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CHAPTER I 

 

INTRODUCTION 

 

Machine learning is a very popular topic due to its many applications. One main application 

is using machine learning models for classification. These models mathematically differentiate 

between classes observed in training data to classify new data. The mathematical approach used 

by the model changes based on the type of model and the parameters used. Support Vector 

Machine (SVM) is one such model; it finds a “boundary line” that separates two or more classes 

the best. The method and how an SVM works are illustrated in Figure 3. While these models have 

many applications and are being implemented, they have many vulnerabilities and have proven to 

not be very robust. A method to find these vulnerabilities and further study of these models to 

potentially improve the robustness is by attacking these models in what is known as an adversarial 

attack. In an adversarial attack, an input is minimally changed, ideally unnoticeable to the human 

eye. This change causes an incorrect classification or prediction from the model. Training the 

classification model using these adversarial inputs could create a more robust classification model 

that would be less vulnerable to other forms of attacks. Thus, research in this area and different 

methods of adversarial attacks have been proposed. There are two main elements to be considered 

when studying adversarial attacks. First, one must consider how much knowledge is known about 

the classification model. When nothing is known about the classification model, the attack is 

known as a black-box attack. On the other hand, if everything about the model can be known, the 
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attack is known as a white-box attack. Second element to consider is the exact goal of the attack. 

All adversarial attacks will lead to a wrong prediction or classification. However, the goal of one 

type of attack is for the classification model to always predict one class. This class is known as the 

target class, and this type of attack is called a targeted adversarial attack. 

In this thesis, a targeted adversarial attack is proposed that targets the “boundary line” of 

the SVM, one of its weaknesses. For an SVM model, the goal of an adversarial attack is to move 

the input across the “boundary line,” which would cause a misclassification. The attack proposed 

is tested on an SVM model used for image classification. The attack starts with an image of the 

target class, 𝑐𝑙𝑎𝑠𝑠_𝑡, which is referred to as 𝑡_𝑝𝑜𝑖𝑛𝑡. This image will then be used to alter the 

input images that are not 𝑐𝑙𝑎𝑠𝑠_𝑡, resulting in the images to be misclassified as 𝑐𝑙𝑎𝑠𝑠_𝑡 by the 

model. To limit the change on the input images, 𝑡_𝑝𝑜𝑖𝑛𝑡 is not be used in its entirety, rather only 

a random section of 𝑡_𝑝𝑜𝑖𝑛𝑡 is used. The input images are modified incrementally into the section 

of 𝑡_𝑝𝑜𝑖𝑛𝑡. The section and its size used by the attack contributes to the effectiveness of the attack. 

Thus, several percentages of 𝑡_𝑝𝑜𝑖𝑛𝑡 and several number of sections are tested to observe how the 

accuracy of the attack is affected. The attack also records the number of steps taken by each section 

to cause a misclassification. The section that took the least number of steps is believed to capture 

the “predominate features” of 𝑐𝑙𝑎𝑠𝑠_𝑡 or cover the “predominate features” of the original class. 

Using this assumption, a new model can be trained. Using the attack to recreate the original model 

or a similar one can lead to the discovery of more vulnerabilities and other attacks. The 

methodology of the proposed attack and its variation and applications are described in Chapter III 

– Methodology.  
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Much research has been done on adversarial attacks. This research tends to focus on models 

used for image classification and use either Neural Networks (NNs) or SVMs. Related works are 

reviewed, considering their similarities and differences along with what contributed to the success 

of the attack. 

2. 1. Adversarial Attacks 

Goodfellow et al. proposed an approach to generate adversarial attacks called Fast Gradient 

Sign Method (FGST) [5][7][10] that adds noise to the image based on the gradient. Other similar 

methods developed also use the gradient. One such method attempted to make the adversarial 

example generated more natural [10]. To accomplish this, Generative Adversarial Networks 

(GANs) method is used to generate noise more specific to the input, making it more natural. GANs, 

proposed by Goodfellow et al., is an approach used or modified to generate new data, including 

adversarial examples. One application for GANs outside of an adversarial attack is inpainting as 

proposed by Pathak [4]. Other studies focus on making less perceptible perturbations rather than 

natural ones [9] [11]. Zhou et al. proposed an attack in which the attack model that is penalized for 

altering data samples [9], minimizing the difference between the original and the adversarial 

example. Similarly, Su et al. limits the changes of the adversarial attack on the original examples 

[11]. However, Su et al. do this much more than Zhou et al. by limiting the attack to only one pixel. 

The benefit of this approach is the adversarial example is minimally different, demonstrating the 
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lack of robustness of the model and a vulnerability that could be easily exploited. However, in real 

life examples, the success of a limited adversarial attack decreases since the change is not enough 

to alter the model’s prediction. Nevertheless, limited attacks have the advantage of potentially 

being more unperceivable to the human eye and less costly. 

When generating adversarial examples, all these methods attempt to minimize the 

perturbation, noise, or change added to the image [7][10]. This is generally done by using a loss 

function and minimizing it in respect to the original and the adversarial example [8]. While this 

approach may work for models trained for image classification, attacks may generate adversarial 

examples more unnatural and with a more perceptible change for other media types. When 

proposing an adversarial attack on speech recognition, Qin et al. focused on audio analysis, its 

space and how it is perceived, to potentially make the perturbation more undetectable [8]. Their 

research suggests the idea of adversarial attacks using different approaches based on the type of 

data to have some merit. Their adversarial attacks were more natural and had smaller perturbation, 

or less distortion, when compared to another approach for generating audio adversarial examples 

[8]. 

Most adversarial attacks impact the input and are considered evasion attacks in which new 

inputs are perturbated in some minimal way to get the desired goal [1]. Biggio et al. attempt a 

different approach by modifying the label [3]. Their attack is considered a poison attack in which 

adversarial examples are introduced to the classification model during training, causing 

misclassification during testing [1][2]. Also, Biggio et al. attempt this by flipping or changing the 

label of some of the training samples [3]. While poison attacks can provide information about the 

classification model, it is not very practical since the likelihood of having access to a model during 

training is very low [2]. 
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2. 2. Boundary Attack by Brendel et al. 

Most of the adversarial attacks reviewed are gradient based, but using only the prediction, 

or decision, of the model may be more practical. This is what is known as a decision-based 

adversarial attack. Brendel et al. propose such an attack they refer to as the Boundary Attack [12]. 

The attack proposed by this thesis shares several similarities to this attack. This attack begins with 

an adversarial point. For an untargeted attack, the starting adversarial point is any point that is 

differently classified, whose distance from the original image would be minimized ideally. 

Perturbation or noise is added to the adversarial point to get it closer to the original image while 

no change in classification occurs. This is repeated, getting it closer and closer to the original 

image, until the adversarial point is classified as the original image. An independent and identically 

distributed Gaussian is used to obtain the perturbation which is projected onto a sphere around the 

original image. Using this sphere, the adversarial point is moved in one random direction and 

towards the original image. The sphere and direction change for each perturbation. This process is 

illustrated in [12, Fig. 2], provided as Figure 1. 

The performance of the Boundary Attack seems very promising [12]. However, the cost of 

the attack, according to Brendel et al., is huge. This attack is compared to two other attacks in 

terms of cost – DeepFool (Rauber et al., 2017, as cited in [12]) and Carlini & Wagner attack 

(Carlini & Wagner, 2016a, as cited in [12]). Counting both forward and backward passes, 

DeepFool had 1,199,956 less passes and Carlini & Wagner had 1,168,000 less passes than the 

Boundary Attack. This is likely the result of restricting the attack to only use the prediction, or 

decision, of the model, and a similar occurrence can be observed in the attack proposed in this 

thesis. Additional number of steps needed may be attributed to the starting point being the 

adversarial point, not the original image. The final adversarial point needs to be as close to the  
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Figure 1. General Methodology of the Boundary Attack, obtained from [12]. This attack is proposed by Brendel et al. 

 

original image as possible. For this reason, the starting adversarial point will need to undergo many 

changes to get it as close to a differently classified image, the original image. For this reason, the 

perturbations are performed on the original image in the attack proposed in this thesis, potentially 

reducing the number of perturbations needed. The perturbations performed are also different. The 

original point is moved closer to the target, or adversarial point, as well but in a more direct 

manner. Granted, this may potentially lead to taking a “longer route” or having a larger 

perturbation. To minimize the perturbation, only a random section of the point is perturbated. Thus, 

unlike in the Boundary Attack, the change is potentially more limited and ideally only on the 

predominate features of the original class. This is further explained in Chapter III - Methodology. 

Additionally, the Boundary Attack is applicable to both targeted and untargeted attacks. In this 

thesis, the attack is limited to a targeted attack. In a targeted attack, the starting adversarial point 

is a point belonging to the target class, which is used to guide the attack to the desired class. 

However, in an untargeted attack, the starting adversarial point could be any point that is not the 

original class. Thus, the success or the cost of the attack is dependent on the starting adversarial 

point selected. The process of this selection, according to Brendel et al., is to select a point in 
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which the distance 𝑑(𝒐, 𝒐) = ‖𝒐 − 𝒐̃‖2
2 is minimized. However, the selection is based on the 

sample of images the adversarial point is selected from. To avoid any potential issues that could 

arise from incorrectly selecting the starting adversarial point, only a targeted attack is implemented 

in this thesis. 

Jing et al. propose a guided decision-based attack that also shares similarities with the 

Boundary attack, but the starting adversarial point is obtained differently, attempting to reduce the 

cost of the attack [13]. They propose to not work with all the starting adversarial point, only a 

relevant component. This component is added to the original image, creating a new adversarial 

point. This reduces the cost of the attack to about 60%. The difference between the two attacks is 

illustrated [13, Fig. 1], which is provided as Figure 2. In this thesis, the perturbation is limited by 

working with only a portion of the adversarial point. However, Jing et al. work with a semantically 

relevant component, such as the head of a Persian cat in Figure 2. In this thesis, a random section 

is used instead. Granted, the ideal section is still searched for, but this section could contain non-

semantically relevant pixels. The classification models are mathematically based, not semantically 

based. Thus, changing a portion of the input regardless of its semantic significance could still cause 

the model to misclassify it. This potential vulnerability is exploited by the attack proposed in this 

thesis. 

2. 3. Defense Strategies 

Like adversarial attacks, defenses against these attacks are also a popular area of research 

[1]. One common defense is referred to as adversarial training. Adversarial training is when inputs 

or adversarial examples are used to train, or re-train, the classification model [5]. Goodfellow et  
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Figure 2. Boundary Attack (Brendel et al.) vs Jing et al. Attack, obtained from [13]. Both attack methods are used to 

get close to the original image and can be compared in regards to the starting point and number of calls. 

al. use their FGST for adversarial training and found that adversarial training worsens underfitting. 

Additionally, training a model for all possible inputs is not practical or realistic. Thus, other 

methods for defense or addressing these models’ vulnerabilities are needed. Bhagoji et al. propose 

reducing the dimensionality of data to defend against adversarial attacks [1]. Classification models 

have a harder time finding the predominate features when working with high-dimensional data, 

making them vulnerable to adversarial attacks. It is found by Bhagoji et al. that the success of the 

attack decreases the more the dimension is reduced. However, the dimensionality reduction leads 

to a drop in accuracy based on the amount of reduction, making the defense counterproductive in 

certain cases. 

Furthermore, there do exist several other defensive attacks. The effectiveness of them 

depend on the type of attack and the model being attacked. For gradient-based attacks, which are 

a popular type of adversarial attack, any mask or method used to hide the gradient could be used; 

one example is adding non-differentiable elements through saturated non-linearities [12]. A similar 

approach can also be used for other types of attacks like score-based attack, which use the predicted 

numerical values for guiding the attack. Additionally, the access to the model being attacked may 
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CHAPTER III 

 

METHODOLOGY 

 

3. 1. Support Vector Machine 

In Chapter I. Introduction, SVMs are introduced which is a machine learning model that 

can be used for classification. An SVM model differentiates two or more classes by finding the 

“boundary line” that separates them. This method is illustrated in Figure 3. The margin is the 

space between the classes, and the vector or line used to differentiate the classes, which is the 

center of the margin, is called the hyperplane. Depending on the number of classes, an SVM model 

may find more than one hyperplane, or “boundary line.” The ideal hyperplane maximizes the 

margin and completely separates the two classes. However, the hyperplane may not account for 

all instances, and a class may have some points on the other side of the hyperplane, leading to 

misclassification. The hyperplane and margin of an SVM is vulnerable to a decision-based attack, 

more so than other machine learning models.  

 
Figure 3. SVM Methodology. Two classes (circles and squares) separated by a hyperplane with a maximum margin.
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This is mainly because the hyperplane can be easily found by moving an input in one direction, 

towards a target class for example. For a misclassification when using an SVM model, the 

objective is to cross the hyperplane. Additionally, finding the hyperplane can lead to potentially 

recreating the original SVM model, potentially leading to more attacks. This is the fundamental 

idea behind the attack proposed in this paper that is explained in Chapter III. Methodology – 3. 3. 

Section Boundary Attack. 

When testing the proposed attack, an SVM model is created using MNIST dataset which 

is a large database of hand written digits [14]. This SVM model is a polynomial SVM. An SVM 

can have different kernels, or set of mathematical functions, that are used to find the hyperplane. 

Some kernels are linear, polynomial, radial basis function (RBF), and sigmoid. The data of the 

classes cannot always be separated by a line, as is shown in Figure 4. Thus, using different 

methods or kernels can allow for a more accurate hyperplane and a greater margin, resulting in a 

more accurate model. The polynomial SVM created for testing has an original accuracy of 98%. 

 

 

 
Figure 4. A Nonlinear SVM. Two classes (circles and squares) cannot be separated by a straight line, but a curved 

and irregular one. 
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Figure 5. Confusion Matrix for Original SVM 

3. 2. Random Adversarial Sectioning 

As previously stated, an input is moved in one direction towards the target class until 

crossing the hyperplane. However, this can lead to a great amount of change in the original input. 

To minimize and limit the effect of the attack, only random sections of the input are changed. This 

allows one to find the predominate features of the class the original input belongs to and the 

predominate features of the target class. The change is applied using an image that belongs to the 

target class. Random sections of this target class image are obtained. The number of sections 

obtained potentially affect the success of the attack. Also, the size of these sections can affect the 

success of the attack and the amount of change the original input undergoes. To test the effect of 

the number of sections, 𝑠, on the attack, experiments are conducted using 5, 10, 20, and 40 sections. 

To test the effect of the size of the sections, 𝑝, on the attack, experiments are conducted using 10%, 

30% and 50% of the target class image. 

To obtain a random section of the adversarial attack, the size of the sections, 𝑝, and the 

target class image, 𝑡_𝑝𝑜𝑖𝑛𝑡, are used. The method is provided as Algorithm 1. The section 

obtained is a group of random adjacent pixels, starting with a random pixel, not a set shape. The 

section is actually a mask. The value of this mask is either 0 or 1, depending on whether the 
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corresponding pixel in 𝑡_𝑝𝑜𝑖𝑛𝑡 is part of the section or not. This mask is initiated to be the size of 

𝑡_𝑝𝑜𝑖𝑛𝑡 and all its values are set to 0.  Then, a random pixel is selected from 𝑡_𝑝𝑜𝑖𝑛𝑡, which is 

referred to as 𝑟_𝑝𝑖𝑥𝑒𝑙. Using the coordinates of 𝑟_𝑝𝑖𝑥𝑒𝑙, the corresponding value, or pixel, in 

𝑚𝑎𝑠𝑘 is found and set to 1. Then, a new pixel is selected randomly from the adjacent pixels 

surrounding the non-zero pixels in 𝑚𝑎𝑠𝑘 as is shown in Figure 6c. This new pixel is referred to 

as 𝑎_𝑝𝑖𝑥𝑒𝑙. 𝑎_𝑝𝑖𝑥𝑒𝑙 is added to 𝑚𝑎𝑠𝑘 similarly to how 𝑟_𝑝𝑖𝑥𝑒𝑙 is. A new 𝑎_𝑝𝑖𝑥𝑒𝑙 keeps on being 

selected and added until the section is of the desired size. This process is shown in Figure 6d. To 

keep track of the number of pixels that should be added to 𝑚𝑎𝑠𝑘, a value called 𝑠𝑖𝑧𝑒𝑆 is obtained 

using Formula 1, in which 𝑠𝑖𝑧𝑒𝑇 refers to the size of 𝑡_𝑝𝑜𝑖𝑛𝑡. The full process is shown in Figure 

6. 

 𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑇 × 𝑝 (1) 

 

 

Algorithm 1 Generating Adversarial Section 

Input: target class image 𝑡_𝑝𝑜𝑖𝑛𝑡, size of section 𝑝 

Output: random adversarial section 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

  1: 𝑠𝑖𝑧𝑒𝑆 = 𝑡_𝑝𝑜𝑖𝑛𝑡. 𝑠𝑖𝑧𝑒 ∗ 𝑝 

  2: Set 𝑟_𝑝𝑖𝑥𝑒𝑙 as a random value or pixel of 𝑡_𝑝𝑜𝑖𝑛𝑡 

  3: Set 𝑚𝑎𝑠𝑘 to be the same size as 𝑡_𝑝𝑜𝑖𝑛𝑡 with all 

the value being 0 

  4:  𝑖𝑛𝑑𝑒𝑥 = 𝑡_𝑝𝑜𝑖𝑛𝑡. 𝑖𝑛𝑑𝑒𝑥(𝑟_𝑝𝑖𝑥𝑒𝑙)   #coordinates 

  5: 𝑚𝑎𝑠𝑘[𝑖𝑛𝑑𝑒𝑥] = 1 

  6: 𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑆 − 1 

  7: while (𝑠𝑖𝑧𝑒𝑆 > 0) do 

  8:        Set 𝑎_𝑝𝑖𝑥𝑒𝑙 to be a pixel or value of 𝑚𝑎𝑠𝑘 

that is an adjacent pixel or value of the 

nonzero values in 𝑚𝑎𝑠𝑘 

  9:        𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑎𝑠𝑘. 𝑖𝑛𝑑𝑒𝑥(𝑎_𝑝𝑖𝑥𝑒𝑙) 

10:        𝑚𝑎𝑠𝑘[𝑖𝑛𝑑𝑒𝑥] = 1 

11:        𝑠𝑖𝑧𝑒𝑆 = 𝑠𝑖𝑧𝑒𝑆 − 1 

12: end while 

13: return 𝑚𝑎𝑠𝑘 
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This process is repeated 𝑠 times to obtain the number of sections, or masks, desired. Sample 

random sections obtained from using the same 𝑡_𝑝𝑜𝑖𝑛𝑡 are provided as shown in Figure 7. In 

Figure 7, the corresponding pixels of 𝑡_𝑝𝑜𝑖𝑛𝑡 are shown that were obtained using the masks 

generated. For the generated sections, some may contain the predominate features of the target 

class while others may not. To find the ideal or optimal section, the sections generated are 

compared by considering the steps needed to cause a misclassification. The section with the least 

steps, or change to the original input, is the best section. These sections are used to recreate the 

SVM as is described in Chapter III – Methodology 3. 4. Recreate Original SVM. 

3. 3. Section Boundary Attack 

Once the section is obtained, an input, 𝑖, can be perturbated. The difference between the  

 
Figure 6. Random Adversarial Sectioning. (a) The target class image and its pixel values: In this case, the target class 

is the number 3. (b) The target class image and one random pixel selected, r_pixel. r_pixel is shown in blue to 

differentiate it from the other pixels in the target class image. (c) The surrounding pixels of r_pixel are shown and 

highlighted in light yellow. From these pixels, one random pixel is selected, a_pixel. (d) This process is repeated until 

the size desired is reached. A greater section, that is still not complete, is shown with a blue background, and the 

adjacent pixels of the section are highlighted in light yellow. 
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Figure 7. Random Adversarial Sections. These are some examples of random adversarial sections generated using the 

same 𝑡_𝑝𝑜𝑖𝑛𝑡 when the target class is the number 3 and the size of the section is 30% of the original image, 𝑡_𝑝𝑜𝑖𝑛𝑡. 

section of 𝑡_𝑝𝑜𝑖𝑛𝑡 obtained using the 𝑚𝑎𝑠𝑘 generated and 𝑖 is considered the direction. 𝑖 is moved 

in the said direction in small steps, with the size of the step being 𝜃, which is defined by Formula 

2. The potential adversarial point is obtained using Formula 3. To initiate 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, it is set to 𝑖. 

In Formula 3, Δ𝑖 is the step with the direction and size, 𝜃. This is defined in Formula 4. To limit 

the perturbation to only the desired section, the value of the mask is multiplied with the direction 

and step. If the pixel should not be permutated, it is not part of the section, the mask value for that 

pixel should be 0, resulting in zero change when multiplied. Otherwise, a perturbation occurs since 

the mask’s value is 1. Additionally, the perturbation is limited to a small step by using 𝜃. Formula 

3 is implemented until the decision of the SVM model changes to the target class, referred to as 

𝑐𝑙𝑎𝑠𝑠_𝑇 or 𝜃 becomes 1. 

 
𝜃 =

1

𝑁
, 𝑤𝑖𝑡ℎ 𝑁 𝑏𝑒𝑖𝑛𝑔 𝑎 𝑤ℎ𝑜𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

(2) 

 
 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 + Δ𝑖 (3) 

 
 Δ𝑖 = 𝜃𝑚𝑎𝑠𝑘̅̅ ̅̅ ̅̅

𝑗̅(𝑡_𝑝𝑜𝑖𝑛𝑡𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑖𝑗̅) (4) 
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The full attack is described in Algorithm 2. The number of times Formula 3 is implemented 

is considered the number of steps taken by the attack, referred to as 𝑘 in Algorithm 2. To test all 

the sections generated, 𝑆 = (𝑚𝑎𝑠𝑘1, 𝑚𝑎𝑠𝑘2, … , 𝑚𝑎𝑠𝑘𝑠), and find the optimal section, Algorithm 

2 is implemented for each section. After all the sections have resulted in a misclassification, the 

number of steps each section took is compared, and the section with the least number of steps is 

considered the optimal section. A section in 𝑆 is referred to as 𝑚𝑎𝑠𝑘𝛼, and the steps 𝑚𝑎𝑠𝑘𝛼 took 

is referred to as 𝑠𝑡𝑒𝑝𝛼. For this process, Algorithm 3 is used, which calls Algorithm 2. Granted, 

the process of obtaining random sections and finding the optimal one leads to calling on the SVM 

many times and adds time to the attack. To limit this, the attack is trained for a specific SVM 

model and using a specific 𝑡_𝑝𝑜𝑖𝑛𝑡. After the “training data,” or inputs, for which Algorithm 3 is 

applied, all the optimal sections are averaged together to form one universal section. This universal 

section should ideally cause any input to be classified 𝑐𝑙𝑎𝑠𝑠𝑇 in the least number of steps. The 

section or mask consists of zeros and ones. To average it, all the masks are added and divided, 

resulting in numbers between 0 and 1. These values are now used as weights as is shown in 

Formula 5. This process is described in Algorithm 4. For Algorithm 4, Algorithm 3 is modified 

slightly to not only return the adversarial example with the least amount of perturbation, called 

𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 in Algorithm 4, but also the section used to create that adversarial example, which is 

referred to as 𝑚𝑎𝑠𝑘𝑖. Using the universal section generated, all other inputs are perturbated to 

cause the inputs to be classified as 𝑐𝑙𝑎𝑠𝑠_𝑡. Formula 5, provided below, shows how the universal 

section generated is used to perturbate additional inputs. 

 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑥 + 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣(𝑡_𝑝𝑜𝑖𝑛𝑡 − 𝑥) (5) 
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In Formula 5, 𝑥 is the input being perturbated, and 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 is the universal section 

generated. The difference between 𝑡_𝑝𝑜𝑖𝑛𝑡 and 𝑥 is still calculated to get the correct direction for 

each input. Formula 5 is applied when 𝑥 does not belong to the class 𝑐𝑙𝑎𝑠𝑠_𝑡.  

Using a universal section, execution time of the attack is decreased, but may negatively 

affect the accuracy and effectiveness of the attack. Averaging an image tends to create blurry 

images, which may lead to a section with unclear predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡. Additionally, 

the change to the input is greater and may extend to the whole image. To improve this approach. 

Algorithm 5 is created. In Algorithm 5, the optimal sections for one class are averaged together, 

resulting in a class section. Thus, for each class in the “training data” that is not 𝑐𝑙𝑎𝑠𝑠𝑇, a class 

section is obtained. Using Algorithm 5, the attack, after being trained, would only need to call on 

Algorithm 2 Generating an Adversarial 

Example 

Input: the decision function 𝑓(. ), the original 

point or image 𝑖, the adversarial section 

𝑠𝑒𝑐𝑡𝑖𝑜𝑛,  the adversarial mask 𝑚𝑎𝑠𝑘, 

the target class 𝑐𝑙𝑎𝑠𝑠_𝑡 

Output: an adversarial example 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, the 

steps taken 𝑘 

  1: Set the step or size of perturbation 𝜃 (e.g. 

𝜃 = 0.01) 

  2: Δ𝑖 = 𝜃(𝑠𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑖) for 𝑚𝑎𝑠𝑘 non-zero 

values 

  3: 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑖 

  4:  𝑘 = 0:  

  5: while (𝑘 < 𝑁) do 

  6:        𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑𝑃𝑜𝑖𝑛𝑡 + Δ𝑖 

  7:        if 𝑓(𝑎𝑑𝑃𝑜𝑖𝑛𝑡) = 𝑐𝑙𝑎𝑠𝑠_𝑡 then 

  8:                return 𝑎𝑑𝑃𝑜𝑖𝑛𝑡, 𝑘 

  9:        end if 

10:        𝑘 = 𝑘 + 1 

11: end while 

Algorithm 3 Generating a Cost-Effective Adversarial 

Example 

Input: the decision function 𝑓(. ), the original point or 

image 𝑖, list of adversarial sections 𝑆, the target 

class 𝑐𝑙𝑎𝑠𝑠_𝑡 

Output: an adversarial example with the smallest 

number of steps 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 

  1: 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 = 𝑁        //obtained from 𝜃 formula 

  2: 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑖 
  3: for 𝑚𝑎𝑠𝑘𝛼  in 𝑆 do 

  4:        Call algorithm 2 to generate adversarial 

example for 𝑖 using 𝑚𝑎𝑠𝑘𝛼 

  5:        Set 𝑠𝑡𝑒𝑝𝛼 to be the number of steps returned 

by algorithm 2 

  6:        Set 𝑎𝑑_𝑝𝑜𝑖𝑛𝑡𝛼to be the adversarial example 

returned by algorithm 2 

  7:        if 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 > 𝑠𝑡𝑒𝑝𝛼 then 

  8:                 𝑚𝑖𝑛𝑆𝑡𝑒𝑝𝑠 = 𝑠𝑡𝑒𝑝𝛼 

  9:                 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 = 𝑎𝑑_𝑝𝑜𝑖𝑛𝑡𝛼 

10:        end if 

11: end for 

12: return 𝑚𝑖𝑛_𝑎𝑑𝑃𝑜𝑖𝑛𝑡 
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the SVM once to obtain the original class of the input to know which class section to use. Once 

the class section is known,  

 the new input is perturbated using Formula 5, with the class section as 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣. 

 3. 4. Recreating Original SVM 

 As previously mentioned, this attack uses random adversarial sections of the target class, 

𝑐𝑙𝑎𝑠𝑠_𝑡, to perturbate new inputs. It is believed that these random adversarial sections  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 Generating a Universal 

Adversarial Section for Attack 

Input:  the decision function 𝑓(. ), list of 

training inputs 𝐼, list of adversarial 

sections 𝑆, the target class 𝑐𝑙𝑎𝑠𝑠_𝑡 

Output: an adversarial universal section 

 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 

1: Set 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 to be the same size as 

𝑡_𝑝𝑜𝑖𝑛𝑡 with all the values being 0 

2: for 𝑖 in  𝐼 do 

3:        Call algorithm 3 to generate adversarial 

example for 𝑖 using sections 𝑆 

4:        Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖 to be the optimal section 

returned by algorithm 3 

5:        Set 𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 to be the adversarial 

example returned by algorithm 3 

6:        𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛 +
𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖 

7: end for 

8: 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 = 𝑠𝑢𝑚𝑆𝑒𝑐𝑡𝑖𝑜𝑛/(𝑠𝑖𝑧𝑒 𝑜𝑓 𝐼) 

9: return  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑣 

Algorithm 5 Generating Class Adversarial 

Section for Attack 

Input:  the decision function 𝑓(. ), list of training 

inputs 𝐼, list of adversarial sections 𝑆, the 

target class 𝑐𝑙𝑎𝑠𝑠_𝑡 

Output: a dictionary containing the adversarial 

class section  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 

  1: Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 to be a dictionary with the 

size of 10 with the keys being the class 

labels (e.g. 0, 1, etc.) and the values being 

empty sections -  the same size as 𝑡_𝑝𝑜𝑖𝑛𝑡 

with all the values being 0 

  2: Set  𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠 to be a dictionary with the 

size of 10 with the keys being the class 

labels (e.g. 0, 1, etc.) and the values being 

all 0 

  3: for 𝑖 in  𝐼 do 

  4:        Call algorithm 3 to generate adversarial 

example for 𝑖 using sections 𝑆 

  5:        Set 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖 to be the optimal section 

returned by algorithm 3 

  6:        Set 𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑖 to be the adversarial 

example returned by algorithm 3 

  7:        𝑘𝑒𝑦 =  𝑓(𝑖) 

  8:        𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑠[𝑘𝑒𝑦] =
𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] + 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑖  

  9:        𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] = 𝑐𝑜𝑢𝑛𝑡𝐶𝑙𝑎𝑠𝑠[𝑘𝑒𝑦] +
1 

10: end for 

11: Divide all  

12: return  𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 



19 

contain the predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡 or cover the predominate features of the input’s class. 

Granted, the random adversarial section may contain other elements that do not greatly identify  

𝑐𝑙𝑎𝑠𝑠_𝑡 or the class of the input. Therefore, the optimal section, the section that requires the least 

amount of change to the input is believed to be the section of interest. This section likely results in 

a misclassification sooner because it contains the predominate features of 𝑐𝑙𝑎𝑠𝑠_𝑡, or it 

corresponds to and masks the predominate features of the class the input belongs to. Using this 

assumption, the original SVM can be recreated. The input and the section of the input that 

corresponds to the optimal adversarial section is used as training data to classify the class they 

belong to. Furthermore, the original adversarial image, 𝑡_𝑝𝑜𝑖𝑛𝑡, and the optimal section is used as 

training data to classify the target class, 𝑐𝑙𝑎𝑠𝑠_𝑡. In addition, the adversarial example generated 

using the optimal section is used as training data as well for 𝑐𝑙𝑎𝑠𝑠_𝑡. This approach allows one to 

use a new set of data to recreate the original SVM or create a similar SVM. 

Recreating the original SVM allows for a wider range of attacks. It is discussed in Chapter 

II. Review of Literature – 2. 2. Boundary Attack by Brendel et. al that using only the decision of 

an SVM is more practical. This is because, generally, only the decision of a classification model 

is available. Thus, being able to recreate the original model can be very useful. Having access to 

the complete model allows the application of more attacks such as gradient attacks, which are very 

common and effective adversarial attacks. 
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CHAPTER IV 

 

RESULTS 

In this chapter, the results of several experiments conducted for the algorithms and the 

Section Boundary Attack are provided and described. The effectiveness of the attack is evaluated 

based on the accuracy of the SVM. The attack and algorithms are also evaluated based on 

execution time and the number of calls made to the SVM model. These experiments are conducted 

using the MNIST dataset [14] and the number 3 as the target class. For all these experiments, the 

step taken is 𝜃 = 0.01 = 1/𝑁 = 1/100. 

4. 1. Section Boundary Attack 

In this section, the proposed boundary attack is implemented without using training data 

or obtaining a universal section or class section. Thus, for these experiments, Algorithm 3 is used. 

The number of sections, 𝑠, and the size of the sections, 𝑝, are changed to observe the effect on the 

attack as previously mentioned in Chapter III. Methodology – Random Adversarial Sectioning. 

Experiments are conducted using 5, 10, and 20 as the value for 𝑠 and 10%, 30% and 50% as the 

value for 𝑝. The result of these experiments is provided in Table 1, Table 2, Figure 8, Figure 9, 

and Figure 10. 

In Table 1, one can observe the accuracy of the SVM and how the Section Boundary Attack 

affected its performance. The original SVM model has an accuracy of 98%. As can be seen in 

Table 1, the accuracy decreases by at least 7%, for 𝑠 = 10 and 𝑝 = 10%, and decreases to a 
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maximum of 59%, for 𝑠 = 20 and 𝑝 = 50%. The number of sections, 𝑠, does not appear to greatly 

impact the accuracy of the SVM. However, its effect on the runtime is significant, increasing it by 

about 10 seconds as can be observed in Table 3. The great increase on time is likely because the 

attack, Algorithm 3 is repeated for each section, adding time to the overall attack.  From Table 2, 

the calls made by the optimal section, the section requiring the least number of steps, is about 80 

overall. Thus, for each section the SVM model is called about 80 to 𝑁 times regardless of the size 

of the section, 𝑝, or the number of sections, 𝑠. Based on this, it is concluded that it is the number 

of sections, 𝑠, that truly affects the running time. The size of the sections with respect to the target 

class image, 𝑝, greatly affects the accuracy of the attack as can be observed in Table 1. When 𝑝 =

10%, the accuracy of the SVM does not decrease greatly, but it decreases by half when 𝑝 = 30% 

and when 𝑝 = 50%. This is likely because the change made to the image is on a greater scale – a 

greater portion of the image. Granted, the section should still  

Accuracy of SVM After Attack 

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50% 

𝑠 = 5 86% 54% 49% 

𝑠 = 10 91% 52% 48% 

𝑠 = 20 87% 54% 39% 

Table 1. Accuracy of SVM After Attack. The accuracy of the SVM when the attack is implemented is provided. This 

allows one to determine the effect on the accuracy, yielding the accuracy of the attack. 𝑠 is the number of sections 

tested, and 𝑝 is the size of the sections with respect to the target class image. 

 

Average Calls for Optimal Sections 

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50% 

𝑠 = 5 88.79 82.94 78.61 

𝑠 = 10 87.86 82.01 76.29 

𝑠 = 20 86.77 77.88 72.79 

Table 2. Average Calls for Optimal Sections. The average calls, or iterations, for the attack for # of inputs is provided. 

The maximum number of calls possible is 𝑁. 𝑠 is the number of sections tested, and 𝑝 is the size of the sections in 

respect to the target class image. 
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Execution Time of Attack 

 𝑝 = 10% 𝑝 = 30% 𝑝 = 50% 

𝑠 = 5 13 sec 13 sec 13 sec 

𝑠 = 10 22 sec 22 sec 22 sec 

𝑠 = 20 32 sec 34 sec 33 sec 

Table 3. Execution Time of Attack. The average execution time, or runtime, for the attack for # of inputs is provided. 

The execution time is rounded to the nearest second. 𝑠 is the number of sections tested, and 𝑝 is the size of the sections 

with respect to the target class image. 

952 0 0 25 0 2 0 0 1 0 

0 1042 0 82 0 1 1 0 9 0 

4 0 769 251 2 0 1 2 3 0 

0 0 0 1007 0 0 0 0 2 1 

2 0 5 20 944 1 2 0 4 4 

8 0 2 422 1 448 4 0 7 0 

6 2 3 24 4 2 915 0 2 0 

1 7 9 183 2 0 0 815 2 9 

3 0 1 98 3 2 0 1 866 0 

4 6 2 46 19 3 0 3 3 923 

Figure 8. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 10% 

876 0 3 83 0 0 14 0 1 3 

0 15 1 937 0 0 1 0 181 0 

1 0 428 593 3 0 4 0 3 0 

0 0 0 1010 0 0 0 0 0 0 

1 0 1 141 773 0 16 0 48 2 

3 0 1 722 2 143 1 0 19 1 

0 0 1 267 1 1 683 0 5 0 

2 0 3 906 4 0 1 64 18 30 

1 0 0 277 0 0 0 0 690 0 

2 0 5 251 11 0 2 0 50 688 

Figure 9. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 30% 

 

 



23 

707 0 18 134 0 0 0 0 35 86 

0 0 0 1059 0 0 0 0 76 0 

0 0 366 356 1 0 0 0 7 2 

0 0 0 1010 0 0 0 0 0 0 

0 0 9 475 159 0 0 0 32 307 

0 0 0 736 0 55 0 0 96 5 

0 0 65 334 4 0 405 0 113 33 

0 0 1 976 0 0 0 0 7 44 

0 0 0 329 0 0 0 0 645 0 

0 0 1 452 0 0 0 0 3 553 

Figure 10. Confusion Matrix for Attacked SVM with 𝑠 = 20 and 𝑝 = 50% 

not be too large to minimize the amount of change done on the input. The effect of 𝑝 on the runtime, 

however, is very minimal that it does not significantly affect the runtime as is shown in Table 3. 

In addition, the goal of the attack is to cause misclassification, specifically for all inputs to 

be classified as the target class, which is the number 3 in this case. Figure 8, Figure 9, and Figure 

10 are the confusion matrices for the original SVM when testing the adversarial examples 

generated for 𝑠 = 20. Based on the figures, the attack is more successful for some classes, 

numbers. Additionally, the attack misclassified on various occasions, but not by classifying as the 

target class, number 3. This can be observed in the case of class 4, number 4, which the attack 

leads to a classification of class 9, number 9, for most of its inputs in Figure 10. This implies class 

9, number 9, is in between the target class and class 4, number 4. Thus, when moving inputs 

belonging to class 4, number 4, in the direction of the target class, the inputs move into and must 

cross class 9, number 9, leading number 4 to be classified as number 9 as a result. Finally, the 

classes with the least misclassification are class 0, number 0, and class 8, number 8. It is likely the 

predominate features of these two classes are very distinct, making it harder to cause 

misclassification. The classes with the most misclassification are class 1, number 1, class 5, 
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number 5, and class 7, number 7. It is likely that these classes are the closest to the target class, 

making them more susceptible to the attack. Using the figures, it can be concluded that about 90% 

of the misclassifications are incorrectly classified as the target class. When observing the confusion 

matrices for 𝑠 = 5, which are provided as Figure 11, 12, and 13, the percentage of 

misclassifications classified as the target class varies more, depending on the size of the section, 

𝑝. Therefore, one can conclude that the number of sections, 𝑠, does affect the accuracy of the attack 

in relation to classifying inputs as the target class. 

While conducting these experiments, the average time to obtain a random adversarial  

838 0 2 20 1 7 63 0 42 7 

0 1086 0 7 17 0 6 0 19 0 

1 1 803 112 8 0 10 0 95 2 

0 0 1 1003 2 0 0 0 3 1 

0 0 1 1 969 1 7 0 0 3 

1 1 0 134 6 691 14 0 39 6 

2 2 0 4 4 2 935 0 9 0 

0 3 14 46 70 0 0 482 22 391 

0 0 0 51 11 0 0 0 911 1 

2 0 0 17 65 2 1 0 12 910 

Figure 11. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 10% 

857 0 1 21 0 0 0 0 23 78 

0 3 0 839 0 0 0 14 278 1 

0 0 577 399 2 0 1 0 42 11 

0 0 0 1006 0 0 0 0 2 2 

1 0 9 43 417 0 0 0 5 507 

2 0 0 404 1 102 0 0 201 182 

20 0 34 35 39 1 575 0 198 56 

0 0 3 716 1 0 0 86 3 219 

0 0 0 48 0 0 0 0 909 17 

0 0 1 106 0 0 0 0 0 902 

Figure 12. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 30% 
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814 0 0 57 0 0 0 0 47 62 

0 0 0 982 0 0 0 0 152 1 

1 0 428 562 1 0 0 0 33 7 

0 0 0 1007 0 0 0 0 1 2 

1 0 3 186 323 0 0 0 8 461 

0 0 0 533 2 91 0 0 172 94 

13 0 16 117 28 0 497 0 204 83 

0 0 1 847 0 0 0 6 3 171 

0 0 0 89 1 0 0 0 862 22 

0 0 1 154 0 0 0 0 0 854 

Figure 13. Confusion Matrix for Attacked SVM with 𝑠 = 5 and 𝑝 = 50% 

section is 0.1023 seconds. The time to generate the sections does not change greatly based on the 

size of the section, 𝑝. Additionally, the time to generate the sections is not added to the runtimes 

provided in Table 3. Thus, a greater number of sections, 𝑠, needs additional time to generate more 

random adversarial sections. In these experiments, the largest value of 𝑠 used is 20, adding about 

2 seconds to the runtime for generating the sections. 

4. 2. Universal Section Attack 

In this section, a universal section is generated and implemented as is described in 

Algorithm 4 in Chapter III. Methodology – 3. 3. Section Boundary Attack. The number of 

sections, 𝑠, and the size of the sections, 𝑝, are 5 and 30%, respectively. The value for both is 

determine based on the results from the experiments described above in Chapter IV. Results – 4. 

1. Section Boundary Attack, specifically considering the running time. For these experiments, 

two sets of data are required – training data and testing data. This data is obtained from the 

testing data [14]. Different number of training data is used to observe its effect on the accuracy. 

The training data contained 5,000 samples, 100 samples, and 500 samples. The testing data used 
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to test the universal section consists of 5,000 samples for all the different collection of training 

data. The result of these experiments is provided in Table 4 and Figure 14. 

As can be observed in Table 4, the execution time for the attack decreases from 128,604  

 

Size of Training Data Accuracy Execution Time Training Time 

5,000 95% 30,534.69 sec 30,452.28 sec 

100 55% 722.77 sec 634.25 sec 

500 89% 3,161.43 sec 3,080.14 sec 

Table 4. Universal Section Accuracy and Execution Time 

374 0 4 34 6 1 0 0 39 62 

0 0 2 381 0 0 0 0 181 0 

0 0 376 105 1 0 1 0 10 0 

0 0 0 504 0 0 0 0 3 3 

0 0 2 17 353 0 0 0 21 89 

0 0 1 200 11 37 0 0 106 81 

10 0 129 28 73 0 165 0 88 3 

0 0 5 281 1 0 0 20 9 200 

0 0 0 11 0 0 0 0 469 5 

1 0 0 20 6 0 0 0 5 457 

Figure 14. Confusion Matrix for Universal Attacked SVM when 100 Samples are used 

seconds, when no training is done, to 30,534.69 seconds when 𝑠 = 5 and 𝑝 = 30% and a universal 

section is used, decreasing about 37% when the complete testing data [14] is used. Additionally, 

only 88.52 seconds is used to generate adversarial examples for 5,000 samples and the accuracy 

decreases to half when only using 100 samples for training. Thus, training the Section Boundary 

Attack leads to a faster attack. Regarding the accuracy of the attack, it is about the same when 

training consists of 100 samples. However, using 500 or 5,000 samples greatly decreases the 

effectiveness of the attack, with the accuracy of the SVM decreasing by only 10% and 4%, 

respectively. This is likely because the universal section is an average of all the directions possible 

to reach the target class. When an image is averaged together, it becomes blurry [4]. This also 
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happens with the universal section, blurring the predominate features of the target class. Based on 

Figure 14, one can observe the attack is more successful for class 1, number 1, class 5, number 5, 

and class 7, number 7.  This corresponds with the results documented in Chapter 1V. Results – 4. 

1. Section Boundary Attack. Additionally, some classes, like class 6, have large misclassification, 

but the misclassification is not a result of being classified as the target class. This can also be 

observed in class 5 and class 7. These two classes are mostly classified as the target class but are 

also misclassified as other classes by a great number of samples. 

4. 3. Class Section Attack 

In this section, Algorithm 5, described in Chapter III. Methodology – 3. 3. Section 

Boundary Attack, is implemented. For these experiments 𝑠 and 𝑝 are 5 and 30%, respectively, as 

is done in the previous experiments. Additionally, the size of the training data used to generate the 

class section is set to 100, 500, and 5,000, as is done in the previous experiments, to also observe 

its effect on accuracy. These similarities between the previous experiments and the experiments 

discussed in this section are implmented to be able to accurately compare the two approaches. The 

accuracy for all the classes is provided in Table 5. The data provided in Table 6 document the 

accuracy of each class for the original SVM. The confusion matrix for the SVM under the attack 

proposed as Algorithm 5 is provided as Figure 15. 

Based on Table 5 and Table 6, the accuracy of the attack increases compared to when a 

universal section is used, going from 99% to 46% for the best results of the attack observed during 

experiments. In comparison, the universal section causes the accuracy of the SVM go from 99% 

to 55% in the best results observed. The effect of the class sections on the classes’ accuracy seems 

to fluctuate. For example, class 8, number 8, seems to not greatly be affected by the class section 

boundary attack when only 100 samples are used to generate the class sections. However, when 
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500 samples are used, a much greater decrease in accuracy for class 8 can be observed.  On the 

other hand, the accuracy for class 4, number 4, and class 6, number 6, increases with the increase 

of samples used to generate the class sections. This difference in performance likely has to do with 

how close the classes are to the target class and the number of samples for each class contained in 

the training data. For this reason, the class distribution for the training data is provided in Table 7. 

According to Table 7, class 8 has 2 samples when only 100 samples are used for training. Thus, 

the class section for class 8 is generated using only 2 samples. When 500 samples are used for 

training, class 8 has 40 samples. The addition of samples likely contributed to the success of the 

attack. This can also be observed with other classes. 

In the experiments described in Chapter IV. Results – 4. 1. Section Boundary Attack, the 

number 0 and 9 classes has the least misclassification observed. These two classes also have less 

misclassification than other classes, particularly class 0, number 0. For the overall attack’s goal, 

to classify all inputs as the target class, the implementation of training and class sections lead to 

53.72% misclassification. 81.5% of misclassifications are classified as the target class, so the 

overall goal is met. Granted, there are many instances of misclassification in which the input  

 

Class 
Accuracy – 100 

Samples 

Accuracy – 500 

Samples 

Accuracy – 5,000 

Samples 

Number 0 87% 72% 99%  

Number 1 0% 0% 81% 

Number 2 69% 45% 97%  

Number 3 99% 100% 99% 

Number 4 16% 79% 95%  

Number 5 0% 5% 89% 

Number 6 11% 78% 98%  

Number 7 0% 0% 97%  

Number 8 96% 19% 99%  

Number 9 96% 66% 96%  

Total 47% 46% 95% 

Table 5. Class Section Attacked SVM Accuracy 
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Class Accuracy 

Number 0 99% 

Number 1 99% 

Number 2 98% 

Number 3 98% 

Number 4 99% 

Number 5 97% 

Number 6 99% 

Number 7 98% 

Number 8 99% 

Number 9 99% 

Table 6. Accuracy of Original SVM per Class 

 

Size of 

Training Data 
Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

5,000 466 593 530 497 510 465 452 507 478 502 

100 8 14 8 11 14 7 10 15 2 11 

500 42 68 55 43 56 52 41 51 40 52 

Table 7. Class Distribution for Training Samples 

 

372 0 116 17 0 11 0 1 3 0 

0 0 0 559 0 1 0 0 4 0 

0 0 226 273 0 0 0 0 2 1 

0 0 0 509 0 0 0 0 0 1 

0 0 2 65 381 0 0 3 3 28 

0 0 1 373 0 20 0 0 40 2 

0 0 27 36 9 36 387 0 1 0 

0 0 0 322 0 0 0 0 0 194 

0 0 1 387 3 2 0 0 92 0 

0 0 3 157 3 1 0 0 0 325 

Figure 15. Confusion Matrix for Class Section Attacked SVM when 500 Samples were used 

is not classified as the target class as is observed in Chapter IV. Results – 4. 1. Section Boundary 

Attack. 

4. 4. Recreating SVM Experiments 
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For testing the recreation of the SVM, a selection of inputs is used to build the training data 

for the new SVM. The number of inputs, or samples in 𝑎𝑑_𝑡𝑟𝑎𝑖𝑛, is 5,000, and the training data 

generated from those inputs is about 18,500 samples. Using this generated training data, a new 

SVM is built. Afterwards, the two SVMs are compared by using a different selection of 

inputs, 𝑎𝑑_𝑡𝑒𝑠𝑡. Both the original and recreated SVM are tested using 𝑎𝑑_𝑡𝑒𝑠𝑡 and the confusion 

matrices for both SVMs are provided as Figure 16 and Figure 17. The accuracy for the original 

SVM is 99%, and the accuracy for the new SVM is 93%. For the individual classes, the accuracy 

decreases to a maximum of 11.63%, for class 9. Other classes with more than 5% decrease in 

accuracy are class 2, class 4, class 5, and class 8. Class 2, class 4, class 8, and class 9 proved to be 

more resistant to the Section Boundary Attack as discussed in Chapter IV. Results – 4. 1. Section 

Boundary Attack and observed in Figure 10. Thus, it makes sense that using the adversarial 

example provided as training samples for the target class would decrease the accuracy. The original 

SVM still classifies the adversarial examples generated for this classes as their original classes 

about 50% of the time. This difference in classification for the adversarial examples for these 

classes causes a significant difference in accuracy between the two SVMs. Nevertheless, based on 

these results, it can be concluded that the SVMs are quite similar. Granted,  

514 0 0 0 0 2 2 1 1 0 

0 560 0 0 0 0 2 0 2 0 

4 1 493 0 0 0 1 2 1 0 

0 1 1 500 0 0 0 1 4 3 

1 0 1 0 477 0 0 0 0 3 

1 0 0 5 0 424 3 0 2 1 

0 0 0 0 0 3 493 0 0 0 

0 2 4 0 0 0 0 508 0 2 

0 0 0 0 2 1 0 0 481 1 

0 0 0 1 3 1 0 2 0 482 

Figure 16. Confusion Matrix for Original SVM using Half of Testing Data 
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504 1 3 3 0 7 0 2 0 0 

0 551 1 2 0 1 2 0 7 0 

6 3 457 5 11 1 2 6 10 1 

0 2 18 470 0 7 0 4 9 0 

1 2 2 4 462 2 4 1 1 3 

3 6 7 16 4 382 12 3 3 0 

1 3 4 0 5 1 479 2 1 0 

0 1 5 2 1 7 0 479 3 18 

3 3 2 12 2 3 2 2 455 1 

3 0 0 9 24 8 0 11 1 433 

Figure 17. Confusion Matrix for Recreated SVM 

the SVMs are not identical, but they should behave similarly for the majority of inputs. Thus, an 

attack that works for the recreated SVM is likely to also be effective to attack the original SVM. 
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CHAPTER V 

 

CONCLUSION & FUTURE WORK 

5. 1. Conclusion 

In conclusion, the Section Boundary Attack can generate adversarial examples using only 

a section of a sample point from the target class. The average misclassification caused by the attack 

is 37.78%, about 80% when a universal section is used, and about 63.67% when class sections are 

used for the experiments described in Chapter IV Results. The runtime is 22.67 seconds when the 

Section Boundary Attack is implemented, which may not be very practical or effective. However, 

generating a universal section or class section allows adversarial examples to be generated in less 

than a second, only needing time to “train” or generate the universal or class sections. When 

considering runtime and accuracy, it is clear that generating and implementing class sections is the 

best method of attack. 

Using a random section, the perturbation is limited. However, using several sections to 

generate the best adversarial example still leads to promising results. Jing et al. propose a guided 

decision-based attack that also does not work with all the starting adversarial point, or target point 

[13]. However, they use a more search-oriented approach to find a semantically relevant 

component that does not include background elements, like the head of the Persian cat in Figure 

2. In this thesis, it is shown that a random section, regardless of its semantic meaning, can still lead 

to misclassification and easily generate adversarial examples even if the section consists of 

background elements. Granted, the change performed by the attack proposed in this thesis is much 
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greater than the attack proposed by Jing et al. [13], but the number of calls is less, and potentially 

the execution time as well. Additionally, a clear vulnerability of SVM models is still found and 

explored. The recreation of the SVM, while not perfect, may likely lead to other vulnerabilities 

being exploited, providing additional benefits of using the attack proposed in this thesis. Despite 

the benefit, further work still needs to be done to improve this attack and further research in this 

area is needed to potentially lead to more secure and robust classification models. 

5. 2. Future Work 

For the Section Boundary Attack, the adversarial examples generated are not very natural. 

Additionally, while only a small section of the input is changed, the perturbation on the input is 

still noticeable to the human eye at times. This is likely because a direct approach is used to go 

from input to adversarial example, leading the attack to make more changes than may be necessary. 

This is attempted to be limited by decreasing the size of the sections. However, the accuracy of 

the attack suffers as a compromise. One reason for this may be that empty sections are being used 

– the margins and background of the image, the input. Thus, the accuracy of the attack may benefit 

from constricting the random adversarial section to the center of the image, where the main subject 

of an image tends to be found. Other methods to isolate the main subject to limit the random 

adversarial section may also result in more natural adversarial examples and better accuracy. When 

considering the MNIST dataset, one option is to constrict the random adversarial section to 

nonzero elements. 

Furthermore, the step or size of perturbation 𝜃 for the experiments is set to 𝜃 = 0.01 =

1/100. This causes the calls to be limited to a maximum of 100 for each input. However, it may 

have contributed to the unnaturalness of the changes. Smaller steps lead to less change, potentially 

making it less imperceptible to the human eye. However, due to concerns about the execution time, 
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the step size is set to 𝜃 = 0.01. Thus, finding ways to reduce the execution time while being able 

to decrease the step size could be another method to improve the performance of the attack. 

Lastly, the attack needs to be implemented and tested for more datasets to see its 

performance and compare how working with larger images or more classes may affect the 

effectiveness of the attack. As stated in Chapter II Review of Literature – 4. 3. Defense Strategies, 

models have a harder time finding the predominate features when working with high-dimensional 

data, making them vulnerable to adversarial attacks [1]. For this reason, changing the dimension 

of the data may likely affect the accuracy of the attack. Thus, the attack must be tested on a variety 

of data. 
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