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Abstract

Brazier, Michael D. An Improvement and a Generalization of Zippel’s Sparse 

Multivariate Polynomial Interpolation Algorithm. Master of Science (MS), 

December 2005. 39 pp., 2 tables, 3 algorithms, references, 16 titles.

The algorithm most often used for the problem of interpolating sparse 

multivariate polynomials from their values is ZippePs probabilistic algorithm 

(1988). The algorithm evaluates the function to be interpolated at a signif

icant number of points, and for many problems of interest processing evalu

ations dominates the running time. This thesis presents an improvement of 

ZippePs algorithm, which decreases the number of evaluations needed for an 

interpolation by using transposed Vandermonde systems for the univariate 

interpolation step of ZippePs algorithm. The technique also allows a more 

general form of the algorithm: it becomes possible to interpolate more than 

one variable within a single stage of ZippePs method.

iii
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1 Introduction

Problems from many areas, such as geometric reasoning, computer mod

elling, implicitization, computer vision, robotics and kinematics [Man92, 

Kap96, Cht03] can be expressed as a system of polynomials, for which the 

desired solutions are values of the variables at which all the polynomials 

vanish at once. In practice the most efficient ways to solve a system of poly

nomials involve finding its resultant: a single polynomial which vanishes if 

and only if the system has a non-trivial solution. Several methods for con

structing resultants have been described in the last century, by Macaulay 

[Mac02, Macl6], Sylvester [Syl53] and Dixon [Dix08, KSY94], In all of these 

the resultant is expressed as the determinant of a matrix of polynomials, and 

this determinant must be expanded and factored to discover the solution to 

the original system.

A direct computation of the determinant of a matrix of polynomials, us-

1
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1 INTRODUCTION 2

ing Gaussian elimination on the entries, proves to be an algorithm of expo

nential complexity, due to the phenomenon called ” intermediate expression 

swell” -  meaning that the polynomials calculated during the Gaussian elim

ination have much larger coefficients, many more terms, or both, than the 

polynomials in the input, or the final result.

It is more efficient to use an algorithm for multivariate interpolation. 

The matrix becomes a ’’black box”, which is evaluated by substituting values 

for each variable and returning the determinant of the resulting numerical 

matrix (this requires only polynomial time -  0 (n 3 *p(ri)) for an n *n  matrix 

in which p(n) is the most complex entry.) Then the polynomial structure 

of the symbolic determinant is recovered by evaluating the black box at 

appropriate tuples of values and interpolating the results. For a polynomial 

in n  variables aq . . .  xn, in which the variables are of degrees d i . . .  dn, an 

algorithm might conceivably have to perform riy=i(^' +  1) evaluations, but 

the polynomial systems which arise in practice almost never have such dense 

resultants. Resultant polynomials are normally sparse: the number of terms 

in them is far less than the theoretical upper bound.

The first algorithm for multivariate interpolation that takes advantage 

of sparsity in the interpolant was discovered by Richard Zippel [Zip93] in 

1979. It is a Monte Carlo algorithm (correct with high probability) and 

interpolates variable by variable (using univariate interpolation) so it is also
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1 INTRODUCTION 3

sensitive to the number of variables in the interpolant. (Section 2 describes 

this algorithm in detail.)

In 1988 Michael Ben-Or and Prasoon Tiwari found a different algorithm 

for multivariate interpolation [BOT88] based on the Berlekamp-Massey al

gorithm for finding the generating polynomial of a linear recurrence. Ben-Or 

and Tiwari’s algorithm, unlike Zippel’s, is not randomized and interpolates 

in a single pass, regardless of the number of variables in the interpolant. 

However, it requires an upper bound on the number of terms in the in

terpolant. When the interpolant is a determinant, the best upper bound 

available proves to be on the order of the product of the degrees of all the 

variables -  a bound no better than the worst case for Zippel’s algorithm. In 

addition, Ben-Or and Tiwari’s algorithm calculates numbers of the size of an 

evaluated term in the interpolant, which leads to an extreme intermediate 

expression swell if one uses infinite-precision arithmetic, and forces a very 

large modulus if one works instead in a finite field. In Zippel’s algorithm 

the largest numbers needed are on the order of the size of the coefficients, 

so one can work in finite fields with somewhat smaller moduli.

Both Zippel’s and Ben-Or and Tiwari’s algorithms have been improved 

and generalized in several ways. Erich Kaltofen and Lakshman Yagati, 

by finding quasi-linear algorithms to solve Toeplitz and transposed Van

dermonde systems of equations [KL88], improved the time complexities of
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2 ZIPPEL’S ALGORITHM 4

both interpolation algorithms. In a later paper [KLLOO] Kaltofen, Wen-shin 

Lee and Austin A. Lobo presented a randomized version of Ben-Or and Ti

wari’s algorithm which does not require an upper bound on the number of 

terms, then used this algorithm for the univariate interpolations in Zippel’s 

algorithm.

This thesis offers another improvement and generalization to Zippel’s al

gorithm. In Section 3 we give an improvement to ZippePs algorithm which, 

by further exploiting sparsity in the interpolant, decreases the number of 

evaluations needed for interpolation; and give empirical data showing a 

speed-up on test problems. In Section 4 we introduce a generalization of 

ZippePs algorithm, suggested by the technique in Section 3.

2 Zippel’s Algorithm

2.1 Description

Algorithm 1 is ZippePs original algorithm. The first step (at line 10) is to 

fix, for each variable Xj in the interpolant, a random element bj of the base 

field; a prime p j , and dj an upper bound on the degree of xj  in the inter

polant. This last (named degree( I , X j )  in Algorithm 1) may be determined 

by inspection of the interpolant’s structure, or (if this isn’t possible) by an 

adaptive univariate interpolation, such as the ’’early termination” algorithms 

described by Kaltofen and Lee [KL03].
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2 ZIPPEL’S ALGORITHM 5

A lg o r ith m  1: Zippel’s Algorithm
D ata: Q a field I(x \ . .  .x n) (the interpolant) an expression in the

variables cci. . .  xn
R esult: V a i . . .  On €  Q, P ( a \ . . . On) G Q  [ari • • • £«] =  / ( a  \ . . . On)

l  Vandermonde( P  6 Q [x C { x i .. .x ,i}] , d  €  Q ^ ): b eg in
2 t <— nTerms(P);
3 M  <— V ector (Q\x \ , 1 . .  . t) ;
4 V  <— M atrix(<2,1. - • t, 1 . . .  t ) ;
5 for j  =  1 . . .  t  do
6 Mj  <— monomial (j, P );
7 for A; =  1 . . .  t  do Vkj <— Mj(a)k;

8 retu rn  M,  V;
9 end

1 0  for =  1 . . .  n do
11 dj  <— d egree( / ,  x7);
12 Pj <- a prime <  \Q\ , /  Pij i <  j ;
13 b7- <— random(Q);

14 P0 <~ I(bi . . .bn);
i s  for j =  0 . . .  n  — 1 do
16 (Mj, V)  Vandermonde( Pj, { p i . . .  p j });
17 E  <— M a t r i x ( l . . .  \Mj \ , 0 . . .  dy+i);
18 for i =  0 . . .  dj+ 1  do
19 Vi *— random (Q);
20 for £ =  1 . . .  |Mf| do
21 [_ £&• <- / ( p j . . .  pj, yiy bj + 2 .. ■ bn);

22 2 <— V"1 x E;
23 1 «- V ector(Q  [a?j+i], 1 . . .  |M j|) ;
24 for t  =  1 . . . \Mj\ do
25 |_ Ft (xj + i) <- U n ivar ln terp ((y0, Zt,o) • • • {ydj+^Zt,dj+1))\
26 Pj+i *— M  • F;
27 jF> Pn'i
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2 ZIPPEL’S ALGORITHM 6

Once { d i . . .  dn}, {Pi ■ ■ -Pn}, {fo ■.. bnj,  and an initial polynomial Po are 

fixed, the algorithm begins its main loop at line 15. Each pass of this loop 

takes an image Pk of the interpolant I  in the first k of the n variables -  by 

which is meant, that

(So Po =  I {b \ . . . bn), a constant polynomial, and Pn is the target polyno

mial.) This image is extended by the next variable xk+i to produce the next 

image Pk+i- Repeating the loop body n times, starting from the constant 

Po, calculates Pra =  P , the target.

The image Pk may be written as a sum of terms:

where each Mjk is a monomial, a product of powers of the variables. The 

image Pk+i  may also be written in terms of the Mjk monomials:

and to extend Pk to Pk+i  we must find the polynomials fj.  The method is 

to substitute for the x \ . . .  Xk powers of the distinct primes p \ . . . p k  in the 

monomials M^k, and in I,  which gives a system of linear equations:

V oi. . . ofc e  Q ,Pk(a i . . . ak) =  I(a i . . . a*,bk+1 -..bn)-

j

j
P k + 1 — ^  ' f j ( p l' k+ l )AI jk i ,Xx . . .  Xk ) ,  

1=1

£ /= l  f j { X k + l ) M j>k{p\  . . . p i )  =  I { p \  . . . p i ,  Xk+ l , b k+2 . . . bn) 

£ /=  1 f j ( % k + l ) M jtk(p \  ■ ■ -Pk) =  I ( p \  ■ ■ .Pk,Xk+l,bk+2 . . . bn) 
£ /=  1 f i ( x k + i ) M jtk(p2r . . . p i )  =  I (Pi  . . . p i ,  x k+ i ,b k +2  . ..bn)

£ / =  1 fj(Xk+l)Mj!k(Pi . . . p ( )  =  Hp{  ■ . . P Jk , x k + i , b k + 2 • •  -bn)
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2 ZIPPEL’S ALGORITHM 7

To recover the coefficients of each fj,  we solve this system for dk+i +  1 

values ajfe+1 ,0  • • • Xk+i A+i • This is equivalent to solving the matrix equation 

V  x Z =  E, where

V =

M hk( p i . . . p k)° 
M hk(P\ ■ ■-Pk)1

_ M itk (p i . ■■Pk)J 

is a transposed Vandermonde matrix,

fl(Xk+lfi)
/2(^fc+l,o)

. fj(Xk+ i,o) ' 

holds the values of / i . . .  f j  at Xk-n,o ■

M j>k{pi . . .pk)°
Mj,k(pi ■■■Pk)1 

M jtk(p \ . --Pk)J

fl(Xk+l,dk+i)
f2(Xk+l,dk+1)

fj(% k+l,dk+1) . 

> xk \ i ,dk . 1 > and

I(Pl ■■■P% X k + i f i ,  bk+2 •■■bn) 
Pk> **+1,0, bk+2 ■■■bn)

I(Pl ■■■P°k> xk++dk+Vbk+2 ■■■bn) 
I(P°l---Pk> Xk+l,dk+n bk+2 ■■■bn)

_ I(p{ . . . p i , Xk+1,0 , bk+2 ■■■bn) ' ' ' I(Pl ■■■P°k> xk+l,dk+i > bk+2 ■ ■ ■ bn) .

holds the corresponding values of I. Because V is a transposed Vandermonde 

matrix, solving for Z  does not require general matrix multiplication, but can 

be done in 0(dk+iJ(log J )2) time, or 0 (dk+ iJ2) time, whichever is faster 

(see [PFTV90] for the 0 ( n 2) algorithm, and [KL88] for the 0(n( logn)2) 

algorithm.)

To begin the loop body, the algorithm calls the function Vandermonde 

(defined at line 1) which extracts from Pk a list of its monomials Mjk and 

constructs the matrix V  by substituting the primes p \ . . . p k  into them. Next 

it fills the matrix E  with evaluations of I ; then (at line 22) it solves V x Z  — E
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2 ZIPPEL’S ALGORITHM 8

for Z. Finally (at line 24) J  univariate interpolations, taking the rows of 

Z  for the polynomial values, recover the polynomials fi(xk+i) ■ ■ ■ f j ( x k+1); 

and E /= i  f j(xk+1 ) * Mj>k =  P k+i-

2.2 Example

Suppose that I { w ,x , y , z ) =  w2x3yz  — 8wx3yz2 - w 2xy2z +  wx3z 2 — 5xy2z2 +  

2x3z2P2wx3 —w x + 2 z 2—4w. The degrees of I  in (w, x, y, z) are, respectively, 

(2,3,2,2); we pick the primes (2 ,3 ,5 ,7) and anchors (11,13,17,19), and set 

Po =  1, which brings us to line 15 of Algorithm 1 for the first stage. We may 

interpolate the variables in any order; for this example, we’ll use the order 

x ,w ,y , z .

Stage 1: x

{Mjo} =  {1} and degree U ,w )  =  3, so V =  1,

E  =  [1(11, so, 17,19), 7(11, s i ,  17,19), 7(11, s 2, 17,19), 7(11, s 3, 17,19)], 

and the loop at line 24 performs 1 interpolation, yielding 

P i =  —158723X'3 -  1186067a; +  678.

Stage 2: w

{M u}  =  {I,® ,*3} and d egree (P ,w)  =  2, so

V =
1 1 1
1 31 33
l 2 (31)2 (33)2
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2 ZIPPEL’S ALGORITHM 9

J(it>0 ,3°, 17,19) /(to 1,3°,17,19) /(to 2 , 3°, 17,19)
P  =  i l m ^ 1, 17,^9) 7 (w i,3 \l7 ,1 9 )  I ( m ,  31, 17,19)

/(too, 32, 17,19) I(wi,32, 17,19) 7(w2,32, 17,19)

and the loop at line 24 performs 3 interpolations, yielding

P2  =  (323w2 -  18048w +  722)a:3 -  (5491w2 -  w  -  521645)® -  4w +  722.

Stage 3; y

{M»2} =  { l , w , x , w x , w 2x ,x 3,w x3,w 2x3} and degree(P,y)  — 2, so

V  =

1 1 1  1 
1 21 31 2131

1 1 1  1 
223x 33  2X33 2233

_ l 7  (21) 7  (31 ) 7  (2131)7 (223x)7 (33 ) 7  (2X33)7 (2233)7

E:

1(2°,3°,yo, 19) 7(2°, 3°, y i, 19) 1(2°, 3°, y2, 19) 
r(21,3 1, W>,19) / (2 1,3 1,yi,19) /(2 1, 3 \ y 2, 19)

/(2 7,37,y0,19) I(27,37,i&,19) 7(27,37,y2, 19) 
and the loop at line 24 performs 8  interpolations, yielding

P3 =  (19y)w2x!i+(-~1083y+363)wx3+722x3‘—(19y2)w2x —w x —(1805y2)x-4w+722.  

Stage 4: z

{M&} =  { l , w , w x , x y 2,x 3,w x3,wx3y , w 2xy2,w 2xzy}  and degree(P , 2 ) =

2 , so

V

1 1 1  1 
1 21 2X3X 3X5X

1 1 1  1 1 
33 2X33 213351 223x52 22335x

l 8  (21 ) 8  (2131)8 (3X52 ) 8  (33 ) 8  (2X33)8 (213351)8 (223x52)8 (22335x)8

E  =

7(2°, 3°, 5°, 2 0 ) 7(2°, 3°, 5°, z\)  7 (2 ° , 3 ° , 5 ° , 2 2) 
7(21 ,3 1 ,5 1 ,2o) 7(21 ,3 1 ,5 1 ,2i) 7 (2 1 , 3 1 , 5 1 , 2 2)

7(28 ,38 ,58 ,20) 7(28 ,38 ,58, 2 j) 7(28 ,38 ,5s ,22) _

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



2 ZIPPEL’S ALGORITHM 10

and the loop at line 24 performs 9 interpolations, yielding

P3 =  (z)w2xsy —(z)w2xy2—(3z2)wx3y + ( z 2+2)wx3+(2z2)xz—(bz2)xy2—wx—Aw+2z2 =  I.

2.3 Analysis

For an interpolant I  of n  variables, Zippel’s algorithm runs the main loop 

at line 15 n  times. Within that loop it evaluates I  \Mj\ (<fJ + 1 +  1) times to 

calculate E. It then calculates V~x x E ,  which involves d j \ \  +1 solutions of a 

\Mj\ x  \Mj\ transposed Vandermonde system. Finally it calls Univarlnterp  

\Mj\ times, calculating polynomials of degree dj+ 1 . \Mj\ < t , the number of 

terms in the target polynomial, and we may define d =  max"=1 dj; then one 

call of U nivarlnterp is 0 ( d 2), one Vandermonde solution is 0 ( f  log2 1), and 

the complexity of Zippel’s algorithm is

0 ( n d t ( 0 ( I ) +  log21 -I- d))

where 0(1 )  is the complexity of evaluating I  once.

Zippel’s algorithm assumes that if, in an image polynomial

j
p k =  ' Y , cjM jk(x \ . . .Xk)

one of the coefficients Cj is zero, then in the target polynomial, which may 

be written
j
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2 ZIPPEL’S ALGORITHM 11

the corresponding f j  is the zero polynomial. (For example, if the monomial 

xfx '2 in P2 has 0 for a coefficient, the monomials starting with xjx^- ■ . would 

be expected to vanish in P.) Therefore, when Pk is extended to Pk+i, each 

coefficient appearing in the / / s which proves to be 0 indicates a monomial 

to be omitted from Pk+i, decreasing the work needed in later stages.

If it so happens that fj{bk+ 1 • • -bn) =  0 -  that is, if f j  is a non-zero 

polynomial that evaluates to 0 at the anchor -  then Zippel’s algorithm, as 

it calculates Pk+i, will incorrectly omit those terms which are images of 

f jM j tk in P.  Zippel proved [Zip90] an upper bound on the probability that 

a randomly chosen anchor would be a zero for one of a set of polynomials:

T heorem  2.1 (Z ippel) Let / 1 , fz ■ ■ ■ fs be elements ofk[X  1 , X 2 . . .  X n], where 

the degree in each variable is bounded by d. Let V ( f i , f 2 ■ ■ ■ f s) be the proba

bility that a randomly chosen point x is a zero of any of the fj, where Xj is 

an element of a set with q elements. Then

y

At each stage of Zippel’s algorithm there are no more than t  polynomials, 

in less than n variables, each of degree less than d, which must not be 0 at 

the anchor for the stage to compute the correct image. Since there are n 

stages, by the theorem 2.1 the probability of failure is

O ( ^ ) .q
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2 ZIPPEL’S ALGORITHM 12

The other possible error in Zippel’s algorithm arises when calculating in 

finite fields. The matrix equation V  x Z  =  E  (solved at line 22) has no 

solution if V is a singular matrix, which occurs if two distinct monomials 

Mitk, M jtk in Pk evaluate to the same number. In a field of characteristic 0 we 

can just choose distinct primes for each variable to guarantee that different 

monomials evaluate to different numbers. In a finite field Q, however, an 

M jrk may evaluate (in Z) to a number larger than the field’s characteristic, 

which would mean (in Q) a collision with other monomials. In the same 

paper Zippel proved an upper bound on the probability of this event:

T heorem  2.2 (Zippel) Let e l . . . e j  be n-tuples where each component is 

less than d. There exist no more than

dT(T — 1)(| Q| — l)f”_1>
2

n-tuples x with components in Q such that for some i and j  T;ei and xfi have 

the same values. The probability that a randomly chosen x will cause two of 

the nF* to have the same value is

dT(T  -  1)
2 ( | f i | - l ) ‘

Each stage of Zippel’s algorithm builds 1 Vandermonde matrix, so it 

follows that:

Theorem  2.3 (Z ippel) L etP  be a polynomial in n  variables, each of degree 

no more than d and with i(3> n) non-zero terms. Assume the coefficients
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3 UNIVARIATE INTERPOLATION WITH VANDERMONDE M ATRICES^

of P  lie in a finite field mth q elements. The probability that the sparse 

interpolation algorithm will give the wrong answer for this polynomial is less 

than

ndt2

3 Univariate Interpolation with Vandermonde Ma
trices

A lgorithm  2: Zippel’s Algorithm, with Vandermonde univariate in
terpolation

Data: Q a field, I(x  i . . .  xn) an expression in the variables x \ . . . x n 
Result: V «i. . .  On €  Q, P(a, i . . .  an) €  Q [a?i.. - xn] =  I(a i ...On)

1 for j  =  1 . . .  n  do
2 d j <—  degreed,#.,);
3 pj i -  a prime <  \Q \ , ^  Pi, i <  j;
4 bj <—  random(Q);
5 for j  — 1 . . .  n  do 
e
7 y i random (Q);
8 _ < I { b i  • • • b j —i,y%, b j j - i . . .  bn )',

1 %  * - Univarlnterp((y0, /0)... ( y d j , f d . ) ) ;
1 0  P i^ -P ^ ;
11 for j  ~  2 . .  .n  do
12

13
14
15
16
17

18 
19

V) Vandermondedj-i, { p i .. .p j - 1 }); 
(MXj, W ) *- Vandermonde(PXj, {pj }) ;
P  <- M atrix(1 . . .  , 1 . . .  | ) ;
for t  =  1 . . .  do

for d  =  1 . . .  | M Xj | do
[_ E u  < -  I ( p f . . . j £ ,  f c j + i . . .  6 n ) ;

C ♦- F - 1 x E  x (PV“ 1)T;
Pj <- x C  x M^.;

20 P  <— P,ni
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3 UNIVARIATE INTERPOLATION WITH VANDERMONDE MATRICESU

It is possible to interpolate a univariate polynomial by solving a trans

posed Vandermonde system. If f(x )  =  ^2f=oc3x^  then substituting powers 

of a random integer p  for x  gives a transposed Vandermonde system in the 

Cj s:
=  / ( / ) .

£? ,,o< w w  =

or, in matrix form:

p °  ■ .  p 0 D ' ' Co ' r  k p ° )  1

p 1 •
. p l D Cl

— k p 1)

. p D D
. . . f ( p D ) .

Why would we want to use this method, instead of Newton’s? If a 

coefficient c*, of f (x )  is known beforehand to equal zero, then it can be 

omitted from every equation in the system, and one equation is redundant 

and can be dropped. The result remains a transposed Vandermonde system:

p0 . . .  pO-(fc-l) pO-(k+l) . . .  pO-D - Cq r f (p ° )  '
p i  . . .  p l-(*-l) p l ‘(fc+l) . . .  p lD Cl = f i p )

pD-1  . . .  p {D- l)(fe-l) p (D-l)(k+l) . . .  p (D-l)-D CD-1 . . f i p D _l) .

In the general case, of course, we do not know that any coefficients are zero 

before solving the system. But in stage k of Zippel’s algorithm, if Pk has 

tk non-zero terms, tk univariate interpolations must be performed. If the 

image of P in the current variable xk+\ alone has a zero coefficient for the 

term x3k+v then with high probability every monomial in P  of degree j  in
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3 UNIVARIATE INTERPOLATION WITH VANDERMONDE MATRICESlb

Xk+x has a zero coefficient. To prove this, collect the terms of P  into powers

Of Xk+X-

<4+i
P  =  M j{x  1 . . . X k ,  Xk+ 2  ■ ■ • « n ) 4 + r  

j —o

There are dfc+1 polynomials Mj in n — 1 variables in this sum, in which each 

variable’s degree is no greater than d  >  dk+i-  Then the probability that 

any non-zero Mj evaluates to 0 at the anchor, by Theorem 2.1, is less than

(n —l)ddk+i ^  nd2 
9 ~  9 '

It follows that in each univariate interpolation in stage k, the coefficient 

for ar̂ +1 may be omitted, and thus tk  interpolant evaluations can be saved, 

for each coefficient equal to 0 in P ’s image in Xk+i -  if we interpolate by 

solving transposed Vandermonde systems.

Interpolating tk  univariate polynomials f i . . .  f t k with the same set of 

exponents e l { i  € { 1 . . .  J}) is, then, equivalent to solving the matrix equation 

W  x C =  Z, where

(pel)° ••
Cpei) l •• . {pei)i

CpeiY  ■■• (PeiY

is a transposed Vandermonde matrix,

Co.l ■ ■ ■ c / ,1

Co,2 • • • C />2

.  °0 ,tk • • • c >,tk .
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3 UNIVABJATE INTERPOLATION WITH VANDERMONDE MATRICES16

Table 1: Sample Problems

# Problem Name #  Vars Matrix Size Rank #  Terms Degree
1 CondPerpendXConicCircle 9 15x15 15 3614 16
2 ConfAnalCyclicMoleculeGH 16 28x25 23 55998 61
3 DistXConicO 13 5x5 5 6548 14
4 Emirs94exp 12 36x30 28 734 28
5 KissingCirclesProblem-dix 4 52x47 32 2176 46
6 LSY89-dix 8 12x12 12 1460 32
7 PappusTheoremProblem-dix 9 5x5 5 183796 32
8 PDE2subs2-dixdia 2 359x361 350 292250 2656
9 SumSquares5 6 462 x 462 462 20349 32
10 TetrahedronVol-dix 5 16x16 14 434 12

holds the coefficients of f %.. .  f tk, and

’  / i (* i)  ••• h (x i)  '

/2(®0 ••• h (x i)
z  —

. /*fc(*i) ••• f tk{xi)

holds the values of f \ . . .  f tk at I  arbitrary values x \ . . .  x j.

Algorithm 2 makes these changes from Algorithm 1: at line 5 a new 

loop computes the images PXl • • • Pxn of I  in each variable x \ . . .  xn. The 

stage loop starts (line 11) with Pi =  PXl, not Pq. And at line 15, instead of 

solving V x E  — Z, we solve V  x Z  x W T =  E, where W  is the matrix for 

interpolating the variable Xk+i (having computed W  at line 13.)

3.1 Empirical Data

Table 3.1 gives parameters for 10 interpolants which were interpolated by our 

implementation in C + +  of Algorithms 1 and 2. All of these interpolants are
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 17

calculated by taking the determinant of a maximal minor of some polynomial 

matrix; the size and rank of this matrix are given in the ” Matrix Size” and 

’’Rank” columns. The ”#  Terms” and ’’Degree” columns give the size and 

total degree of the target polynomial.

Table 3.1 compares the two methods of univariate interpolation for the 

problems in Table 3.1. Our implementation uses the 0 (n 2) algorithm to solve 

transposed Vandermonde systems of size up to 1500; for larger systems the 

0(n(Iogn)2) algorithm of [KLS8] is superior. Newton interpolation, which 

is also 0 (n 2), has a smaller leading constant and therefore needs less time 

than Vandermonde-style univariate interpolation for ’’small” polynomials 

(of degree j 1500). This is why, for interpolants that prove to be dense 

in individual variables (problems 1, 2, 3, 5, and 9) the running time for 

Algorithm 2 is slightly longer than that of Algorithm 1.

However, for interpolants which are not dense in individual variables, 

the evaluations saved by the Vandermonde approach can yield substantial 

improvements in running time. For example, problem 8, where the target 

polynomial is both very large and very sparse, is solved nearly 3 times faster 

by Algorithm 2.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 18

A lgorithm  3: ZippePs Algorithm, generalized for multivariate images
D ata: Q  a field, I ( x i . . .  x n ) an expression in the variables x \ . . . x n
R esult: Veil. . .  On € Q,  P ( a  1 . . .  On) € Q [x i. . .  a;n] =  J ( a i . . .  On)

l  for = 1 .. .  n  do
2 dj degree ( I , X j ) ;
3 P j ^ a prime < \ Q \ , ^  p i} i  <  j ;
4 bi random (Q);
s Subset Image (a; c  { x \ .. . x n } ) \  begin
6 if  |x| =  1 th en
7 X =  {*i>
8 for i  =  0 . . .  d j  do
9 Pi <— random (Q);

10 f i  *— I ( b \ . . .  bj - \ , y%,  b j + i . . .  bn);
11 _ re tu rn  U nivarlnterp((y0, fo)  • • • (Vdj , f d j )')5
12 else
13 Partition x  into x l  ^  0 , x r  ^  0  ;

14 P i <— SubsetIm age(Si);
15 PL =  {Pi | Xi € x l }
16 ( M l , V l ) Vandermonde (P i, p i) ;
17 P r  <— Subset Image Ccr) ;
18 PR =  (Pi | Xi €  Xr }
19 ( M r ,  Vr )  <— Vandermonde ( P r , jJr)  ;
20 XR =  { x  1 . . . x n }  - x , b B  =  { b i \  Xi €  X r }
21 E  * -  M atrix(1 .. .  \ Ml \ , 1 .. - \ MR \y,
22 for 1 =  1 . . .  \ M r \ do
23 for r  =  1 .. .  |M#| do
24 [_ P*,. <— /(p i7-,PRl ,b R );

25
26 re tu rn  M j  x C x  M r ;

27 end
28 I > _̂ Subset Image ({a-'i ...* „ } );

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 19

Table 2: Comparing Univariate Interpolation Methods

#
Newton 

#  Evals Run Time, s
Vandermonde 

#  Evals Run Time, s
% Evals of Newton 
actual potential2

1 48312 97.22 48303 99.7 99.98 88.89
2 1474540 4499.57 1474540 4533.79 100.0 51.28
3 138259 291.11 138259 292.06 100.0 100.0
4 16173 25.28 15385 24.12 95.13 18.08
5 26474 64.31 26474 64.53 100.0 100.0
6 25188 39.57 18184 28.57 72.19 30.37
7 4367760 14275.9 4183964 14216.1 95.79 90.90
8 916060 538126 339692 198071 37.08 13.96
9 421328 12525.1 421328 12505.9 100.0 51.51
10 6487 9.16 4751 6.68 73.24 55.56

4 Using Interpolant Images in Several Variables

There is a change of perspective involved in the switch from interpolating the 

new variable by Newton’s method to doing so by solving a transposed Van

dermonde system in Zippel’s algorithm. Previously, each stage of Zippel’s 

algorithm extended the stage polynomial Pk by replacing each of its coef

ficients with a polynomial in xk+x. Switching to transposed Vandermonde 

systems for interpolation means that the coefficients of Pk are now being 

replaced by copies of the image of the interpolant P  in xk+i- The altered 

algorithm, that is, is not so much extending a single image by a variable, as 

merging two images together, one of which happens to be univariate.

1This is n t ? rS ti/(<2i +  1) > where ti is the size of the problem’s image in variable i 
and di is its degree in that variable.
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 20

The technique for interpolating a polynomial by solving a transposed 

Vandermonde system, as explained in the previous section, works just as 

well for a multivariate polynomial as for a univariate one. In the general 

case, the size of the system to be solved, which equals the number of possible 

monomials, is 0 (d n) where d is the highest degree in any variable and n is 

the number of variables, so a direct use of the technique is not practical 

for multivariate interpolants. But we can use the technique in the altered 

algorithm, taking two multivariate images of the interpolant, and replacing 

the coefficients of the first with copies of the second. If the second image is 

sparse, so that most of the possible monomials have already been eliminated, 

the transposed Vandermonde systems will remain small enough to solve in 

a reasonable time.

4.1 The Algorithm

Suppose that the variables x \ . . .  xn of an interpolant I  are partitioned into 

three subsets x l , %r  and x r , and that we have calculated the image P i  of 

I  in xL, and the image P r  of I  in xJi- Then

ti
P i ^ Y l  °iM li where € 2 ,  M u -  U  ye'v

Pr  =  Y ,  CrMRr where Cr £ Q, Mrv ;</
r — 1 ytxH
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 21

and we wish to calculate

P n  =  Y , M * n ) M Ll =  Y X Y ,  ci>rMRr)M ii .
1=1 1=1 r=l

As in Section 2, we substitute for the variables x% in M m . . .  M u L the 

primes p i  and obtain a transposed Vandermonde system with the matrix

VL =

M l i{p l )°
MLi{pZ)1

MLtL(pL)°
Mu l {pl)1

Ml XplY1' - 1 ••• MLtL(pL)tL~l

And, as in Section 3, we substitute for the variables xr  in M m  . . .  M m k the 

primes p i  to obtain another transposed Vandermonde matrix

M r \ (p r )° 
M r i Ĵr )1

MRtH(pR)°
MRtR(pR}1

M r i{prY r 1 ••• MRtM(pR)tR 1

Finally, we substitute powers of p i  and pr  into I  to obtain the matrix

E

>PRtR \ h e )

_ I(pLtL 1,P i? ,bB) ••• I(pLtL 1,PRtR,bB) .

(where bB are anchor values, substituted uniformly for x i .)

Then the matrix equation V pxZ =  E  solves for the values of f n  {x r )  ■ ■ ■ f u L ( x r ) , 

and the matrix equation Vr x  C t  =  Zr  solves for the coefficients of j i i  ■■■ fhtj, > 

which axe the coefficients of P/v- Substituting the latter equation into the 

former gives Vt x C x V j  — E  -  the equation solved at line 25 of Algorithm 

3.
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 22

Therefore, to interpolate I(x \ .. .x n) we fix primes p \ . . . p n and anchors 

&i. . .  bn, then calculate its image in all the variables x i - . . x n; and we cal

culate the image of I  in a subset of x \ . . .  xn by partitioning it into two 

further subsets x Z  and x r , recursively finding the images P r ,  P r  of I  in 

those subsets, and merging them as explained above. The base case for the 

recursion is subsets containing 1 variable, for which we use any univariate 

interpolation algorithm. Another view of the algorithm is as a binary tree, 

in which each leaf represents the univariate interpolation of 1 variable, each 

internal node represents the merging of its children; the root then computes 

the image in all the variables, a.k.a. the target polynomial.

4.2 Example

We will use again the interpolant from Section 

2 .2 ,I (w ,x ,y ,z )  =  w 2x3yz — Swx3y z2—w2xy2z +  

w x3z 2 — bxy2z 2 +  2x 3z 2 +  2wx3 — wx +  2 z 2 — 4w, 

with the same primes (2 ,3 ,5 ,7) and anchors 

(11,13,17,19). There are 4 univariate interpo

lations (which are not shown) and 3 merges to 

perform.

Merge Tree
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 23

{ w } u { x } - * { w , x }

Pu„\ =  638248w2—39651473w—5194429, and PiW

678; we wish to find

{*} -159445a:3—1186067*+

P{w,x} ~  (G<2,2%3—C i!2X+Cot2)w2+(C2,lX3—Ci!iX+Co>i)W+(C2fiX^—CifiXlrCofi).

Solving the matrix equation V{wy x C x  V ^  =  E, where

“ 1 1  1
V{w} =  1 21 22

l 2 (21)2 (22)2

*{*) =

1 1 1 
1 31 33
l 2 (31)2 (33)2

and

E  =
7(2°, 3°, 17,19) 7(2°, 31, 17,19) 7(2°, 32, 17,19)
7(2 \3°,17 ,19) 7(21,3 1, 17,19) 7(2X,32, 17,19)
7(22, 3°, 17,19) 7(22,3 1, 17,19) 7(22,32, 17,19)

gives

so

C =
722 -521645 722
-4 -1 -18048
0 -5491 323

P{w,x} =  [ l ,w ,w 2] C -  [ l ,* ,* 3]T

=  3 2 3 w V  -  18048tro3 -  5491w2* +  722a:3 - w x - 4 w -  521645a; +  722. 

{y }u {z}  -» {y,z}

P{y} =  —53352y2—21121958'(/+10359390, and P{z] =  -1222739z2+4064632z f  

48147; we wish to find

P { y , z }  =  (C2,2Z2—C i!2Z+C0'2 )y2+ (C 2,lZ2—C i!iZ+Co,l)y+(C 2,QZ2—CifiZ+Co,o).
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 24

Solving the matrix equation x C x  V̂ zy =  E, where

and

E

gives

so

Vi

1 1 1
1 51 52

l 2 (51)2 (52)2

1 1 1
1 71 72
l 2 (71)2 (72)2

1(11,13,5°, 7°) 1(11,13,5°, 71) / ( l l ,  13,5°, i 1)
/ ( l l ,  13,51, 7°) /(11 ,13 ,51,7 1) / ( l l ,  13,51, T2)
/ ( l l ,  13,52, 7°) / ( l l ,  13,5a, 71) / ( l l ,  13,52,7 2)

48147 0 28563
0 265837 -72501
0 -1573 -65

p iv,z} =  [ t ’Viy2] c - [ i , z , z 2] r

=  -6 5 y 2z 2 -  1573y2z -  72501y z2 +  265837yz +  28563z2 +  48147. 

{w, x} U (y, z } -* {w, x, y , z}

M{w>x} =  { l ,w ,x ,  wx, w2x, x3, w x3, w 2x3}, and =  {1 ,yz, z 2, y2z ,y z 2, y2 „ , 2 „  „,~2 „,2

1 1 1 1  1 
1 21 31 2X3X 223x

1 1 1
33 2X33 2233

1 (21)7 (31)7 (2131)7 (2231)7 (33)7 (2133)7 (2233)7

1 1 1 1  1 1
1 5*7* 72 5271 5x72 5272

1 (5X7X)5 (72)5 (527x)5 (5*72)5 (5272)5
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 25

and
' 1(2°, 3°, 5°, 7°) • • • 1(2°, 3°, 55,7 5) ' 

_ I(27,37, 5°, 7°) • • • I(27,37,55,75) _

so
'  0 0 2 0 0 0 '

-4 0 0 0 0 0
0 0 0 0 0 -5
-1 0 0 0 0 0  
0 0 0 -1 0 0 ’
0 0 2 0 0 0
2 0 1 0 3 0

.  0 1 0 0 0 0 .

and

P{w,x,y,z} =  [ l ,w ,x ,w x ,w 2x ,x 3,w x 3,w 2x3] C -  [ l , y z , z 2,y 2z ,y z 2,y 2z2]T 

=  w2x3yz  — 3w x3y z2 -  w2xy2z  +  wx3z 2 — hxy2z2 +  2x3z 2 +  

2wx3 — wx +  2 z2 — 4w =  I.

4.3 Analysis

For an interpolant I  of n  variables, the algorithm calls Subsetlmage 2n — 1 

times, branching to line 7 n times and to line 13 n  — 1 times. From 

line 7 Subsetlmage performs up to d +  1 evaluations of I  (where d — 

max{di. . .  dn}) and calls Univarlnterp once; thus this branch of Subsetlmage 

contributes n{d +  1) evaluations of I, and 0 (m I2) additional arithmetic op

erations. From line 13 Subsetlmage performs \Ml \ \Mr \ evaluations of I  

to construct E. Then it calculates V £ l x E  x (V^ ) - 1 ; this calls for \M r \  

solutions of Vr and |M/J solutions of V r. With Kaltofen & Yagati’s method
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4 USING INTERPOLANT IMAGES IN SEVERAL VARIABLES 26

one solution of a t  x t  Vandermonde matrix is found in 0 ( t  log2 1) arithmetic 

operations. Since at every call to Subsetlmage \M i\ and \Mr \ are no greater 

than t the number of terms in the target polynomial, the branch at line 13 

thus contributes (n — 1 )0 ( t2) evaluations and (n — l ) 0 ( t2 log21) additional 

arithmetic operations. The algorithm’s complexity is therefore

0(n ((d  +  t 2)0 (I )  +  d2 +  t 2 log21)),

where 0(1 )  is the complexity of evaluating I  once.

As with Zippel’s algorithm, there are two possible sources of error in 

this algorithm. A zero coefficient in an image of the interpolant may be not 

the value of an identically zero sub-polynomial in the target, but of a sub

polynomial that vanishes at the anchor values. At each call to Subsetlmage, 

there are no more than t  polynomials, in less than n variables, each of degree 

less than d, which must not be 0 at the anchor; and Subsetlmage is called 

2n ~  1 times. By Theorem 2.1 the probability of a zero polynomial is

of the same order as Zippel’s’ algorithm.

The other source of error is the possibility that a Vandermonde matrix 

(Vi or Vr) will be singular. The branch at line 7 constructs no Vandermonde 

matrices. The branch at line 13 constructs 2 matrices, and by Theorem 2.2
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5 CONCLUSIONS 27

the probability that either is singular is no more than

dT(T - 1)
2(|Q| — 1)

As Subsetlmage enters this branch n ~  1 times, and the size of either matrix 

is no more than t, the probability of a failure from this source is no more 

than

also of the same order as ZippePs algorithm.

5 Conclusions

The probability of error for Algorithm 3 is of the same order as Algorithm 

l ’s; but the time complexities for Algorithm 3 exceeds that of Algorithm 1 by 

a factor of t /d.  Since in almost all interpolants t  >■ d, careless partitioning 

at line 13 will make Algorithm 3 considerably slower than Algorithm 1, by 

inflating the number of evaluations. In our implementation, when variables 

were partitioned at random, the call to Subsetlmage at the root of the tree 

nearly always needed 0 ( t2) evaluations, and that single call (not including 

its children in the tree) consistently accounted for 99% of the algorithm’s 

running time.

A simple way for Algorithm 3 to recover the performance of Algorithms 

1 and 2 is to put, at line 13, only one variable into x r . This essentially du

plicates the variable-by-variable interpolation of ZippePs algorithm. When
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6 RELATED WORK 28

the interpolant is a genuine "black box”, and nothing is known about the 

structure of the target polynomial, this is likely to be the best partition 

policy.

If, however, there is a subset of variables x for which the interpolant’s 

image in x  is known to have 0(d ) terms (which is not impossible) then taking 

x r  =  x s s  soon as possible gives a better policy than Zippel’s. For finding the 

image in x calls for 0(\x \ d2) evaluations, and then the interpolation can be 

finished with O(dt) evaluations; whereas interpolating x  variable by variable 

calls for 0{\x \ dt evaluations. In effect the variables in x  can be interpolated 

all at once in no more time than a single variable’s interpolation requires.

One direction of future research, then, would be analysis of interpolants 

to discover good ways to partition their variables, thereby exploiting sparsity 

in their multivariate images.

6 Related Work

Wen-shin Lee [LeeOl] gives two refinements of Zippel’s algorithm, named 

temporary and permanent pruning, which decrease the number of evaluations 

needed for interpolation. Temporary pruning uses an adaptive method for 

univariate interpolation, and instead of generating the whole matrix E  of 

evaluations, performs only enough evaluations in one row of E  to interpolate 

the corresponding entry of the array of coefficient polynomials F. Permanent
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pruning alters the interpolant I  by substituting for each variable x \ . . . x n 

the product z x \ . . .  zxn of that variable with a new variable z. The effect 

of this is that in each term of the altered interpolant I' the degree of z  will 

equal the total degree of the term in the original interpolant. The image of 

I' in z  therefore separates terms of different total degrees in I  into different 

sub-polynomials.

Temporary pruning is, unfortunately, not compatible with Vandermonde 

univariate interpolation. Newton interpolation generates successive approx

imations to the target polynomial, of successively greater degree, and thus 

can be adaptive to the size of its target polynomial; [LeeOl] gives the method. 

Vandermonde systems, however, must be solved all at once.

Permanent pruning is compatible with Algorithms 2 and 3, and our im

plementation of these algorithms has an option to introduce a homogenizing 

variable. Indeed, due to the recursive structure of Algorithm 3, it would be 

possible to use permanent pruning on subsets of an interpolant’s variables -  

which may prove useful for resultants, which are often ’’multi-homogenous”. 

(A homogenous multivariate polynomial is one in which every term has the 

same total degree; a multi-homogenous polynomial is homogenous, and the 

image of the polynomial in some subset of its variables is also a homogenous 

polynomial.)
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