
seen in figure 12 of [5].

Thus, in the case where the GW sources interfere, the pulsar average of (61) gives

⟨ρab⟩ab∈γ =
1
2

(∑
n

|hn|2
)
µu (γ)+

1
2
ℜ
∑
n̸=m

[(
h∗nhme

2iχnm
)
µ(γ,βnm)

+
(
h∗nh∗me

2iχ ′
nm

)
µ(π− γ,π−βnm)

]
. (66)

The key point is this: the additional N(N− 1) terms arising from the two-point function, con-
sidered as functions of the angle γ, are not proportional to the Hellings and Downs curve
µu(γ). Moreover, if the number of sources is large, then these terms make contributions to the
pulsar average which are comparable to the first (diagonal) term.

We demonstrate this for the simple ‘confusion-noise model’ constructed in [5]. In this
model, each of the N sources of GWs is circularly polarized, and all of them radiate at the
same GW frequency f, which is picked to be commensurate with the PTA observation interval.
From (9), the waveforms are

hn (t) = An exp [i(2π f t+ϕn)] , (67)

where the amplitudes An > 0 are real, the GW frequency f is the same fixed multiple of 1/T
for all N sources, and the phase ϕn of the n’th source is a real number in the interval [0,2π).
For this model, the time averages which appear in (66) are h∗nhm = AnAm exp[i(ϕm−ϕn)] and
h∗nh∗m = 0. Thus, the pulsar-averaged correlation (66) simplifies to

⟨ρab⟩ab∈γ =
1
2

(∑
n

A2
n

)
µu (γ)+

1
2

∑
n̸=m

AnAm cos∆nmµ(γ,βnm) , (68)

where∆nm ≡ ϕn−ϕm− 2χnm is a real phase. Because the ‘cross-sections’ ofµ(γ,β) for β ̸= 0
do not have exactly the same shape as the HD curve, this means that in any given realization
of the Universe, the pulsar-averaged correlation will not match the HD curve exactly. (If we
could take the correlation curves from many different random realizations of the Universe and
average them together, then the terms from the second sum would average to zero, and we
would obtain exactly the HD curve.)

It is easy to quantify the amount by which a typical Universe will vary away from the
average of many universes, which is the HD curve. Consider how the N(N− 1) terms of the
second sum add together. If the phases ϕn of the N sources are random and independent, then
the cosine has values that lie in the interval [−1,1], so the sum includes both positive and
negative terms. If the number of GW sources N is large, then this second sum can be thought
of as doing a random walk with N(N− 1) steps to the left and right along the real number
line. It thus contributes a value whose typical magnitude is of order

√
N(N− 1))≈ N, which
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is comparable to the magnitude of the first term. So, even if the number of sources N→∞,
the second term gives rise to a nonzero deviation away from the Hellings and Downs curve.
The mean-squared value of this deviation is exactly the cosmic variance.

We can easily estimate the size of the cosmic variance, starting from (68). The mean value,
assuming independent random phases, and averaging over many different universes, is the first
term in (68). The deviation away from that (unobservable) mean, in any given realization of
the Universe, is given by the second term in (68). If the GW sources are uniformly distributed
over the two-sphere, then the distribution of the angles βnm is proportional to sinβnm. Thus,
the expected squared deviation of the pulsar-averaged correlation away from the Hellings and
Downs curve, as a function of γ, has the form10

σ2
cosmic (γ)∝

ˆ π

0
dβ sinβµ2 (γ,β) = 2

∞∑
l=2

(2l+ 1)c2l P
2
l (cosγ) . (69)

In the final equality, cl are defined by (56); see [17, equation (8.3)]. For a more realistic set
of GW sources, the full formula is derived in [5, 23, 25]. The basic ideas are the same, so it
is not surprising that the equation is identical to (69), except that it also includes the overall
coefficient, which we have omitted. In particular, the angular dependence on γ is exactly as
given in (69), with an overall coefficient that correctly weights the contributions of GW sources
radiating at different frequencies.

Q8: Assuming noise-free observations, are the fluctuations away from the expected Hellings
and Downs curve only due to the pulsar-term contributions to the timing residual
response?

Answer: No. While the pulsar terms do contribute to deviations away from the expected
Hellings and Downs correlation, there are other more fundamental sources of such deviations.
(i) Timing residual or redshift measurements from two different pulsar pairs separated by the
same angle γ but pointing in different directions on the sky will have different correlations
due to the different parts of the GWB that they are sensitive to. So, if the power in the GW
signal is not uniformly distributed, this gives deviations. (ii) For interfering sources, even with
infinite pulsar averaging as described in FAQ Q7, there will be fluctuations away from the
expectedHellings andDowns correlation that are associatedwith the Earth-term-only response
functions.

For a given pulsar pair, the pulsar-term contributions to the timing residual response add to
the fluctuations, with the same root-mean-square amplitude as the Earth terms. But, as men-
tioned in the previous paragraph, they are not the sole source of the fluctuations away from the
Hellings and Downs curve, and as more and more pairs of pulsars are averaged together at a
particular angular separation, this pulsar-term contribution becomes insignificant.

Q9: Why does the Hellings and Downs recovery plot shown in figure 1 have error bars that
are much larger than one would expect for the reported 3− 4σ significance?

10 The χnm do not affect the distribution over β in (69): they are eliminated from the second moment when
cos∆nm cos∆kl for n ̸= m and k ̸= l is averaged over the random phases ϕj. To see this, write the cosines as exponen-

tials. The average has four terms. A typical term is ei(∆nm+∆kl), whose random phase average is δnlδmke−2i(χnm+χkl ).
The χ’s cancel and drop out because χnm +χmn vanishes.
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Answer: While the match for any single angular-separation bin is only at the 1-σ level (as it
should be for 1-σ error bars), the significance comes from the agreement between the meas-
ured and expected correlations combined over all pulsar-pair correlations. In other words, one
needs to compute a single ‘signal-to-noise ratio’ by summing inner products of the observed
pulsar-pair correlations with the expected Hellings and Downs ‘waveform’. (This is similar to
what LIGO does when it compares snippets of its noisy time-domain data to noise-free chirp
templates.) The individual terms of this sum are inversely weighted by estimates of their expec-
ted squared values in the absence of the Hellings and Downs correlations. So, even though the
match at the individual angular separations are not very close, the overall agreement is quite
good.

In fact, NANOGrav obtains significance estimates11 from two types of analyses:

(i) A 3.8σ significance determined using frequentist detection statistics, such as the noise-
weighted inner product of the observed correlations with the expected Hellings and Downs
correlation, as described above [26]. This is the ‘stochastic equivalent’ of the deterministic
matched filter statistic used by LIGO to search for individual compact binary coalescence
‘chirp’ signals. The distribution that would be expected in the absence of a GWB is estim-
ated by artificially introducing phase shifts into the timing residual data for each pulsar,
which removes the Hellings and Downs correlations (see the right panel of figure 3 in [4]).
The observed value of the detection statistic lies in the ‘tail’ of the null distribution, and
thus corresponds to high significance.

(ii) A 3.0σ significance obtained via a Bayesian analysis. This analysis compares the evidence
for a data model containing the Hellings and Downs spatial correlations to a model without
these correlations. The ratio of the evidences is 226, which is the ‘betting odds’ for which
of the two models is correct. The significance of the value 226 is then estimated from
the null distribution of the evidence ratio, again constructed using phase shifts (see both
figure 2 and the left panel of figure 3 in [4]).

So, what is shown in figure 1 for the NANOGrav 15-year analysis [4] should be thought of as a
‘self-consistency check’ of the pulsar-pair cross-correlations, calculated under the hypothesis
that a GWB with Hellings and Downs correlations matching the Hellings and Downs curve is
present in the data, with an overall amplitude estimated from auto-correlation measurements,
and assuming that there are no unknown sources of noise with similar spatial correlations. The
estimated correlations and error bars are optimally weighted combinations of approximately
150 correlation measurements in each angular separation bin, taking into account the covari-
ances between the correlations induced by the GWB. If the observed data are consistent with
the Hellings and Downs correlation model, then these point estimates and 1-σ error bars will
cross the Hellings and Downs curve approximately 68% of the time on average. See [23] for
a more detailed discussion.

Q10: If deviations from the Hellings and Downs curve are detected, what does that mean?

Answer: The reconstruction of the Hellings and Downs correlation is necessarily imperfect,
for several reasons. First, because in practice, the number of pulsar pairs is finite, whereas the
Hellings and Downs curve is obtained by averaging over an infinite number of pulsar pairs

11 Although we focus on NANOGrav, the general discussion applies to all PTAs apart from CPTA, which uses a
different detection statistic.
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separated by angle γ. Second, because pulsars are not perfect clocks, and their pulse arrival
times are modified by effects that cannot be completely modeled and removed [27, Section 4].
However, if the number of pulsar pairs is large enough [23, figure 6] and if the duration of the
observations is long enough, then both of these issues can be overcome.

So, what if deviations from the Hellings and Downs curve are found, when there is enough
high-quality data from enough pulsars, so that neither of these practical issues can be respons-
ible? In this case, we have to ask about the size of the deviations, and about how they are
correlated as a function of the angle γ. If the deviations are consistent with the predictions of
cosmic variance and covariance [5, 23], it suggests that the GWs arise from a large number of
interfering sources, consistent with a central-limit-theorem type of process. Indeed, an exact
match to the Hellings and Downs curve would suggest the contrary: that the GWs are being
produced by a small number of GW sources, radiating at distinct non-interfering frequencies.
See [23, section VIII] and [5, conclusion] for further discussion of this point.

5. Summary

We calculated the effect of GWs on the travel time of electromagnetic signals such as light or
radio waves, and showed how the Hellings and Downs curve arises when correlating timing
residuals from PTA pulsars. We then answered a number of FAQs about that curve.

Many of these questions arise from inadvertently applying intuition about the effects of
GWs on Earth-based detectors (LIGO, Virgo, Kagra) to the case of PTAs, where some of
that intuition is no longer valid. The key difference is that a PTA detector has ‘arm lengths’
(Earth-pulsar distances) much longer than the wavelengths of the GWs that they are sensitive
to, whereas Earth-based laser interferometers operate in the opposite (i.e. ‘short-arm’) limit.

Calculating the exact response of a single Earth-pulsar baseline to a passing GW, and com-
paring limiting expressions of this response for ‘short-arm’ LIGO-like detectors and ‘long-
arm’ PTA pulsar detectors, provides qualitative and quantitative answers to many FAQs. We
hope that this ‘Hellings-and-Downs correlation FAQ sheet’ will help to inform the scientific
community about the current and ongoing PTA searches for GWs.
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