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ABSTRACT 

Youwakim, Joy Z., Predicting Patterns of Heavy Metal Contamination in Rio Grande Valley 

Agricultural Soils. Master of Science (MS), August, 2020, 75 pp., 20 tables, 14 figures, 

references, 81 titles.  

The Rio Grande Valley of Texas is the statewide leader in the production of produce and 

grains and is irrigated by the Rio Grande River, in which heavy metal contaminants have been 

documented by both the International Boundary Water Commission and the United States 

Geological Survey. This work attempts to observe and document patterns of heavy metal pooling 

in order to mitigate the increased risk of contamination due to urbanization. We hypothesize that 

relationships exist between heavy metal content and proximity to roads, land use, and soil type. 

This research tests these relationships through soil sampling and atomic absorption spectrometry 

(AA-S), inductively coupled plasma-mass spectrometry (ICP-MS), and portable x-ray 

fluorescence spectrometry (pXRF).  Raw data and statistical analyses are provided for As, Cd, 

Cr, Cu, Fe, Ni, Pb, Se, and Zn; all samples fell under safe levels of heavy metal content provided 

by both the Texas Commission on Environmental Quality and the Environmental Protection 

Agency. 
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CHAPTER I 

INTRODUCTION 

Environmental Quality in the Border Regions 

The Rio Grande River spans from Southern Colorado all the way down to Texas and 

empties into the Gulf of Mexico and is the primary source of water for a number of 

municipalities, industries, and agriculture that dot the watershed. Several people cross the border 

every day to work in maquiladoras, which provide the added benefit of no import tax to foreign-

owned countries (Wynne, 1994). Unfortunately, it has been the case historically that due to this 

growing industrialization of the region, wastewater finds its way into surface water and 

groundwater sources, polluting the Rio Grande (Wynne, 1994). A 2002 study found chemically 

toxic quantities of E. coli, fecal coliforms, and H.pylori in several sampling sites along the Rio 

Grande and attributes the source contamination to poorly maintained sewage systems, landfills, 

irrigation, and injection wells (Mendoza et al., 2004). While efforts have been made to ensure 

that treated wastewater does not get directly reused in aquaculture (Siddiqui, 2020), the same is 

not true for agriculture (Allende et al., 2015). 

Cropland accounts for 391.5 million acres out of an estimated 1,891 million acres in the 

contiguous United States (USDA ERS, 2017). Urban acreage accounts for a mere 69.4M, or 

3.6% of the contiguous United States, and it is estimated that 1 million additional acres a year 

become urban land (USDA ERS, 2017). As urban acreage increases, questions about the 

transformation of America’s growing spaces arise. With expansions of impervious
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surfaces due to roads and traffic come increases in heavy metal content in agricultural soil (Yan, 

2012). Heavy metal enrichments in soil can come from a variety of other sources related to 

urbanization as well, such as various fertilizers, pesticides, smelting of ores, wastewater, and 

sewage sludge (Chen, Jing, et.al., 2018). Heavy metals most likely to be detected at 

contaminated sites include As, Cd, Cr, Cu, Hg, Ni, and Zn (Wuana et al., 2011). Heavy metals 

are associated with a variety of health concerns, such as cancer, respiratory issues, renal failure, 

and skin disorders (Karar et. al, 2006). Cd, Ni, and Zn are all associated with increases in car 

exhaust due to vehicle traffic, while As and Cd are known for the uses as pesticides and 

fungicides (Wuana et al., 2011; Adamiec et al., 2016). For these reasons, it is worth examining 

heavy metal contamination in agricultural soils as a public health concern. 

 Unfortunately, there do not exist many regulations for agricultural irrigation water. In 

2011, the Food Safety Modernization Act (FSMA) was passed in the U.S. which advises that one 

sample of irrigation water be tested for E.coli and other pathogens for each water source 

(Allende, 2015). There is no requirement for heavy metal testing being enforced with the FSMA, 

as microbial pathogens are the priority (FDA, 2018). High levels of arsenic, copper, and nickel 

have been found in the water column and sediments of the Rio Grande in the El Paso – Juarez 

area (Arana, 2004) and in Laredo-Nuevo Laredo, attributed to discharged wastewater that does 

not meet proper environmental regulation. This is believed to be the cause of heavy metal 

transport to fertile soil and therefore crop contamination (Wang, 2018). This heavily affects the 

people living these communities, who often must make the choice between their economic and 

environmental health (Ramirez-Andreotta, et al., 2015). Information is increasingly available due 

to increased accessibility to data and testing, but of course, normal metal levels must be 

determined per geographic region in order to detect unusual activity. The Rio Grande Valley has  

2 
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a history of environmental issues not being taken care of or monitored until they are an absolute 

issue. For example, PCBs (polychlorinated biphenyls) were first detected in the Donna Canal in 

1993, yet remediation had not been scheduled until March of 2020, which we can presume is 

behind schedule due to COVID-19 (EPA, 2020). Almost the same can be said for the McAllen 

Plume, which was first discovered in 1990 but as of 2020 is still not fully remediated, as 

remediation began only in 2009 (TCEQ, 2018).  

Chapter one of this thesis includes a review of literature about modern, available testing, 

and an overview of studies that reveal reliable predictors to heavy metal in agricultural soils. A 

more in-depth comparison of three approaches for heavy metal characterization is presented in 

Chapter two, where tradeoffs in terms of accuracy, affordability, and accessibility among, AA, 

ICP-MS, and XRF are discussed. In chapter three, various predictors to heavy metal 

concentrations are explored, including distance, soil type, pH, and land use. Finally, the 

implications of my work are provided in the context of soils management in the RGV and other 

areas, with results provided to communities on their respective growing locations and how to 

sample themselves if they have the means.  

Soil Analysis for Heavy Metals 

While naturally present in soil, heavy metals can seep into our agro-ecological systems 

through a variety of anthropogenic source types. Through smelting, mining, agricultural 

chemical runoff, and mismanaged environmental dumping we see a variety of heavy metals 

leach into the environment. Cadmium and nickel, two weakly bonded heavy metal ions, have 

observed sorption behaviors on minerals and colloids that are alike in nature (Selim, 2017). 

Variable charge surface models as well as surface complexation models can be used to model  
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like sorption behaviors. These types of sorption reactions can be telling of patterns within 

various trace elements to appear in groups or within the presence of each other (Selim, 1999). 

Conducting these experiments in lab to test remediation probabilities of trace elements in 

solution is helpful but also has limitations as sorption experiments are often not left to run as 

long as would be likely to happen in agricultural fields (Selim, 1999). Zinc may also be grouped 

with cadmium based on affinity (Selim, 2017). Competitive adsorption modeling based on the 

Freundlich approach leads us to the Sheindorf-Rebhun-Sheintuch approach. Using this approach, 

a recent study has shown that zinc in conjunction with cadmium and nickel is successful at 

suppression (Selim, 2017). Breakthrough curve results (BTC’s) can be used to model the 

mobility of various contaminants as well as affinity (Selim, 2017). Single ion sorption results 

show that arsenic and phosphorus sorption on iron and aluminum oxides can be somewhat 

similar, however it is shown also that iron is more effective in adsorbing arsenic than phosphorus 

(Selim, 2017).  

Analytical Techniques Reviewed 

Today, the most respected instrument in the element composition industry is the ICP-MS. 

Plasma is generated from samples of almost any medium (i.e., soil, plant, water, etc.) that have 

undergone chemical digestion prior to being analyzed. Plasma is generated as a byproduct of the 

reaction of the heat of the ionization of the sample with a carrier gas, which may be Argon, 

Helium, or Nitrogen (Wagatsuma, 1994). Argon is used more commonly as helium is more 

costly, and temperatures in this process can reach up to 10,000°K (Thomas, 2008). Most 

recently, there is an increasing shift in the use of ICP-MS as the latest version of inductively 

coupled plasma spectroscopy, due to its ability to detect at low concentrations and to process 

results for entire element composition in one analysis (Wilschefski, 2019).  
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Analytical atomic absorption spectroscopy is a widely accepted tool in the field of 

element analysis (Lagalante, 2004). The two most commonly used methods are Graphite Furnace 

Atomic Absorption (GFAA) and Flame Atomic Absorption (FAA), with GFAA being the slower 

of the two due to the processing time (Sparks, 1996). The two-phase process involves first the 

conversion of an analyte molecule into its constituent gas-phase atoms (atomization), followed 

by the subsequent absorption of radiation of the free atoms (Lagalante, 2004). This absorption of 

light quantifies the concentration of elements by using either a hollow cathode lamp or an EDL 

to measure the amount of emission spectra produced. Temperatures in this process can range 

between 2300°C-2900°C, depending on if the gas used is air-acetylene or nitrous oxide 

acetylene, respectively (Sparks, 1996). GF-AAS and F-AAS methods are both used commonly 

by the EPA, and specific metals are best run on either flame or furnace, depending on anticipated 

metal quantity, in order to protect the graphite tube used in the GF-AAS method (Sparks, 1996).  

The portable x-ray fluorescence (pXRF) is a proximal soil sensing technique (PSS) that 

receives much positive attention for its ability to provide a qualitative range of quick and cost-

effective results (Marguí, 2007). While it is known that current models of the pXRF do not have 

the detection capacities of AA or ICP methods, results can sometimes be comparable (Declerq, 

2019).  

Non-laboratory techniques  

In examining surface water runoff due to the increase of impervious surfaces, two tools 

used for modeling contamination of solutes are one-dimensional diffusion-wave and advection-

dispersion equations (Liang, 2019). The convection-dispersion equation simulates contaminant 

transport in the subsurface, while advection-dispersion equations describe solute transport in 

overland flow (Liang, 2019). These equations can be utilized in HYDRUS-1D, a public domain 
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software package used for modeling water flow. These are physically based models or PBMs, 

and once these equations are written for particular data sets, they can be the segue for machine 

learning techniques which can lead to various types of regressions including linear regression 

and the K-Nearest Neighbor regression (Liang, 2019).  

In order to solve these equations, simulations using feedback neural networks or artificial 

neural networks can be utilized (Ghazi, 2018). These methods are becoming increasingly popular 

as they are quicker and more affordable than using traditional laboratory methods such as x-ray 

fluorescence technology (Ghazi, 2018). Hyperspectral remote sensing is becoming increasingly 

popular in this field for similar reasons and is a useful tool for categorizing data when it is 

suspected that contamination stems from one uniform source, such as mining (Lamine, 2019). 

Analyzing data from spectroradiometers and atomic absorption spectrometers in conjunction 

with remote sensing data provides for analyses of accuracy in spectral imaging as a means to 

advance the prevalence of heavy metal contamination work (Lamine, 2019). Using ANOVA 

statistical analysis, areas of overlap can be highlighted to show accuracy in using techniques 

such as remote sensing or neural networks in heavy metal contamination work (Lamine, 2019). 

The success of using remote sensing techniques can save resources like time and money research 

due to not having to travel to make predictions in an area that is likely to be contaminated. This 

can be done through the creation of soil spectral libraries, which are a way to document known 

spectra and contaminants in soil so that future samples can be more quickly identified (Lamine, 

2019). 

Chapter two examines the efficacy of three different machines’ heavy metal results when 

presented with identical soil samples. A total of 61 agricultural soil samples taken at 7 different 

locational sites were analyzed for heavy metals using Inductively Coupled Plasma Mass 
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Spectrometry (ICP-MS) (Agilent 7500ce), Atomic Absorption Spectrometry (AAS) 

(PerkinElmer PinAAcle 900T), and Portable X-ray Fluorescence (pXRF) (Tracer 5g, US 

Analytical). Correlation between the machines varies between metal types and generally 

between machines, with Cr being the most consistent metal and the AA-S with the ICP-MS 

the most comparable analyses. Below is a map of the sampling sites used for both of these 

chapters.  
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Figure 1.1 Map of Soil Sampling Locations 
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Predictors for Heavy Metals in Soils 

Studying predictors for heavy metals provides the best advantage to preventing contamination in 

communities and for minimizing exposure risks, especially for field and farm workers, who are 

an important sector of local food systems. Heavy metal contamination is complicated as several 

factors can attribute to the accumulation of trace elements in soil, such as pH, organic matter, 

electric conductivity, and soil type (Ghazi, 2018). Ponded soils are suspect to higher rates of 

contamination due to improper drainage, barring any interference of infiltration rates (Yan, 

2012).  

Distance and Land Use 

It has also been proven that roadside trees have a significant impact on heavy metal 

amounts in agricultural fields close to trafficked roads (Yan, 2012). In one Nepal study, 

measuring heavy metal uptake of plants in comparison with soils reveals that grasses have less 

heavy metal concentration than roadside soils (Yan, 2012). Roadside contamination from heavy 

metals breaks down to cadmium emissions from lubrication oil consumption and tire wear, zinc 

emissions from fuel tanks and tire wear, copper and lead emissions from brake wear, lead from 

worn metal alloys in the engine and exhaust gas from vehicles (Yan, 2012). Sample sizes for 

studies can vary from 30 samples to as many as 2000 depending on resources to gather on the 

ground data. 

Soil Type and pH 

Soils with higher percentages of clay and soil organic matter (SOM) are more likely to 

have higher heavy metal concentrations than other soil types (Dube, 2001). This can be attributed 

to van der Waals forces, linkage of particles through cationic bridges, i.e. Fe+3, Cd +2 , and the 

cementation effects of SOM (Chessworth et. al., 2008). Lower pH levels are known to affect the 

bioavailability of Cd, Cu, Pb, and Zn (Chessworth et. al., 2008). 
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Chapter three is focused on investigative heavy metal sampling in agricultural fields and 

residential communities interested in farming. Environmental contamination is more likely to 

occur in both impoverished areas and in communities of color (Gochfield et al., 2011). The Rio 

Grande Valley is an at-risk area for this sort of contamination due to lax environmental 

regulations regarding agricultural irrigation in the United States (Allende et al., 2015). High 

levels of heavy metals have been detected in the Rio Grande in the Paso Del Norte Region (Rios- 

Arana, 2002). Due to the travel path of the river, we conducted research in the Rio Grande 

Valley for heavy metal contamination in agricultural fields. A total of 59 agricultural soil 

samples taken at 7 different locational sites were analyzed for heavy metals by Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS). We examined and searched for heavy metal 

relationships by intended land use, distance from nearest road, soil type, and soil pH in order to 

predict patterns of heavy metal pooling due to increasing urbanization in the region. Statistical 

methods used for analysis include Kruskal-Wallis Rank Sum Tests and Redundancy Analyses 

(multivariate analysis similar to regression techniques). Results show significant differences in 

both Cd and Fe based on soil type. The same is true for Cu in intended land use and distance 

from roads. There were no significant trends or correlations based on pH, despite prior research 

linking it to being a very strong predictor (Zhang et al., 2018). 

Heavy Metal Remediation 

Remediation is one of the first topics that come to mind when we discuss heavy metal 

contamination and other sources of pollution.  Once contamination has been detected 

remediation is an important consideration for habitants of nearby soil. One soil physics 

application is the addition of amendments which can be both organic and inorganic in nature. 

Organic amendments can include bark saw dust, xylogen, chitosan, bagasse, poultry manure, 
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cattle manure, rice hulls, sewage sludge, and leaves which can immobilize various heavy metals 

including cadmium, lead, mercury, copper, zinc, and chromium (Wuana, 2011). Inorganic 

amendments include lime, phosphate salt, fly ash, slag, and bentonite which can immobilize 

cadmium, chromium, copper, zinc, lead, and nickel (Wuana et al., 2011). Immobilization is an 

applicable technique for in-situ remediation; however, the presence of bedrock or other 

geological formations may require ex-situ remediation (Wuana et al., 2011). Bioremediation can 

take several forms, including the use of phytoremediation, hyper accumulators, and in situ and ex 

situ remediation techniques. Hyper accumulators are plants that have the ability to remove 

significant amounts of heavy metals while also tolerating their presence with adequate growth 

(Sun et al., 2019). Phytoremediation simply refers to the usage of plants for environmental 

remediation (Suman et al., 2018). Some examples of plants used for hyperaccumulation are 

dicotyledons for cadmium and cobalt extraction, cystus ladanifer for chromium, nickel and zinc 

extraction, thlaspi caerulescens for cadmium and zinc extraction, arabidopsis halleri for cadmium 

extraction, alyssum sp. For nickel extraction, brassica junica for lead and zinc extraction, and 

betula, vetiveria zizaniodes and other grasses for zinc extraction (Wuana, 2011). It is important 

in this area of study to distinguish between geogenic and anthropogenic sources of trace elements 

in soil as they will vary based on geographic location (Hanesch, 2001). Monitoring 

environmental pollution via rock magnetic methods is a useful tool in curbing contamination, 

and it is known that magnetic iron oxides are able to adsorb heavy metals (Hanesch, 2001). 

Summary 

In an effort to bridge my interests and budding expertise in soils analysis with that of addressing 

pressing environmental issues, my objective was to examine and quantify heavy metals in soils 

of the Rio Grande Valley. The following chapters examine and compare the accuracy and 



12 

accessibility of an Atomic Absorption Spectrometer, Inductively Coupled Plasma Mass 

Spectrometer, and a portable X-Ray Fluorescence unit. Distance, soil type, land use, and pH are 

tested as predictors for heavy metal concentrations in agricultural soils. It is predicted that soils 

that are closer to trafficked roads will exhibit higher levels of heavy metal concentration. It is 

also predicted that soils with higher clay content will have higher concentrations of heavy 

metals. Land use and pH are tested as exploratory variables, in order to see if residential areas 

are more susceptible to heavy metals than land intended for agricultural use.
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CHAPTER II 

A COMPARISON OF THREE DIFFERENT METHODS FOR THE ANALYSIS OF HEAVY 

METALS IN AGRICULTURAL SOIL 

Abstract 

Present in most soils, heavy metals are known carcinogens and harmful when ingested in 

excessive amounts. Testing methods and instrumentation for heavy metals in soils have 

improved in recent years in both efficacy and affordability. This paper examines the 

efficacy of three different machines’ results when presented with identical samples. A total 

of 61 agricultural soil samples taken at 7 different locational sites were analyzed for heavy 

metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Agilent 7500ce), 

Atomic Absorption Spectrometry (AA-S) (PerkinElmer PinAAcle 900T), and Portable X- 

ray Fluorescence (pXRF) (Tracer 5g, US Analytical). Correlation between the 

instrumentations varies between metal types and generally between machines, 

with Cr being the most consistent metal and the AA-S with the ICP-MS the most 

comparable analyses. Statistical analyses were performed in R Studio. These comparisons 

were made under the motivation that most remediation testing is not a concern of state or 

federal environmental agencies until it becomes a noticeable problem having already 

harmed existing residents. We hope this work may empower local communities to be able 

to test their own soils and produce if they so desire. 
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Introduction 

Chemical characterization of soil, water, and plant material has become increasingly 

more available as technologies are improved and machines are optimized. Currently, there exist 

over a dozen techniques for element composition of soil materials. However, the tradeoffs 

of these differing techniques for characterization in terms of accuracy, accessibility, and 

dependability are more likely to be compared by machine manufacturers than by independent 

researchers due to restrictions such as time and cost (exceptions include the following 

researchers: (Pyle, 1996; Kilbride, 2006; Binstock, 2009; Radu, 2009; Declerq, 

2019). Results from differing instrumentation can vary widely in efficacy, efficiency, and cost 

effectiveness (Pyle, 1996). 

For example, many studies promote the use of Inductively Coupled Plasma –Mass 

Spectrometry (ICP-MS) as it purports to have the highest range of accuracy for elemental 

analysis (PerkinElmer, 2018; Wilschefski, 2019). However, the high cost of equipment 

and specialized degree of training may make the machine inaccessible to both researchers 

and non-researchers alike (Wilschefski, 2019). On the other hand, field- 

based techniques using handheld devices often used in citizen science may result in quick 

and real-time information, but also are somewhat rough estimates of the presence of certain 

elements (McComb, 2014). 

These tradeoffs must be considered when addressing pressing environmental and 

social issues, such as remediation of heavy metals where accuracy and timeliness are equally 

pressing (Masten, 2016), or where results determine changes in policy and practice (Jaishankar, 

2014; Ramirez-Andreotta, 2016). Furthermore, understanding of the practical and 

technological limitations of differing approaches must also be taken into consideration (Ramirez- 
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Andreotta, 2016). Although the laboratory intensive approaches may provide a higher accuracy 

of readings when compared to that of the use of a lower cost handheld tools, there may be 

situations where results may be comparable (Kim, 2019). In this work, we compare results of 

heavy metal analysis in three different commonly used approaches, including the ICP-MS, the 

AA-S, and the pXRF, across 61 different soil samples collected from various sites in south 

Texas. We present the results and discuss the tradeoffs of each approach as it pertains to 

accuracy, precision, and accessibility. 

Methods of Element Composition 

One of the most highly regarded techniques for soil element quantification is inductively 

coupled plasma spectroscopy (ICP), where plasma is generated from samples of almost any 

medium (i.e., soil, plant, water, etc.) that have undergone chemical digestion prior to being 

analyzed. Plasma is generated as a byproduct of the reaction of the heat of the ionization of the 

sample with a carrier gas, which may be Argon, Helium, or Nitrogen (Wagatsuma, 1994). Argon 

is used more commonly as helium is more costly, and temperatures in this process can reach up 

to 10,000°K (Thomas, 2008). The more affordable form of Inductively Coupled Plasma analysis 

includes optical emission spectroscopy (ICP-OES) or atomic emission spectroscopy (ICP-AES) 

(Wilschefski, 2019). Most recently, there is an increasing shift in the use of ICP-MS as the latest 

version of inductively coupled plasma spectroscopy, due to its ability to detect at low 

concentrations and to process results for entire element composition in one 

analysis (Wilschefski, 2019). 

The first analytical atomic absorption spectrophotometer (AA-S) was created by Alan 

Walsh in 1953 and has become a widely accepted tool in the field of element analysis ever since 
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(Lagalante, 2004). The two-phase process involves first the conversion of an analyte molecule 

into its constituent gas-phase atoms (atomization), followed by the subsequent absorption of 

radiation of the free atoms (Lagalante, 2004). This absorption of light quantifies the 

concentration of elements by using either a hollow cathode lamp or an EDL to measure the 

amount of emission spectra produced. Temperatures in this process can range between 2300°C- 

2900°C, depending on if the gas used is air-acetylene or nitrous oxide acetylene, 

respectively (Sparks, 1996). The two most commonly used methods are Graphite Furnace 

Atomic Absorption (GFAA) and Flame Atomic Absorption (FAA), with GFAA being the slower 

of the two due to the processing time, as it is capable of analyzing only one element at a time 

with specified lamps (Sparks, 1996; PerkimElmer 2011). GF-AAS is used to detect metals with 

expected lower concentrations compared to F-AAS which should be reserved for more major 

elements to protect machine equipment (Wilson, 2008). Not all researchers may have access to a 

model with both a flame and a furnace, in which case, sensitive metals may be run on an ICP if 

available. The advantages of an AA-S are that it takes less training than an ICP to operate and 

can be faster than ICP if the concern is single element (Wilschefski, 2019). Please see Table 1 

for minimum detection limits. 

The portable x-ray fluorescence (pXRF) is a proximal soil sensing technique (PSS) that 

receives much positive attention for its ability to provide a qualitative range of quick and cost- 

effective results (Marguí, 2007). While it is known that current models of the pXRF do not have 

the detection capacities of AA or ICP methods, results can sometimes be comparable (Declerq, 

2019). As a more commonly accepted alternative to traditional laboratory testing, enhanced 

usage of pXRF mechanisms may assist in the discovery of potentially contaminated sites more 
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quickly than analyses requiring digestion, however it is still emphasized by some (Ridings, 

2000) that pXRF technologies are not reliable enough to fulfill this role, as reviewed by 

(Lemière, 2018). The pXRF functions through the emission of spectra by beaming x-rays at 

samples (Marguí, 2007). The machine then reads the spectra to provide element 

quantification. For the use of heavy metal analyses, one limit can be quantification, as most 

models of pXRF provide semi-quantitative analyses, which can be transformed 

through softwares like ArTax or EasyCal (Bruker, 2020). Traditionally the pXRF is used for 

elements lighter than heavy metals, with heavy metal and nutrient calibrations being added with 

the latest models of the Tracer series (Bruker, 2020). 

More recently, interpolation methods are being utilized such as kriging and inverse 

distance weighing that apply fluorescence and geographic information systems to characterize 

soils (Kim, 2019). Approaches like this can save time and money used for materials and labor 

when making predictions about areas of contamination. Other tactics used include partial 

differential equations and artificial neural networks that function as feedback neural networks 

(Ghazi, 2018). Remote sensing is also a growing tactic in spatial analysis, and researchers are 

proving the validity of these methods by coupling their mappings with in-lab results, in one case 

with a spectroradiometer (Lamine, 2019). These techniques reduce the need for chemistry 

laboratories and the use of chemicals and have been deployed in various settings including mining 

and land use planning, when coupled with unmanned aerial vehicles (Lamine, 2019). 

This paper analyzes the efficacy of three of the more common techniques used across 

labs: the Inductively Coupled Plasma Mass Spectrometer (ICP-MS), the Atomic Absorption 

Spectrometer (AA-S), and the Portable X-ray Fluorescence (pXRF). Comparative studies have 

revealed specific differences among these machines when it comes to costs, efficiency, error, and 



18 

accuracy (Pyle, 1996; Kilbride, 2006; Binstock, 2009; Radu, 2009; McComb, 2014; Hu 

2014). Both Hu and Radu advocate for the speed of the pXRF in providing contamination results 

and present strong correlation coefficients for results when compared to both ICP-MS and AA 

methods (Radu, 2009; Hu, 2014). Binstock et al found that the FPXRF was a reliable tool when 

it came to detection of lead (Pb) in residential soils (Binstock, 2009). A study done on South 

Korean beaches found that the use of pXRF in sandy soils was highly accurate in comparison to 

results from the ICP (Kim, 2019). Some argue that through the partial digestion process, an 

accurate reading of the metal content is more challenging to obtain when compared to the 

capability of the pXRF to take a read from the entire soil sample (Kilbride, 2006). We add to this 

literature by using the same set of samples to compare the results from these techniques. 

Methods 

Sample Collection and Preparation 

For this comparative study, we used 61 composite soil samples collected using step-down 

soil corers (AMS, city, state), gathering soil samples at depths of no greater than 30cm. Samples 

were collected in 2019 as part of another study (Youwakim, unpublished (see chapter III), and 

ranged from a variety of soil types and uses. Samples were numbered and stored in laboratory 

conditions until processing and digestion. Samples were read on an Inductively Coupled Plasma 

Mass Spectrometer (Agilent 7500ce), Atomic Absorption Spectrometer 

(PerkinElmer PinAAcle 900T), and Portable X-ray Fluorescence Gun (Tracer 5g, US 

Analytical). The digestion method was utilized only for the ICP-MS and both the GFAA and the 

FAA. Samples for the pXRF were read both as they came from the field and after the initial 

drying preparation step. Preparation for this included filling polyethylene sample cups with 

thin film for both the wet and dry samples. Samples were dried for 12 hours at 91 degrees C in a 
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gravimetric oven (Lindberg blue). Samples were ground by hand in mortar and pestles and then 

sieved to 2mm. 

Sample Digestion 

Soil digestion required for analysis with the AA-S and ICP-MS was performed 

using EPA method 3050B, with slight modifications outlined below and as described in Test 

Methods for the Examination of Compost and Composting (U.S. Composting Council, 

2002). Similar methods have been used for digestion in both agricultural and marine sediments 

(Peña-Icart, 2011). 

1-gram samples of sieved soil were then weighed out in 2.5 x 20cm test tubes. 10mL of

35% nitric acid (HNO3) were added to each sample in a test tube digestion block (SPB 50-24 

PerkinElmer). Samples were then refluxed for 15 minutes at 95°C. Another 5 mL of 35% nitric 

acid (HNO3) were then added and the samples were refluxed for another 30 minutes. Then, 3mL 

of 37% hydrochloric acid (HCl) were added and samples were heated at one hour in the test tube 

block, still at 95°C. After this step, the digestion block temperature was lowered to 80°C. 3 mL 

of 30% hydrogen peroxide (H2O2) were added with a 5 minute resting period before adding an 

additional 1mL of H2O2 with 5 min intervals until no more than 10mL of hydrogen 

peroxide (H2O2) were added (in order to avoid bubbling over and losing sample). If a drop was 

added and there was no reaction, the participant could stop adding hydrogen peroxide, however, 

this did not occur with any of our samples. The digestion block temperature was then raised 

again to 95°C before adding 10mL of deionized water. Samples were then refluxed for 15 min 

at 95°C. The digestion block was then turned off and samples were diluted with deionized water 

in 100mL volumetric flasks. Samples were stored at room temperature until processed using the 

different methods described below. 
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Sample Processing 

Inductively Coupled Plasma Mass Spectrometer 

Samples for the ICP-Q-MS (Agilent 7500ce) analysis were run at the University of Texas 

at Austin at the Jackson School of Geosciences in the ICP-Q-MS lab (Dr. Nathan Miller). 

Samples were diluted by a factor of 25 in a medium of 2% nitric acid (HNO3). A semi- 

quantitative analysis was run initially before running a full quantitative analysis. All lab 

materials were sterilized in 2% nitric acid (HNO3). ICP-MS analytical parameters are shown in 

Tables 2 and 3. 

Cation concentrations (Li, B, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, 

As, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi, Th, and U) were determined using an 

Agilent 7500ce ICP-MS. The instrument was optimized for sensitivity across the AMU range, 

while minimizing oxide production (< 1.4%). Because of uncertainty related to elemental 

concentrations and matrix compatibilities for initial digests, samples were first analyzed semi- 

quantitatively in helium collision mode (Wilbur, 2007), then quantitatively after 25x further 

dilution. The quantitative analytical method employed an octopol reaction system (ORS), 

operated in helium (collision-mode) and hydrogen (reaction-mode) for removal of polyatomic 

interferences. Internal standards, mixed into unknowns via in-run pumping, were used to 

compensate for instrumental drift and internal standard sensitivity variations were well within 

QA tolerances (± 50%). Limits of detection based upon the population of blank (2% HNO3) 

analyses interspersed throughout the analytical sequence were typically better than 0.670 ppb 

(median = 0.019 ppb) for analytes measured in optimal modes (with or without the ORS). Limits 

of detection excluding the following major elements Na, Ca, Mg, K, P, Al, Fe, read with an 
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average of (0.080 ppb; median 0.009 ppb). Analyte recoveries obtained for replicates of two 

independent quality control standards ranged between 96 to 100% of certified values. Relative 

precisions (n = 2-7) obtained for these quality control standards were typically 

within 0.0 to 4.0 % of replicate 3.952e-11 averages. Minimum detection limits and recoveries for 

elements of importance can be found in Table 5. 

Atomic Absorption Spectrometer 

For the AA-S (PerkinElmer PinAAcle 900T) analysis, all samples were read in duplicate. 

Standards were made in a medium of 5% nitric acid (HNO3). Both hollow cathode and electrode- 

less discharge lamps (EDL) were used for various metals. Samples with a relative standard 

deviation (RSD) above 20% were run again. Standards for each sample were made after the 

results from the ICP-MS were complete. Aliquot volume was 20 microliters for each sample. 

For metals that needed a matrix modifier, 5 microliters of modifier were added to 15 microliters 

of sample. Zn and Fe were run via FAA, while As, Cd, Cr, Cu, Ni, Pb, and Se were run via 

GFAA. Quality was assured through calibration coefficients detailed in Table 4. 

Portable X-ray Fluorescence Gun (Tracer 5g, US Analytical) 

The samples that were run for this study were run using a handheld PXRF. The 

instrument uses a Rhodium X-ray tube operated at 40 KeV in the nutrients and heavy metals in 

soil calibration using sharp beam technology. Sharp beam is a patented collimator system 

optimizes the front-end geometry of the tube and detector. This places the X-ray source as close 

to the sample as possible. This results in a higher intensity being able to reach the sample per 

unit current to the tube. Quantification of elements is accomplished using an ultra-high 

resolution (<140 eV at 250,000 count per second Mn Kα) silicon drift detector. The window of 
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the detector is made of graphene compared to traditional PXRF units that use beryllium as the 

detector window. The graphene window is an advanced material composed of atomic layers of 

carbon atoms arranged in hexagonal lattices. The graphene allows for a higher transmission of 

X-rays throughout the energy spectrum, which dramatically improves the transmission for light

elements. Samples were scanned through the 8mm aperture sequentially for 60 seconds per 

beam, with one complete scan being 120 seconds. Data quality was verified using a certified 

USGS standard SdAR-M2 metal rich sediment check sample at beginning and end of 

scanning. pXRF results were reported by the instrument in weight percent. These values were 

converted to ppb by multiplying first by 10,000 to reach ppm and then by another 1000 to reach 

ppb. Then these numbers were divided by 100 in order to convert from µg/kg to µg/l in order to 

compare between ICP-MS and AA data. These converted numbers are reported in the appendix. 

Figure 2.1 Tracer 5g at UTRGV 

Results 

The Spearman’s Rank Correlation method was used due to data that could not be 

normalized. Respective rho values reveal a consistency among Cr for high correlation between 
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each machine and its counterpart. A table with averages and correlation coefficients is shown in 

Table 6, along with scatterplot matrices for each metal with each of the three machines (appendix 

1). Correlations between wet and dry pXRF data produced identical rho values. Reasons to 

describe discrepancies between machine readings include variances in operating users, machine 

settings, and physical lab location and subsequent procedures, along with non-identical limits of 

detection per machine. There exist statistically significant relationships between a majority of 

tested elements and their respective machines. All statistical analyses were executed in R Studio 

software. 

Discussion 

Both very strong significant and very strong positive correlations exist between the ICP and AA 

for Cr, Cu, and Pb. These are followed by a series of strong positive correlations with very strong 

significance for Fe and Ni between the ICP and AA, for As, Cr, and Zn between the AA 

and pXRF, and for Cd, Cr, Fe, and Ni between the ICP and pXRF. Lastly, there exist a series of 

moderate positive correlations that are also very significant for Cd between the ICP and AA, for 

Fe, Ni, and Pb between the AA and pXRF, and for Pb and Se between the ICP and pXRF. 

Our purpose for testing these same 61 samples on 3 different machines was to compare 

the efficacy in data analysis to provide a margin of error estimate for universities unable to 

purchase an ICP-MS or ICP-Q-MS, or even an Atomic Absorption Spectrometer. While this 

research focuses on comparing nine metals of interest, it is often the case in contamination 

investigations that only one or two metals are of focus. We hope that the data provided may 

assist users in choosing which machine is most equipped to handle their investigative needs. 

Different standard solutions were used on the ICP-MS and AA-S as they were run in different 

laboratory settings. 
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In terms of speed, the FAA provided the shortest analysis time, followed by the pXRF, 

then the ICP-MS, and lastly the GFAA. While the ICP-MS is the most expensive piece of 

equipment, we assume it also provides the most accurate results (Wilschefski, 2019). The AA is 

perhaps a common middle ground, as a piece of equipment less expensive than the ICP but with 

higher accuracy rates than the pXRF. The pXRF consistently overestimated for every metal 

except for Fe. This work does not aim to discredit the reliability of the pXRF, as we can see it 

trends accurately, but aims to point out the inexact measurements provided by the machine when 

compared to more traditional laboratory techniques for element composition. 

Between these three machines there are differences in reported levels of element 

composition. Several factors can be the cause of this including user error, machine sensitivity, 

detection limits, inconsistency in users, and variation in temperature and storing conditions. This 

is important to note as it is unlikely for a researcher or concerned citizen to have access to all the 

machines at once that this study utilizes, and to consider when sending samples to various labs 

and analyzing discrepancies. For the pXRF it is often mentioned that dried and sieved in lab 

samples read more accurately than wet or in field samples, but upon our analysis the correlations 

were identical. All raw data can be found in the appendix. For researchers that do not have access 

to ICP-MS, and perhaps only have access to devices like the pXRF, the discussion of precision 

when reporting contamination numbers is likely to come up. 

Contamination levels vary between countries and their respective states and provinces, 

however, in the U.S. the numbers are lax enough that our large pXRF readings still do not come 

close to any of the limits provided by the EPA or TCEQ. If researchers are concerned about 

accuracy but 
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limited by cost, it may be best to use the pXRF to first check for the possibility of contamination 

in their region, and then to pay for an ICP or AA analysis for further certainty. See Table 7 for a 

summary of advantages and disadvantages for these three machines. 
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Tables and Figures 

Table 2.1. Instrument Minimum Detection Limits in micrograms per liter (µg/L) or (ppb) 

Element FAA GFAA ICP-MS pXRF 

As 150 0.05 0.0003 50 

Cd .8 0.002 0.00006 200 

Cr 3 0.004 0.00005 50 

Cu 

Fe 

Ni 

Pb 

Se 

Zn 

1.5 

5 

6 

15 

100 

1.5 

0.014 

0.06 

0.07 

0.05 

0.05 

0.02 

0.00003 

0.0001 

0.00006 

0.00001 

0.0003 

0.0001 

<50 

150 

50 

90 

<50 

<50 

Table adapted from (PerkinElmer, 2018) and (Bruker, 2018) 
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Table 2.2 Semi-quant analyses in He mode on 10/17/19 

Mode Rate 

Ar Carrier .7L/min 

Ar Makeup .42L/min 

He Mode 5.5mL/min 

H2 Mode NA 

Table 2.3. Quantitative analyses in no gas, He- and H2-modes on 10/18-19/19 

Mode Rate 

Ar Carrier 0.7L/min 

Ar Makeup 0.49L/min 

He Mode 4.3mL/min 

H2 Mode 3.7mL/min 
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TABLE 2.4 CONDITIONS USED DURING GFAA ANALYSIS 

SETTING 

ELEMENT 

As Cd Cr Cu Ni Pb Se 

WAVELENGTH 

RECOMMENDED (NM) 
193.7 228.8 357.87 324.75 232 283.31 196.03 

LAMP READINGS SIGNAL 63 68 99 84 57 78 63 

SLIT WIDTH (NM) 0.7 0.7 0.7 0.7 0.2 0.7 2 

MATRIX MODIFIER 
RECOMMENDED 

0.005mg 
Pd+0.003mg Mg( 

NO3)2 

0.015mg M 
g(NO3)2 

0.015mg Mg 
(NO3)2 

0.005mg Pd 
+0.003mg Mg 

(NO3)2
N/A 

0.05mg 
NH4H2PO4 

+ 
0.003mg Mg 

(NO3)2 

0.005mg Pd 
+0.003mg Mg 

(NO3)2

USED MATRIX MODIFIER Yes Yes No No N/A Yes No 

PYROLYSIS 
TEMPERATURE 

RECOMMENDED(◦C) 
1200 500 1500 1200 1100 850 1300 

PYROLYSIS 
TEMPERATURE USED(◦C) 1200 1000 1500 1200 1100 850 1300 

ATOMIZATION 
TEMPERATURE 

RECOMMENDED (◦C) 
2000 1500 2300 2000 2300 1600 1900 

ATOMIZATION 
TEMPERATURE USED (◦C) 2000 2200 2300 2000 2300 1600 1900 

CALIBRATION METHOD Non-linear 
through zero 

Non-linear 
through 

zero 

Linear 
through 
zero 

Non-linear 
through zero 

Non- 
linear 

through 
zero 

Non-linear 
through 

zero 

Non-linear 
through zero 

CALIBRATION 
CORRELATION 
COEFFICIENT 

0.999991 1 0.974776 0.998683 0.99596 
1 1 0.999706 
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Table 2.5 Analytical Data for ICP-MS Agilent 7500ce During Analysis in PPB 

Element 
Type As Cd Cr Cu Fe Ni Pb Se Zn 

MDL 
.9 0.075 0.225 0.2 

46.32 
5 .15 0.1 0.8 7.4 

Recoveries .94- 
.96 

.89- 

.92 
.99- 
1.01 

.98- 
1.01 

.99- 
1.04 

.97- 
1.01 

.98- 
1.02 

.96- 
1.03 

.99- 
1.04 

QC 1 
StDev .168 .091 .900 .021 .148 .007 .064 .484 .042 
QC 2 
StDev .288 .197 .239 .339 1.29 .307 .393 .311 1.619 
QC 3 
StDev .317 .015 .044 .064 .233 .159 .072 .088 .215 
LOD .045 .003 .009 .008 1.853 .006 .004 .032 .276 
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Table 2.6 Samples Averages Between Metal and Instrument (ppb) 

Element (*-Flame) 

As Cd Cr Cu Fe* Ni Pb Se Zn* 

ICP- 
MS 

15.26 3.13 100.76 134.66 95453.43 103.97 87.02 1.39 1940.48 

AA 
57.90 0.30 106.32 78.08 109804.9 126.20 97.77 2.58 850.36 

pXRF 
56.39 133.11 57.54 52.79 170.66 78.20 46.23 24.92 45.74 

Spearman’s Rank Correlation Rhos between Metal and Machine Type 

ICP x 
AA -0.187 0.433*** 0.951*** 0.871*** 0.701*** 0.751*** 0.929*** 0.182 .125 

AA x 
pXRF 0.689*** 0.322* 0.776*** 0.272* 0.454*** 0.595*** 0.536*** 0.092 0.621*** 

ICP x 
pXRF -0.025 0.725*** 0.797*** 0.175 0.745*** 0.735*** 0.454*** 0.493*** 0.063 

*p<0.05, **p <0.01, ***p<0.001
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Table 2.7. Capabilities and Limitations of ICP-MS, GFAA, FAA, and pXRF 

Instrument Capabilities Limitations Average 
Cost in 
USD 

ICP-MS Able to run with low 
sample volume, able to 
process multi-element 
requests, lowest of the 
detection limits, able to 

process several samples in 
a short amount of time, 

can execute sample 
analysis without 

supervision 

High upfront cost, 
high costs of 

maintenance, careful 
digestion method 

required, high level 
of training required. 

170,000- 
350,000 

GFAA Low detection limit, may 
be left unattended in most 
cases, low sample volume 
needed, accessible price 
and camera available to 
aid in troubleshooting 

Single element 
analysis, highly time 

consuming for 
multi-element 

inquiries 
50,000- 
70,000 

FAA 3-4 second reading time,
high sample output, low
training requirements, 
most affordable in-lab- 

only technique. 

Single element 
analysis, can take up 

to approximately 
8mL to run each 

sample in triplicate, 

High detection limit, 
requires constant 

attention if there is 
no autosampler. 

30,000- 
50,000 

pXRF Low operating costs, 60 
second reading time, 

affordable, requires little 
training to operate, Multi- 
element analysis can be 

taken to the field for 
instant readings. 

High detection limit, 
inaccurate readings 

common when 
reading for metals in 

low quantities. 

40,000- 
60,000 

(Bruker, personal communication, 2020), (Wilschefski, 2019), (PerkinElmer, personal 
communication 2020), (PerkinElmer, 2018). 
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Data Analysis Figures 2.2-2.10 (All units in ppb, µg/l) 

The following matrices provide visual illustrations of the correlation between concentrations. 
Axes correspond to the respective data for each instrument. 

Figure 2.2 Scatterplot Matrix for As Data
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Figure 2.3 Scatterplot Matrix for Cd Data 

Figure 2.4 Scatterplot Matrix for Cr Data
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Figure 2.5 Scatterplot Matrix for Cu Data 

Figure 2.6 Scatterplot Matrix for Fe Data
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Figure 2.7 Scatterplot Matrix for Ni Data 

Figure 2.8 Scatterplot Matrix for Pb Data
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Figure 2.9 Scatterplot Matrix for Se Data 

Figure 2.10 Scatterplot Matrix for Zn Data
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CHAPTER III 

EXPLORING PREDICTORS OF HEAVY METAL QUANTITIES THROUGH OBSERVED 

RELATIONSHIPS BETWEEN SOIL TYPE, LAND USE, DISTANCE TO ROADS, AND pH 

Abstract 

Environmental contamination is a topic that readily can be overlooked due to lax 

environmental regulations regarding remediation. This is especially true and more likely to occur 

in impoverished areas. The Rio Grande Valley is susceptible to such contamination due to its 

agricultural irrigation from the Rio Grande River, which contamination has been detected in 

from time to time. Following data from a 2002 study from UT El-Paso which detected the 

presence of As, Cr, Cu, Ni, Pb, and Zn in the water column of the Rio Grande in their region, this 

research was conducted to test for contamination in Rio Grande Valley agricultural soils. A total 

of 59 agricultural soil samples taken at 7 different locational sites were analyzed for 

heavy metals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We examined and 

searched for heavy metal relationships by intended land use, distance from nearest road, soil 

type, and soil pH in order to predict patterns of heavy metal pooling due to increasing 

urbanization in the region. Statistical methods used for analysis include Kruskal-Wallis Rank 

Sum Tests and Redundancy Analyses (multivariate analysis similar to regression techniques) 

which were run in R Studio and Canoco 5 software respectively. Results show significant 

differences in both Cd and Fe based on soil type. The same is true for Cu in intended land use 

and distance from roads. There were no significant trends or correlations based on pH. 
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Introduction 

As urbanization continues to proliferate across the world, concerns of heavy metal 

contamination as a result of urbanized environments in agricultural soils must be addressed to 

protect the health of the communities who live along these rural-urban gradients (McClintock, 

2012). Urban soils are often contaminated with Cd, Cu, Pb, Zn, and these heavy metals are 

linked to traffic and other anthropogenic sources (Alloway, 2013; Gan et.al, 2018). Though 

naturally present in some amount in most soils, accumulation of anthropogenic pollution through 

windblown dust and debris from vehicles, buildings, and impervious services, along with storm 

water runoff may increase urban resident exposure to these chemical elements, all of which can 

have deleterious, toxic effects, especially when hyper-accumulated in produce grown in such 

soils. 

With the advent of accurate accessible soil testing technology (Youwakim et al, chapter 

II) researchers have documented reliable predictors of heavy metal concentrations in soils to both

help prevent and mitigate human exposure to toxic heavy metals. For example, Yan et al., (2012) 

found that proximity to road was an important predictor of Cd, Cu, Pb, and Zn in agricultural 

soils in Nepal, largely attributed to vehicle traffic along these roads. Soils proximate to 

concentrations of buildings and other aspects of urbanization are also associated with higher 

concentrations of these elements (Wang et al., 2018). In many cases, heavy metals can be 

predicted by soil characteristics, depending on the metals and their relationship respective to pH, 

soil type, and other soil physical/chemical properties (Zhang, et al., 2018; Kurame, 2012). 

This research examines the reliability of those predictors in the rich alluvial soils of the 

lower Rio Grande Valley in Deep South Texas along the U.S.-Mexico Border. Urban populations 
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along this region are projected to reach approximately 1.5 million by 2050 (Texas Demographic 

Center, 2019). Even now, has become increasingly urbanized, resulting in drastic rural-to-urban 

gradients, with a mosaic of agricultural use areas (farms) and unincorporated residential 

communities at the fringe. The region is home to more than 900 colonias, unincorporated 

neighborhoods that are usually lacking in one or more municipal services such as electricity, 

drinking water, sewage, or paved roads (Barton et. al., 2015). Food security is an issue in these 

communities (Barton et. al., 2015), and many initiatives to promote food access and community 

gardening are often well received. However, these communities are also embedded in areas that 

are highly at risk for soil contamination (Ramirez-Andreotta, 2014) due to poor drainage, 

irrigation runoff contaminated by sewage, and the use of pesticides or fertilizers, and 

concentrations of heavy metal contaminants associated with urbanized environments (da Silva, 

2016). 

In this work, we characterize heavy metal concentrations in various soils collected along 

this urban-rural gradient and explore various factors that could serve as predictors to heavy metal 

exposure in soils. We examine whether proximity to roads subject fields and farms to higher 

heavy metal concentrations, and explore the relationship of these concentrations to soil type and 

other soil conditions, such as pH. We present these findings within a broader discussion of soils 

management in this region, especially in the context of farms and other food production land 

uses such as community gardens in Colonias and other residential communities. 

Materials and Methods 

Site Description and Sample Collection 

A total of 59 agricultural soil samples at 7 different locations were gathered non- 

randomly across both Starr and Hidalgo County in Deep South Texas. Samples include a mix of 
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soils from citrus groves, grain fields, urban farms, and community gardens in 

various colonias. Sample locations were chosen based on permission granted from various 

farmers and landowners. Coordinates for each sampling site were recorded using a 

handheld GPS (Juno® SA, Trimble Sunnyvale, CA), and are listed in Table 3.2. Each of the 

59 samples were composed of 6 soil cores taken using step-down soil corers (AMS) at depths of 

no greater than 30cm and between 1m- 130 m apart. Samples were taken compositely and mixed 

with the intention of testing for relationships between metal content and distance from roads. 

Soils were collected and stored at room temperature until processing. Samples described by soil 

type, soil pH, and distance to a main paved road (for three locations under farm in Table 3.2). 

Soil types were determined by in lab soil texture analyses using Soil Survey Field and 

Laboratory Methods Manual (NRCS, 2009) and soil pH was measured by a slurry (mixed with 

pH stirrer) of soil and deionized water (1:2 ratio) with a pH meter (B30PCI, sympHony) 

following methods from the Agriculture Laboratory Proficiency (ALP) Program (CTS, 2007). 

Distance to road was estimated referencing the GPS coordinates on a map and the distance 

measuring tool on Google Earth. 

Sample Preparation and Digestion 

The method used for digestion of soils is an adapted version of EPA 3050B used by the Texas 

Plant and Soil Lab and detailed in Test Methods for the Examination of Compost and 

Composting (U.S. Composting Council, 2002), where local participants would be most likely to 

send their samples for analysis. Samples were numbered and stored in laboratory conditions until 

processing and digestion. Samples were dried for 12 hours at 91°C in a precision oven (Lindberg 

blue). Samples were ground by hand in mortar and pestles and then sieved to 2mm. 
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1-gram samples of sieved soil were then weighed out in 2.5 x 20cm test tubes. 10mL of

35% nitric acid (HNO3) were added to each sample in a test tube digestion block (SPB 50-24 

PerkinElmer). Samples were then refluxed for 15 minutes at 95°C. Another 5 mL of 35% nitric 

acid (HNO3) were then added and the samples were refluxed for another 30 minutes. Then, 3mL 

of 37% hydrochloric acid (HCl) were added and samples were heated at one hour in the test tube 

block, still at 95°C. After this step, the digestion block temperature was lowered to 80°C. 3 mL 

of 30% hydrogen peroxide (H2O2) were added with a 5 minute resting period before adding an 

additional 1mL with 5 min intervals until no more than 10mL of hydrogen peroxide (H2O2) were 

added (in order to avoid bubbling over and losing sample). If a drop was added and there was no 

reaction, the participant could stop adding hydrogen peroxide, however, this did not occur with 

any of our samples. The digestion block temperature was then raised again to 95°C before 

adding 10mL of deionized water. Samples were then refluxed for 15 min at 95°C. The digestion 

block was then turned off and samples were diluted with deionized water in 100mL volumetric 

flasks. Samples were stored at room temperature until further processing to be read on an 

Inductively Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500ce) at the ICP-MS Lab 

in the Jackson School of Geosciences at the University of Texas at Austin (Miller, 2019). 

Samples were initially diluted by 25 in order to protect the ICP-MS 

from any potential unknown quantities of high levels of contamination. Samples were read for 

As, Cd, Cr, Cu. Fe, Ni. Pb, Se, and Zn in a 2% (HNO3) matrix. 
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Data Analysis 

Results by site for 9 of the most common heavy metals are depicted in Table 3.2. Data were 

organized by location, land use, and distance from road (see Table 3.1). A constrained 

redundancy analysis (RDA) was run using Canoco 5 ™ (Lepš et al., 2003) to explore the 

relationships between heavy metal content of each of the 9 heavy metals and the following 

factors: soil type, distance to road, and pH. A second RDA was run to explore associations 

between heavy metals and soil particle size (clay, silt, and sand). Based on these analyses, we 

tested the statistical relationships of both soil type and distance to roads as predictors for the ICP- 

MS data for each of the aforementioned 9 heavy metals. Cumulative data from the ICP-MS 

analysis were non-parametric and unable to be normalized (Gan, et. al, 2018). Kruskal-Wallis 

Rank Sum Tests were used to explore the significance of soil type on ICP-MS data. Mann 

Whitney U tests were used for pairwise comparisons between metal and soil type. The Holm p- 

value adjustment method was utilized. To explore the associations between heavy metal and 

proximity to road we limited our analysis to the three locations where samples were collected 

along a gradient of distance to road. Shapiro-Wilks test for normality were run for each of the 

nine metals for each of these locations in order to determine the correct correlation method. Of 

the metals that showed negative correlations, all distributions were normal. Pearson’s and 

Spearman’s correlation coefficients were calculated and tested for significance. All statistical 

analyses were run in RStudio™ (Rstudio, 2020, Boston, MA). 
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Results 

Land Use 

No differences were found in average concentration of heavy metals between agriculture sites 

(n=31) and soil in residential locations (colonias and urban farms) (n=26), except for Cu, 

(H=10.99, 1 d.f., P=0.0009115), where soil from residential areas (162.25 ± 69.42 ppb) had 

more than 60% more Cu than in agricultural soils (106.56 ± 49.94 ppb). Mann Whitney U test 

results for Cu, (W = 196, p-value = 0.0007042), were used to compare the distribution of the Cu 

content between residential land and land intended for agricultural use. All other metals did not 

prove statistically significant using the Kruskal-Wallis Rank Sum Test. The following figure 

illustrates samples collected with their respective means denoted by the magenta crossed circle. 

Figure 3.1 Copper by Land Use in ppb 
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Distance to main road 

Data points for testing if metal content is correlated with distance from nearest road were tested 

by three locations: a citrus grove in Edinburg, TX (sites 2; composite samples n=4), a cattle 

pasture and three grain farms in Mercedes, TX (sites 4; composite samples n=14), and two grain 

farms in San Isidro, TX (sites 2; composite samples n=8). Below are the Pearson’s and 

Spearman’s correlation coefficients and p-values for all metals. The five metals that 

demonstrated a trend of higher metal content closer to roads are Cu in Edinburg, Cd, Cu, and Pb 

in Mercedes, and Zn in San Isidro. All significant trends are presented in bold font. 

Table 3.1 Pearson Data for Metal Averages by Location 

Location 

As Cd Cr Cu Fe Ni Pb Se Zn 

Edinburg r = 0.2, 
rs = 0.61 

r = 0.40, 
rs = 0.99 

r = 0.49, 
p = 0.51 

r = -0.26, 
p = 0.74 

r = 0.87, 
p = 0.13 

r = 0.23, 
p = 0.77 

r = 0.68, 
p = 0.32 

r = 0.963, 
p = 0.037 

r = 0.998, 
p = 0.002 

Mercedes r = 0.62, 
p = 0.06 

r = -0.084, 
p = 0.82 

r = 0.34, 
p = 0.34 

r = -0.687, 
p = 0.028 

r = 0.26, 
p = 0.46 

r = 0.59, 
p = 0.08 

r = -0.37, 
p = 0.29 

r = 0.18, 
p = 0.62 

r = 0.62, 
rs= 0.097 

San 
Isidro 

r = 0.48, 
p = 0.23 

r = 0.39, 
p = 0.34 

r = 0.83, 
p = 0.01 

r = 0.76, 
p = 0.03 

r = 0.865, 
p = 0.0055 

r = 0.61, 
p = 0.11 

r = 0.37, 
p = 0.37 

r = 0.09, 
p = 0.83 

r= -0.277, 
p = 0.51 

All other metals actually showed an almost neutral relationship and some even showed very 

positive relationships, leaving us with very little evidence that in the samples collected distance 

from roads is a predictor of heavy metal content in soil. However, the sample size for all 

locations is under 30 samples, so we hope that this may provide incentive for more sampling. 

pH 

Statistics analyzing pH were run using scatterplots with Spearman’s correlations, but no 

significant correlations were found. Soil pH range for collected samples was 7.36-8.23. 
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Soil Type 

Soil type was a weak predictor for most heavy metal concentrations, except for Cd (H=7.023, 

2 d.f., P=0.0298) and Fe (H=6.54, 2 d.f., P=0.0381). The below table illustrates mean ± standard 

deviation, followed by letters that identify the significance of the pairwise comparisons. 

Table 3.2 Soil Type Summary Statistics and Pairwise Comparisons in ppb 

Cd Fe 

Sandy Clay Loam (SCL) 3.97 ± 0.65 A 162761.44 ± 15078.39 A 
Sandy Loam (SL) 3.14 ± 1.03 AB 98065.46 ± 48112.62 B 
Loamy Sand (LS) 2.75 ±1.01 B 79506.06 ± 31498.89 B 

All other metals did not prove statistically significant using the Kruskal-Wallis Rank Sum Test 

nor were there any significant pairwise comparisons. The data are provided below. 

Table 3.3 Non-Significant Soil Type Summary Statistics and Pairwise Comparisons in ppb 

As Cr Cu Ni Pb Se Zn 

SCL 14.16 ± 
3.37 

148.80 ± 
5.27 

148.91 ± 
15.08 

139.04 ± 
17.54 

111.75 ± 
10.28 

2.08 ± 
0.43 

1950.77 ± 
872.77 

SL 14.83 ± 
11.94 

98.55 ± 
38.51 

130.15 ± 
62.58 

99.09 ± 
40.05 

89.16 ± 
43.31 

1.45 ± 
1.21 

1804.75 ± 
2090.85 

LS 17.45 ± 
8.76 

92.91 ± 
48.04 

138.33± 
79.87 

100.79 ± 
44.38 

71.82 ± 
20.66 

0.99 ± 
0.68 

2416.59 ± 
2505.34 

Modeling Predictors 

A constrained redundancy analysis (RDA) was run in Canoco 5 software due to the linear 

distribution of the ICP data and in order to visually represent an ordination analysis overlaying 

our quantitative and qualitative data. Soil types are abbreviated SL for Sandy Loam, LS for 
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Loamy Sand, and SCL for Sandy Clay Loam. This RDA illustrates likelihood for higher metal 

content to be found in SCL, with little relationship found between SL or LS. Results show trends 

for As and Zn to follow the hypothesis of higher metal content being more likely to be detected 

closer to a road, with all other metals trending in the opposite direction. There is a slightly 

greater likelihood of metal content being higher in Colonias over Agricultural lands, with a focus 

on Zn in particular. As discussed in prior correlation analysis, there is no relationship to pH. 

Permutation test results prove significance with a p-value of 0.002. 

Figure 3.2 RDA Predictor Model for Soil Characteristics 
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Table 3.4 Summary Table for Soil Characteristics 

Statistic Axis 1 Axis 2 

Eigenvalues 0.5068 0.0002 
Explained variation (cumulative) 50.68 50.70 

Pseudo-canonical correlation 0.7129 0.2851 
Explained fitted variation 
(cumulative) 

99.96 100.00 

Per-Axis Statistics 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Origin Scores -2.86354 -4.14503 0.00000 0.00000 
Extracted from expl. 
data 

0.17893 0.22595 0.00000 0.00000 

Permutation Test Results 

Statistic Value 

Pseudo-F 9.1, d.f. 5 
p-value 0.00200 

Number of permutations 499 

Another constrained redundancy analysis (RDA) was run in Canoco 5 software in order to 

observe more closely the effects of soil composition on metal content. This RDA show clay 

content as a strong predictor for Cu, Pb, Se, Cd, Cr, Ni, and Fe. Permutation test results prove 

significance with a pseudo-F of 6.9, d.f. 2, and p-value of 0.004, and 499 permutations. 
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Figure 3.3 RDA Predictor Model for Soil Composition 
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Total variation is 115882030658.903, explanatory variables account for 20.1% 
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Table 3.5 Summary Table for Soil Composition 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 
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Per-Axis Statistics 

Statistic Axis 1 Axis 2 Axis 3 Axis 4 

Origin Scores -4.77001 -11.49687 -2.39354 -0.98486
Extracted from expl. 
data 
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Discussion 

Roadside contamination from heavy metals breaks down to cadmium emissions from lubrication 

oil consumption and tire wear, zinc emissions from fuel tanks and tire wear, copper and lead 

emissions from brake wear, and lead from worn metal alloys in the engine and exhaust gas from 

vehicles (Yan, 2012). Contrary to previous studies linking increasing distance from road to 

decreasing heavy metal concentrations (Yan, 2012), this study found that proximity to road is a 

poor predictor of heavy metal content in this region. This may mean that this region’s traffic 

emissions are currently not great enough to affect heavy metal content or that countries where 

this is a consistent issue have less regulation enforcement over vehicle emissions. It could also 

mean that in countries suffering from heavy metal contamination where rapid urbanization and 

agricultural regions are proximally present have stricter governmental levels of heavy metal 

content that is considered contamination (Jia et. al., 2018). If possible, sampling on farms closer 

to busy roads may provide different results, however, it is not always simple to obtain sampling 

access to these areas. 

Median household income for Colonias is almost half that of Texas who live outside of 

Colonias, and Colonia residents utilize public assistance programs more than their municipality 

residing neighbors (Barton et. al., 2015). While it is already an issue that communities of color 

are more likely to experience environmental pollution, these Texas border communities are at 

particular risk due to the majority Hispanic population which compromises 71-99% of border 

counties (Masten, et. al., 2016) (Texas Demographic Center, 2019). Per land use, we did not 

observe any results which would lead us to conclude inherent discrepancies between residential 

communities and agricultural land. This is a positive finding for the cause of the promotion of 

urban and community gardens to address issues of food access, food security and community 
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prosperity. Our research may suggest that these kinds of initiatives would not expose residents 

interested in community gardening to heavy metals, at least in the areas we explored, which is 

not always the case for community gardens emerging in urban areas (Sharma, 2014). 

For the Rio Grande Valley, it appears that sandy clay loam can be predictive of higher 

heavy metal concentrations relative to other soil types. It also comprised the smallest number of 

our soil samples, and as such there may be added benefit in conducting soil texture tests prior to 

digestion in order to ensure balanced sampling quantities for specific regions, if one is interested 

in mainly studying soil texture as a predictor for metal content. Speaking more generally for soils 

across the world, clay percentage may be the best predictor. As the Kruskal Wallis analysis only 

portrays this for Cd and Fe, this can signify a variety of conclusions. Cd in agricultural fields is 

sourced in part from phosphate-based fertilizers (da Silva, 2016), which may have been used in 

the fields we sampled in. Fe is not considered a toxic heavy metal, and is naturally present in 

soils, but can be toxic in higher quantities and is more harmful to plants than humans (Zwolak et. 

al., 2019). As for clay, soils with higher percentages of clay and soil organic matter (SOM) are 

more likely to have higher heavy metal concentrations than other soil types (Dube, 2001). This 

can be attributed to van der Waals forces, linkage of particles through cationic bridges, i.e. Fe+3, 

Cd +2 , and the cementation effects of SOM (Chessworth et. al., 2008). 

While there was no relationship found between pH and metal content, this may be due to 

the fact that the average pH of our soils was 7.84, and metal release is dependent on soil pH and 

varies greatly between metals (Zhang et. al, 2018). Lower pH levels are known to affect the 

bioavailability of Cd, Cu, Pb, and Zn (Chessworth et. al., 2008). In one study this was observed 
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with Cd, showing a direct relationship between increasing Cd content of carbonate fractions and 

increasing pH between the 4.5-9.5 range (Zhang et. al, 2018). 

The following table provides remediation levels for heavy metals in soils for the Texas 

Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency 

(EPA). All samples in this study fell under both thresholds. We encourage the reader to note the 

discrepancy between the orders of magnitude depending on state or federal regulations. 

Table 3.6 State and Federal Levels for Heavy Metal Contamination in Soil 

Element of 

Concern 

TCEQ Levels for Soil 

Remediation in .5 acre> in µg/l 

(ppb) 

EPA Regulatory limits on Heavy 

Metals Applied to Soils in µg/l (ppb) 

As-Arsenic 2.00E+03 7.50E+02 
Cd-Cadmium 8.10E+03 8.50E+02 
Cr-Chromium 1.20E+06 3.00E+04 
Cu-Copper 9.40E+05 4.30E+04 
Fe-Iron N/A N/A 
Ni-Nickel 8.80E+04 7.50E+02 
Pb-Lead 1.60E+04 4.20E+03 
Se-Selenium 4.90E+04 8.40E+03 
Zn-Zinc 2.50E+06 7.50E+04 

(EPA, 2016; TCEQ, 2019) 

It is excellent news to be able to report to farmers and Colonia residents that their soils were free 

of contamination, however, I would urge them to be vigilant as their communities experience 

economic expansion and urban development, as sources of soil contamination are likely to 

increase (Sharma, 2014). 
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CHAPTER IV 

CONCLUSION 

In this thesis we confirmed that the pXRF is a tool that cannot provide the accuracy of in lab 

techniques, but can provide a binary estimate response of contamination levels. We found trends 

in metals for different instruments, but our results show that the ICP-MS data still remains the 

most reliable. In our comparisons for distance and soil type, with more samples we could have 

provided stronger results. All in all, data is provided for researchers deciding which techniques 

may be most appropriate for their subjects of concern. 

The following table provides average values of 47 samples for the elements of interest 

sampled throughout the Rio Grande from 2015-2018 by the International Boundary and Water 

Commission. We compare them to the average values obtained from our 59 samples in 2019 for 

the same elements. While they are higher for each element, when compared to the regulatory 

values from both the Texas Commission on Environmental Quality (TCEQ) and the 

Environmental Protection Agency (EPA), we did not detect contamination in any of our soil 

samples. 
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Table 4.1 “Dissolved in Water” Approximate Sampling Averages in the Rio Grande from 
2015-2018 in µg/l (ppb) 

Element 
As  Cd  Cr  Cu  Fe  Ni  Pb  Se  Zn 

IBWC  10.12  1.8  8.84  11.17  68.02  3.71  13.64  6.43  25.44 
RGV Soil 15.26 3.13 100.76 134.66 95453.43 103.97 87.02 1.39 1940.48 

(U.S. International Boundary and Water Commission, Rio Grande Basin Texas Clean 
Rivers Program, 2020). 

In retrospect, there exist tools for soil sampling which can provide more precise and 

consistent soil sampling depths, therefore for future work I recommend researchers use such 

tools to obtain soil depths of only 5cm or less, as concentrations can vary at different depths 

(Usman et al., 2017). I stress the importance of using consistent testing metrics with the 

provision of enough time to perform laboratory analysis in a precise and careful manner.

Lastly, while this thesis did not discover any contamination, the Rio Grande Valley remains 

a highly susceptible region to heavy metal contamination and regular testing should be

conducted whenever possible. It is my hope that the work in this thesis makes this testing

more accessible to citizens of the Rio Grande Valley and across the world. 
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APPENDIX 

Table 2.8 ICP Raw Data in µg/l 

Sample 
ID As Cd Cr Cu Fe Ni Pb Se Zn 
1 16.75 2.40 70.64 64.01 65633.41 66.18 55.52 0.56 240.68 
2 35.32 2.08 58.03 76.40 55834.21 65.28 58.45 1.67 2084.08 
3 3.49 1.96 60.26 177.48 59200.86 66.37 57.26 0.92 1089.70 
4 8.00 2.04 58.27 61.86 55521.22 61.10 52.30 0.73 204.42 
5 5.99 3.69 134.57 126.92 82133.78 151.47 130.18 2.36 655.05 
6 13.11 3.92 127.28 108.38 84326.27 144.79 140.15 1.49 654.07 
7 17.38 6.39 78.27 179.04 58263.74 189.30 90.95 0.61 2586.11 
8 3.99 5.01 105.55 139.33 127168.74 138.22 115.60 3.17 884.48 
9 5.35 3.17 106.96 267.46 98193.48 113.49 86.80 1.63 610.80 
10 10.56 2.60 77.62 202.72 73005.85 72.63 74.23 1.03 490.45 
11 12.90 3.92 151.84 145.24 155906.80 149.65 95.03 0.13 2339.46 
12 28.80 2.53 265.16 362.66 82459.35 106.01 62.12 0.49 671.38 
13 18.87 6.30 147.14 253.14 145452.53 136.59 244.95 3.01 2061.96 
14 13.70 4.86 137.45 220.23 139910.08 135.97 184.01 1.61 1491.61 
15 11.80 4.60 123.72 201.21 116399.21 105.74 119.28 2.02 629.92 
16 16.24 4.28 143.63 216.73 156346.53 159.88 118.80 2.04 2987.25 
17 17.61 3.43 145.48 165.32 160674.51 139.18 106.89 1.59 1790.82 
18 9.41 3.37 150.34 205.55 163603.70 124.37 108.70 2.20 3397.12 
19 11.94 4.15 117.19 228.35 87760.75 137.56 68.82 0.23 1566.26 
20 24.72 2.46 72.77 149.50 66093.41 67.89 57.96 0.02 519.22 
21 10.40 2.24 73.89 149.69 63826.62 54.36 55.34 0.13 419.16 
22 10.70 2.37 95.93 126.21 92056.05 79.27 65.89 0.59 3638.63 
23 32.79 1.91 68.68 183.58 65587.66 62.25 56.01 0.77 3554.30 
24 6.63 2.72 79.13 175.74 78179.15 95.33 84.77 0.97 1667.14 
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25 16.71 2.66 85.46 189.70 81737.75 99.69 80.04 2.25 1919.05 
26 19.93 3.22 73.98 141.63 65507.28 121.36 71.82 1.19 11663.06 
27 6.69 2.66 89.67 109.99 86148.69 106.66 83.37 1.47 3299.10 
28 14.82 2.57 90.78 140.70 86851.38 128.06 83.81 0.73 3069.85 
29 30.41 2.60 85.35 109.21 84929.96 105.21 80.14 2.09 9283.61 
30 9.13 2.37 78.81 169.06 77667.49 90.71 75.43 -0.11 499.10
31 7.53 2.99 88.70 128.69 78242.54 116.50 91.14 1.24 2428.92 
32 16.38 2.68 93.14 138.51 77892.64 109.58 79.31 0.36 860.87 
33 7.79 3.39 64.71 140.95 58720.95 80.93 87.21 0.97 4796.75 
34 13.14 3.31 131.65 134.33 151253.25 138.87 112.91 0.72 527.22 
35 13.80 3.82 124.30 128.18 147904.75 136.20 114.99 3.53 580.25 
36 16.32 3.07 98.90 110.42 118107.89 101.99 85.84 0.83 443.74 
37 10.50 3.41 128.64 148.24 152359.85 126.85 102.30 1.23 1656.91 
38 9.60 3.33 119.68 126.11 139782.71 134.91 127.57 2.20 2751.32 
39 15.02 3.66 99.18 114.26 92168.77 214.48 81.07 1.64 8297.91 
40 9.87 3.33 142.63 117.83 143879.88 131.16 109.88 1.28 540.25 
41 10.87 3.78 146.04 145.77 148835.22 121.43 104.79 2.37 1169.03 
42 4.68 3.48 147.46 121.83 146844.12 125.51 103.91 2.25 3459.63 
43 19.70 3.38 128.38 120.85 152635.88 127.82 105.08 5.49 649.37 
44 11.16 4.31 160.53 176.59 173052.17 163.33 113.11 2.69 2708.97 
45 13.99 4.69 154.88 135.65 178774.59 156.51 123.56 2.28 2892.45 
46 4.76 4.10 145.23 138.84 172018.11 141.45 114.37 3.26 596.26 
47 24.03 4.05 150.26 125.93 175445.85 145.38 117.35 2.82 616.29 
48 15.83 4.10 134.40 245.53 92840.63 110.93 144.10 2.55 795.46 
49 11.23 1.66 44.69 47.53 35152.32 37.97 42.47 0.72 226.46 
50 20.21 2.00 60.01 39.55 50283.43 67.27 48.24 0.50 186.69 
51 3.95 1.73 61.94 42.54 53168.22 59.82 47.12 0.50 177.64 
52 17.19 2.48 68.64 52.15 61557.54 62.17 53.89 0.36 1800.18 
53 31.35 2.05 68.77 53.77 59168.25 70.77 51.13 1.06 214.25 
54 70.65 2.64 57.35 66.26 44053.57 44.74 47.14 1.64 417.27 
55 15.64 2.50 63.12 59.75 43925.65 53.43 50.86 1.27 2686.55 
56 25.40 2.70 57.24 72.51 44560.62 47.29 47.85 0.33 1687.06 
57 9.39 2.10 47.70 55.64 39995.51 42.12 44.55 0.38 3193.63 
58 5.18 2.10 47.12 42.94 40620.89 44.09 49.54 1.30 2588.30 
59 9.86 1.76 47.94 44.32 41564.49 45.28 45.15 0.31 2123.89 
60 16.13 1.69 51.09 39.77 43519.67 58.91 40.54 0.68 1057.33 
61 25.37 2.11 58.10 51.94 47948.64 49.84 56.79 0.22 270.43 
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Table 2.9 AA Raw Data in µg/l 

Sample 

ID As Cd Cr Cu Fe Ni Pb Se Zn 

1 38.67 0.319 98.72 44.59 74060 74.78 42.28 2.857 210 
2 40.46 0.331 73.76 55.86 71540 78.21 53.53 2.902 205 
3 37.73 0.07 73.24 127.3 73520 81.44 45.05 2.987 224 
4 35.03 0.064 70.97 38.19 84080 71.02 42.66 2.652 785 
5 115.8 1.016 134.1 77.04 61680 113.1 155.9 3.672 600 
6 50.53 1.123 132.8 61.79 84220 101 177 3.391 2073 
7 37.65 1.6 89.59 125.2 86150 187.1 95.84 3.17 462 
8 69.14 0.905 110.6 96.16 144600 117.7 131 3.887 853 
9 59.77 0.126 109.9 201.9 105900 107.4 98.5 3.224 571 
10 33.9 0.067 106.3 128.5 78800 80.85 66.94 2.748 480 
11 61.03 0.202 149.6 114.4 167200 135.7 112 3.178 828 
12 46.69 1.279 210.1 280.7 43680 118.8 70.66 2.772 725 
13 53 0.226 155.6 201.3 151200 133.2 307.4 3.14 1442 
14 63.76 0.151 145.7 152.9 132700 138.2 223.4 3.224 997 
15 61.51 0.122 134.4 130.8 149800 117.7 139.5 3.404 269 
16 82.55 0.419 147.6 114.6 145200 137.3 129.6 3.441 1298 
17 71.92 0.299 150.6 115.4 153900 123.2 124.9 3.45 511 
18 63.21 0.238 131.6 210.5 141900 140.5 127.6 3.311 793 
19 58.1 0.389 121.4 150.7 123500 169.4 48.73 2.261 384 
20 47.38 0.036 81.49 47.35 76460 108.9 42.2 2.047 483 
21 40.4 0.35 85.22 48.2 97900 74.53 42.91 1.212 416 
22 71.08 0.333 104.2 56.18 106700 108.7 55.55 2.323 395 
23 34.83 0.293 82.33 65.22 110700 101.1 38.93 2.074 353 
24 48.57 0.394 141.5 92.32 83600 130.5 135.1 3.368 1220 
25 50.68 0.046 97.22 57.69 107600 128.1 73.66 2.516 767 
26 46.54 0.058 92.39 91.65 129100 166.5 88.87 2.696 546 
27 43.97 0.03 96.23 72.66 147700 128.8 69.89 1.888 443 
28 40.76 0.414 95.9 40.12 142500 149 62.6 1.964 2412 
29 42.26 0.454 91.83 29.8 121700 125.8 57.92 2.097 365 
30 46.09 0.046 85.76 100.8 91510 121.9 75.92 2.652 445 
31 48.78 0.049 95.52 119.1 98140 149.7 96.46 2.564 474 
32 41.7 0.05 94.21 72.33 107300 150.9 82.21 2.602 522 
33 41.8 0.651 71.78 77.39 133600 117.5 86.17 2.503 780 
34 102.7 0.174 125.4 103.8 163400 158.3 154.4 2.779 775 
35 107.1 0.11 129.8 66.86 137200 150.9 135.5 2.598 501 
36 90.39 0.601 109.6 59.36 121600 138.4 114.6 2.802 419 
37 99.39 0.124 127.8 90.11 154800 151.9 133.1 2.524 529 
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38 95.13 0.685 121.1 74.74 139200 180.6 170.9 2.54 529 
39 91.48 0.081 97.64 55.68 94500 245.1 101 2.59 436 
40 119.6 0.121 124.6 65.88 137900 169.3 138.9 2.287 505 
41 35.48 0.839 136 85.13 103100 103 132.1 2.248 7868 
42 153.4 0.143 139.5 65.85 147500 161.2 127.5 1.995 710 
43 105.1 0.197 127.8 73.58 154900 161.9 132.9 1.777 1049 
44 117.6 0.379 146.1 75.05 35830 191.2 154.1 2.846 285 
45 103.2 0.303 150.8 77.48 162000 173 154 2.116 647 
46 112.1 0.324 140.8 83.18 175400 163.1 148.9 2.5 7763 
47 112.8 0.31 151.5 72.95 171400 169 155.8 2.501 646 
48 56.41 0.063 145.1 120 94920 178.6 162.5 2.081 2746 
49 19.12 0.025 65.28 16.49 35150 73.4 32.13 2.102 200 
50 23.43 0.057 80.12 11.25 69770 96.47 34.61 1.444 225 
51 23.74 0.045 69.43 10.87 94410 97.41 41.27 1.561 213 
52 22.51 0.046 80.29 23.8 112000 98.91 56.08 1.784 185 
53 25.22 0.06 76.51 15.86 136900 110.9 53.17 1.515 198 
54 17.12 0.024 63.85 19.22 56580 77.75 53.75 1.661 362 
55 19.11 0.036 72.73 14.21 72300 83.13 55.25 1.25 295 
56 18.26 0.435 64.1 20.74 66650 84.13 56.74 1.587 329 
57 16.71 0.027 54.31 12.72 58490 71.76 48.75 1.626 298 
58 21.11 0.042 51.15 13.63 65580 66.02 50.58 2.12 192 
59 20.78 0.289 52.45 11.74 71430 68.92 56.17 7.597 184 
60 53.03 0.043 56.46 10.91 96050 201.1 45.21 1.98 188 
61 24.73 0.432 63.03 13.25 141000 84.44 63.14 2.651 264 

Table 2.10 pXRF Raw Data (Wet) in µg/l 

Sample 

ID As Cd Cr Cu Fe Ni Pb Se Zn 

1 40 100 50 50 150 60 40 20 40 
2 40 100 40 50 150 60 40 20 40 
3 50 100 50 50 150 70 40 20 40 
4 40 100 30 50 160 60 40 20 40 
5 70 250 100 60 240 90 50 30 60 
6 80 310 110 60 250 90 60 30 60 
7 60 110 50 50 160 70 40 20 50 
8 60 210 80 60 220 90 50 30 50 
9 60 130 60 50 190 70 40 20 50 
10 50 110 50 50 170 60 40 20 50 
11 60 160 80 60 200 100 50 30 50 
12 60 120 60 50 180 60 40 20 50 
13 70 140 60 60 210 80 40 20 50 
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14 70 140 70 50 170 90 50 30 50 
15 70 140 70 60 190 80 50 20 50 
16 60 180 70 50 180 100 50 30 50 
17 60 180 80 60 200 100 50 30 50 
18 70 170 70 50 160 100 50 30 50 
19 50 100 40 60 170 60 40 20 40 
20 60 100 40 50 150 60 40 20 40 
21 50 110 50 50 130 70 50 30 40 
22 40 90 50 40 180 40 30 20 40 
23 60 130 40 50 160 70 40 20 40 
24 60 130 50 40 150 70 50 30 40 
25 70 160 60 60 180 110 50 30 50 
26 70 120 60 50 150 80 50 30 50 
27 50 130 60 40 130 90 60 30 40 
28 50 110 50 50 140 80 50 20 40 
29 50 100 40 50 170 60 40 20 40 
30 50 130 50 50 180 70 40 20 40 
31 60 130 50 50 190 60 40 20 50 
32 60 130 50 50 160 70 40 20 40 
33 60 130 50 40 150 70 50 30 40 
34 70 160 70 60 180 110 50 30 50 
35 60 130 60 60 170 100 50 30 50 
36 60 140 70 60 180 90 50 20 50 
37 60 140 70 60 180 100 50 30 50 
38 70 140 70 60 190 100 50 30 50 
39 60 120 60 50 170 80 50 20 50 
40 60 140 60 60 180 100 50 30 50 
41 60 140 70 50 170 110 50 30 50 
42 60 140 60 70 190 90 50 30 50 
43 60 150 70 60 190 100 50 30 50 
44 70 180 80 60 200 110 50 30 50 
45 70 180 80 60 220 100 50 30 50 
46 70 180 80 60 200 110 50 30 50 
47 70 180 80 60 200 100 50 30 50 
48 80 120 60 60 170 90 50 30 60 
49 40 110 50 40 130 60 50 30 40 
50 40 100 30 50 160 60 40 20 40 
51 40 100 40 50 150 60 40 20 40 
52 40 100 30 60 180 60 40 20 40 
53 40 100 40 60 160 70 40 20 40 
54 50 110 40 40 140 70 50 30 40 
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55 40 100 40 50 150 60 40 20 40 
56 50 100 50 40 130 60 40 20 40 
57 40 110 50 40 120 60 50 30 40 
58 40 100 30 50 160 50 40 20 40 
59 40 100 50 50 140 60 50 20 40 
60 40 100 50 50 140 60 50 20 40 
61 50 100 50 50 140 60 50 20 40 

Table 2.11 pxrf Raw Data (Dry) in µg/l 

Sample 

ID As Cd Cr Cu Fe Ni Pb Se Zn 

1 40 100 40 50 170 70 40 20 40 
2 40 110 30 50 170 70 40 20 40 
3 40 110 50 50 160 60 40 20 40 
4 40 120 40 50 170 70 50 20 40 
5 70 250 100 60 230 90 50 30 60 
6 80 310 120 60 280 90 50 30 60 
7 60 120 60 50 180 70 40 20 50 
8 80 240 90 60 240 100 50 30 60 
9 60 150 60 60 200 80 50 20 50 
10 50 110 50 50 170 60 40 20 50 
11 60 170 70 60 200 100 50 30 50 
12 70 120 60 60 210 60 40 20 70 
13 80 150 60 60 200 90 50 30 60 
14 70 150 70 60 200 90 50 30 50 
15 70 160 70 60 190 80 50 20 60 
16 60 210 80 50 190 110 60 30 50 
17 60 190 80 60 220 100 50 30 50 
18 70 180 70 60 220 90 50 30 50 
19 50 110 50 50 170 70 50 20 40 
20 50 100 50 50 160 60 40 20 40 
21 50 100 50 50 150 70 40 20 40 
22 50 120 50 50 170 80 50 20 40 
23 50 110 40 50 160 70 40 20 40 
24 60 130 60 60 190 80 40 20 50 
25 60 120 50 50 180 80 50 20 50 
26 60 120 60 60 180 70 40 20 50 
27 60 110 50 50 170 70 40 20 40 
28 50 110 50 60 170 70 40 20 40 
29 50 110 50 60 170 70 40 20 40 
30 50 130 60 50 180 70 50 20 50 
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31 60 140 60 50 170 70 50 20 50 
32 6000 13000 60 60 190 70 50 20 50 
33 70 130 60 50 180 70 50 20 50 
34 60 160 70 60 190 110 50 30 50 
35 60 140 60 60 170 100 50 30 50 
36 60 140 60 50 170 100 50 30 50 
37 60 140 60 60 190 100 50 30 50 
38 60 150 60 60 180 110 50 30 50 
39 60 130 60 50 190 80 50 20 50 
40 60 140 60 60 190 100 50 30 50 
41 60 140 60 60 200 100 50 30 50 
42 60 140 60 60 190 100 50 30 50 
43 60 160 70 60 200 100 50 30 50 
44 70 200 80 90 210 110 50 30 50 
45 70 190 80 60 230 100 50 20 50 
46 70 190 80 50 180 120 60 30 50 
47 70 190 80 60 210 110 50 30 60 
48 70 130 60 60 190 80 50 20 50 
49 40 100 30 50 150 50 40 20 40 
50 40 100 40 50 170 70 40 20 40 
51 40 100 40 50 160 70 40 20 40 
52 40 100 40 50 170 70 40 20 40 
53 40 100 40 50 170 70 40 20 40 
54 60 100 40 50 160 60 50 20 40 
55 50 100 40 50 170 60 40 20 40 
56 50 100 40 50 160 60 40 20 40 
57 50 100 40 50 170 60 40 20 40 
58 40 110 50 50 150 60 40 20 40 

59 40 100 40 50 160 60 40 20 40 
60 40 100 50 50 150 60 40 20 40 
61 40 110 50 40 150 70 50 20 40 
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Table 3.7 Sample Descriptions for Location, Zoning, Land Use, Distance, and Soil Conditions 

Sample 
ID Location 

GPS 
Coord. Zoning Land Use 

Distance to main 
road (m) 

Soil 
Conditions 

pH 
% 

Sand 
% 

Silt 
% 

Clay 
Soil 
Type 

1 Peñitas 
(26.330, - 
98.449) U-IC

Community 
Garden 22.05 8 86 5 9 LS 

2 Peñitas 
(26.330, - 
98.449) U-IC

Community 
Garden 18.77 7.83 88 4 8 LS 

3 Peñitas 
(26.330, - 
98.448) U-IC

Community 
Garden 12.61 7.87 80 8 12 SL 

4 Peñitas 
(26.330, - 
98.449) U-IC

Community 
Garden 10.51 8.03 88 4 8 LS 

7 Donna 
(26.158, - 
98.090) U-IC

Community 
Garden 15.36 RB 90 4 6 LS 

8 
Las 

Milpas 
(26.128, - 
98.192) U-IC

Community 
Garden 12.08 7.81 96 1.8 2.2 S 

9 Donna 
(26.151, - 
98.116) U-IC

Community 
Garden 17.63 8.23 88 4 8 LS 

10 Donna 
(26.152, - 
98.119) U-IC

Community 
Garden 5.77 8.1 86 3 11 SL 

11 Donna 
(26.156, - 
98.090) U-IC

Community 
Garden 31.99 7.92 82 8 10 SL 

12 Donna 
(26.151. - 
98.116) U-IC

Community 
Garden 10.4 RB 91 1 8 LS 

13 Donna 
(26.151. - 
98.117) U-IC

Community 
Garden 79.73 8.07 86 2 12 SL 

14 Donna 
(26.151. - 
98.117) U-IC

Community 
Garden 76.06 RB 86 2 12 SL 

16 
Las 

Milpas 
(26.139, - 
98.191) U-IC

Community 
Garden 14.57 8 70 16 14 SL 
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17 Donna 
(26.152, - 
98.091) U-IC

Community 
Garden 22.83 7.83 72 6 22 SCL 

18 Donna 
(26.126, - 
98.192) U-IC

Community 
Garden 1.38 7.9 90 8 2 LS 

19 Edinburg 
(26.349, - 
98.170) IC

Citrus 
Grove 73.65 7.77 86 4 10 SL 

20 Edinburg 
(26.350, - 
98.170) IC

Citrus 
Grove 29.46 7.64 88 4 8 LS 

21 Edinburg 
(26.351, - 
98.169) IC

Citrus 
Grove 12.11 7.67 88 2 10 SL 

22 Edinburg 
(26.348, - 
98.172) IC

Cotton 
Field 186 8.18 88 6 6 LS 

23 Edinburg 
(26.361, - 
98.206) IC

Citrus 
Grove 214.46 7.89 90 2 8 LS 

24 Palmview 
(26.246, - 
98.363) IC Urban Farm 12.86 7.7 88 2 10 SL 

25 Palmview 
(26.246, - 
98.363) IC Urban Farm 21.51 7.65 90 4 6 LS 

26 Palmview 
(26.246, - 
98.363) IC Urban Farm 32.96 7.56 84 4 12 SL 

27 Palmview 
(26.246, - 
98.363) IC Urban Farm 33 7.53 80 8 12 SL 

28 Palmview 
(26.246, - 
98.363) IC Urban Farm 34.06 7.6 90 2 8 LS 

29 Palmview 
(26.246, - 
98.363) IC Urban Farm 35.09 7.7 88 6 6 LS 

30 Palmview 
(26.246, - 
98.363) IC Urban Farm 20.94 7.74 86 2 12 SL 

31 Palmview 
(26.246, - 
98.363) IC Urban Farm 19.99 7.75 90 2 8 LS 

32 Palmview 
(26.246, - 
98.363) IC Urban Farm 29.73 7.62 92 2 6 LS 

33 Palmview 
(26.246, - 
98.363) IC Urban Farm 21.94 7.9 84 2 14 SL 
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34 Mercedes 
(26.230, - 
97.875) IC Corn Field 388.11 7.86 92 2 6 LS 

35 Mercedes 
(26.230, - 
97.876) IC Corn Field 314.21 8.03 82 4 14 SL 

36 Mercedes 
(26.228, - 
97.877) IC Corn Field 248.34 7.8 84 6 10 SL 

37 Mercedes 
(26.230, - 
97.878) IC Corn Field 142.35 7.96 88 10 2 SL 

38 Mercedes 
(26.230, - 
97.879) IC Corn Field 17.47 7.92 84 6 10 SL 

39 Mercedes 
(26.219, - 
97.877) IC 

Cattle 
Pasture 31.57 7.6 90 2 8 LS 

40 Mercedes 
(26.196, - 
97.878) IC Corn Field x 8.12 72 6 22 SL 

41 Mercedes 
(26.195, - 
97.878) IC Corn Field x 7.87 78 4 18 SCL 

42 Mercedes 
(26.194, - 
97.878) IC Corn Field x 7.95 84 4 12 SL 

43 Mercedes 
(26.192, - 
97.877) IC Corn Field x 7.93 80 6 14 SL 

44 Mercedes 
(26.190, - 
97.884) IC 

Sorghum 
Field 394.88 8.12 80 4 16 SL 

45 Mercedes 
(26.189, - 
97.884) IC 

Sorghum 
Field 316.65 7.97 58 18 24 SCL 

46 Mercedes 
(26.188, - 
97.884) IC 

Sorghum 
Field 185.27 7.9 84 4 12 SL 

47 Mercedes 
(26.188, - 
97.884) IC 

Sorghum 
Field 196.02 8.15 88 2 10 SL 

48 San Isidro 
(26.717, - 
98.455) IC 

Community 
Garden 44.02 7.84 84 4 12 SL 

49 San Isidro 
(26.718, - 
98.465) IC 

Community 
Garden 30.42 7.63 88 2 10 SL 

50 San Isidro 
(26.614, - 
98.541) IC Corn Field 9.99 7.86 96 2.8 1.2 LS 

51 San Isidro 
(26.614, - 
98.542) IC Corn field 85.3 7.91 82 8 10 SL 
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52 San Isidro 
(26.614, - 
98.542) IC Corn Field 135.15 7.49 84 8 8 SL 

53 San Isidro 
(26.614, - 
98.542) IC Corn Field 176.12 7.62 80 10 10 SL 

54 San Isidro 
(26.616, - 
98.541) IC Farm Plot 20 7.36 88 2 10 SL 

55 San Isidro 
(26.617, - 
98.541) IC Farm Plot 20.99 7.86 88 6 6 SL 

56 San Isidro 
(26.617, - 
98.541) IC Farm Plot 36.34 7.78 88 4 8 SL 

57 San Isidro 
(26.617, - 
98.542) IC Farm Plot 37.24 7.65 92 2 6 LS 

58 San Isidro 
(26.603, - 
98.578) IC Farm Plot 12.02 7.96 84 8 8 SL 

59 San Isidro 
(26.603, - 
98.578) IC Farm Plot 29.5 7.86 88 2 10 SL 

60 San Isidro 
(26.604, - 
98.578) IC Farm Plot 37.66 7.97 88 4 8 LS 

61 San Isidro 
(26.604, - 
98.578) IC Farm Plot 47.91 7.77 86 6 8 SL 
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Table 3.8 ICP-MS Results per Sample 

Sample ID As Cd Cr Cu Fe Ni Pb Se Zn 
1 16.75 2.4 70.64 64.01 65633.41 66.18 55.52 0.56 240.68 
2 35.32 2.08 58.03 76.4 55834.21 65.28 58.45 1.67 2084.08 
3 3.49 1.96 60.26 177.48 59200.86 66.37 57.26 0.92 1089.7 
4 8 2.04 58.27 61.86 55521.22 61.1 52.3 0.73 204.42 
7 17.38 6.39 78.27 179.04 58263.74 189.3 90.95 0.61 2586.11 
8 3.99 5.01 105.55 139.33 127168.7 138.22 115.6 3.17 884.48 
9 5.35 3.17 106.96 267.46 98193.48 113.49 86.8 1.63 610.8 

10 10.56 2.6 77.62 202.72 73005.85 72.63 74.23 1.03 490.45 
11 12.9 3.92 151.84 145.24 155906.8 149.65 95.03 0.13 2339.46 
12 28.8 2.53 265.16 362.66 82459.35 106.01 62.12 0.49 671.38 
13 18.87 6.3 147.14 253.14 145452.5 136.59 244.95 3.01 2061.96 
14 13.7 4.86 137.45 220.23 139910.1 135.97 184.01 1.61 1491.61 
16 16.24 4.28 143.63 216.73 156346.5 159.88 118.8 2.04 2987.25 
17 17.61 3.43 145.48 165.32 160674.5 139.18 106.89 1.59 1790.82 
18 9.41 3.37 150.34 205.55 163603.7 124.37 108.7 2.2 3397.12 
19 11.94 4.15 117.19 228.35 87760.75 137.56 68.82 0.23 1566.26 
20 24.72 2.46 72.77 149.5 66093.41 67.89 57.96 0.02 519.22 
21 10.4 2.24 73.89 149.69 63826.62 54.36 55.34 0.13 419.16 
22 10.7 2.37 95.93 126.21 92056.05 79.27 65.89 0.59 3638.63 
23 32.79 1.91 68.68 183.58 65587.66 62.25 56.01 0.77 3554.3 
24 6.63 2.72 79.13 175.74 78179.15 95.33 84.77 0.97 1667.14 
25 16.71 2.66 85.46 189.7 81737.75 99.69 80.04 2.25 1919.05 
26 19.93 3.22 73.98 141.63 65507.28 121.36 71.82 1.19 11663.06 
27 6.69 2.66 89.67 109.99 86148.69 106.66 83.37 1.47 3299.1 
28 14.82 2.57 90.78 140.7 86851.38 128.06 83.81 0.73 3069.85 
29 30.41 2.6 85.35 109.21 84929.96 105.21 80.14 2.09 9283.61 
30 9.13 2.37 78.81 169.06 77667.49 90.71 75.43 -0.11 499.1 
31 7.53 2.99 88.7 128.69 78242.54 116.5 91.14 1.24 2428.92 
32 16.38 2.68 93.14 138.51 77892.64 109.58 79.31 0.36 860.87 
33 7.79 3.39 64.71 140.95 58720.95 80.93 87.21 0.97 4796.75 
34 13.14 3.31 131.65 134.33 151253.3 138.87 112.91 0.72 527.22 
35 13.8 3.82 124.3 128.18 147904.8 136.2 114.99 3.53 580.25 
36 16.32 3.07 98.9 110.42 118107.9 101.99 85.84 0.83 443.74 
37 10.5 3.41 128.64 148.24 152359.9 126.85 102.3 1.23 1656.91 
38 9.6 3.33 119.68 126.11 139782.7 134.91 127.57 2.2 2751.32 
39 15.02 3.66 99.18 114.26 92168.77 214.48 81.07 1.64 8297.91 
40 9.87 3.33 142.63 117.83 143879.9 131.16 109.88 1.28 540.25 
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41 10.87 3.78 146.04 145.77 148835.2 121.43 104.79 2.37 1169.03 
42 4.68 3.48 147.46 121.83 146844.1 125.51 103.91 2.25 3459.63 
43 19.7 3.38 128.38 120.85 152635.9 127.82 105.08 5.49 649.37 
44 11.16 4.31 160.53 176.59 173052.2 163.33 113.11 2.69 2708.97 
45 13.99 4.69 154.88 135.65 178774.6 156.51 123.56 2.28 2892.45 
46 4.76 4.1 145.23 138.84 172018.1 141.45 114.37 3.26 596.26 
47 24.03 4.05 150.26 125.93 175445.9 145.38 117.35 2.82 616.29 
48 15.83 4.1 134.4 245.53 92840.63 110.93 144.1 2.55 795.46 
49 11.23 1.66 44.69 47.53 35152.32 37.97 42.47 0.72 226.46 
50 20.21 2 60.01 39.55 50283.43 67.27 48.24 0.5 186.69 
51 3.95 1.73 61.94 42.54 53168.22 59.82 47.12 0.5 177.64 
52 17.19 2.48 68.64 52.15 61557.54 62.17 53.89 0.36 1800.18 
53 31.35 2.05 68.77 53.77 59168.25 70.77 51.13 1.06 214.25 
54 70.65 2.64 57.35 66.26 44053.57 44.74 47.14 1.64 417.27 
55 15.64 2.5 63.12 59.75 43925.65 53.43 50.86 1.27 2686.55 
56 25.4 2.7 57.24 72.51 44560.62 47.29 47.85 0.33 1687.06 
57 9.39 2.1 47.7 55.64 39995.51 42.12 44.55 0.38 3193.63 
58 5.18 2.1 47.12 42.94 40620.89 44.09 49.54 1.3 2588.3 
59 9.86 1.76 47.94 44.32 41564.49 45.28 45.15 0.31 2123.89 
60 16.13 1.69 51.09 39.77 43519.67 58.91 40.54 0.68 1057.33 
61 25.37 2.11 58.1 51.94 47948.64 49.84 56.79 0.22 270.43 
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