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ABSTRACT

Sanchez, Erick, Pipe Flow of Newtonian and non­Newtonian Fluids. Master of Science (MS),

August, 2020, 42 pp., 1 table, 24 figures, 15 references, 13 titles.

We consider an incompressible, viscous fluid in a cylindrical pipe. We obtain velocity

profile for both Newtonian fluid and non­Newtonian fluids such as shear­thinning, shear­

thickening and Bingham plastic fluids. The flow is governed by the equation of continuity

(conservation of mass) and the momentum equation. After presenting the governing system in the

cylindrical coordinate system and assuming that the flow is due to the pressure drop and wall

shear stress, we derive the expressions for the velocity component in the axial direction for these

cases. Some computational results of the velocity profiles for various cases are presented. We

will observe that and analyze the velocity profile for Newtonian fluids, as well as for shear­

thinning, shear­thickening and Bingham fluids.
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CHAPTER I

INTRODUCTION

Sir Isaac Newton, born January 4th, 1643 and deceased March 31st, 1727. Globally

recognized for key developments in various fields, prominently mathematics, astronomy, and

physics. These developments include the derivation of the laws of motion and universal

gravitation. Apart from these achievements, Newton studied the way fluids behave, observing

them and noting different factors, such as viscosity, their consistency, and the way their flow

changed depending on their temperature or pressure. He discovered that for most liquids, their

flow behavior or viscosity only changes depending exclusively on those two factors. And so,

today we refer to the liquids that behave as such as Newtonian fluids.

However, this does not apply to every fluid. There exist fluids in which, assuming constant

viscosity, one cannot find a linear relationship between the stress applied to the liquid and rate at

which the fluid deforms, in which case we refer to them as Non­Newtonian fluids. There are

several different forms of non­Newtonian fluids, some of the most important include

shear­thinning (pseudoplastic), shear thickening (dilatant), and Bingham plastics, which we will

analyze more in depth on a later chapter.
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Some Definitions

In this section, we present the definitions of important terms that will be used throughout

this thesis.

Matter: Matter is a material substance that occupies space, has mass, and is composed of

atoms consisting of protons, neutrons, and electrons. It is classified according to chemical and

physical properties. Matter can exist in three different states, solid, liquid, and gas, based on the

way the atoms and molecules are arranged inside them. Solids are relatively rigid and have fixed

shapes and volumes. In contrast, liquids have fixed volumes but flow to assume the shape of their

containers. Gases have neither fixed shapes nor fixed volumes and expand to completely fill their

containers. Matter can often change from one physical state to another in a process called a

physical change. Water can be heated to form a gas called steam, or steam can be cooled to form

liquid water. However, such changes of state do not affect the chemical composition of the

substance. It is important to note that both liquids and gases may be classified as fluids.

Body: A body is a portion of a fluid. It has a volume V and a surface A at any time t.

Particle: A particle is a material point in the body. We introduce a reference frame in order

to localize particles to describe their motions. Here, we use Cartesian coordinate system Oxyz

with O as the origin and Ox, Oy, Oz as three mutually perpendicular axes.

Place: A place x in 3­D space is localized by three coordinate values x, y, z, i.e. we use

following convention

place = (x, y, z) ≡ x ≡


x

y

z

 ≡ {x y z}

We use the expression the place x.

At an arbitrarily chosen reference time t0 the place of a particle in the fluid body is given

2



by a set of coordinates X, Y, Z. We attach the coordinate set X to the particle and use as an

identification of the particle.

particle = (X, Y, Z) ≡ X ≡


X

Y

Z

 ≡ {X Y Z}

In continuum mechanics, we work with functions of place and time:

f = f (x, y, z, t) = f (x, t)

Some examples are pressure p, density ρ (mass per unit volume), velocity v and

temperature T . These quantities are either expressed as functions of the particle coordinates

coordinates X, Y, Z, and present time t or by the place coordinates x, y, z, and present time t.

Polymer: A polymer is a substance that has a molecular structure that is composed of long

chains of repeated units known as monomers that are strung together to yield giant

macro­molecules.

Lagrangian and Eulerian Systems.

The four coordinates (X, t) are called Lagrangian coordinates. They are named after

Joseph Louis Lagrange [1736­1813]. The four coordinates (x, t) are called Eulerian coordinates.

It is named after Leonhard Euler [1707­1783]. A function in Lagrangian coordinates f (X, t) is

called a particle function. A function in Eulerian coordinates f (x, t) is called a place function.

For the Lagrangian system, we consider one particular particle and study behavior of that particle

passing through various places. For Eulerian system, we consider one place and study behavior of

various particles passing through that place. In fluid mechanics, it is usually convenient to work

with Eulerian coordinates (x, t). For a particular choice of place function f (x, t) is related to the

place x. The particle velocity v (x, t) represents the velocity of the particle X passing through the

place x at time t.

3



Stress and Strain.

Stress means that a force is applied to a body. The result of that stress is described as

Strain. When a load is applied on a body, it deforms. That deformation or change in length per

original length is called strain. Newtonian fluids don’t resist much stress that is applied on them

like solids would do, so they don’t show the signs of strain.

Stress is the amount of forces (strength or energy) that are being exerted on an object,

divided by its cross­sectional area to account for size. Larger objects are able to withstand higher

forces. By using stress instead of just force, we are able to use the same yield stress for the same

material, regardless of how large the object actually is.

Strain refers to how much an object deforms when forces are applied to it. Most of the time

this deformation will either cause the object to elongate or shorten, depending on how forces are

applied. To compute strain, this change is divided by the object’s original length, again to account

for size. Larger objects will usually have a greater change in length than smaller objects, even

though they experience the same forces acting on them.

Formula for Stress is

Stress =
Force

Area
i.e., σ =

F

A

where

• σ represents the stress

• F represents the force

• A represents the area

4



Formula for Strain is

Strain =
Change in Length

Original Length
i.e., γ =

△L

L

where

• γ represents the strain

• △L represents the change in length

• L represents the original length

Deformation.

There are two main different types of deformation that we will consider: elastic and plastic

Elastic deformation: Elastic deformation occurs when stress is applied to an object and

the deformation will automatically reverse itself when the external forces are removed.

Plastic deformation: Plastic deformation is a permanent deformation. To reverse it, an

additional external force needs to be applied to return the object to its original shape.

Yield Stress: Stress and strain are directly related to each other: as one increases, the

other increases as well. So, the more stress that an object experiences, the more it deforms until

the object fails. All objects will begin experiencing elastic deformation at first, but once the stress

on the object exceeds a certain amount, it will experience plastic deformation. When that switch

happens, the object has reached its yield stress. Typically, every material has the same

stress­strain relationship, though the size of each portion may be different. Elastic deformation is

linear. The slope of the line is dependent on the material the object is made out of. Plastic

deformation is not linear, making it more difficult to model. In materials science and engineering,

the yield point is the point on a stress­strain curve that indicates the limit of elastic behavior and

the beginning of plastic behavior. Prior to the yield point, a material will deform elastically and

5



will return to its original shape when the applied stress is removed. We can see these concepts

represented in Figure 1.

Figure 1: Stress and Strain
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CHAPTER II

NEWTONIAN AND NON­NEWTONIAN FLUIDS

In this chapter, we compare between Newtonian and non­Newtonian fluids, noting the main
differences and what defines each of them. We will also provide some examples of each type.

Newtonian Fluids

As noted by their given name, one of the first persons to study Newtonian fluids was Sir

Isaac Newton. In addition to his many other discoveries, he did some revolutionary work with

fluids. He discovered that the viscosity of most fluids is only affected by temperature or pressure.

Viscosity is a measure of a fluid’s ability or resistance resistance to flow. A fluid that resists flow

is said to have a higher viscosity, or to be more viscous, than a fluid a that flows more easily. i.e.,

the more viscous a substance is, the longer it will take to pour than a less viscous fluid.

Furthermore, a Newtonian fluid is one that is defined by a linear relationship between the

shear stress and the shear rate. Essentially, in a plot of shear stress versus shear rate, assuming a

constant temperature, we obtain a constant slope that is completely independent of the shear rate.

Such slope is what we refer to as the viscosity of the fluid. It is important to note that every gas is

Newtonian.

Most of everyday fluids, such as water and oil, are also considered to be Newtonian. Their

viscosity is mostly only affected by their temperature, therefore, if their temperature doesn’t

change, neither does their viscosity. Behavior of Newtonian fluids like water can be described

exclusively by temperature and pressure.
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Non­Newtonian Fluids

Unlike Newtonian fluids, the viscosity of some fluids is affected by factors other than

temperature. Therefore, we refer to these fluids as non­Newtonian fluids. Non­Newtonian fluids

are polymers.

Apart from temperature, the viscosity of a non­Newtonian fluid may depend also on the

pressure applied to such fluid, also known as shear stress. As mentioned in the previous section, a

Newtonian fluid’s viscosity will not be affected by shear rate. When is comes to non­Newtonian

fluids, shear stress and the shear rate follow a non­linear relationship. In non­Newtonian fluids,

viscosity can either increase or decrease if a sheer stress is applied to it, i.e., it can either become

more solid or more liquid depending on the type of non­Newtonian fluid it is. And so, a

non­Newtonian fluid is a fluid whose viscosity is variable based on applied stress or force acting

on it from second to second.

Non­Newtonian fluids are divided into various other subcategories. The main types of

Non­Newtonian fluids that we will discuss are shear­thinning, or pseudoplastic; shear­thickening,

or dilatant; and Bingham plastics. Fluids whose viscosity decreases when shear pressure is

applied are known as shear­thinning fluids. Examples include blood, toothpaste, or tomato sauce.

On the other hand, there are other types of fluids for which the effect of shear stress is exactly the

opposite. If a shear stress is applied, their viscosity increases. The way we refer to these fluids is

shear­thickening. A good example is a mixture of corn starch and water; since, when squeezed, it

becomes significantly more dense, which results in the fluid appearing to solidify.

The reason this happens, is because when a stress is applied slowly to a shear­thickening

fluid, the polymer chains are able to move out and rearrange themselves, leading to viscosity

being mostly unaffected. However, if a higher stress acts or is physically applied to the fluid, the

polymer chains do not have time to move. Instead of rearranging, the polymers intertwine

themselves and result in the fluid becoming more solid­like, as the viscosity greatly increases.

8



Different types of non­Newtonian fluids.

As previously mentioned, not every non­Newtonian fluid behaves in the same way when

stress is applied – some become more solid, others more fluid. Some non­Newtonian fluids react

as a result of the amount of stress applied, while others react as a result of the length of time that

stress is applied. We can see Newtonian fluids and the different types of non­Newtonian fluids in

figure 2.

Figure 2: Newtonian and Non­Newtonian Flow Curves
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Thixotropic and Rheopectic fluids: Some fluids behave differently when shear stress is

applied over time. Rheopectic fluids refer to those that become more viscous as a shear stress is

applied over time. Thixotropic fluids are those on the opposite end of the spectrum, for which

their viscosity decreases as as a shear stress is applied over time.

Shear thinning and shear thickening fluids: Some fluids behave differently when stress

is applied altogether. Shear thickening liquids increase in viscosity as stress increases. Shear

thinning liquids decrease in viscosity as stress increases.
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We can see in Figure 3 the relationship of shear rate versus shear stress of Newtonian,

shear thinning and shear thickening fluids.

Figure 3: Shear Thinning and Shear Thickening
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In Figure 4 we can see the relationship of shear rate versus density of Newtonian, shear

thinning and shear thickening fluids.

Figure 4: Shear rate and viscosity
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Examples of substances displaying Newtonian and non­Newtonian fluid characteristics.

Here we provide a list of some examples of fluids that display Newtonian and

non­Newtonian properties and their classifications.

Table 1: Fluid examples
Newtonian Water, oil, gases

Bingham Plastic Mayonnaise, mustard, chocolate
Pseudoplastic Blood, toothpaste, tomato sauce

Dilatant Cornstarch with water, wet sand

Figure 5: Non­Newtonian Fluid
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CHAPTER III

DERIVATION OF MATHEMATICAL EQUATIONS

Main Equations

Equation of Continuity.

We consider a fluid occupying a volume V enclosed by a surface S. Let v (x, t), ρ (x, t),

respectively, denote the velocity and density at a point in the fluid. We take n is the outward

normal on S.

Figure 6: Volume V bounded by the surface S

V

S

(x,t)

v(x,t)

n

The mass of the fluid is given by

M =

∫
V

ρ (x, t) dV
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Now, considering the rate of change, we can write

dM

dt
=

d

dt

∫
V

ρ (x, t) dV

= lim
△t→0

∫
V+△V

ρ (x, t+△t) dV −
∫
V
ρ (x, t) dV

△t

Now, we have

∫
V+△V

ρ (x, t+△t) dV =

∫
V

ρ (x, t+△t) dV +

∫
△V

ρ (x, t+△t) dV

But, using Taylor’s expansion, we write

∫
V

ρ (x, t+△t) dV =

∫
V

ρ (x, t) dV +

∫
V

∂ρ

∂t
△t dV +O

(
(△t)2

)
and

∫
△V

ρ (x, t+△t) dV =

∫
△V

ρ (x, t) dV +

∫
△V

∂ρ

∂t
△t dV +O

(
(△t)2

)
Hence,

∫
V+△V

ρ (x, t+△t) dV −
∫
V

ρ (x, t) dV

=

∫
V

∂ρ

∂t
△t dV +

∫
△V

ρ (x, t) dV +

∫
△V

∂ρ

∂t
△t dV +O

(
(△t)2

)

13



which yields us ∫
V+△V

ρ (x, t+△t) dV −
∫
V
ρ (x, t) dV

△t

=

∫
V

∂ρ

∂t
dV +

∫
△V

ρ dV

△t

+

∫
△V

∂ρ

∂t
dV +O (△t)

As△t → 0,△V → 0. and so the last to terms of the above expression are zero. And for

the second integral,△V = v · n△t△S, so we have

lim
△t→0

∫
△V

ρ dV

△t
=

∫
S

(ρv)·n dS

=

∫
V

div(ρv) dV

Finally, we have
dM

dt
= lim

△t→0

∫
V+△V

ρ (x, t+△t) dV −
∫
V
ρ (x, t) dV

△t

=

∫
V

∂ρ

∂t
dV +

∫
V

div(ρv) dV

=

∫
V

[
∂ρ

∂t
+ div(ρv)

]
dV

Since there is no source or sink (no change in mass), we have
dM

dt
= 0

i.e., ∫
V

[
∂ρ

∂t
+ div(ρv)

]
dV = 0

But V is any arbitrary volume, thus, we must have
∂ρ

∂t
+ div(ρv) = 0

This is known as the Equation of Continuity or Mass Conservation Equation.

14



Since

∇ · (ρv) = (∇ρ) · v+ ρ (∇ · v)

= v · ∇ρ+ ρ∇ · v

continuity equation becomes

∂ρ

∂t
+∇ · (ρv) = 0

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0

Dρ

Dt
+ ρ∇ · v = 0

where

D

Dt
=

∂

∂t
+ v · ∇

Continuity Equation for Incompressible Fluid.

If the fluid is incompressible, density is treated as constant, in that case, the continuity

equation

∂ρ

∂t
+∇ · (ρv) = 0

becomes

∇ · v = 0

15



Continuity Equation in Cartesian Coordinate System

Let

v = (u, v, w)

where u, v, w represent the x, y, z components of the velocity v(x, y, z, t).

In 3­D Cartesian co­ordinates, we have

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

so the continuity equation for incompressible fluid is

∇ · v =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

Continuity Equation in Cylindrical Coordinate System

Let u, v, w represent the r, θ, z components of the velocity v(r, θ, z, t).

In Cylindrical co­ordinates, we have

∇ =

(
∂

∂r
,

∂

r∂θ
,
∂

∂z

)

so the continuity equation for incompressible fluid is

∇ · v =
∂u

∂r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0

Continuity Equation in Spherical Co­ordinate System

Let u, v, w represent the r, θ, φ components of the velocity v(r, θ, φ, t). In Spherical

co­ordinates, we have

16



∇ =

(
∂

∂r
,

∂

r∂θ
,

∂

r∂φ

)

so the continuity equation for incompressible fluid is

∇ · v =
∂u

∂r
+

1

r

∂v

∂θ
+

1

r

∂w

∂φ
= 0

Momentum Equation (Conservation of Momentum)

Law of mechanics states that mass times acceleration is equal to the sum of forces that act

on a volume unit. Total acceleration is composed of the local and the convective acceleration:

Dv
Dt

=
∂v
∂t

+ (v · ∇) v

The momentum equation is

ρ
Dv
Dt

= ρ

[
∂v
∂t

+ (v · ∇) v
]
= F+∇ · σ

where F represents external force (like gravity) and σ is the stress tensor.

Consider Cartesian coordinates (x, y, z). Writing the velocity as v = (u, v, w) and

external force as f = (fx, fy, fz), momentum equations becomes

17



ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂P

∂x
+

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρfx

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
= −∂P

∂y
+

∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

+ ρfy

ρ

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
= −∂P

∂z
+

∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

+ ρfz

Consider cylindrical coordinates (r, θ, z) as shown in Figure 7.

Figure 7: Cylindrical Coordinate System

y

z

x

o

r

z

P (r, ,z)

writing the velocity as v = (vr, vθ, vz) and external force as f = (fr, fθ, fz), momentum equations
becomes

ρ

[
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vz
∂z

− v2θ
r

]
= −∂P

∂r
+

1

r

∂

∂r
(rτrr) +

1

r

∂τrθ
∂θ

+
∂τrz
∂z

− 1

r
τθθ + ρfr (1)
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ρ

[
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+ vz
∂vθ
∂z

+
vrvθ
r

]
= −1

r

∂P

∂θ
+

1

r2
∂

∂r

(
r2τθr

)
+

1

r

∂τθθ
∂θ

+
∂τθz
∂z

+ ρfθ (2)

ρ

[
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

]
= −∂P

∂z
+

1

r

∂

∂r
(rτzr) +

1

r

∂τzθ
∂θ

+
∂τzz
∂z

+ ρfz (3)

Cylindrical Pipe

We consider a liquid flowing through a cylindrical pipe of constant radius R. A

geometrical sketch in cylindrical coordinates (r, θ, z) is shown in Figure 8. The flow is driven by

the pressure gradient, i.e., there is flow from left to right due to pressure difference as P1 > P2.

Our aim is to obtain the velocity profile over a cross section of the pipe and the volumetric flow

through the pipe. We will consider Newtonian and non­Newtonian fluids.
Figure 8: Cylindrical Pipe

z

x

y P1 P2

P1 P2>

R

A cross section of the cylinder is displayed in Figure 9.
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Figure 9: Cross Section of the Cylinder

R

x

y

r

2R

Velocity and stress distribution is shown in Figure 10.

Figure 10: Velocity and stress distribution

We consider a steady laminar flow with velocity v(r, θ, z) with v = (vr, vθ, vz). Here vr

denotes the velocity component in radial direction, r; vθ denotes the velocity component in θ

direction, θ; vz denotes the velocity component in the cylinder axis direction, z. Thus, we have

vz = vz(r), vr = 0, vθ = 0, vz (R) = 0 (4)
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For volumetric flow, we consider the volume of fluid flowing through the ring element dA

(shown in Figure 11).

dQ = v(r) dA = v(r)× 2πr dr

Figure 11: Ring with area dA and thickness dr

O

r
dr

Circular Ring of Thickness dr

Thus, integrating we can write

Q = 2π

∫ R

0

r v(r) dr (5)

Due to the symmetry of the flow,

τθz = τzθ = 0, τrθ = τθr = 0. (6)

Since the velocity is a function of r only, the stresses are functions of r only. So, we have

τrr(r), τθθ(r), τzz(r), τzr(r) = τrz(r). (7)

A cylindrical fluid body with radius r and length dz, and subject to stresses. Since τzz is

independent of θ and z, i.e., it is just a function of the independent variable r.Thus, Euler’s axiom

allows us to write the equilibrium equation for the fluid body as

τrz × (2πr dz) =
(
πr2

) ∂P
∂z

dz
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i.e.,
τrz = −rK

2
(8)

For steady state case, using (1)­(3) and (6), (7), we obtain the following

−∂P

∂r
+

1

r

∂

∂r
(rτrr)−

1

r
τθθ = 0 (9)

and

−1

r

∂P

∂θ
= 0 (10)

−∂P

∂z
+

1

r

∂

∂r
(r τrz) = 0 (11)

Since flow in the positive z­direction due to pressure gradient and pressure is decreasing

from left to right of the cylinder, we take
∂P

∂z
= −K

whereK is a constant. Equation (10) implies P = P (r, z)

Thus, from (11), we get
d

dr
[r τrz(r)] + rK = 0 (12)

Integration yields

r τrz = −r2K

2
+ C1

where C1 is a constant of integration.
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The symmetry condition

τrz(0) = 0

gives us C1 = 0. Thus, we have

τrz = −rK

2
(13)

Result given in (13) can be used to obtain the velocity profile v(r), i.e., v = (v(r), 0, 0)

and the volumetric flow Q through the pipe.

Navier Stokes Equation.

Stress tensor can be expressed as

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



= −


P 0 0

0 P 0

0 0 P

+


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


= −P I+ T

Stress vectors are shown in Figure 12.
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Figure 12: Cross Section of the Cylinder
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Stress Vectors

Thus, we have

ρ
Dv
Dt

= F−∇P +∇ · T

which is known as the Navier­Stokes Equation.

Simplified Version For Newtonian Fluid

For Newtonian fluid, the stress is proportional to the rate of deformation (the change in

velocity in the directions of the stress), i.e.,

ρ
Dv
Dt

= F−∇P +∇ · T

which is known as the Navier­Stokes Equation.

τij = µ

[
∂ui

∂xj

+
∂uj

∂xi

]
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The proportionality constant µ is called the viscosity (kinematic) of the fluid. Viscosity

defines how easily the fluid flows when subjected to body forces.

∇ · T = µ∇ ·


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z



= µ


∂
∂x

(
2∂u
∂x

)
+ ∂

∂y

(
∂u
∂y

+ ∂v
∂x

)
+ ∂

∂z

(
∂u
∂z

+ ∂w
∂x

)
∂
∂x

(
∂u
∂y

+ ∂v
∂x

)
+ ∂

∂y

(
2∂v
∂y

)
+ ∂

∂z

(
∂u
∂z

+ ∂w
∂x

)
∂
∂x

(
∂u
∂z

+ ∂w
∂x

)
+ ∂

∂y

(
∂v
∂z

+ ∂w
∂y

)
+ ∂

∂z

(
2∂w

∂z

)


′

Here ′ denotes the transpose. Assuming incompressibility, we have

∇ · T = µ


∇2u+ ∂

∂x

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
∇2v + ∂

∂y

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
∇2w + ∂

∂z

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)


′

= µ
(
∇2u,∇2v,∇2w

)

= µ∇2 (u, v, w) = µ∇2v

So, we have

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂P

∂x
+

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ ρfx

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
= −∂P

∂y
+

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
+ ρfy

ρ

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
= −∂P

∂z
+

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
+ ρfz

Finally, momentum equation becomes

ρ
Dv
Dt

= F−∇P + µ∇2v
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Velocity Profile for Newtonian Fluid

Here we consider the flow of a Newtonian fluid through the cylinder. Deformation during

a time increment dt of a small plane fluid element is shown in The shear rate dγ
dt
can be derived as

dγ

dt
≡ d

dt
(γrz) =

dv

dr

This is the only non­zero deformation rate. Here we can obtain

τrz = τzr = µ
dv

dr
(14)

and

τrr = τθθ = τzz = 0

τrθ = τθr = τθz = τzθ = 0 (15)

Now (13) and (14) yield us
dv

dr
= −rK

2µ

Integrating with respect to r, we have

v(r) = −r2K

4µ
+ C2.

Here C2 is a constant of integration. The sticking condition at the cylinder boundary

v(R) = 0

allows us to evaluate C2 as

C2 =
R2K

4µ

Thus, finally we can express v(r) as

v(r) =
R2K

4µ
− r2K

4µ

=
K

4µ

(
R2 − r2

)
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Using the notation, v0 for velocity at the center, i.e., at r = 0, we get v0 = R2K
4µ

. Hence,

we get the velocity profile for Newtonian fluid as

v(r) = v0

[
1−

( r

R

)2
]
, (16)

with

v0 =
R2K

4µ
. (17)

Non­Newtonian fluids

Here we consider the flow of two non­Newtonian fluids through the cylinder:

• Power Law Fluid

• Bingham Fluid

Power Law Fluid

Here we can have

τrz = τzr = η
dv

dr
(18)

where

η = µ

∣∣∣∣dvdr
∣∣∣∣n−1

For Newtonian, n = 1, which yields η = µ.

Also,

τrr = τθθ = τzz = τrθ = τθr = 0
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Now (13) and (18) yield us

η
dv

dr
= −rK

2

Thus, we obtain

µ

∣∣∣∣dvdr
∣∣∣∣n−1

dv

dr
= −rK

2

i.e.,

dv

dr
= −

[
rK

2µ

]1/n

Integrating with respect to r, we get

v(r) = −
[
K

2µ

]1/n
× r1+1/n

1 + 1/n
+ C3.

Here C3 is a constant of integration. The sticking condition at the cylinder boundary

v(R) = 0

allows us to evaluate C3 as

C3 =

[
K

2µ

]1/n
× R1+1/n

1 + 1/n

Thus, finally we can express v(r) as

v(r) =

[
K

2µ

]1/n
× R1+1/n

1 + 1/n
−

[
K

2µ

]1/n
× r1+1/n

1 + 1/n

=
n

n+ 1

[
K

2µ

]1/n (
R1+1/n − r1+1/n

)
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Using the notation v0 for velocity at the center, i.e., at r = 0, we get

v0 =
n

n+1

[
K
2µ

]1/n
R1+1/n. Hence, we get the velocity profile as

v(r) = v0

[
1−

( r

R

)1+1/n
]
, (19)

with

v0 =
nR1+1/n

n+ 1

[
K

2µ

]1/n
. (20)

Bingham Fluid

Here we can have

τrz = τzr =

[
µ+

τy∣∣dv
dr

∣∣
]
dv

dr
when

dv

dr
̸= 0, (21)

and

|τrz| = |τzr| ≤ τy when
dv

dr
= 0, (22)

where τy represents yield shear stress.

For Newtonian, τy = 0. Also,

τrr = τθθ = τzz = τrθ = τθr = 0

From the equilibrium equation,

|τzr| ≤ τy when r ≤ rb =
2τy
K

This implies that inside a cylindrical surface of radius rb the material flows like solid plug.

Now (13) and (21) yield us
dv

dr
=

τy
µ

− rK

2µ
(23)
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Integrating (23) with respect to r, for rb ≤ r ≤ R, we get

v(r) =
τy
µ
r − r2K

4µ
+ C4

Here C4 is a constant of integration. The sticking condition at the cylinder boundary

v(R) = 0

allows us to evaluate C4 as

C4 =
R2K

4µ
− τyR

µ

Thus, finally we can express v(r) as

v(r) =
K

4µ

[
R2 − r2

]
− τy

µ
[R− r] (24)

=
KR2

4µ

[
1−

( r

R

)2
]
− τyR

µ

[
1− r

R

]

When τy = 0, we obtain the results same as Newtonian fluid

v(r) =
KR2

4µ

[
1−

( r

R

)2
]
. (25)

Using the notation vb for velocity for the solid plug in the region r ≤ rb, i.e., putting r = rb

in (24), we get

vb =
K

4µ

[
R2 − r2b

]
− τy

µ
[R− rb]

=
KR2

4µ

[
1−

(rb
R

)2

− 4τy
KR

(
1− rb

R

)]
=

KR2

4µ

[
1−

(rb
R

)2

− 2rb
R

(
1− rb

R

)]
=

KR2

4µ

[
1−

(rb
R

)2

− 2rb
R

+ 2
(rb
R

)2
]

=
KR2

4µ

(
1− rb

R

)2

=
KR2

4µ

(
1− 2τy

KR

)2
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Thus, for Bingham fluid,

v(r) =
KR2

4µ

[
1−

( r

R

)2
]
− τyR

µ

[
1− r

R

]
, r ≥ rb (26)

and

vb =
KR2

4µ

(
1− 2τy

KR

)2

, 0 ≤ r ≤ rb (27)
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CHAPTER IV

RESULTS AND DISCUSSION

Newtonian Fluid

Velocity profile is displayed in Figure 13.

Figure 13: Velocity profile for Newtonian Fluid
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Results for the velocity component for variousK is shown in Figure 14.
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Figure 14: Velocity for Newtonian Fluid for variousK
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Figure 15 is used to display results for the velocity component for various µ.
Figure 15: Velocity for Newtonian Fluid for various µ
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Non­Newtonian Power Law Fluid

Velocity profile is displayed in Figure 16.
Figure 16: Velocity profile for Power Law Fluid
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Results for the velocity component for variousK is shown in Figure 17.
Figure 17: Velocity for Power Law Fluid for variousK
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Figure 18 is used to display results for the velocity component for various µ.
Figure 18: Velocity for Power Law Fluid for various µ
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Results for the velocity component for various n is shown in Figure 19 and Figure 20.
Figure 19: Velocity for Power Law Fluid for various n < 1
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Figure 20: Velocity for Power Law Fluid for various n > 1
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Non­Newtonian Bingham Fluid

Velocity profile is displayed in Figure 21.
Figure 21: Velocity profile for Bingham Fluid
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Results for the velocity component for variousK is shown in Figure 22.
Figure 22: Velocity for Bingham Fluid for variousK
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Figure 23 is used to display results for the velocity component for various µ.
Figure 23: Velocity for Bingham Fluid for various µ
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Results for the velocity component for various n is shown in Figure 24.
Figure 24: Velocity for Bingham Fluid for various τy
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CHAPTER V

CONCLUSION

We considered Newtonian and non­Newtonian fluid flow through a cylindrical pipe. We

assume that fluid is incompressible and viscous. We obtain velocity profile for both Newtonian

fluid and non­Newtonian fluids, specifically shear­thinning, shear­ thickening and Bingham

plastic fluids. The flow is governed by the equation of continuity (conservation of mass) and the

momentum equation. After presenting the governing system in the cylindrical coordinate system

and assuming that the flow is due to the pressure drop and wall shear stress, we derived the

expressions for the velocity component in the axial direction for these cases. Some computational

results of the velocity profiles for various cases were presented. It was observed that velocity

profile is parabolic for Newtonian fluid whereas it is flatter for a shear­ thinning and sharper for a

shear­thickening fluid. For a Bingham fluid, the velocity reaches a constant value known as the

plug velocity in the central plug flow region and it decreases gradually to zero at the pipe wall.

Furthermore, regardless of the type of fluid, we observed that the higher the pressure gradient, the

higher the velocity profile, whereas the higher the viscosity (or apparent viscosity for

Non­Newtonian fluids), the lesser the velocity profile.
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