
ix

LIST OF FIGURES

 Page

Figure 1. General Methodology of the Boundary Attack, obtained from [12] 6

Figure 2. Boundary Attack (Brendel et al.) vs Jing et al. Attack, obtained from [13] 8

Figure 3. SVM Methodology .. 10

Figure 4. A Nonlinear SVM.. 11

Figure 5. Confusion Matrix for Original SVM ... 12

Figure 6. Random Adversarial Sectioning .. 14

Figure 7. Random Adversarial Sections ... 15

Figure 8. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 10% 22

Figure 9. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 30% 22

Figure 10. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 50% 23

Figure 11. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 10% 24

Figure 12. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 30% 24

Figure 13. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 50% 25

Figure 14. Confusion Matrix for Universal Attacked SVM when 100 Samples are used 26

Figure 15. Confusion Matrix for Class Section Attacked SVM when 500 Samples were used ... 29

Figure 16. Confusion Matrix for Original SVM using Half of Testing Data 30

Figure 17. Confusion Matrix for Recreated SVM .. 31

1

CHAPTER I

INTRODUCTION

Machine learning is a very popular topic due to its many applications. One main application

is using machine learning models for classification. These models mathematically differentiate

between classes observed in training data to classify new data. The mathematical approach used

by the model changes based on the type of model and the parameters used. Support Vector

Machine (SVM) is one such model; it finds a “boundary line” that separates two or more classes

the best. The method and how an SVM works are illustrated in Figure 3. While these models have

many applications and are being implemented, they have many vulnerabilities and have proven to

not be very robust. A method to find these vulnerabilities and further study of these models to

potentially improve the robustness is by attacking these models in what is known as an adversarial

attack. In an adversarial attack, an input is minimally changed, ideally unnoticeable to the human

eye. This change causes an incorrect classification or prediction from the model. Training the

classification model using these adversarial inputs could create a more robust classification model

that would be less vulnerable to other forms of attacks. Thus, research in this area and different

methods of adversarial attacks have been proposed. There are two main elements to be considered

when studying adversarial attacks. First, one must consider how much knowledge is known about

the classification model. When nothing is known about the classification model, the attack is

known as a black-box attack. On the other hand, if everything about the model can be known, the

2

attack is known as a white-box attack. Second element to consider is the exact goal of the attack.

All adversarial attacks will lead to a wrong prediction or classification. However, the goal of one

type of attack is for the classification model to always predict one class. This class is known as the

target class, and this type of attack is called a targeted adversarial attack.

In this thesis, a targeted adversarial attack is proposed that targets the “boundary line” of

the SVM, one of its weaknesses. For an SVM model, the goal of an adversarial attack is to move

the input across the “boundary line,” which would cause a misclassification. The attack proposed

is tested on an SVM model used for image classification. The attack starts with an image of the

target class, 𝑐𝑙𝑎𝑠𝑠_𝑡, which is referred to as 𝑡_𝑝𝑜𝑖𝑛𝑡. This image will then be used to alter the

input images that are not 𝑐𝑙𝑎𝑠𝑠_𝑡, resulting in the images to be misclassified as 𝑐𝑙𝑎𝑠𝑠_𝑡 by the

model. To limit the change on the input images, 𝑡_𝑝𝑜𝑖𝑛𝑡 is not be used in its entirety, rather only

a random section of 𝑡_𝑝𝑜𝑖𝑛𝑡 is used. The input images are modified incrementally into the section

of 𝑡_𝑝𝑜𝑖𝑛𝑡. The section and its size used by the attack contributes to the effectiveness of the attack.

Thus, several percentages of 𝑡_𝑝𝑜𝑖𝑛𝑡 and several number of sections are tested to observe how the

accuracy of the attack is affected. The attack also records the number of steps taken by each section

to cause a misclassification. The section that took the least number of steps is believed to capture

the “predominate features” of 𝑐𝑙𝑎𝑠𝑠_𝑡 or cover the “predominate features” of the original class.

Using this assumption, a new model can be trained. Using the attack to recreate the original model

or a similar one can lead to the discovery of more vulnerabilities and other attacks. The

methodology of the proposed attack and its variation and applications are described in Chapter III

– Methodology.

3

CHAPTER II

REVIEW OF LITERATURE

Much research has been done on adversarial attacks. This research tends to focus on models

used for image classification and use either Neural Networks (NNs) or SVMs. Related works are

reviewed, considering their similarities and differences along with what contributed to the success

of the attack.

2. 1. Adversarial Attacks

Goodfellow et al. proposed an approach to generate adversarial attacks called Fast Gradient

Sign Method (FGST) [5][7][10] that adds noise to the image based on the gradient. Other similar

methods developed also use the gradient. One such method attempted to make the adversarial

example generated more natural [10]. To accomplish this, Generative Adversarial Networks

(GANs) method is used to generate noise more specific to the input, making it more natural. GANs,

proposed by Goodfellow et al., is an approach used or modified to generate new data, including

adversarial examples. One application for GANs outside of an adversarial attack is inpainting as

proposed by Pathak [4]. Other studies focus on making less perceptible perturbations rather than

natural ones [9] [11]. Zhou et al. proposed an attack in which the attack model that is penalized for

altering data samples [9], minimizing the difference between the original and the adversarial

example. Similarly, Su et al. limits the changes of the adversarial attack on the original examples

[11]. However, Su et al. do this much more than Zhou et al. by limiting the attack to only one pixel.

The benefit of this approach is the adversarial example is minimally different, demonstrating the

4

lack of robustness of the model and a vulnerability that could be easily exploited. However, in real

life examples, the success of a limited adversarial attack decreases since the change is not enough

to alter the model’s prediction. Nevertheless, limited attacks have the advantage of potentially

being more unperceivable to the human eye and less costly.

When generating adversarial examples, all these methods attempt to minimize the

perturbation, noise, or change added to the image [7][10]. This is generally done by using a loss

function and minimizing it in respect to the original and the adversarial example [8]. While this

approach may work for models trained for image classification, attacks may generate adversarial

examples more unnatural and with a more perceptible change for other media types. When

proposing an adversarial attack on speech recognition, Qin et al. focused on audio analysis, its

space and how it is perceived, to potentially make the perturbation more undetectable [8]. Their

research suggests the idea of adversarial attacks using different approaches based on the type of

data to have some merit. Their adversarial attacks were more natural and had smaller perturbation,

or less distortion, when compared to another approach for generating audio adversarial examples

[8].

Most adversarial attacks impact the input and are considered evasion attacks in which new

inputs are perturbated in some minimal way to get the desired goal [1]. Biggio et al. attempt a

different approach by modifying the label [3]. Their attack is considered a poison attack in which

adversarial examples are introduced to the classification model during training, causing

misclassification during testing [1][2]. Also, Biggio et al. attempt this by flipping or changing the

label of some of the training samples [3]. While poison attacks can provide information about the

classification model, it is not very practical since the likelihood of having access to a model during

training is very low [2].

5

2. 2. Boundary Attack by Brendel et al.

Most of the adversarial attacks reviewed are gradient based, but using only the prediction,

or decision, of the model may be more practical. This is what is known as a decision-based

adversarial attack. Brendel et al. propose such an attack they refer to as the Boundary Attack [12].

The attack proposed by this thesis shares several similarities to this attack. This attack begins with

an adversarial point. For an untargeted attack, the starting adversarial point is any point that is

differently classified, whose distance from the original image would be minimized ideally.

Perturbation or noise is added to the adversarial point to get it closer to the original image while

no change in classification occurs. This is repeated, getting it closer and closer to the original

image, until the adversarial point is classified as the original image. An independent and identically

distributed Gaussian is used to obtain the perturbation which is projected onto a sphere around the

original image. Using this sphere, the adversarial point is moved in one random direction and

towards the original image. The sphere and direction change for each perturbation. This process is

illustrated in [12, Fig. 2], provided as Figure 1.

The performance of the Boundary Attack seems very promising [12]. However, the cost of

the attack, according to Brendel et al., is huge. This attack is compared to two other attacks in

terms of cost – DeepFool (Rauber et al., 2017, as cited in [12]) and Carlini & Wagner attack

(Carlini & Wagner, 2016a, as cited in [12]). Counting both forward and backward passes,

DeepFool had 1,199,956 less passes and Carlini & Wagner had 1,168,000 less passes than the

Boundary Attack. This is likely the result of restricting the attack to only use the prediction, or

decision, of the model, and a similar occurrence can be observed in the attack proposed in this

thesis. Additional number of steps needed may be attributed to the starting point being the

adversarial point, not the original image. The final adversarial point needs to be as close to the

6

Figure 1. General Methodology of the Boundary Attack, obtained from [12]. This attack is proposed by Brendel et al.

original image as possible. For this reason, the starting adversarial point will need to undergo many

changes to get it as close to a differently classified image, the original image. For this reason, the

perturbations are performed on the original image in the attack proposed in this thesis, potentially

reducing the number of perturbations needed. The perturbations performed are also different. The

original point is moved closer to the target, or adversarial point, as well but in a more direct

manner. Granted, this may potentially lead to taking a “longer route” or having a larger

perturbation. To minimize the perturbation, only a random section of the point is perturbated. Thus,

unlike in the Boundary Attack, the change is potentially more limited and ideally only on the

predominate features of the original class. This is further explained in Chapter III - Methodology.

Additionally, the Boundary Attack is applicable to both targeted and untargeted attacks. In this

thesis, the attack is limited to a targeted attack. In a targeted attack, the starting adversarial point

is a point belonging to the target class, which is used to guide the attack to the desired class.

However, in an untargeted attack, the starting adversarial point could be any point that is not the

original class. Thus, the success or the cost of the attack is dependent on the starting adversarial

point selected. The process of this selection, according to Brendel et al., is to select a point in

7

which the distance 𝑑(𝒐, 𝒐) = ‖𝒐 − 𝒐̃‖2
2 is minimized. However, the selection is based on the

sample of images the adversarial point is selected from. To avoid any potential issues that could

arise from incorrectly selecting the starting adversarial point, only a targeted attack is implemented

in this thesis.

Jing et al. propose a guided decision-based attack that also shares similarities with the

Boundary attack, but the starting adversarial point is obtained differently, attempting to reduce the

cost of the attack [13]. They propose to not work with all the starting adversarial point, only a

relevant component. This component is added to the original image, creating a new adversarial

point. This reduces the cost of the attack to about 60%. The difference between the two attacks is

illustrated [13, Fig. 1], which is provided as Figure 2. In this thesis, the perturbation is limited by

working with only a portion of the adversarial point. However, Jing et al. work with a semantically

relevant component, such as the head of a Persian cat in Figure 2. In this thesis, a random section

is used instead. Granted, the ideal section is still searched for, but this section could contain non-

semantically relevant pixels. The classification models are mathematically based, not semantically

based. Thus, changing a portion of the input regardless of its semantic significance could still cause

the model to misclassify it. This potential vulnerability is exploited by the attack proposed in this

thesis.

2. 3. Defense Strategies

Like adversarial attacks, defenses against these attacks are also a popular area of research

[1]. One common defense is referred to as adversarial training. Adversarial training is when inputs

or adversarial examples are used to train, or re-train, the classification model [5]. Goodfellow et

8

Figure 2. Boundary Attack (Brendel et al.) vs Jing et al. Attack, obtained from [13]. Both attack methods are used to

get close to the original image and can be compared in regards to the starting point and number of calls.

al. use their FGST for adversarial training and found that adversarial training worsens underfitting.

Additionally, training a model for all possible inputs is not practical or realistic. Thus, other

methods for defense or addressing these models’ vulnerabilities are needed. Bhagoji et al. propose

reducing the dimensionality of data to defend against adversarial attacks [1]. Classification models

have a harder time finding the predominate features when working with high-dimensional data,

making them vulnerable to adversarial attacks. It is found by Bhagoji et al. that the success of the

attack decreases the more the dimension is reduced. However, the dimensionality reduction leads

to a drop in accuracy based on the amount of reduction, making the defense counterproductive in

certain cases.

Furthermore, there do exist several other defensive attacks. The effectiveness of them

depend on the type of attack and the model being attacked. For gradient-based attacks, which are

a popular type of adversarial attack, any mask or method used to hide the gradient could be used;

one example is adding non-differentiable elements through saturated non-linearities [12]. A similar

approach can also be used for other types of attacks like score-based attack, which use the predicted

numerical values for guiding the attack. Additionally, the access to the model being attacked may

10

CHAPTER III

METHODOLOGY

3. 1. Support Vector Machine

In Chapter I. Introduction, SVMs are introduced which is a machine learning model that

can be used for classification. An SVM model differentiates two or more classes by finding the

“boundary line” that separates them. This method is illustrated in Figure 3. The margin is the

space between the classes, and the vector or line used to differentiate the classes, which is the

center of the margin, is called the hyperplane. Depending on the number of classes, an SVM model

may find more than one hyperplane, or “boundary line.” The ideal hyperplane maximizes the

margin and completely separates the two classes. However, the hyperplane may not account for

all instances, and a class may have some points on the other side of the hyperplane, leading to

misclassification. The hyperplane and margin of an SVM is vulnerable to a decision-based attack,

more so than other machine learning models.

Figure 3. SVM Methodology. Two classes (circles and squares) separated by a hyperplane with a maximum margin.

11

This is mainly because the hyperplane can be easily found by moving an input in one direction,

towards a target class for example. For a misclassification when using an SVM model, the

objective is to cross the hyperplane. Additionally, finding the hyperplane can lead to potentially

recreating the original SVM model, potentially leading to more attacks. This is the fundamental

idea behind the attack proposed in this paper that is explained in Chapter III. Methodology – 3. 3.

Section Boundary Attack.

When testing the proposed attack, an SVM model is created using MNIST dataset which

is a large database of hand written digits [14]. This SVM model is a polynomial SVM. An SVM

can have different kernels, or set of mathematical functions, that are used to find the hyperplane.

Some kernels are linear, polynomial, radial basis function (RBF), and sigmoid. The data of the

classes cannot always be separated by a line, as is shown in Figure 4. Thus, using different

methods or kernels can allow for a more accurate hyperplane and a greater margin, resulting in a

more accurate model. The polynomial SVM created for testing has an original accuracy of 98%.

Figure 4. A Nonlinear SVM. Two classes (circles and squares) cannot be separated by a straight line, but a curved

and irregular one.

12

956 0 2 0 0 4 2 1 2 0

0 1127 2 1 0 0 3 0 2 0

6 2 1006 0 2 1 3 9 3 0

0 2 3 984 0 6 0 6 5 4

1 0 3 0 966 0 4 0 0 8

2 0 0 8 1 869 4 1 5 2

4 4 2 0 3 6 937 0 2 0

0 15 8 1 1 0 0 995 0 8

1 1 2 5 5 5 0 3 949 3

3 6 1 4 14 5 0 6 1 969

Figure 5. Confusion Matrix for Original SVM

3. 2. Random Adversarial Sectioning

As previously stated, an input is moved in one direction towards the target class until

crossing the hyperplane. However, this can lead to a great amount of change in the original input.

To minimize and limit the effect of the attack, only random sections of the input are changed. This

allows one to find the predominate features of the class the original input belongs to and the

predominate features of the target class. The change is applied using an image that belongs to the

target class. Random sections of this target class image are obtained. The number of sections

obtained potentially affect the success of the attack. Also, the size of these sections can affect the

success of the attack and the amount of change the original input undergoes. To test the effect of

the number of sections, 𝑠, on the attack, experiments are conducted using 5, 10, 20, and 40 sections.

To test the effect of the size of the sections, 𝑝, on the attack, experiments are conducted using 10%,

30% and 50% of the target class image.

To obtain a random section of the adversarial attack, the size of the sections, 𝑝, and the

target class image, 𝑡_𝑝𝑜𝑖𝑛𝑡, are used. The method is provided as Algorithm 1. The section

obtained is a group of random adjacent pixels, starting with a random pixel, not a set shape. The

section is actually a mask. The value of this mask is either 0 or 1, depending on whether the

13

corresponding pixel in 𝑡_𝑝𝑜𝑖𝑛𝑡 is part of the section or not. This mask is initiated to be the size of

𝑡_𝑝𝑜𝑖𝑛𝑡 and all its values are set to 0. Then, a random pixel is selected from 𝑡_𝑝𝑜𝑖𝑛𝑡, which is

referred to as 𝑟_𝑝𝑖𝑥𝑒𝑙. Using the coordinates of 𝑟_𝑝𝑖𝑥𝑒𝑙, the corresponding value, or pixel, in

𝑚𝑎𝑠𝑘 is found and set to 1. Then, a new pixel is selected randomly from the adjacent pixels

surrounding the non-zero pixels in 𝑚𝑎𝑠𝑘 as is shown in Figure 6c. This new pixel is referred to

as 𝑎_𝑝𝑖𝑥𝑒𝑙. 𝑎_𝑝𝑖𝑥𝑒𝑙 is added to 𝑚𝑎𝑠𝑘 similarly to how 𝑟_𝑝𝑖𝑥𝑒𝑙 is. A new 𝑎_𝑝𝑖𝑥𝑒𝑙 keeps on being

selected and added until the section is of the desired size. This process is shown in Figure 6d. To

keep track of the number of pixels that should be added to 𝑚𝑎𝑠𝑘, a value called 𝑠𝑖𝑧𝑒𝑆 is obtained

using Formula 1, in which 𝑠𝑖𝑧𝑒𝑇 refers to the size of 𝑡_𝑝𝑜𝑖𝑛𝑡. The full process is shown in Figure

6.

 𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑇 × 𝑝 (1)

Algorithm 1 Generating Adversarial Section

Input: target class image 𝑡_𝑝𝑜𝑖𝑛𝑡, size of section 𝑝

Output: random adversarial section 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

 1: 𝑠𝑖𝑧𝑒𝑆 = 𝑡_𝑝𝑜𝑖𝑛𝑡. 𝑠𝑖𝑧𝑒 ∗ 𝑝

 2: Set 𝑟_𝑝𝑖𝑥𝑒𝑙 as a random value or pixel of 𝑡_𝑝𝑜𝑖𝑛𝑡

 3: Set 𝑚𝑎𝑠𝑘 to be the same size as 𝑡_𝑝𝑜𝑖𝑛𝑡 with all

the value being 0

 4: 𝑖𝑛𝑑𝑒𝑥 = 𝑡_𝑝𝑜𝑖𝑛𝑡. 𝑖𝑛𝑑𝑒𝑥(𝑟_𝑝𝑖𝑥𝑒𝑙) #coordinates

 5: 𝑚𝑎𝑠𝑘[𝑖𝑛𝑑𝑒𝑥] = 1

 6: 𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑆 − 1

 7: while (𝑠𝑖𝑧𝑒𝑆 > 0) do

 8: Set 𝑎_𝑝𝑖𝑥𝑒𝑙 to be a pixel or value of 𝑚𝑎𝑠𝑘

that is an adjacent pixel or value of the

nonzero values in 𝑚𝑎𝑠𝑘

 9: 𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑎𝑠𝑘. 𝑖𝑛𝑑𝑒𝑥(𝑎_𝑝𝑖𝑥𝑒𝑙)

10: 𝑚𝑎𝑠𝑘[𝑖𝑛𝑑𝑒𝑥] = 1

11: 𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑆 − 1

12: end while

13: return 𝑚𝑎𝑠𝑘

14

This process is repeated 𝑠 times to obtain the number of sections, or masks, desired. Sample

random sections obtained from using the same 𝑡_𝑝𝑜𝑖𝑛𝑡 are provided as shown in Figure 7. In

Figure 7, the corresponding pixels of 𝑡_𝑝𝑜𝑖𝑛𝑡 are shown that were obtained using the masks

generated. For the generated sections, some may contain the predominate features of the target

class while others may not. To find the ideal or optimal section, the sections generated are

compared by considering the steps needed to cause a misclassification. The section with the least

steps, or change to the original input, is the best section. These sections are used to recreate the

SVM as is described in Chapter III – Methodology 3. 4. Recreate Original SVM.

3. 3. Section Boundary Attack

Once the section is obtained, an input, 𝑖, can be perturbated. The difference between the

Figure 6. Random Adversarial Sectioning. (a) The target class image and its pixel values: In this case, the target class

is the number 3. (b) The target class image and one random pixel selected, r_pixel. r_pixel is shown in blue to

differentiate it from the other pixels in the target class image. (c) The surrounding pixels of r_pixel are shown and

highlighted in light yellow. From these pixels, one random pixel is selected, a_pixel. (d) This process is repeated until

the size desired is reached. A greater section, that is still not complete, is shown with a blue background, and the

adjacent pixels of the section are highlighted in light yellow.

15

Figure 7. Random Adversarial Sections. These are some examples of random adversarial sections generated using the

same 𝑡_𝑝𝑜𝑖𝑛𝑡 when the target class is the number 3 and the size of the section is 30% of the original image, 𝑡_𝑝𝑜𝑖𝑛𝑡.

section of 𝑡_𝑝𝑜𝑖𝑛𝑡 obtained using the 𝑚𝑎𝑠𝑘 generated and 𝑖 is considered the direction. 𝑖 is moved

in the said direction in small steps, with the size of the step being 𝜃, which is defined by Formula

2. The potential adversarial point is obtained using Formula 3. To initiate 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, it is set to 𝑖.

In Formula 3, Δ𝑖 is the step with the direction and size, 𝜃. This is defined in Formula 4. To limit

the perturbation to only the desired section, the value of the mask is multiplied with the direction

and step. If the pixel should not be permutated, it is not part of the section, the mask value for that

pixel should be 0, resulting in zero change when multiplied. Otherwise, a perturbation occurs since

the mask’s value is 1. Additionally, the perturbation is limited to a small step by using 𝜃. Formula

3 is implemented until the decision of the SVM model changes to the target class, referred to as

𝑐𝑙𝑎𝑠𝑠_𝑇 or 𝜃 becomes 1.

𝜃 =

1

𝑁
, 𝑤𝑖𝑡ℎ 𝑁 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

(2)

 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 + Δ𝑖 (3)

 Δ𝑖 = 𝜃𝑚𝑎𝑠𝑘̅̅ ̅̅ ̅̅

𝑗̅(𝑡_𝑝𝑜𝑖𝑛𝑡𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑖𝑗̅) (4)

16

The full attack is described in Algorithm 2. The number of times Formula 3 is implemented

is considered the number of steps taken by the attack, referred to as 𝑘 in Algorithm 2. To test all

the sections generated, 𝑆 = (𝑚𝑎𝑠𝑘1, 𝑚𝑎𝑠𝑘2, … , 𝑚𝑎𝑠𝑘𝑠), and find the optimal section, Algorithm

2 is implemented for each section. After all the sections have resulted in a misclassification, the

number of steps each section took is compared, and the section with the least number of steps is

considered the optimal section. A section in 𝑆 is referred to as 𝑚𝑎𝑠𝑘𝛼, and the steps 𝑚𝑎𝑠𝑘𝛼 took

is referred to as 𝑠𝑡𝑒𝑝𝛼. For this process, Algorithm 3 is used, which calls Algorithm 2. Granted,

the process of obtaining random sections and finding the optimal one leads to calling on the SVM

many times and adds time to the attack. To limit this, the attack is trained for a specific SVM

model and using a specific 𝑡_𝑝𝑜𝑖𝑛𝑡. After the “training data,” or inputs, for which Algorithm 3 is

applied, all the optimal sections are averaged together to form one universal section. This universal

section should ideally cause any input to be classified 𝑐𝑙𝑎𝑠𝑠𝑇 in the least number of steps. The

section or mask consists of zeros and ones. To average it, all the masks are added and divided,

resulting in numbers between 0 and 1. These values are now used as weights as is shown in

Formula 5. This process is described in Algorithm 4. For Algorithm 4, Algorithm 3 is modified

slightly to not only return the adversarial example with the least amount of perturbation, called

𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 in Algorithm 4, but also the section used to create that adversarial example, which is

referred to as 𝑚𝑎𝑠𝑘𝑖. Using the universal section generated, all other inputs are perturbated to

cause the inputs to be classified as 𝑐𝑙𝑎𝑠𝑠_𝑡. Formula 5, provided below, shows how the universal

section generated is used to perturbate additional inputs.

 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑥 + 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣(𝑡_𝑝𝑜𝑖𝑛𝑡 − 𝑥) (5)

17

In Formula 5, 𝑥 is the input being perturbated, and 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 is the universal section

generated. The difference between 𝑡_𝑝𝑜𝑖𝑛𝑡 and 𝑥 is still calculated to get the correct direction for

each input. Formula 5 is applied when 𝑥 does not belong to the class 𝑐𝑙𝑎𝑠𝑠_𝑡.

Using a universal section, execution time of the attack is decreased, but may negatively

affect the accuracy and effectiveness of the attack. Averaging an image tends to create blurry

images, which may lead to a section with unclear predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡. Additionally,

the change to the input is greater and may extend to the whole image. To improve this approach.

Algorithm 5 is created. In Algorithm 5, the optimal sections for one class are averaged together,

resulting in a class section. Thus, for each class in the “training data” that is not 𝑐𝑙𝑎𝑠𝑠𝑇, a class

section is obtained. Using Algorithm 5, the attack, after being trained, would only need to call on

Algorithm 2 Generating an Adversarial

Example

Input: the decision function 𝑓(.), the original

point or image 𝑖, the adversarial section

𝑠𝑒𝑐𝑡𝑖𝑜𝑛, the adversarial mask 𝑚𝑎𝑠𝑘,

the target class 𝑐𝑙𝑎𝑠𝑠_𝑡

Output: an adversarial example 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, the

steps taken 𝑘

 1: Set the step or size of perturbation 𝜃 (e.g.

𝜃 = 0.01)

 2: Δ𝑖 = 𝜃(𝑠𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑖) for 𝑚𝑎𝑠𝑘 non-zero

values

 3: 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑖

 4: 𝑘 = 0:

 5: while (𝑘 < 𝑁) do

 6: 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 + Δ𝑖

 7: if 𝑓(𝑎𝑑𝑃𝑜𝑖𝑛𝑡) = 𝑐𝑙𝑎𝑠𝑠_𝑡 then

 8: return 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, 𝑘

 9: end if

10: 𝑘 = 𝑘 + 1

11: end while

Algorithm 3 Generating a Cost-Effective Adversarial

Example

Input: the decision function 𝑓(.), the original point or

image 𝑖, list of adversarial sections 𝑆, the target

class 𝑐𝑙𝑎𝑠𝑠_𝑡

Output: an adversarial example with the smallest

number of steps 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡

 1: 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 = 𝑁 //obtained from 𝜃 formula

 2: 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑖
 3: for 𝑚𝑎𝑠𝑘𝛼 in 𝑆 do

 4: Call algorithm 2 to generate adversarial

example for 𝑖 using 𝑚𝑎𝑠𝑘𝛼

 5: Set 𝑠𝑡𝑒𝑝𝛼 to be the number of steps returned

by algorithm 2

 6: Set 𝑎𝑑_𝑝𝑜𝑖𝑛𝑡𝛼to be the adversarial example

returned by algorithm 2

 7: if 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 > 𝑠𝑡𝑒𝑝𝛼 then

 8: 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 = 𝑠𝑡𝑒𝑝𝛼

 9: 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑_𝑝𝑜𝑖𝑛𝑡𝛼

10: end if

11: end for

12: return 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡

18

the SVM once to obtain the original class of the input to know which class section to use. Once

the class section is known,

 the new input is perturbated using Formula 5, with the class section as 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣.

 3. 4. Recreating Original SVM

 As previously mentioned, this attack uses random adversarial sections of the target class,

𝑐𝑙𝑎𝑠𝑠_𝑡, to perturbate new inputs. It is believed that these random adversarial sections

Algorithm 4 Generating a Universal

Adversarial Section for Attack

Input: the decision function 𝑓(.), list of

training inputs 𝐼, list of adversarial

sections 𝑆, the target class 𝑐𝑙𝑎𝑠𝑠_𝑡

Output: an adversarial universal section

 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣

1: Set 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 to be the same size as

𝑡_𝑝𝑜𝑖𝑛𝑡 with all the values being 0

2: for 𝑖 in 𝐼 do

3: Call algorithm 3 to generate adversarial

example for 𝑖 using sections 𝑆

4: Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖 to be the optimal section

returned by algorithm 3

5: Set 𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 to be the adversarial

example returned by algorithm 3

6: 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 +
𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖

7: end for

8: 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 = 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛/(𝑠𝑖𝑧𝑒 𝑜𝑓 𝐼)

9: return 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣

Algorithm 5 Generating Class Adversarial

Section for Attack

Input: the decision function 𝑓(.), list of training

inputs 𝐼, list of adversarial sections 𝑆, the

target class 𝑐𝑙𝑎𝑠𝑠_𝑡

Output: a dictionary containing the adversarial

class section 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠

 1: Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 to be a dictionary with the

size of 10 with the keys being the class

labels (e.g. 0, 1, etc.) and the values being

empty sections - the same size as 𝑡_𝑝𝑜𝑖𝑛𝑡

with all the values being 0

 2: Set 𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠 to be a dictionary with the

size of 10 with the keys being the class

labels (e.g. 0, 1, etc.) and the values being

all 0

 3: for 𝑖 in 𝐼 do

 4: Call algorithm 3 to generate adversarial

example for 𝑖 using sections 𝑆

 5: Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖 to be the optimal section

returned by algorithm 3

 6: Set 𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 to be the adversarial

example returned by algorithm 3

 7: 𝑘𝑒𝑦 = 𝑓(𝑖)

 8: 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑠[𝑘𝑒𝑦] =
𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] + 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖

 9: 𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] = 𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] +
1

10: end for

11: Divide all

12: return 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠

19

contain the predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡 or cover the predominate features of the input’s class.

Granted, the random adversarial section may contain other elements that do not greatly identify

𝑐𝑙𝑎𝑠𝑠_𝑡 or the class of the input. Therefore, the optimal section, the section that requires the least

amount of change to the input is believed to be the section of interest. This section likely results in

a misclassification sooner because it contains the predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡, or it

corresponds to and masks the predominate features of the class the input belongs to. Using this

assumption, the original SVM can be recreated. The input and the section of the input that

corresponds to the optimal adversarial section is used as training data to classify the class they

belong to. Furthermore, the original adversarial image, 𝑡_𝑝𝑜𝑖𝑛𝑡, and the optimal section is used as

training data to classify the target class, 𝑐𝑙𝑎𝑠𝑠_𝑡. In addition, the adversarial example generated

using the optimal section is used as training data as well for 𝑐𝑙𝑎𝑠𝑠_𝑡. This approach allows one to

use a new set of data to recreate the original SVM or create a similar SVM.

Recreating the original SVM allows for a wider range of attacks. It is discussed in Chapter

II. Review of Literature – 2. 2. Boundary Attack by Brendel et. al that using only the decision of

an SVM is more practical. This is because, generally, only the decision of a classification model

is available. Thus, being able to recreate the original model can be very useful. Having access to

the complete model allows the application of more attacks such as gradient attacks, which are very

common and effective adversarial attacks.

20

CHAPTER IV

RESULTS

In this chapter, the results of several experiments conducted for the algorithms and the

Section Boundary Attack are provided and described. The effectiveness of the attack is evaluated

based on the accuracy of the SVM. The attack and algorithms are also evaluated based on

execution time and the number of calls made to the SVM model. These experiments are conducted

using the MNIST dataset [14] and the number 3 as the target class. For all these experiments, the

step taken is 𝜃 = 0.01 = 1/𝑁 = 1/100.

4. 1. Section Boundary Attack

In this section, the proposed boundary attack is implemented without using training data

or obtaining a universal section or class section. Thus, for these experiments, Algorithm 3 is used.

The number of sections, 𝑠, and the size of the sections, 𝑝, are changed to observe the effect on the

attack as previously mentioned in Chapter III. Methodology – Random Adversarial Sectioning.

Experiments are conducted using 5, 10, and 20 as the value for 𝑠 and 10%, 30% and 50% as the

value for 𝑝. The result of these experiments is provided in Table 1, Table 2, Figure 8, Figure 9,

and Figure 10.

In Table 1, one can observe the accuracy of the SVM and how the Section Boundary Attack

affected its performance. The original SVM model has an accuracy of 98%. As can be seen in

Table 1, the accuracy decreases by at least 7%, for 𝑠 = 10 and 𝑝 = 10%, and decreases to a

21

maximum of 59%, for 𝑠 = 20 and 𝑝 = 50%. The number of sections, 𝑠, does not appear to greatly

impact the accuracy of the SVM. However, its effect on the runtime is significant, increasing it by

about 10 seconds as can be observed in Table 3. The great increase on time is likely because the

attack, Algorithm 3 is repeated for each section, adding time to the overall attack. From Table 2,

the calls made by the optimal section, the section requiring the least number of steps, is about 80

overall. Thus, for each section the SVM model is called about 80 to 𝑁 times regardless of the size

of the section, 𝑝, or the number of sections, 𝑠. Based on this, it is concluded that it is the number

of sections, 𝑠, that truly affects the running time. The size of the sections with respect to the target

class image, 𝑝, greatly affects the accuracy of the attack as can be observed in Table 1. When 𝑝 =

10%, the accuracy of the SVM does not decrease greatly, but it decreases by half when 𝑝 = 30%

and when 𝑝 = 50%. This is likely because the change made to the image is on a greater scale – a

greater portion of the image. Granted, the section should still

Accuracy of SVM After Attack

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50%

𝑠 = 5 86% 54% 49%

𝑠 = 10 91% 52% 48%

𝑠 = 20 87% 54% 39%

Table 1. Accuracy of SVM After Attack. The accuracy of the SVM when the attack is implemented is provided. This

allows one to determine the effect on the accuracy, yielding the accuracy of the attack. 𝑠 is the number of sections

tested, and 𝑝 is the size of the sections with respect to the target class image.

Average Calls for Optimal Sections

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50%

𝑠 = 5 88.79 82.94 78.61

𝑠 = 10 87.86 82.01 76.29

𝑠 = 20 86.77 77.88 72.79

Table 2. Average Calls for Optimal Sections. The average calls, or iterations, for the attack for # of inputs is provided.

The maximum number of calls possible is 𝑁. 𝑠 is the number of sections tested, and 𝑝 is the size of the sections in

respect to the target class image.

22

Execution Time of Attack

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50%

𝑠 = 5 13 sec 13 sec 13 sec

𝑠 = 10 22 sec 22 sec 22 sec

𝑠 = 20 32 sec 34 sec 33 sec

Table 3. Execution Time of Attack. The average execution time, or runtime, for the attack for # of inputs is provided.

The execution time is rounded to the nearest second. 𝑠 is the number of sections tested, and 𝑝 is the size of the sections

with respect to the target class image.

952 0 0 25 0 2 0 0 1 0

0 1042 0 82 0 1 1 0 9 0

4 0 769 251 2 0 1 2 3 0

0 0 0 1007 0 0 0 0 2 1

2 0 5 20 944 1 2 0 4 4

8 0 2 422 1 448 4 0 7 0

6 2 3 24 4 2 915 0 2 0

1 7 9 183 2 0 0 815 2 9

3 0 1 98 3 2 0 1 866 0

4 6 2 46 19 3 0 3 3 923

Figure 8. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 10%

876 0 3 83 0 0 14 0 1 3

0 15 1 937 0 0 1 0 181 0

1 0 428 593 3 0 4 0 3 0

0 0 0 1010 0 0 0 0 0 0

1 0 1 141 773 0 16 0 48 2

3 0 1 722 2 143 1 0 19 1

0 0 1 267 1 1 683 0 5 0

2 0 3 906 4 0 1 64 18 30

1 0 0 277 0 0 0 0 690 0

2 0 5 251 11 0 2 0 50 688

Figure 9. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 30%

23

707 0 18 134 0 0 0 0 35 86

0 0 0 1059 0 0 0 0 76 0

0 0 366 356 1 0 0 0 7 2

0 0 0 1010 0 0 0 0 0 0

0 0 9 475 159 0 0 0 32 307

0 0 0 736 0 55 0 0 96 5

0 0 65 334 4 0 405 0 113 33

0 0 1 976 0 0 0 0 7 44

0 0 0 329 0 0 0 0 645 0

0 0 1 452 0 0 0 0 3 553

Figure 10. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 50%

not be too large to minimize the amount of change done on the input. The effect of 𝑝 on the runtime,

however, is very minimal that it does not significantly affect the runtime as is shown in Table 3.

In addition, the goal of the attack is to cause misclassification, specifically for all inputs to

be classified as the target class, which is the number 3 in this case. Figure 8, Figure 9, and Figure

10 are the confusion matrices for the original SVM when testing the adversarial examples

generated for 𝑠 = 20. Based on the figures, the attack is more successful for some classes,

numbers. Additionally, the attack misclassified on various occasions, but not by classifying as the

target class, number 3. This can be observed in the case of class 4, number 4, which the attack

leads to a classification of class 9, number 9, for most of its inputs in Figure 10. This implies class

9, number 9, is in between the target class and class 4, number 4. Thus, when moving inputs

belonging to class 4, number 4, in the direction of the target class, the inputs move into and must

cross class 9, number 9, leading number 4 to be classified as number 9 as a result. Finally, the

classes with the least misclassification are class 0, number 0, and class 8, number 8. It is likely the

predominate features of these two classes are very distinct, making it harder to cause

misclassification. The classes with the most misclassification are class 1, number 1, class 5,

24

number 5, and class 7, number 7. It is likely that these classes are the closest to the target class,

making them more susceptible to the attack. Using the figures, it can be concluded that about 90%

of the misclassifications are incorrectly classified as the target class. When observing the confusion

matrices for 𝑠 = 5, which are provided as Figure 11, 12, and 13, the percentage of

misclassifications classified as the target class varies more, depending on the size of the section,

𝑝. Therefore, one can conclude that the number of sections, 𝑠, does affect the accuracy of the attack

in relation to classifying inputs as the target class.

While conducting these experiments, the average time to obtain a random adversarial

838 0 2 20 1 7 63 0 42 7

0 1086 0 7 17 0 6 0 19 0

1 1 803 112 8 0 10 0 95 2

0 0 1 1003 2 0 0 0 3 1

0 0 1 1 969 1 7 0 0 3

1 1 0 134 6 691 14 0 39 6

2 2 0 4 4 2 935 0 9 0

0 3 14 46 70 0 0 482 22 391

0 0 0 51 11 0 0 0 911 1

2 0 0 17 65 2 1 0 12 910

Figure 11. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 10%

857 0 1 21 0 0 0 0 23 78

0 3 0 839 0 0 0 14 278 1

0 0 577 399 2 0 1 0 42 11

0 0 0 1006 0 0 0 0 2 2

1 0 9 43 417 0 0 0 5 507

2 0 0 404 1 102 0 0 201 182

20 0 34 35 39 1 575 0 198 56

0 0 3 716 1 0 0 86 3 219

0 0 0 48 0 0 0 0 909 17

0 0 1 106 0 0 0 0 0 902

Figure 12. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 30%

25

814 0 0 57 0 0 0 0 47 62

0 0 0 982 0 0 0 0 152 1

1 0 428 562 1 0 0 0 33 7

0 0 0 1007 0 0 0 0 1 2

1 0 3 186 323 0 0 0 8 461

0 0 0 533 2 91 0 0 172 94

13 0 16 117 28 0 497 0 204 83

0 0 1 847 0 0 0 6 3 171

0 0 0 89 1 0 0 0 862 22

0 0 1 154 0 0 0 0 0 854

Figure 13. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 50%

section is 0.1023 seconds. The time to generate the sections does not change greatly based on the

size of the section, 𝑝. Additionally, the time to generate the sections is not added to the runtimes

provided in Table 3. Thus, a greater number of sections, 𝑠, needs additional time to generate more

random adversarial sections. In these experiments, the largest value of 𝑠 used is 20, adding about

2 seconds to the runtime for generating the sections.

4. 2. Universal Section Attack

In this section, a universal section is generated and implemented as is described in

Algorithm 4 in Chapter III. Methodology – 3. 3. Section Boundary Attack. The number of

sections, 𝑠, and the size of the sections, 𝑝, are 5 and 30%, respectively. The value for both is

determine based on the results from the experiments described above in Chapter IV. Results – 4.

1. Section Boundary Attack, specifically considering the running time. For these experiments,

two sets of data are required – training data and testing data. This data is obtained from the

testing data [14]. Different number of training data is used to observe its effect on the accuracy.

The training data contained 5,000 samples, 100 samples, and 500 samples. The testing data used

26

to test the universal section consists of 5,000 samples for all the different collection of training

data. The result of these experiments is provided in Table 4 and Figure 14.

As can be observed in Table 4, the execution time for the attack decreases from 128,604

Size of Training Data Accuracy Execution Time Training Time

5,000 95% 30,534.69 sec 30,452.28 sec

100 55% 722.77 sec 634.25 sec

500 89% 3,161.43 sec 3,080.14 sec

Table 4. Universal Section Accuracy and Execution Time

374 0 4 34 6 1 0 0 39 62

0 0 2 381 0 0 0 0 181 0

0 0 376 105 1 0 1 0 10 0

0 0 0 504 0 0 0 0 3 3

0 0 2 17 353 0 0 0 21 89

0 0 1 200 11 37 0 0 106 81

10 0 129 28 73 0 165 0 88 3

0 0 5 281 1 0 0 20 9 200

0 0 0 11 0 0 0 0 469 5

1 0 0 20 6 0 0 0 5 457

Figure 14. Confusion Matrix for Universal Attacked SVM when 100 Samples are used

seconds, when no training is done, to 30,534.69 seconds when 𝑠 = 5 and 𝑝 = 30% and a universal

section is used, decreasing about 37% when the complete testing data [14] is used. Additionally,

only 88.52 seconds is used to generate adversarial examples for 5,000 samples and the accuracy

decreases to half when only using 100 samples for training. Thus, training the Section Boundary

Attack leads to a faster attack. Regarding the accuracy of the attack, it is about the same when

training consists of 100 samples. However, using 500 or 5,000 samples greatly decreases the

effectiveness of the attack, with the accuracy of the SVM decreasing by only 10% and 4%,

respectively. This is likely because the universal section is an average of all the directions possible

to reach the target class. When an image is averaged together, it becomes blurry [4]. This also

27

happens with the universal section, blurring the predominate features of the target class. Based on

Figure 14, one can observe the attack is more successful for class 1, number 1, class 5, number 5,

and class 7, number 7. This corresponds with the results documented in Chapter 1V. Results – 4.

1. Section Boundary Attack. Additionally, some classes, like class 6, have large misclassification,

but the misclassification is not a result of being classified as the target class. This can also be

observed in class 5 and class 7. These two classes are mostly classified as the target class but are

also misclassified as other classes by a great number of samples.

4. 3. Class Section Attack

In this section, Algorithm 5, described in Chapter III. Methodology – 3. 3. Section

Boundary Attack, is implemented. For these experiments 𝑠 and 𝑝 are 5 and 30%, respectively, as

is done in the previous experiments. Additionally, the size of the training data used to generate the

class section is set to 100, 500, and 5,000, as is done in the previous experiments, to also observe

its effect on accuracy. These similarities between the previous experiments and the experiments

discussed in this section are implmented to be able to accurately compare the two approaches. The

accuracy for all the classes is provided in Table 5. The data provided in Table 6 document the

accuracy of each class for the original SVM. The confusion matrix for the SVM under the attack

proposed as Algorithm 5 is provided as Figure 15.

Based on Table 5 and Table 6, the accuracy of the attack increases compared to when a

universal section is used, going from 99% to 46% for the best results of the attack observed during

experiments. In comparison, the universal section causes the accuracy of the SVM go from 99%

to 55% in the best results observed. The effect of the class sections on the classes’ accuracy seems

to fluctuate. For example, class 8, number 8, seems to not greatly be affected by the class section

boundary attack when only 100 samples are used to generate the class sections. However, when

28

500 samples are used, a much greater decrease in accuracy for class 8 can be observed. On the

other hand, the accuracy for class 4, number 4, and class 6, number 6, increases with the increase

of samples used to generate the class sections. This difference in performance likely has to do with

how close the classes are to the target class and the number of samples for each class contained in

the training data. For this reason, the class distribution for the training data is provided in Table 7.

According to Table 7, class 8 has 2 samples when only 100 samples are used for training. Thus,

the class section for class 8 is generated using only 2 samples. When 500 samples are used for

training, class 8 has 40 samples. The addition of samples likely contributed to the success of the

attack. This can also be observed with other classes.

In the experiments described in Chapter IV. Results – 4. 1. Section Boundary Attack, the

number 0 and 9 classes has the least misclassification observed. These two classes also have less

misclassification than other classes, particularly class 0, number 0. For the overall attack’s goal,

to classify all inputs as the target class, the implementation of training and class sections lead to

53.72% misclassification. 81.5% of misclassifications are classified as the target class, so the

overall goal is met. Granted, there are many instances of misclassification in which the input

Class
Accuracy – 100

Samples

Accuracy – 500

Samples

Accuracy – 5,000

Samples

Number 0 87% 72% 99%

Number 1 0% 0% 81%

Number 2 69% 45% 97%

Number 3 99% 100% 99%

Number 4 16% 79% 95%

Number 5 0% 5% 89%

Number 6 11% 78% 98%

Number 7 0% 0% 97%

Number 8 96% 19% 99%

Number 9 96% 66% 96%

Total 47% 46% 95%

Table 5. Class Section Attacked SVM Accuracy

29

Class Accuracy

Number 0 99%

Number 1 99%

Number 2 98%

Number 3 98%

Number 4 99%

Number 5 97%

Number 6 99%

Number 7 98%

Number 8 99%

Number 9 99%

Table 6. Accuracy of Original SVM per Class

Size of

Training Data
Class

0

Class

1

Class

2

Class

3

Class

4

Class

5

Class

6

Class

7

Class

8

Class

9

5,000 466 593 530 497 510 465 452 507 478 502

100 8 14 8 11 14 7 10 15 2 11

500 42 68 55 43 56 52 41 51 40 52

Table 7. Class Distribution for Training Samples

372 0 116 17 0 11 0 1 3 0

0 0 0 559 0 1 0 0 4 0

0 0 226 273 0 0 0 0 2 1

0 0 0 509 0 0 0 0 0 1

0 0 2 65 381 0 0 3 3 28

0 0 1 373 0 20 0 0 40 2

0 0 27 36 9 36 387 0 1 0

0 0 0 322 0 0 0 0 0 194

0 0 1 387 3 2 0 0 92 0

0 0 3 157 3 1 0 0 0 325

Figure 15. Confusion Matrix for Class Section Attacked SVM when 500 Samples were used

is not classified as the target class as is observed in Chapter IV. Results – 4. 1. Section Boundary

Attack.

4. 4. Recreating SVM Experiments

30

For testing the recreation of the SVM, a selection of inputs is used to build the training data

for the new SVM. The number of inputs, or samples in 𝑎𝑑_𝑡𝑟𝑎𝑖𝑛, is 5,000, and the training data

generated from those inputs is about 18,500 samples. Using this generated training data, a new

SVM is built. Afterwards, the two SVMs are compared by using a different selection of

inputs, 𝑎𝑑_𝑡𝑒𝑠𝑡. Both the original and recreated SVM are tested using 𝑎𝑑_𝑡𝑒𝑠𝑡 and the confusion

matrices for both SVMs are provided as Figure 16 and Figure 17. The accuracy for the original

SVM is 99%, and the accuracy for the new SVM is 93%. For the individual classes, the accuracy

decreases to a maximum of 11.63%, for class 9. Other classes with more than 5% decrease in

accuracy are class 2, class 4, class 5, and class 8. Class 2, class 4, class 8, and class 9 proved to be

more resistant to the Section Boundary Attack as discussed in Chapter IV. Results – 4. 1. Section

Boundary Attack and observed in Figure 10. Thus, it makes sense that using the adversarial

example provided as training samples for the target class would decrease the accuracy. The original

SVM still classifies the adversarial examples generated for this classes as their original classes

about 50% of the time. This difference in classification for the adversarial examples for these

classes causes a significant difference in accuracy between the two SVMs. Nevertheless, based on

these results, it can be concluded that the SVMs are quite similar. Granted,

514 0 0 0 0 2 2 1 1 0

0 560 0 0 0 0 2 0 2 0

4 1 493 0 0 0 1 2 1 0

0 1 1 500 0 0 0 1 4 3

1 0 1 0 477 0 0 0 0 3

1 0 0 5 0 424 3 0 2 1

0 0 0 0 0 3 493 0 0 0

0 2 4 0 0 0 0 508 0 2

0 0 0 0 2 1 0 0 481 1

0 0 0 1 3 1 0 2 0 482

Figure 16. Confusion Matrix for Original SVM using Half of Testing Data

31

504 1 3 3 0 7 0 2 0 0

0 551 1 2 0 1 2 0 7 0

6 3 457 5 11 1 2 6 10 1

0 2 18 470 0 7 0 4 9 0

1 2 2 4 462 2 4 1 1 3

3 6 7 16 4 382 12 3 3 0

1 3 4 0 5 1 479 2 1 0

0 1 5 2 1 7 0 479 3 18

3 3 2 12 2 3 2 2 455 1

3 0 0 9 24 8 0 11 1 433

Figure 17. Confusion Matrix for Recreated SVM

the SVMs are not identical, but they should behave similarly for the majority of inputs. Thus, an

attack that works for the recreated SVM is likely to also be effective to attack the original SVM.

32

CHAPTER V

CONCLUSION & FUTURE WORK

5. 1. Conclusion

In conclusion, the Section Boundary Attack can generate adversarial examples using only

a section of a sample point from the target class. The average misclassification caused by the attack

is 37.78%, about 80% when a universal section is used, and about 63.67% when class sections are

used for the experiments described in Chapter IV Results. The runtime is 22.67 seconds when the

Section Boundary Attack is implemented, which may not be very practical or effective. However,

generating a universal section or class section allows adversarial examples to be generated in less

than a second, only needing time to “train” or generate the universal or class sections. When

considering runtime and accuracy, it is clear that generating and implementing class sections is the

best method of attack.

Using a random section, the perturbation is limited. However, using several sections to

generate the best adversarial example still leads to promising results. Jing et al. propose a guided

decision-based attack that also does not work with all the starting adversarial point, or target point

[13]. However, they use a more search-oriented approach to find a semantically relevant

component that does not include background elements, like the head of the Persian cat in Figure

2. In this thesis, it is shown that a random section, regardless of its semantic meaning, can still lead

to misclassification and easily generate adversarial examples even if the section consists of

background elements. Granted, the change performed by the attack proposed in this thesis is much

33

greater than the attack proposed by Jing et al. [13], but the number of calls is less, and potentially

the execution time as well. Additionally, a clear vulnerability of SVM models is still found and

explored. The recreation of the SVM, while not perfect, may likely lead to other vulnerabilities

being exploited, providing additional benefits of using the attack proposed in this thesis. Despite

the benefit, further work still needs to be done to improve this attack and further research in this

area is needed to potentially lead to more secure and robust classification models.

5. 2. Future Work

For the Section Boundary Attack, the adversarial examples generated are not very natural.

Additionally, while only a small section of the input is changed, the perturbation on the input is

still noticeable to the human eye at times. This is likely because a direct approach is used to go

from input to adversarial example, leading the attack to make more changes than may be necessary.

This is attempted to be limited by decreasing the size of the sections. However, the accuracy of

the attack suffers as a compromise. One reason for this may be that empty sections are being used

– the margins and background of the image, the input. Thus, the accuracy of the attack may benefit

from constricting the random adversarial section to the center of the image, where the main subject

of an image tends to be found. Other methods to isolate the main subject to limit the random

adversarial section may also result in more natural adversarial examples and better accuracy. When

considering the MNIST dataset, one option is to constrict the random adversarial section to

nonzero elements.

Furthermore, the step or size of perturbation 𝜃 for the experiments is set to 𝜃 = 0.01 =

1/100. This causes the calls to be limited to a maximum of 100 for each input. However, it may

have contributed to the unnaturalness of the changes. Smaller steps lead to less change, potentially

making it less imperceptible to the human eye. However, due to concerns about the execution time,

34

the step size is set to 𝜃 = 0.01. Thus, finding ways to reduce the execution time while being able

to decrease the step size could be another method to improve the performance of the attack.

Lastly, the attack needs to be implemented and tested for more datasets to see its

performance and compare how working with larger images or more classes may affect the

effectiveness of the attack. As stated in Chapter II Review of Literature – 4. 3. Defense Strategies,

models have a harder time finding the predominate features when working with high-dimensional

data, making them vulnerable to adversarial attacks [1]. For this reason, changing the dimension

of the data may likely affect the accuracy of the attack. Thus, the attack must be tested on a variety

of data.

35

REFERENCES

[1] N. Bhagoji, D. Cullina, and P. Mittal. “Dimensionality Reduction as a Defense against

Evasion Attacks on Machine Learning Classifiers,” 2017. [Online]. Available:

https://www.semanticscholar.org/paper/Dimensionality-Reduction-as-a-Defense-against-

on-Bhagoji-Cullina/10bd926253cbf5829ee92e927127641b69546e65

[2] Biggio, B. Nelson, and P. Laskov. “Poisoning attacks against support vector machines,”

2012. [Online]. Available: https://arxiv.org/abs/1206.6389

[3] Biggio, B. Nelson, and P. Laskov. “Support Vector Machines Under Adversarial Label

Noise” in Asian Conference on Machine Learning, Nov. 2011, pp. 97-112.

[4] Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context Encoders:

Feature Learning by Inpainting” in CVPR 2016, pp. 2536-2544.

[5] J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial

Examples. Presented at ICLR 2015. [Online]. Available: https://arxiv.org/abs/1412.6572

[6] J. Wu and R. Fu. “Universal, transferable and targeted adversarial attacks,” 2019. [Online].

Available: https://arxiv.org/abs/1908.11332

[7] K. Ren, T. Zheng, Z. Qin, and X. Liu. “Adversarial Attacks and Defenses in Deep

Learning,” Engineering, vol. 6, issue 3, pp, 346-360, Jan. 2020, doi:

https://doi.org/10.1016/j.eng.2019.12.012

https://www.semanticscholar.org/paper/Dimensionality-Reduction-as-a-Defense-against-on-Bhagoji-Cullina/10bd926253cbf5829ee92e927127641b69546e65
https://www.semanticscholar.org/paper/Dimensionality-Reduction-as-a-Defense-against-on-Bhagoji-Cullina/10bd926253cbf5829ee92e927127641b69546e65
https://arxiv.org/abs/1206.6389
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1908.11332
https://doi.org/10.1016/j.eng.2019.12.012

36

[8] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel. “Imperceptible, Robust, and

Targeted Adversarial Examples for Automatic Speech Recognition” in International

Conference on Machine Learning, May 2019, pp. 5231-5240.

[9] Y. Zhou, M. Kantarcioglu, B. Thuraising. “Adversarial Support Vector Machine Learning”

in Proceedings of the 18th ACM SIGKDD international conference on Knowledge

discovery and data mining, Aug. 2012, pp. 1059-1067.

[10] Z. Zhao, D. Dua, and S. Singh. Generating Natural Adversarial Examples. Presented at

ICLR 2018. [Online]. Available: https://arxiv.org/abs/1710.11342

[11] J. Su, D. V. Vargas and K. Sakurai, "One Pixel Attack for Fooling Deep Neural Networks,"

in IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828-841, Oct. 2019,

doi: 10.1109/TEVC.2019.2890858.

[12] W. Brendel, J. Rauber, and M. Bethge. Decision-Based Adversarial Attacks: Reliable

Attacks Against Black-Box Machine Learning Models. Presented at ICLR 2018. [Online].

Available: https://arxiv.org/abs/1712.04248

[13] H. Jing, C. Meng, X. He and W. Wei, "Black Box Explanation Guided Decision-Based

Adversarial Attacks," 2019 IEEE 5th International Conference on Computer and

Communications (ICCC), Chengdu, China, 2019, pp. 1592-1596, doi:

10.1109/ICCC47050.2019.9064243.

[14] Y. LeCun, C. Cortes, and C. J.C. Burges, “The MNIST Datasbase,” November, 1989.

[Online]. Available: http://yann.lecun.com/exdb/mnist/

https://arxiv.org/abs/1710.11342
https://arxiv.org/abs/1712.04248
http://yann.lecun.com/exdb/mnist/

37

[15] J. Wu, and R. Fu. “Universal, transferable and targeted adversarial attacks,” 2019. [Online].

Available: https://arxiv.org/abs/1908.11332

[16] M. Usama, M. Asim, S. Latif, J. Qadir and Ala-Al-Fuqaha, "Generative Adversarial

Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion

Detection Systems," 2019 15th International Wireless Communications & Mobile

Computing Conference (IWCMC), Tangier, Morocco, 2019, pp. 78-83, doi:

10.1109/IWCMC.2019.8766353.

[17] Z. Zhu, Y. Lu and C. Chiang, "Generating Adversarial Examples By Makeup Attacks on

Face Recognition," 2019 IEEE International Conference on Image Processing (ICIP),

Taipei, Taiwan, 2019, pp. 2516-2520, doi: 10.1109/ICIP.2019.8803269.

[18] D. J. Miller, Z. Xiang and G. Kesidis, "Adversarial Learning Targeting Deep Neural

Network Classification: A Comprehensive Review of Defenses Against Attacks," in

Proceedings of the IEEE, vol. 108, no. 3, pp. 402-433, March 2020, doi:

10.1109/JPROC.2020.2970615.

[19] Y. Liu, S. Mao, X. Mei, T. Yang and X. Zhao, "Sensitivity of Adversarial Perturbation in

Fast Gradient Sign Method," 2019 IEEE Symposium Series on Computational Intelligence

(SSCI), Xiamen, China, 2019, pp. 433-436, doi: 10.1109/SSCI44817.2019.9002856.

https://arxiv.org/abs/1908.11332

38

BIOGRAGPHY SKETCH

Yessenia Rodriguez was born in McAllen, Texas. In 2016, she Yessenia graduated from

Brownsville Early College High School and entered The University of Texas Rio Grande Valley.

There she completed a Bachelor of Science in Computer Science in 2018. Yessenia continued her

education by pursing a Master of Science in Computer Science at the University of Texas Rio

Grande Valley. During the summer of 2019, Yessenia was employed by the Upward Bound

Program of the University of Texas Rio Grande Valley as an instructor for a STEM Summer

Internship Program. Then, in 2020, Yessenia was employed by the University as a graduate

assistant aiding professors in their courses, developing material, and teaching the 1101 course for

computer science. In Fall 2020, Yessenia graduated from the University of Texas Rio Grande

Valley, completing a Master of Science in Computer Science. Yessenia can be contacted by email

at yessenia.yess98@icloud.com.

mailto:yessenia.yess98@icloud.com

